Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-05T17:38:43.749Z Has data issue: false hasContentIssue false

Part II - Challenges

Published online by Cambridge University Press:  31 January 2025

Fernando F. Grinstein
Affiliation:
Los Alamos National Laboratory
Filipe S. Pereira
Affiliation:
Los Alamos National Laboratory
Massimo Germano
Affiliation:
Duke University, North Carolina
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Coarse Graining Turbulence
Modeling and Data-Driven Approaches and their Applications
, pp. 261 - 262
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abu-Ghannam, B. J., and Shaw, R. 1980. Natural Transition of Boundary Layers – The Effects of Turbulence, Pressure Gradient, and Flow History. Journal of Mechanical Engineering Science, 22(5), 213–228.CrossRefGoogle Scholar
Alam, M., Walters, K., and Thompson, D. 2013 (7–10 January). A Transition-Sensitive Hybrid RANS/LES Modeling Methodology for CFD Applications. In: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.CrossRefGoogle Scholar
Bader, S. H., Yin, Z., and Durbin, P. A. 2022. A Hybrid Model for Turbulence and Transition, with a Locally Varying Coefficient. Flow, Turbulence and Combustion, 108(4), 935–954.CrossRefGoogle Scholar
Banari, A., Gehrke, M., Janßen, C. F., and Rung, T. 2020. Numerical Simulation of Nonlinear Interactions in a Naturally Transitional Flat Plate Boundary Layer. Computers & Fluids, 203, 104502.CrossRefGoogle Scholar
Bertolotti, F. P., Herbert, ThSpalart, , P. R. 1992. Linear and Nonlinear Stability of the Blasius Boundary Layer. Journal of Fluid Mechanics, 242, 441–474.CrossRefGoogle Scholar
Besnard, D., Harlow, Francis H., Rauenzahn, R. M., and Zemach, C. 1992. Turbulence Transport Equations for Variable-Density Turbulence and Their Relationship to Two-Field Models. Tech. rept. LA-12303-MS. Los Alamos National Laboratory.CrossRefGoogle Scholar
Bhushan, S., and Walters, D. K. 2012. A dynamic hybrid Reynolds-averaged Navier Stokes–Large eddy simulation modeling framework. Physics of Fluids, 24(1), 015103.CrossRefGoogle Scholar
Bodart, J., and Larsson, J. 2012. Sensor-Based Computation of Transitional Flows Using Wall-Modeled Large Eddy Simulation. Annual Research Briefs. Center for Turbulence Research.Google Scholar
Brachet, M. E., Meiron, D. I., Orszag, S. A., and Nickel, B. G. 1983. Small-Scale Structure of the Taylor–Green Vortex. Journal of Fluid Mechanics, 130(May), 411–452.CrossRefGoogle Scholar
Celik, I., Klein, M., Freitag, M., and Janicka, J. 2006. Assessment Measures for URANS/DES/LES: An Overview with Applications. Journal of Turbulence, 7(48).CrossRefGoogle Scholar
Chandrasekhar, S. 1981. Hydrodynamic and Hydromagnetic Stability. Dover Publications.Google Scholar
Cho, J. R., and Chung, M. K. 1992. A Kεγ Equation Turbulence Model. Journal of Fluid Mechanics, 237, 301–322.CrossRefGoogle Scholar
Coder, J. G. 2017. Enhancement of the Amplification Factor Transport Transition Modeling Framework. In: 55th AIAA Aerospace Sciences Meeting.CrossRefGoogle Scholar
Coder, J. G., and Maughmer, M. D. 2014. Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation. AIAA Journal, 52(11), 2506–2512.CrossRefGoogle Scholar
Criminale, W. O., Jackson, T. L., and Joslin, R. D. 2003. Theory and Computation in Hydrodynamic Stability. Cambridge University Press.CrossRefGoogle Scholar
Denison, M. 2022. 1st AIAA CFD Transition Modeling and Prediction Workshop: OVERFLOW Results for the SST and Langtry-Menter Models. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Dhawan, S., and Narasimha, R. 1958. Some Properties of Boundary Layer Flow during the Transition from Laminar to Turbulent Motion. Journal of Fluid Mechanics, 3(4), 418–436.CrossRefGoogle Scholar
Dopazo, C. 1977. On Conditioned Averages for Intermittent Turbulent Flows. Journal of Fluid Mechanics, 81(3), 433–438.CrossRefGoogle Scholar
Drazin, P. G., and Reid, W. H. 2004. Hydrodynamic Stability. 2nd ed. Cambridge University Press.CrossRefGoogle Scholar
Drela, M., and Giles, M. B. 1987. Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils. AIAA Journal, 25(10), 1347–1355.CrossRefGoogle Scholar
Drikakis, D., Fureby, C., Grinstein, F. F., and Youngs, D. 2007. Simulation of Transition and Turbulence Decay in the Taylor–Green Vortex. Journal of Turbulence, 8, N20.CrossRefGoogle Scholar
Ducros, F., Comte, P., and Lesieur, M. 1995. Direct and Large-Eddy Simulations of Transition of a Supersonic Boundary Layer. Pages 283–300 in Turbulent Shear Flows 9, Durst, F., Kasagi, N., Launder, B. E., Schmidt, F. W., Suzuki, K., and Whitelaw, J. H. (eds). Springer.Google Scholar
Ducros, F., Comte, P., and Lesieur, M. 1996. Large-Eddy Simulation of Transition to Turbulence in a Boundary Layer Developing Spatially over a Flat Plate. Journal of Fluid Mechanics, 326, 1–36.Google Scholar
Durbin, P. 2012. An intermittency model for bypass transition. International Journal of Heat and Fluid Flow, 36, 1–6.CrossRefGoogle Scholar
Eca, L., Lopes, R., Kerkvliet, M., and Toxopeus, S. L. 2022. On the Simulation of Low Reynolds Number Flows Using the RANS Equations with Eddy-Viscosity and Transition Models. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Fasel, H. 1976. Investigation of the Stability of Boundary Layers by a Finite-Difference Model of the Navier–Stokes Equations. Journal of Fluid Mechanics, 78(2), 355–383.CrossRefGoogle Scholar
Fasel, H. F., von Terzi, D. A., and Sandberg, R. D. 2006. A Methodology for Simulating Compressible Turbulent Flows. Journal of Applied Mechanics, 73(May), 405–412.CrossRefGoogle Scholar
François, D. G., Krumbein, A., Krimmelbein, N., and Grabe, C. 2022. Simplified Stability-Based Transition Transport Modeling for Unstructured Computational Fluid Dynamics. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Gaster, M. 1966. The Structure and Behaviour of Laminar Separation Bubbles. Pages 813–854 in AGARD CP4 Part 2.Google Scholar
Ge, X., Arolla, S., and Durbin, P. 2014. A Bypass Transition Model Based on the Intermittency Function. Flow, Turbulence and Combustion, 93(1), 37–61.CrossRefGoogle Scholar
Germano, M. 1992. Turbulence: the filtering approach. Journal of Fluid Mechanics, 238, 325–336.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A Dynamic Subgrid-Scale Eddy Viscosity Model. Physics of Fluids, 3(7), 1760–1765.Google Scholar
Girimaji, S. S. 2006. Partially-Averaged Navier–Stokes Model for Turbulence: A Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation Bridging Method. Journal of Applied Mechanics, 73(May), 413–421.Google Scholar
Girimaji, S. S., Jeong, E., and Srinivasan, R. 2006. Partially Averaged Navier–Stokes Method for Turbulence: Fixed Point Analysis and Comparison with Unsteady Partially Averaged Navier–Stokes. Journal of Applied Mechanics, 73(May), 422–429.Google Scholar
Grinstein, F. F., Saenz, J. A., Rauenzahn, R. M., Germano, M., and Israel, D. M. 2020. Dynamic Bridging Modeling for Coarse Grained Simulations of Shock Driven Turbulent Mixing. Computers & Fluids, 199, 104430.CrossRefGoogle Scholar
Haas, A. P., and Israel, D. M. 2023. Using Linear-Stability Theory to Build Transition Models. In: AIAA AVIATION 2023 Forum.CrossRefGoogle Scholar
Herbert, T. 1988. Secondary Instability of Boundary Layers. Annual Review of Fluid Mechanics, 20(1), 487–526.CrossRefGoogle Scholar
Herbert, T. 1983. On Perturbation Methods in Nonlinear Stability Theory. Journal of Fluid Mechanics, 126, 167–186.CrossRefGoogle Scholar
Hodara, J., and Smith, M. J. 2017. Hybrid Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation Closure for Separated Transitional Flows. AIAA Journal, 55(6), 1948–1958.CrossRefGoogle Scholar
Huai, X., Joslin, R. D., and Piomelli, U. 1997. Large-Eddy Simulation of Transition to Turbulence in Boundary Layers. Theoretical and Computational Fluid Dynamics, 9(2), 149–163.CrossRefGoogle Scholar
Inagaki, M., Kondoh, T., and Nagano, Y. 2005. A Mixed-Time-Scale SGS Model with Fixed Model-Parameters for Practical LES. Journal of Fluids Engineering, 127(1), 1–13.CrossRefGoogle Scholar
Israel, D. M., Flippo, K. A., and Doss, F. 2022. Transition Modeling at Los Alamos National Laboratory. In: AIAA AVIATION 2022 Forum.CrossRefGoogle Scholar
Kachanov, Y. S., and Levchenko, V. Y. 1984. The Resonant Interaction of Disturbances at Laminar-Turbulent Transition in a Boundary Layer. Journal of Fluid Mechanics, 138, 209–247.CrossRefGoogle Scholar
Kawai, S., and Asada, K. 2013. Wall-Modeled Large-Eddy Simulation of High Reynolds Number Flow around an Airfoil near Stall Condition. Computers & Fluids, 85, 105–113. International Workshop on Future of CFD and Aerospace Sciences.CrossRefGoogle Scholar
Kawai, S., and Larsson, J. 2012. Wall-Modeling in Large Eddy Simulation: Length Scales, Grid Resolution, and Accuracy. Physics of Fluids, 24(1), 015105.CrossRefGoogle Scholar
Kim, W.-W., and Menon, S. 1999. An Unsteady Incompressible Navier–Stokes Solver for Large Eddy Simulation of Turbulent Flows. International Journal for Numerical Methods in Fluids, 31(6), 983–1017.3.0.CO;2-Q>CrossRefGoogle Scholar
Kraichnan, R. M. 1976. Eddy Viscosity in Two and Three Dimensions. Journal of the Atmospheric Sciences, 33, 1521–1536.2.0.CO;2>CrossRefGoogle Scholar
Krumbein, A., François, D. G., and Krimmelbein, N. 2022. Transport-Based Transition Prediction for the Common Research Model Natural Laminar Flow Configuration. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Langtry, R. B., and Menter, F. R. 2009. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal, 47(12), 2894–2906.CrossRefGoogle Scholar
Lardeau, S., Leschziner, M., and Zaki, T. 2012. Large Eddy Simulation of Transitional Separated Flow over a Flat Plate and a Compressor Blade. Flow, Turbulence and Combustion, 88(1), 19–44.CrossRefGoogle Scholar
Lee, B., Jung, Y. S., and Baeder, J. D. 2022. Validation of SA − γ − Reθt and SA –γ Turbulence/Transition Model. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Lesieur, M. 1990. Turbulence in Fluids: Stochastic and Numerical Modeling. 2nd ed. Kluwer Academic Publishers.CrossRefGoogle Scholar
Libby, P. A. 1975. On the Prediction of Intermittent Turbulent Flows. Journal of Fluid Mechanics, 68(2), 273–295.CrossRefGoogle Scholar
Lodato, G., Tonicello, N., and Pinto, B. 2021. Large-Eddy Simulation of Bypass Transition on a Zero-Pressure-Gradient Flat Plate Using the Spectral-Element Dynamic Model. Flow, Turbulence and Combustion, 107(4), 845–874.CrossRefGoogle Scholar
Lodefier, K., Merci, B., De Langhe, C., and Dick, E. 2004. Transition Modelling with the k–Ω Turbulence Model and an Intermittency Transport Equation. Journal of Thermal Science, 13(3), 220–225.CrossRefGoogle Scholar
Lopes, R., Eca, L., Kerkvliet, M., and Toxopeus, S. L. 2022. Predicting Transition for the 6:1 Prolate Spheroid Using the RANS Equations. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Lozano-Durán, A., Hack, M. J. P., and Moin, P. 2018. Modeling Boundary-Layer Transition in Direct and Large-Eddy Simulations Using Parabolized Stability Equations. Physical Review Fluids, 16(3), 023901.Google Scholar
Mayle, R. E., and Schulz, A. 1997. Heat Transfer Committee and Turbomachinery Committee Best Paper of 1996 Award: The Path to Predicting Bypass Transition. Journal of Turbomachinery, 119(3), 405–411.CrossRefGoogle Scholar
Mayle, R. E. 1991. The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines. Journal of Turbomachinery, 113(4), 509–536.CrossRefGoogle Scholar
Medida, S., and Baeder, J. 2011. Application of the Correlation-Based Gamma-Re Theta t Transition Model to the Spalart-Allmaras Turbulence Model. In: 20th AIAA Computational Fluid Dynamics Conference.CrossRefGoogle Scholar
Menter, F. R. 1994. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32(8), 1598–1605.CrossRefGoogle Scholar
Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and Völker, S. 2006. A Correlation-Based Transition Model Using Local Variables – Part I: Model Formulation. Journal of Turbomachinery, 128(3), 413–422.CrossRefGoogle Scholar
Menter, F. R., Smirnov, P. E., Liu, T., and Avancha, R. 2015. A One-Equation Local Correlation-Based Transition Model. Flow, Turbulence and Combustion, 95(4), 583–619.CrossRefGoogle Scholar
Menter, F. R., Esch, T., and Kubacki, S. 2002. Transition Modelling Based on Local Variables. Pages 555–564 in Engineering Turbulence Modelling and Experiments 5, Rodi, W., and Fueyo, N. (eds). Elsevier.Google Scholar
Métais, O., and Lesieur, M. 1992. Spectral Large-Eddy Simulation of Isotropic and Stably Stratified Turbulence. Journal of Fluid Mechanics, 239, 157–194.CrossRefGoogle Scholar
Monokrousos, A., Brandt, L., Schlatter, P., and Henningson, D. S. 2008. DNS and LES of Estimation and Control of Transition in Boundary Layers Subject to Free-Stream Turbulence. International Journal of Heat and Fluid Flow, 29(3), 841–855.CrossRefGoogle Scholar
Narasimhan, G., Meneveau, C., and Zaki, T. A. 2021. Large Eddy Simulation of Transitional Channel Flow Using a Machine Learning Classifier to Distinguish Laminar and Turbulent Regions. Physical Review Fluids, 6(Jul), 074608.CrossRefGoogle Scholar
Nicoud, F., and Ducros, F. 1999. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turb. Comb., 62(3), 183–200.CrossRefGoogle Scholar
Nicoud, F., Toda, H. B., Cabrit, O., Bose, S., and Lee, J. 2011. Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations. Physics of Fluids, 23(8), 085106.CrossRefGoogle Scholar
Normand, X., and Lesieur, M. 1992. Direct and Large-Eddy Simulations of Transition in the Compressible Boundary Layer. Theoretical and Computational Fluid Dynamics, 3(4), 231–252.CrossRefGoogle Scholar
Orr, W. M’F. 1907. The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part II: A Viscous Liquid. Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 27, 69–138.Google Scholar
Park, G. I., and Moin, P. 2014. An Improved Dynamic Non-equilibrium Wall-Model for Large Eddy Simulation. Physics of Fluids, 26(1), 015108.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., Rauenzahn, R., and Girimaji, S. S. 2021. Modeling and Simulation of Transitional Rayleigh–Taylor Flow with Partially Averaged Navier–Stokes Equations. Physics of Fluids, 33(11), 115118.CrossRefGoogle Scholar
Pereira, F. M. S., Grinstein, F. F., and Israel, D. M. 2019. Effects of Operator Splitting and Low Mach Number Correction in Simulations of Shock-Driven Turbulent Mixing. Pages AJKFLUIDS2019–5105 in Proceedings of the ASME–JSME–KSME 2019 Joint Fluids Engineering Conference AJKFLUIDS2019 July 28 to August 1, 2019, San Francisco, CA, USA.Google Scholar
Piomelli, U., and Zang, T. A. 1991. Large-Eddy Simulation of Transitional Channel Flow. Computer Physics Communications, 65(1), 224–230.CrossRefGoogle Scholar
Piomelli, U., Zang, T. A., Speziale, C. G., and Lund, T. S. 1990a. Application of Renormalization Group Theory to the Large-Eddy Simulation of Transitional Boundary Layers. Pages 480–496 in Instability and Transition, Hussaini, M. Y., and Voigt, R. G. (eds). Springer.Google Scholar
Piomelli, U., Zang, T. A., Speziale, C. G., and Hussaini, M. Y. 1990b. On the Large-Large-Eddy Simulation of Transitional Wall-Bounded Flows. Physics of Fluids A, 2(2), 257–265.CrossRefGoogle Scholar
Ranjan, R. 2021 (August 2-6). Large-Eddy Simulation of Transition to Turbulence Using the Two-Level Simulation Approach. In: AIAA AVIATION 2021 FORUM.CrossRefGoogle Scholar
Rayleigh, L. 1882. Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density. Proceedings of the London Mathematical Society, s1–14(1), 170–177.Google Scholar
Reissmann, M., Hasslberger, J., Sandberg, R. D., and Klein, M. 2021. Application of Gene Expression Programming to A-posteriori LES Modeling of a Taylor–Green Vortex. Journal of Computational Physics, 424, 109859.CrossRefGoogle Scholar
Roberts, S. K., and Yaras, M. I. 2005. Large-Eddy Simulation of Transition in a Separation Bubble. Journal of Fluids Engineering, 128(2), 232–238.Google Scholar
Rollin, B., and Andrews, M. J. 2013. On Generating Initial Conditions for Turbulence Models: The Case of Rayleigh–Taylor Instability Turbulent Mixing. Journal of Turbulence, 14(3), 77–106.CrossRefGoogle Scholar
Sayadi, T., and Moin, P. 2012. Large Eddy Simulation of Controlled Transition to Turbulence. Physics of Fluids, 24(11), 114103.CrossRefGoogle Scholar
Schiestel, R., and Dejoan, A. 2005. Towards a New Partially Integrated Transport Model for Coarse Grid and Unsteady Turbulent Flow Simulations. Theoretical and Computational Fluid Dynamics, 18(6), 443–468.CrossRefGoogle Scholar
Schlatter, P. C. 2005. Large-eddy simulation of transition and turbulence in wall-bounded shear flow. Doctoral Thesis, ETH Zurich.CrossRefGoogle Scholar
Schlicting, H. 1933. Zur Entstehung der Turbulenz bei der Plattenströmung. Nachrichten der Gesellshaft der Wissenshaften zu Göttingen.Google Scholar
Schmid, P. J., and Henningson, D. S. 2001. Stability and Transition in Shear Flows. Applied Mathematical Sciences, vol. 142. Springer.Google Scholar
Schubauer, G. B., and Skramstad, H. K. 1947. Laminar Boundary-Layer Oscillations and Stability of Laminar Flow. Journal of Aeronautical Sciences, 14(2), 69–78.CrossRefGoogle Scholar
Shur, M., Spalart, P. R., Strelets, M., and Travin, A. 1999. Detached-Eddy Simulation of an Airfoil at High Angle of Attack. Pages 669–678 in Engineering Turbulence Modelling and Experiments 4, Rodi, W., and Laurence, D. (eds). Elsevier.Google Scholar
Simon, F. F., and Stephens, C. A. 1991. Modeling of the Heat Transfer in Bypass Transitional Boundary-Layer Flows. TP 3170. NASA.Google Scholar
Smagorinsky, J. 1963. General Circulation Experiments with the Primitive Equations. Monthly Weather Review, 91, 99–107.2.3.CO;2>CrossRefGoogle Scholar
Smith, A. M. O., and Gamberoni, N. 1956. Transition, Pressure Gradient and Stability Theory. Tech. rept. ES 26388. Douglas Aircraft Division.Google Scholar
Sommerfeld, A. 1908. Ein Beitrag Zur Hydrodynamischen Erklaerung Der Turbulenten Fluessigkeitsbewegüngen. In: Atti del IV Congresso Internazionale dei Matematici, Castelnuovo, G. (ed). vol. III.Google Scholar
Sørensen, N. N., Bechmann, A., and Zahle, F. 2011. 3D CFD Computations of Transitional Flows Using DES and a Correlation Based Transition Model. Wind Energy, 14(1), 77–90.CrossRefGoogle Scholar
Spalart, P. R., Jou, W.-H., Strelets, M., and Allmaras, S. R. 1997 (4–8 August). Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. In: Proceedings of the First Air Force Office of Scientific Research (AFOSR) International Conference on DNS/LES.Google Scholar
Speziale, C. G. 1998. A Review of Material Frame-Indifference in Mechanics. Applied Mechanics Reviews, 51(8), 489–504.CrossRefGoogle Scholar
Steelant, J., and Dick, E. 1996. Modelling of Bypass Transition with Conditioned Navier–Stokes Equations Coupled to an Intermittency Transport Equation. International Journal for Numerical Methods in Fluids, 23(3), 193–220.3.0.CO;2-2>CrossRefGoogle Scholar
Steelant, J., and Dick, E. 2000. Modeling of Laminar-Turbulent Transition for High Freestream Turbulence. Journal of Fluids Engineering, 123(1), 22–30.Google Scholar
Stolz, S., Adams, N. A., and Kleiser, L. 2001. An Approximate Deconvolution Model for Large-Eddy Simulation with Application to Incompressible Wall-Bounded Flows. Physics of Fluids, 13(4), 997–1015.Google Scholar
Stuart, J. T. 1960. On the Non-Linear Mechanics of Wave Disturbances in Stable and Unstable Parallel Flows. Part 1. The Basic Behaviour in Plane Poiseuille Flow. Journal of Fluid Mechanics, 9(3), 353–370.CrossRefGoogle Scholar
Suzen, Y., and Huang, P. 2000a. An Intermittency Transport Equation for Modeling Flow Transition. In: 38th Aerospace Sciences Meeting and Exhibit.CrossRefGoogle Scholar
Suzen, Y. B., and Huang, P. G. 2000b. Modeling of Flow Transition Using an Intermittency Transport Equation. Journal of Fluids Engineering, 122(2), 273–284.CrossRefGoogle Scholar
Suzen, Y. B., Xiong, G., and Huang, P. G. 2002. Predictions of Transitional Flows in Low-Pressure Turbines Using Intermittency Transport Equation. AIAA Journal, 40(2), 254–266.CrossRefGoogle Scholar
Taylor, G. I. 1950. The The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. I. Proceedings of the Royal Society of London, 201(1065), 192–196.Google Scholar
Taylor, G. I., and Green, A. E. 1937. Mechanism of the Production of Small Eddies from Large Ones. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 158(895), 499–521.Google Scholar
Tester, B. W., Coder, J. G., Combs, C. S., and Schmisseur, J. D. 2018. Hybrid RANS/LES Simulation of Transitional Shockwave/Boundary-Layer Interaction. In: 2018 Fluid Dynamics Conference.CrossRefGoogle Scholar
Thomson, F. R. S., Sir, W. 1871. XLVI. Hydrokinetic Solutions and Observations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(281), 362–377.CrossRefGoogle Scholar
Tollmein, W. 1929. Über die Entstehung der Turbulenz. Nachrichten der Gesellshaft der Wissenshaften zu Göttingen.Google Scholar
Travin, A., Shur, M., Strelets, M., and Spalart, P. 2000. Detached-Eddy Simulations Past a Circular Cylinder. Flow, Turbulence and Combustion, 63(1), 293–313.CrossRefGoogle Scholar
Uranga, A., Persson, P.-O., Drela, M., and Peraire, J. 2011. Implicit Large Eddy Simulation of transition to turbulence at Low Reynolds Numbers Using a Discontinuous Galerkin Method. International Journal for Numerical Methods and Engineering, 87(1–5), 232–261.CrossRefGoogle Scholar
Van Driest, E. R. 1956. On the Turbulent Flow Near a Wall. J. Aero. Sci., 23, 1007–1011.CrossRefGoogle Scholar
van Ingen, J. 2008. The eN Method for Transition Prediction. Historical Review of Work at TU Delft. In: 38th Fluid Dynamics Conference and Exhibit. Seattle, Washington, USA.Google Scholar
van Ingen, J. L. 1956 (Sept.). A Suggested Semi-empirical Method for the Calculation of the Boundary Layer Transition Region. VTH- 74. Delft, Nederland.Google Scholar
Venkatachari, B. S., Paredes, P., Choudhari, M. M., Li, F., and Chang, C.-L. 2022. Transition Analysis for the CRM-NLF Wind Tunnel Configuration Using Transport Equation Models and Linear Stability Correlations. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Voke, P. R., and Yang, Z. 1995. Numerical Study of Bypass Transition. Physics of Fluids, 7(9), 2256–2264.CrossRefGoogle Scholar
Walters, D. K., and Cokljat, D. 2008. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow. Journal of Fluids Engineering, 130(12).CrossRefGoogle Scholar
Walters, D. K., and Leylek, J. H. 2004. A New Model for Boundary Layer Transition Using a Single-Point RANS Approach. Journal of Turbomachinery, 126(1), 193–202.CrossRefGoogle Scholar
Wilson, P. G., and Pauley, L. L. 1998. Two- and Three-Dimensional Large-Eddy Simulations of a Transitional Separation Bubble. Physics of Fluids, 10(11), 2932–2940.CrossRefGoogle Scholar
Woodruff, S. 2021. WMLES of Boundary-Layer Transition. In: AIAA Scitech 2021 Forum.CrossRefGoogle Scholar
Woodruff, S. 2022. WMLES of K-Type and Bypass Boundary-Layer Transition. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Xing, T. 2015. A General Framework for Verification and Validation of Large Eddy Simulations. Journal of Hydrodynamics, Series B, 27(2), 163–175.CrossRefGoogle Scholar
Yakhot, V., and Orszag, S. A. 1986. Renormalization Group Analysis of Turbulence. I. Basic Theory. Journal of Scientific Computing, 1(1), 3–51.CrossRefGoogle Scholar
Yin, Z., and Durbin, P. A. 2016. An Adaptive DES Model That Allows Wall-Resolved Eddy Simulation. International Journal of Heat and Fluid Flow, 62, 499–509.CrossRefGoogle Scholar
Yin, Z., Ge, X., and Durbin, P. 2021. Adaptive Detached Eddy Simulation of Transition under the Influence of Free-Stream Turbulence and Pressure Gradient. Journal of Fluid Mechanics, 915, A115.CrossRefGoogle Scholar
Zastawny, M., and Lardeau, S. 2022. Validation of Intermittency-Based Transition Prediction Models. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Zore, K., Matyushenko, A., Shah, S., Aliaga, C., Stokes, J., and Menter, F. 2022. Laminar-Turbulent Transition Prediction on Industrial CFD Applications. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar

References

Afzal, N. 1996. Wake layer in a turbulent boundary layer with pressure gradient: A new approach. Pages 95–118 in IUTAM Symposium on Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers, Gersten, K. (ed). Kluwer Academic Publishers.Google Scholar
Bae, H. J., Lozano-Durán, A., Bose, S. T., and Moin, P. 2019. Dynamic slip wall model for large-eddy simulation. Journal of Fluid Mechanics, 859, 400–432.CrossRefGoogle ScholarPubMed
Balaras, E., Benocci, C., and Piomelli, U. 1996. Two-layer approximate boundary conditions for large-eddy simulations. AIAA Journal, 34(6), 1111–1119.CrossRefGoogle Scholar
Bermejo-Moreno, I., Campo, L., Larsson, J., Bodart, J., Helmer, D., and Eaton, J. K. 2014. Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations. Journal of Fluid Mechanics, 758, 5–62.CrossRefGoogle Scholar
Bocquet, S., Sagaut, P., and Jouhaud, J. 2012. A compressible wall model for large-eddy simulation with application to prediction of aerothermal quantities. Physics of Fluids, 24(6), 065103.CrossRefGoogle Scholar
Bose, S., and Park, G. 2018. Wall-modeled large-eddy simulation for complex turbulent flows. Annual Review of Fluid Mechanics, 50, 531–561.CrossRefGoogle ScholarPubMed
Bose, S. T., and Moin, P. 2014. A dynamic slip boundary condition for wall-modeled large-eddy simulation. Physics of Fluids, 26(1), 015104.CrossRefGoogle Scholar
Cabot, W., and Moin, P. 2000. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion, 63, 269–291.CrossRefGoogle Scholar
Carney, S. P., and Moser, R. D. 2023. Slow-growth approximation for near-wall patch representation of wall-bounded turbulence. Journal of Fluid Mechanics, 966, A45.CrossRefGoogle Scholar
Carney, S. P., Engquist, B., and Moser, R. D. 2020. Near-wall patch representation of wall-bounded turbulence. Journal of Fluid Mechanics, 903, A23.CrossRefGoogle Scholar
Chang, H. 2012. Modeling turbulence using optimal large eddy simulation. Ph.D. thesis, University of Texas at Austin.Google Scholar
Chapman, D. R. 1979. Computational aerodynamics development and outlook. AIAA Journal, 17(12), 1293–1313.CrossRefGoogle Scholar
Cheng, W., Pullin, D. I., and Samtaney, R. 2015. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer. Journal of Fluid Mechanics, 785, 78–108.CrossRefGoogle Scholar
Choi, H., and Moin, P. 2012. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Physics of Fluids, 24(1), 011702.CrossRefGoogle Scholar
Chung, D., and Pullin, D. I. 2009. Large-eddy simulation and wall modelling of turbulent channel flow. Journal of Fluid Mechanics, 631, 281–309.CrossRefGoogle Scholar
Corrsin, S. 1958. Local isotropy in turbulent shear flow. National Advisory Committee for Aeronautics.Google Scholar
De Vanna, F., Cogo, M., Bernardini, M., Picano, F., and Benini, E. 2021. Unified wall-resolved and wall-modeled method for large-eddy simulations of compressible wall-bounded flows. Physical Review Fluids, 6(3), 034614.CrossRefGoogle Scholar
Deardorff, J. W. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(2), 453–480.CrossRefGoogle Scholar
Dong, S., Lozano-Durán, A., Sekimoto, A., and Jiménez, J. 2017. Coherent structures in statistically stationary homogeneous shear turbulence. Journal of Fluid Mechanics, 816, 167–208.CrossRefGoogle Scholar
Duprat, C., Balarac, G., Métais, O., Congedo, P. M., and Brugière, O. 2011. A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient. Physics of Fluids, 23(1), 015101.CrossRefGoogle Scholar
Fowler, M., Zaki, T. A., and Meneveau, C. 2022. A Lagrangian relaxation towards equilibrium wall model for large eddy simulation. Journal of Fluid Mechanics, 934, A44.CrossRefGoogle Scholar
Fröhlich, J., and Von Terzi, D. 2008. Hybrid LES/RANS methods for the simulation of turbulent flows. Progress in Aerospace Sciences, 44(5), 349–377.CrossRefGoogle Scholar
Ghosal, S. 1996. An analysis of numerical errors in large-eddy simulations of turbulence. Journal of Computational Physics, 125(1), 187–206.CrossRefGoogle Scholar
Ghosal, S., and Moin, P. 1995. The basic equations for the large eddy simulation of turbulent flows in complex geometry. Journal of Computational Physics, 118(1), 24–37.CrossRefGoogle Scholar
Goc, K. A., Lehmkuhl, O., Park, G. I., Bose, S. T., and Moin, P. 2021. Large Eddy Simulation of Aircraft at Affordable Cost: a Milestone in Computational Fluid Dynamics. Flow, 1, E14.CrossRefGoogle Scholar
Grinstein, F. F., Margolin, L. G., and Rider, W. J. 2010. Implicit Large Eddy Simulation, Computing Turbulent Flow Dynamics. Cambridge University Press.Google Scholar
Haering, S., Lee, M., and Moser, R. D. 2019. Resolution-induced anisotropy in large-eddy simulations. Physical Review Fluids, 4(11), 114605.CrossRefGoogle Scholar
Haering, S. W., Oliver, T. A., and Moser, R. D. 2022. Active model split hybrid RANS/LES. Physical Review Fluids, 7(1), 014603.CrossRefGoogle Scholar
Hamilton, J. M., Kim, J., and Waleffe, F. 1995. Regeneration mechanisms of near-wall turbulence structures. Journal of Fluid Mechanics, 287, 317–348.CrossRefGoogle Scholar
Heinz, S. 2020. A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications. Progress in Aerospace Sciences, 114, 100597.CrossRefGoogle Scholar
Hickel, S., Touber, E., Bodart, J., and Larsson, J. 2013. A parametrized non-equilibrium wall-model for large-eddy simulations. In: Eighth International Symposium on Turbulence and Shear Flow Phenomena. Begel House Inc.Google Scholar
Hou, Y., and Angland, D. 2016. A comparison of wall functions for bluff body aeroacoustic simulations. Page 2771 of: 22nd AIAA/CEAS Aeroacoustics Conference.CrossRefGoogle Scholar
IEA. 2021. Key World Energy Statistics 2021. www.iea.org/reports/key-world-energy-statistics-2021.Google Scholar
Jiménez, J., and Moser, R. D. 2000. Large Eddy Simulation: Where are we and what can we expect? AIAA Journal, 38(4), 605–612.CrossRefGoogle Scholar
Jiménez, J. 2004. Turbulent flows over rough walls. Annual Review of Fluid Mechanics, 36, 173–196.CrossRefGoogle Scholar
Jiménez, J. 2012. Cascades in wall-bounded turbulence. Annual Review of Fluid Mechanics, 44, 27–45.CrossRefGoogle Scholar
Jiménez, J. 2018. Coherent structures in wall-bounded turbulence. Journal of Fluid Mechanics, 842, P1.CrossRefGoogle Scholar
Jiménez, J., and Moin, P. 1991. The minimal flow unit in near-wall turbulence. Journal of Fluid Mechanics, 225, 213–240.CrossRefGoogle Scholar
Jiménez, J., and Pinelli, A. 1999. The autonomous cycle of near-wall turbulence. Journal of Fluid Mechanics, 389, 335–359.CrossRefGoogle Scholar
Jiménez, J., Kawahara, G., Simens, M. P, Nagata, M., and Shiba, M. 2005. Characterization of near-wall turbulence in terms of equilibrium and “bursting” solutions. Physics of Fluids, 17(1), 015105.CrossRefGoogle Scholar
Kawai, S., and Larsson, J. 2012. Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy. Physics of Fluids, 24(1), 015105.CrossRefGoogle Scholar
Kawai, S., and Larsson, J. 2013. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers. Physics of Fluids, 25(1), 015105.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W. 1967. The structure of turbulent boundary layers. Journal of Fluid Mechanics, 30(4), 741–773.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk. SSSR, 30, 301–303. Reprinted in Proc. R. Soc. Lond. A 434, (1991), 9–13.Google Scholar
Langford, J. A., and Moser, R. D. 2001. Breakdown of continuity in large-eddy simulation. Physics of Fluids, 13(5), 1524–1527.CrossRefGoogle Scholar
Langford, J. A., and Moser, R. D. 2004. Optimal large-eddy simulation results for isotropic turbulence. Journal of Fluid Mechanics, 521, 273–294.CrossRefGoogle Scholar
Larsson, J., Kawai, S., Bodart, J., and Bermejo-Moreno, I. 2016. Large eddy simulation with modeled wall-stress: recent progress and future directions. Mechanical Engineering Reviews, 3(1), 15–00418.CrossRefGoogle Scholar
Lee, J., Cho, M., and Choi, H. 2013. Large eddy simulations of turbulent channel and boundary layer flows at high Reynolds number with mean wall shear stress boundary condition. Physics of Fluids, 25(11), 110808.CrossRefGoogle Scholar
Lee, M., and Moser, R. D. 2015. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. Journal of Fluid Mechanics, 774, 395–415.CrossRefGoogle Scholar
Lee, M., and Moser, R. D. 2019. Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. Journal of Fluid Mechanics, 860, 886–938.CrossRefGoogle Scholar
Leveque, E., Touil, H., Malik, S., Ricot, D., and Sengissen, A. 2018. Wall-modeled large-eddy simulation of the flow past a rod-airfoil tandem by the Lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow.CrossRefGoogle Scholar
Li, Y., and Meneveau, C. 2004. Analysis of mean momentum flux in subgrid models of turbulence. Physics of Fluids: Brief Communications, 16(9), 3483–3486.CrossRefGoogle Scholar
Lozano-Durán, A., Giometto, M. G., Park, G. I., and Moin, P. 2020. Non-equilibrium three-dimensional boundary layers at moderate Reynolds numbers. Journal of Fluid Mechanics, 883, A20.CrossRefGoogle Scholar
Lucas, J.-M., Cadot, O., Herbert, V., Parpais, S., and Délery, J. 2017. A numerical investigation of the asymmetric wake mode of a squareback Ahmed body-effect of a base cavity. Journal of Fluid Mechanics, 831, 675–697.CrossRefGoogle Scholar
Manhart, M., Peller, N., and Brun, C. 2008. Near-wall scaling for turbulent boundary layers with adverse pressure gradient: A priori tests on DNS of channel flow with periodic hill constrictions and DNS of separating boundary layer. Theoretical and Computational Fluid Dynamics, 22, 243–260.CrossRefGoogle Scholar
Marusic, I, Mathis, R, and Hutchins, N. 2010. Predictive model for wall-bounded turbulent flow. Science, 329(5988), 193–196.CrossRefGoogle ScholarPubMed
Meneveau, C. 1994. Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental tests. Physics of Fluids, 6(2), 815–833.CrossRefGoogle Scholar
Meneveau, C. 2020. A note on fitting a generalised moody diagram for wall modelled large-eddy simulations. Journal of Turbulence, 21(11), 650–673.CrossRefGoogle Scholar
Mizuno, Y., and Jiménez, J. 2013. Wall turbulence without walls. Journal of Fluid Mechanics, 723, 429–455.CrossRefGoogle Scholar
Mockett, C., Fuchs, M, and Thiele, F. 2012. Progress in DES for wall-modelled LES of complex internal flows. Computers & Fluids, 65, 44–55.CrossRefGoogle Scholar
Moeng, C.-H. 1984. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. Journal of the Atmospheric Sciences, 41(13), 2052–2062.2.0.CO;2>CrossRefGoogle Scholar
Moin, P., and Kim, J. 1982. Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics, 118, 341–377.CrossRefGoogle Scholar
Moser, R. D., Malaya, N. P., Chang, H., Zandonade, P. S., Vedula, P., Bhattacharya, A., and Haselbacher, A. 2009. Theoretically based optimal large-eddy simulation. Physics of Fluids, 21(10), 105104.CrossRefGoogle Scholar
Moser, R. D., Haering, S. W., and Yalla, G. R. 2021. Statistical properties of subgrid-scale turbulence models. Annual Review of Fluid Mechanics, 53, 255–286.CrossRefGoogle Scholar
Nagib, H. M, and Chauhan, K. A. 2008. Variations of von Kármán coefficient in canonical flows. Physics of Fluids, 20(10), 101518.CrossRefGoogle Scholar
Nicoud, F., Baggett, J. S., Moin, P., and Cabot, W. 2001. Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation. Physics of Fluids, 13(10), 2968–2984.CrossRefGoogle Scholar
Nikitin, N. V., Nicoud, F., Wasistho, B., Squires, K. D., and Spalart, P. R. 2000. An approach to wall modeling in large-eddy simulations. Physics of Fluids, 12(7), 1629–1632.CrossRefGoogle Scholar
Park, G. I., and Moin, P. 2014. An improved dynamic non-equilibrium wall-model for large eddy simulation. Physics of Fluids, 26(1).CrossRefGoogle Scholar
Piomelli, U. 2008. Wall-layer models for large-eddy simulations. Progress in Aerospace Sciences, 44(6), 437–446.CrossRefGoogle Scholar
Piomelli, U, and Balaras, E. 2002. Wall-layer models for large-eddy simulations. Annual Review of Fluid Mechanics, 34, 349–374.CrossRefGoogle Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
Porté-Agel, F., Meneveau, C., and Parlange, M. B. 2000. A scale-dependent dynamic model for largeeddy simulation: application to a neutral atmospheric boundary layer. Journal of Fluid Mechanics, 415, 261–284.CrossRefGoogle Scholar
Rogers, M. M., and Moin, P. 1987. The structure of the vorticity field in homogeneous turbulent flows. Journal of Fluid Mechanics, 176, 33–66.CrossRefGoogle Scholar
Rozema, W., Bae, H. J., Moin, P., and Verstappen, R. 2015. Minimum-dissipation models for large-eddy simulation. Physics of Fluids, 27, 085107.CrossRefGoogle Scholar
Schoppa, W, and Hussain, Fazle. 2002. Coherent structure generation in near-wall turbulence. Journal of Fluid Mechanics, 453, 57–108.CrossRefGoogle Scholar
Schumann, U. 1975. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. Journal of Computational Physics, 18, 376–404.CrossRefGoogle Scholar
Scotti, A., Meneveau, C., and Lilly, D. K. 1993. Generalized Smagorinsky model for anisotropic grids. Physics of Fluids, 5, 2306.Google Scholar
Spalart, P. R. 1997. Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach. Pages 137–147 in Proceedings of the First AFOSR International Conference on DNS/LES, 1997.Google Scholar
Spalart, P. R. 2009. Detached-eddy simulation. Annual Review of Fluid Mechanics, 41, 181–202.CrossRefGoogle Scholar
Templeton, J. A., Wang, M., and Moin, P. 2006. An efficient wall model for large-eddy simulation based on optimal control theory. Physics of Fluids, 18(2).CrossRefGoogle Scholar
Templeton, J. A., Wang, M., and Moin, P. 2008. A predictive wall model for large-eddy simulation based on optimal control techniques. Physics of Fluids, 20(6).CrossRefGoogle Scholar
Toh, S., and Itano, T. 2005. Interaction between a large-scale structure and near-wall structures in channel flow. Journal of Fluid Mechanics, 524, 249–262.CrossRefGoogle Scholar
Townsend, A. A. R. 1976. The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Völker, S., Moser, R. D., and Venugopal, P. 2002. Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data. Physics of Fluids, 14(10), 3675–3691.CrossRefGoogle Scholar
Vreman, A. 2004. An eddy-viscosity subgrid-scale model for turbulent shear flow. Physics of Fluids, 16(10), 3670–3681.CrossRefGoogle Scholar
Wang, M., and Moin, P. 2002. Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Physics of Fluids, 14(7), 2043–2051.CrossRefGoogle Scholar
Werner, H., and Wengle, H. 1993. Large-eddy simulation of turbulent flow over and around a cube in a plate channel. Pages 155–168 in Turbulent Shear Flows 8: Selected Papers from the Eighth International Symposium on Turbulent Shear Flows, Munich, Germany, September 9–11, 1991. Springer.Google Scholar
Wilhelm, S., Jacob, J., and Sagaut, P. 2021. A new explicit algebraic wall model for les of turbulent flows under adverse pressure gradient. Flow, Turbulence and Combustion, 106(1), 1–35.CrossRefGoogle Scholar
Yalla, G. R., Oliver, T. A., Haering, S. W., Engquist, B., and Moser, R. D. 2021a. Effects of resolution inhomogeneity in large-eddy simulation. Physical Review Fluids, 6(7), 074604.CrossRefGoogle Scholar
Yalla, G. R., Oliver, and Moser, R. D. 2021b. Numerical dispersion effects on the energy cascade in large-eddy simulation. Physical Review Fluids, 6(9), L092601.CrossRefGoogle Scholar
Yang, X. I. A., Sadique, J., Mittal, R., and Meneveau, C. 2015. Integral wall model for large eddy simulations of wall-bounded turbulent flows. Physics of Fluids, 27(2), 025112.CrossRefGoogle Scholar
Zandonade, P. S., Langford, J. A., and Moser, R. D. 2004. Finite-volume optimal large-eddy simulation of isotropic turbulence. Physics of Fluids, 16(7), 2255–2271.CrossRefGoogle Scholar

References

Alves Portela, F., Papadakis, G., and Vassilicos, J. C. 2017. The turbulence cascade in the near wake of a square prism. J. Fluid Mech., 825, 315–352.CrossRefGoogle Scholar
Alves Portela, F., Papadakis, G., and Vassilicos, J. C. 2020. The role of coherent structures and inhomogeneity in near-field interscale turbulent energy transfers. J. Fluid Mech., 896, A16.CrossRefGoogle Scholar
Apostolidis, A., Laval, J.-P., and Vassilicos, J. C. 2022. Scalings of turbulence dissipation in space and time for turbulent channel flow. J. Fluid Mech., 946, A41.CrossRefGoogle Scholar
Apostolidis, A., Laval, J.-P., and Vassilicos, J. C. 2023. Turbulent cascade in fully developed turbulent channel flow. J. Fluid Mech., 967, A22.CrossRefGoogle Scholar
Bardina, J., Ferziger, J. H., and Reynolds, W. C. 1980. Improved subgrid models for Large Eddy Simulation. AIAA paper, 80, 1357.Google Scholar
Batchelor, G. K. 1953. The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Beaumard, P., Braganca, P., Cuvier, C., Steiros, K., and Vassilicos, J. C. 2023. Scale-by-scale non-equilibrium with Kolmogorov-like scalings in non-homogeneous stationary turbulence. J. Fluid Mech., 984, A35.Google Scholar
Boris, P., Grinstein, F. F., Oran, E. S., and Kolbe, R. L. 1992. New insights into large eddy simulation. Fluid Dynamics Research, 10(4–6), 199.CrossRefGoogle Scholar
Breda, M., and Buxton, O. 2018. Influence of coherent structures on the evolution of an axisymmetric turbulent jet. Phys. Fluids, 30, 035109.CrossRefGoogle Scholar
Cafiero, G., and Vassilicos, J. C. 2019. Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets. Proc. R. Soc. Lond. A, 475(2225), 20190038.Google ScholarPubMed
Castro, I. 2016. Dissipative distinctions. J. Fluid Mech., 788, 1–4.CrossRefGoogle Scholar
Chen, J., and Vassilicos, J. C. 2022. Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence. J. Fluid Mech., 938, A7.CrossRefGoogle Scholar
Chen, J., Cuvier, C., Foucaut, J.-M., Ostovan, Y., and Vassilicos, J. C. 2021. A turbulence dissipation inhomogeneity scaling in the wake of two side-by-side square prisms. J. Fluid Mech., 924, A4.CrossRefGoogle Scholar
Chollet, J.-P., and Lesieur, M. 1981. Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closure. J. Atmos. Sci., 38, 2747–2757.2.0.CO;2>CrossRefGoogle Scholar
Chongsiripinyo, K., and Sarkar, S. 2020. Decay of turbulent wakes behind a disk in homogeneous and stratified fluids. J. Fluid Mech., 885, A31.CrossRefGoogle Scholar
Dairay, T., Lamballais, E., Laizet, S., and Vassilicos, J. C. 2017. Numerical dissipation vs. subgrid-scale modelling for large eddy simulation. J. Comp. Phys., 337, 252–274.Google Scholar
Domaradzki, J. A., and Saiki, E. M. 1997. A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. Fluids A, 9, 2148–2164.Google Scholar
Frisch, U. 1995. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Germano, M. 1992. Turbulence: The Filtering Approach. J. Fluid Mech., 238, 325–336.CrossRefGoogle Scholar
Germano, M. 2007a. A direct relation between the filtered subgrid stress and the second order structure function. Phys. Fluids, 19, 038102.CrossRefGoogle Scholar
Germano, M. 2007b. The elementary energy transfer between the two-point velocity mean and difference. Phys. Fluids, 19, 085105.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3, 1760–1765.CrossRefGoogle Scholar
Goto, S., and Vassilicos, J. C. 2015. Energy dissipation and flux laws for unsteady turbulence. Phys. Lett. A, 379(16–17), 1144–1148.CrossRefGoogle Scholar
Goto, S., and Vassilicos, J. C. 2016a. Local equilibrium hypothesis and Taylor’s dissipation law. Fluid Dyn. Res, 48, 021402.CrossRefGoogle Scholar
Goto, S., and Vassilicos, J. C. 2016b. Unsteady turbulence cascades. Phys. Rev. E, 94(5), 053108.CrossRefGoogle ScholarPubMed
Grinstein, F. F., Margolin, L. G., and Rider, W. J. 2007. Implicit Large Eddy Simulation. Cambridge University Press.CrossRefGoogle Scholar
Hearst, R. J., and Lavoie, P. 2014. Decay of turbulence generated by a square-fractal-element grid. J. Fluid Mech., 741, 567–584.CrossRefGoogle Scholar
Hearst, R. J., and Lavoie, P. 2015. Velocity derivative skewness in fractal-generated, non-equilibrium grid turbulence. Phys. Fluids, 071701.Google Scholar
Hearst, R. J., and Lavoie, P. 2016. Effects of multi-scale and regular grid geometries on decaying turbulence. J. Fluid Mech., 803, 528–555.CrossRefGoogle Scholar
Hill, R. J. 2001. Equations relating structure functions of all orders. J. Fluid Mech., 434, 379–388.CrossRefGoogle Scholar
Hill, R. J. 2002. Exact second-order structure-function relationships. J. Fluid Mech., 468, 317–326.CrossRefGoogle Scholar
Horiuti, K. 1993. A proper velocity scale for the modeling subgrid-scale eddy viscosities in large eddy simulation. Phys. Fluids, 5, 146.CrossRefGoogle Scholar
Horiuti, K., Yanagihara, S., and Tamaki, T. 2013. Nonequilibrium energy spectrum in the subgrid-scale one-equation model in large-eddy simulation. Phys. Fluids, 25, 125104.CrossRefGoogle Scholar
Horiuti, K., Yanagihara, S., and Tamaki, T. 2016. Nonequilibrium state in energy spectra and transfer with implications for topological transitions and SGS modeling. Fluid Dyn. Res., 48, 021409.CrossRefGoogle Scholar
Hunt, J. C. R., Philips, O. M., and Williams, D. 1991. Turbulence and Stochastic Processes: Kolmogorov’s Ideas 50 Years On. The Royal Society.Google Scholar
Isaza, J. C., Salazar, R., and Warhaft, Z. 2014. On grid-generated turbulence in the near- and far field regions. J. Fluid Mech., 753, 402–426.CrossRefGoogle Scholar
Ishihara, T., Gotoh, T., and Kaneda, Y. 2009. Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation. Ann. Rev. Fluid Mech., 41, 165–180.CrossRefGoogle Scholar
Kerr, R. M., Domaradzki, J. A., and Barbier, G. 1995. Small-scale properties of nonlinear interactions and subgrid-scale energy transfer in isotropic turbulence. Phys. Fluids, 8, 197–208.Google Scholar
Keylock, C., Kida, S., and Peters, N. 2016. JSPS Supported Symposium on Interscale Transfers and Flow Topology in Equilibrium and Non-equilibrium Turbulence (Sheffield, UK, September 2014). Fluid Dyn. Res., 48(2), 020001.CrossRefGoogle Scholar
Kokkinakis, I. W., and Drikakis, D. 2015. Implicit Large Eddy Simulation of weakly-compressible turbulent channel flow. Comput. Methods Appl. Mech. Eng., 287, 229–261.CrossRefGoogle Scholar
Larssen, H. S., and Vassilicos, J. C. 2023. Spatio-temporal fluctuations of interscale and interspace energy transfer dynamics in homogeneous turbulence. J. Fluid Mech., 969, A14, 1–44.CrossRefGoogle Scholar
Leschziner, M. A. 2016. Statistical Turbulence Modelling for Fluid Dynamics – Demystified: An Introductory Text for Graduate Engineering Students. Imperial College Press.Google Scholar
Lesieur, M. 1997. Turbulence in Fluids. Kluwer.CrossRefGoogle Scholar
Lilly, D. K. 1992. A Proposed Modification of the Germano Subgrid-Scale Closure Method. Physics of Fluids A: Fluid Dynamics, 4(3), 633–634.CrossRefGoogle Scholar
Liu, F., Lu, L. P., Bos, W. J. T., and Fang, L. 2019. Assessing the nonequilibrium of decaying turbulence with reversed initial fields. Phys. Rev. Fluids, 4, 084603.CrossRefGoogle Scholar
Liu, S., Meneveau, C., and Katz, J. 1994. On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech., 275, 83–119.CrossRefGoogle Scholar
Lundgren, T. S. 2002. Kolmogorov two-thirds law by matched asymptotic expansion. Phys. Fluids, 14, 638.CrossRefGoogle Scholar
Margolin, L. G., Rider, W. J., and Grinstein, F. F. 2006. Modeling turbulent flow with implicit LES. J. Turbulence, 7, 1–27.CrossRefGoogle Scholar
Mathieu, J., and Scott, J. 2000. An Introduction to Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Meldi, M., and Sagaut, P. 2018. Investigation of anomalous very fast decay regimes in homogeneous isotropic turbulence. J. Turbulence, 19(5).CrossRefGoogle Scholar
Meldi, M., and Vassilicos, J. C. 2021. Analysis of Lundgren’s matched asymptotic expansion approach to the Karman–Howarth equation using the EDQNM turbulence closure. Phys. Rev. Fluids, 6, 064602.CrossRefGoogle Scholar
Meldi, M., Lejemble, H., and Sagaut, P. 2014. On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence. J. Fluid Mech., 756, 816–843.CrossRefGoogle Scholar
Mora, D. O., Muniz Pladellorens, E., Riera Turró, P., Lagauzere, M., and Obligado, M. 2019. Energy cascades in active-grid-generated turbulent flows. Phys. Rev. Fluids, 4, 104601.CrossRefGoogle Scholar
Nagata, K., Saiki, T., Sakai, Y., Ito, Y., and Iwano, K. 2017. Effects of grid geometry on non-equilibrium dissipation in grid turbulence. Phys. Fluids, 29(1), 015102.CrossRefGoogle Scholar
Nedic, J., and Tavoularis, S. 2016. Energy dissipation scaling in uniformly sheared turbulence. Phys. Rev. E, 93, 033115.CrossRefGoogle ScholarPubMed
Nedic, J., Tavoularis, S., and Marusic, I. 2017. Dissipation scaling in constant-pressure turbulent boundary layers. Phys. Rev. Fluids, 2, 032601(R).CrossRefGoogle Scholar
Obligado, M., and Vassilicos, J. C. 2019. The non-equilibrium part of the inertial range in decaying homogeneous turbulence. Europhys. Lett., 127, 64004.CrossRefGoogle Scholar
Ortiz-Tarin, J. L., Nidhan, S., and Sarkar, S. 2021. High-Reynolds-number wake of a slender body. J. Fluid Mech., 918, A30.Google Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
Rubinstein, R., and Clark, T. T. 2017. “Equilibrium” and “non-equilibrium” turbulence. Theor. App. Mech. Lett., 7(5), 301–305.Google Scholar
Sagaut, P. 2005. Large Eddy Simulation for Incompressible Flows. 3rd ed. Springer.Google Scholar
Sagaut, P., and Cambon, C. 2008. Homogeneous Turbulence Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Saunders, D. C., Britt, J. A., and Wunsch, S. 2022. Decay of the drag wake of a sphere at Reynolds number 105. Exp. Fluids, 63, 71.CrossRefGoogle Scholar
Spalart, P. 2009. Detached-Eddy Simulation. Annu. Rev. Fluid Mech., 41(1), 181–202.CrossRefGoogle Scholar
Stein, V. P., and Kaltenbach, H.-J. 2019. Non-equilibrium scaling applied to the wake evolution of a model scale wind turbine. Energies, 12(14), 2763.CrossRefGoogle Scholar
Steiros, K. 2022a. Balanced nonstationary turbulence. Phys. Rev. E, 105, 035109.CrossRefGoogle ScholarPubMed
Steiros, K. 2022b. Turbulence near initial conditions. Phys. Rev. Fluids, 7, 104607.CrossRefGoogle Scholar
Sunita, and Layek, G. C. 2021. Nonequilibrium turbulent dissipation in buoyant axisymmetric plume. Phys. Rev. Fluids, 6(104602).CrossRefGoogle Scholar
Tennekes, H., and Lumley, J. L. 1972. A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Thiesset, F., and Danaila, L. 2020. The illusion of a Kolmogorov cascade. J. Fluid Mech., 902.CrossRefGoogle Scholar
Townsend, A. A. 1976. The Structure of Turbulent Shear Flow. 2nd ed. Cambridge University Press.Google Scholar
Valente, P., and Vassilicos, J. C. 2012. Dependence of decaying homogeneous isotropic turbulence on inflow conditions. Phys. Rev. A, 376 (4), 510–514.Google Scholar
Valente, P., and Vassilicos, J. C. 2015. The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys. Fluids, 27, 045103.CrossRefGoogle Scholar
Vassilicos, J. C. 2015. Dissipation in turbulent flows. Annu. Rev. Fluid Mech., 47, 95–114.CrossRefGoogle Scholar
Vela-Martín, A. 2022. Subgrid-scale models of isotropic turbulence need not produce energy backscatter. J. Fluid Mech., 937, A14.CrossRefGoogle Scholar
Waclawczyk, M., Nowak, J. L., Siebert, H., and Malinowski, S. 2022a. Detecting nonequilibrium states in atmospheric turbulence. J. Atmos. Sci., 79(10), 2757–2772.CrossRefGoogle Scholar
Waclawczyk, M., Nowak, J. L., and Malinowski, S. 2022b. Nonequilibrium dissipation scaling in atmospheric turbulence. J. Phys.: Conf. Series, 2367, 012032.Google Scholar
Watanabe, T., da Silva, C. B., and Nagata, K. 2019. Non-dimensional energy dissipation rate near the turbulent/non-turbulent interfacial layer in free shear flows and shear free turbulence. J. Fluid Mech., 875, 321–344.CrossRefGoogle Scholar
Watanabe, T., da Silva, C. B., and Nagata, K. 2020. Scale-by-scale kinetic energy budget near the turbulent/non-turbulent interface. Phys. Rev. Fluids, 5, 124610.CrossRefGoogle Scholar
Xiong, X.-L., Laima, S., and Lui, H. 2022. Novel scaling laws in the nonequilibrium turbulent wake of a rotor and a fractal plate. Phys. Fluids, 34, 065130.CrossRefGoogle Scholar
Yoshizawa, A. 1994. Nonequilibrium effect of the turbulent-energy-production process on the inertial-range energy spectrum. Phys. Rev. E, 49(5), 4065–4071.CrossRefGoogle ScholarPubMed
Zhou, Y., and Vassilicos, J. C. 2020. Energy cascade at the turbulent/nonturbulent interface. Phys. Rev. Fluid, 5(6), 064604.CrossRefGoogle Scholar

References

Akiki, G., Jackson, T. L., and Balachandar, S. 2016. Force variation within arrays of monodisperse spherical particles. Physical Review Fluids, 1(4), 044202.CrossRefGoogle Scholar
Akiki, G., Jackson, T. L., and Balachandar, S. 2017. Pairwise interaction extended point-particle model for a random array of monodisperse spheres. Journal of Fluid Mechanics, 813, 882–928.CrossRefGoogle Scholar
Akiki, G., and Balachandar, S. 2016. Immersed boundary method with non-uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh. Journal of Computational Physics, 307, 34–59.CrossRefGoogle Scholar
Anderson, T. B., and Jackson, Roy. 1967. Fluid mechanical description of fluidized beds. Equations of motion. Industrial & Engineering Chemistry Fundamentals, 6(4), 527–539.CrossRefGoogle Scholar
Ashwin, N. R., Cao, Z., Muralidhar, N., Tafti, D., and Karpatne, A. 2022. Deep learning methods for predicting fluid forces in dense particle suspensions. Powder Technology, 401, 117303.CrossRefGoogle Scholar
Balachandar, S., Liu, Kai, and Lakhote, Mandar. 2019. Self-induced velocity correction for improved drag estimation in Euler–Lagrange point-particle simulations. Journal of Computational Physics, 376, 160–185.CrossRefGoogle Scholar
Balachandar, S., Moore, W. C., Akiki, G., and Liu, K. 2020. Toward particle-resolved accuracy in Euler–Lagrange simulations of multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) approximation. Theoretical and Computational Fluid Dynamics, 34(4), 401–428.CrossRefGoogle Scholar
Balachandar, S. 2024. Fundamentals of Dispersed multiphase Flows. Cambridge University Press.CrossRefGoogle Scholar
Beetstra, R., van der Hoef, Martin Anton, and Kuipers, J. A. M. 2007. Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres. AIChE Journal, 53(2), 489–501.CrossRefGoogle Scholar
Bogner, S., Mohanty, S., and Rüde, U. 2015. Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method. International Journal of Multiphase Flow, 68, 71–79.CrossRefGoogle Scholar
Capecelatro, J., and Desjardins, O. 2013. An Euler–Lagrange strategy for simulating particle-laden flows. Journal of Computational Physics, 238, 1–31.CrossRefGoogle Scholar
Cundall, P. A., and Strack, O. D. L. 1979. A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.CrossRefGoogle Scholar
Drew, D. A. 1983. Mathematical modeling of two-phase flow. Annual Review of Fluid Mechanics, 15(1), 261–291.CrossRefGoogle Scholar
Eaton, J. K., and Fessler, J. R. 1994. Preferential concentration of particles by turbulence. International Journal of Multiphase Flow, 20, 169–209.CrossRefGoogle Scholar
Elghobashi, S. 1991. Particle-laden turbulent flows: direct simulation and closure models. Applied Science Research, 48, 301–314.CrossRefGoogle Scholar
Elghobashi, S., and Truesdell, G. C. 1992. Direct simulation of particle dispersion in a decaying isotropic turbulence. Journal of Fluid Mechanics, 242, 655–700.CrossRefGoogle Scholar
Ferrante, A., and Elghobashi, S. 2004. On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. Journal of Fluid Mechanics, 503, 345–355.CrossRefGoogle Scholar
Gidaspow, D. 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press.Google Scholar
He, L., and Tafti, D. K. 2019. A supervised machine learning approach for predicting variable drag forces on spherical particles in suspension. Powder Technology, 345, 379–389.CrossRefGoogle Scholar
Ishii, M., and Hibiki, T. 2010. Thermo-Fluid Dynamics of Two-Phase Flow. Springer.Google Scholar
Joseph, D. D., Lundgren, T. S., Jackson, R., and Saville, D. A. 1990. Ensemble-averaged and mixture theory equations for incompressible fluid–particle suspensions. International Journal of Multiphase Flow, 16(1), 35–42.CrossRefGoogle Scholar
Kallio, G. A., and Reeks, M. W. 1989. A numerical simulation of particle deposition in turbulent boundary layers. International Journal of Multiphase Flow, 15(3), 433–446.CrossRefGoogle Scholar
Lain, S., and Sommerfeld, M. 2020. Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution. International Journal of Multiphase Flow, 132, 103392.CrossRefGoogle Scholar
Lattanzi, A. M., Tavanashad, V., Subramaniam, S., and Capecelatro, J. 2022. Stochastic model for the hydrodynamic force in Euler–Lagrange simulations of particle-laden flows. Physical Review Fluids, 7(1), 014301.CrossRefGoogle Scholar
Liu, K. 2020. Systematic Evaluation and Improvement of Euler–Lagrange Methodology: Application to Spray Control. Ph.D. thesis, University of Florida.Google Scholar
Maxey, M. R. 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. Journal of Fluid Mechanics, 174, 441–465.CrossRefGoogle Scholar
Mehrabadi, M., Tenneti, S., Garg, R., and Subramaniam, S. 2015. Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas–solid flow: fixed particle assemblies and freely evolving suspensions. Journal of Fluid Mechanics, 770, 210–246.CrossRefGoogle Scholar
Minier, J.-P., Peirano, E., and Chibbaro, S. 2004. PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas–solid flow. Physics of Fluids, 16(7), 2419–2431.CrossRefGoogle Scholar
Moore, W. C., and Balachandar, S. 2019. Lagrangian investigation of pseudo-turbulence in multiphase flow using superposable wakes. Physical Review Fluids, 4(11), 114301.CrossRefGoogle Scholar
Moore, W. C., Balachandar, S., and Akiki, G. 2019. A hybrid point-particle force model that combines physical and data-driven approaches. Journal of Computational Physics, 385, 187–208.CrossRefGoogle Scholar
Pepiot, P., and Desjardins, O. 2012. Numerical analysis of the dynamics of two-and three-dimensional fluidized bed reactors using an Euler–Lagrange approach. Powder Technology, 220, 104–121.CrossRefGoogle Scholar
Pozorski, J., and Minier, J.-P. 1998. On the Lagrangian turbulent dispersion models based on the Langevin equation. International Journal of Multiphase Flow, 24(6), 913–945.CrossRefGoogle Scholar
Richardson, J. F., and Zaki, W. N. 1954. The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chemical Engineering Science, 3(2), 65–73.CrossRefGoogle Scholar
Salinas, J. S., Krishnaprasad, K. A., Zgheib, N., and Balachandar, S. 2022. Improved guidelines of indoor airborne transmission taking into account departure from the well-mixed assumption. Physical Review Fluids, 7(6), 064309.CrossRefGoogle Scholar
Seyed-Ahmadi, A., and Wachs, A. 2022. Physics-inspired architecture for neural network modeling of forces and torques in particle-laden flows. Computers & Fluids, 238, 105379.CrossRefGoogle Scholar
Siddani, B., and Balachandar, S. 2023. Point-particle drag, lift, and torque closure models using machine learning: hierarchical approach and interpretability. Physical Review Fluids, 8(1), 014303.CrossRefGoogle Scholar
Siddani, B., Balachandar, S., and Fang, R. 2021a. Rotational and reflectional equivariant convolutional neural network for data-limited applications: Multiphase flow demonstration. Physics of Fluids, 33(10), 103323.CrossRefGoogle Scholar
Siddani, B., Balachandar, S., Moore, W. C., Yang, Y., and Fang, R. 2021b. Machine learning for physics-informed generation of dispersed multiphase flow using generative adversarial networks. Theoretical and Computational Fluid Dynamics, 35, 807–830.CrossRefGoogle Scholar
Tang, Y., Peters, E. A. J. F., Kuipers, J. A. M., Kriebitzsch, S. H. L., and van der Hoef, M. A. 2015. A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE Journal, 61(2), 688–698.Google Scholar
Tavanashad, V., Passalacqua, A., and Subramaniam, S. 2021. Particle-resolved simulation of freely evolving particle suspensions: Flow physics and modeling. International Journal of Multiphase Flow, 135, 103533.CrossRefGoogle Scholar
Tenneti, S, Garg, R, and Subramaniam, S. 2011. Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. International Journal of Multiphase Flow, 37(9), 1072–1092.CrossRefGoogle Scholar
Uhlmann, M. 2008. Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Physics of Fluids, 20(5), 053305.CrossRefGoogle Scholar
Uhlmann, M., and Chouippe, A. 2017. Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence. Journal of Fluid Mechanics, 812, 991–1023.CrossRefGoogle Scholar
Uhlmann, M., and Doychev, T. 2014. Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. Journal of Fluid Mechanics, 752, 310–348.CrossRefGoogle Scholar
Wang, L.-P., and Maxey, M. R. 1993. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 256, 27–68.CrossRefGoogle Scholar
Yang, Y., and Balachandar, S. 2021. A scalable parallel algorithm for direct-forcing immersed boundary method for multiphase flow simulation on spectral elements. Journal of Supercomputing, 77, 2897–2927.CrossRefGoogle Scholar
Zaidi, A. A., Tsuji, T., and Tanaka, T. 2014. A new relation of drag force for high Stokes number monodisperse spheres by direct numerical simulation. Advanced Powder Technology, 25(6), 1860–1871.CrossRefGoogle Scholar
Zhang, D. Z., and Prosperetti, A. 1994. Averaged equations for inviscid disperse two-phase flow. Journal of Fluid Mechanics, 267, 185–219.CrossRefGoogle Scholar
Zhang, D. Z., and Prosperetti, A. 1997. Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions. International Journal of Multiphase Flow, 23(3), 425–453.CrossRefGoogle Scholar
Zwick, D., and Balachandar, S. 2019. Dynamics of rapidly depressurized multiphase shock tubes. Journal of Fluid Mechanics, 880, 441–477.CrossRefGoogle Scholar

References

Ameen, A. 2006. Refrigeration and Air Conditioning. PHI Learning Pvt. Ltd.Google Scholar
Astarita, T., and Cardone, G. 2003. Convective heat transfer in a square channel with angled ribs on two opposite walls. Exp. Fluids, 34, 625–634.CrossRefGoogle Scholar
Bajpai, P. 2015. Pulp and Paper Industry: Chemicals. Elsevier.Google Scholar
Bassols, J, Kuckelkorn, B, Langreck, J, Schneider, R, and Veelken, H. 2002. Trigeneration in the food industry. Appl. Therm. Eng., 22(6), 595–602.CrossRefGoogle Scholar
Bénard, H. 1901. Les tourbillons cellulaires dans une nappe liquide. Méthodes optiques d’observation et d’enregistrement. J. Phys. Appl., 10(1), 254–266.Google Scholar
Bogard, D. G., and Thole, K. A. 2006. Gas turbine film cooling. J. Prop. Power, 22(2), 249–270.CrossRefGoogle Scholar
Bonhoff, B., Parneix, S., Leusch, J., Johnson, B. V., Schabacker, J., and Bölcs, A. 1999. Experimental and numerical study of developed flow and heat transfer in coolant channels with 45 degree ribs. Int. J. Heat Fluid Flow, 20(3), 311–319.CrossRefGoogle Scholar
Boussinesq, J. 1897. Théorie de l’Écoulement Tourbillonnant et Tumultueux des Liquides dans les Lits Rectilignes à Grande Section, Vol. 1. Gauthier–Villars.Google Scholar
Cabot, W, and Moin, P. 2000. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion, 63, 269–291.CrossRefGoogle Scholar
Cai, Y., Wang, Y., Liu, D., and Zhao, F. Y. 2019. Thermoelectric cooling technology applied in the field of electronic devices: Updated review on the parametric investigations and model developments. Appl. Therm. Eng., 148, 238–255.CrossRefGoogle Scholar
Chandra, P. R., Alexander, C. R., and Han, J. C. 2003. Heat transfer and friction behaviors in rectangular channels with varying number of ribbed walls. Int. J. Heat Mass Transf., 46(3), 481–495.CrossRefGoogle Scholar
Ciofalo, M., Stasiek, J., and Collins, M. W. 1996. Investigation of flow and heat transfer in corrugated passages – II. Numerical simulations. Int J. Heat Mass Transf., 39, 165–192.CrossRefGoogle Scholar
Coker, A. K. 2018. Petroleum Refining Design and Applications Handbook, Volume 1. Wiley.CrossRefGoogle Scholar
Corrsin, S. 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys., 22(4), 469–473.Google Scholar
Daly, B. J., and Harlow, F. H. 1970. Transport equations in turbulence. Phys. Fluids, 13(11), 2634–2649.CrossRefGoogle Scholar
Darwish, M. S. 1993. A new high-resolution scheme based on the normalized variable formulation. Num. Heat Transf., part B, 24(3), 353–371.Google Scholar
De Graça Carvalho, M. 2012. EU energy and climate change strategy. Energy, 40(1), 19–22.CrossRefGoogle Scholar
Driest, V., and Edward, R. 1956. On turbulent flow near a wall. J. Aeronaut. Sci., 23(11), 1007–1011.Google Scholar
El Alami, M, Najam, M, Semma, E, Oubarra, A, and Penot, F. 2005. Electronic components cooling by natural convection in horizontal channel with slots. Energy Convers. Manage., 46(17), 2762–2772.CrossRefGoogle Scholar
Ferziger, J. H., and Perić, M. 2008. Numerical Fluid Mechanics. Springer.Google Scholar
Ferziger, J. H., Perić, M., and Street, R. L. 2002. Computational Methods for Fluid Dynamics. Springer.Google Scholar
Focke, W. W., Zachariades, J., and Oliver, I. 1985. The effect of the corrugation the thermohydraulic inclination angle on performance of plate heat exchangers. Int. J. Heat Mass Transf., 28, 1469–1479.CrossRefGoogle Scholar
Fureby, C., and Tabor, G. 1997. Mathematical and physical constraints on large-eddy simulations. Theor. Comput. Fluid Dyn., 9(2), 85–102.CrossRefGoogle Scholar
Ganapathy, V. 2014. Steam Generators and Waste Heat Boilers: For Process and Plant Engineers. CRC Press.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7), 1760–1765.CrossRefGoogle Scholar
Ghaddar, N. K., Korczak, K. Z., Mikic, B. B., and Patera, A. T. 1986. Numerical investigation of incompressible flow in grooved channels. Part 1. Stability and self-sustained oscillations. J. Fluid Mech., 163, 99–127.CrossRefGoogle Scholar
Godunov, S., and Bohachevsky, I. 1959. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematičeskij sbornik, 47(3), 271–306.Google Scholar
Gullapalli, V. S., and Sunden, B. 2014. CFD simulation of heat transfer and pressure drop in compact brazed plate heat exchangers. Heat Transf. Eng., 35, 358–366.CrossRefGoogle Scholar
Han, J. C. 1984. Heat transfer and friction in channels with two opposite rib-roughened walls. J. Heat Transf., 106(4), 774–781.CrossRefGoogle Scholar
Han, J. C. 1988. Heat transfer and friction characteristics in rectangular channels with rib turbulators. J. Heat Transf., 110(2), 321–328.CrossRefGoogle Scholar
Han, J. C., and Park, J. S. 1988. Developing heat transfer in rectangular channels with rib turbulators. Int. J. Heat Mass Transf., 31(1), 183–195.CrossRefGoogle Scholar
Han, J. C., Ou, S., Park, J. S., and Lei, C. K. 1989. Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators. Int. J. Heat Mass Transf., 32(9), 1619–1630.CrossRefGoogle Scholar
Heinzel, A., Hering, W., Konys, J., Marocco, L.and Litfin, K., Müller, G., Pacio, J., Schroer, C., Stieglitz, R., and Stoppel, L. 2017. Liquid metals as efficient high-temperature heat-transport fluids. Energy Tech., 5(7), 1026–1036.Google Scholar
Heldman, D. R, and Moraru, C. I. 2010. Encyclopedia of Agricultural, Food, and Biological Engineering. CRC Press.CrossRefGoogle Scholar
Hirsch, C. 2007. Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Elsevier.Google Scholar
Hong, Y. J., and Hsieh, S. S. 1993. Heat transfer and friction factor measurements in ducts with staggered and in-line ribs. J. Heat Transf., 115(1), 58–65.CrossRefGoogle Scholar
Incropera, F. P., and DeWitt, D. P. 1990. Fundamentals of Heat and Mass Transfer. Wiley.Google Scholar
Issa, R. I. 1986. Solution of the implicitly discretized fluid flow equations by operator-splitting. J. Comp. Phys., 62(1), 40–65.CrossRefGoogle Scholar
Jackson, D., and Launder, B. 2007. Osborne Reynolds and the publication of his papers on turbulent flow. Annu. Rev. Fluid Mech., 39, 19–35.CrossRefGoogle Scholar
Jain, S., Joshi, A., and K., Bansal P. 2007. A new approach to numerical simulation of small sized plate heat exchangers with chevron plates. J. Heat Transf., 129, 291–297.CrossRefGoogle Scholar
Jeong, J., and Hussain, F. 1995. On the identification of a vortex. J. Fluid Mech., 285, 99–127.CrossRefGoogle Scholar
Kim, W. W., and Menon, S. 1995. A new dynamic one-equation subgrid-scale model for large eddy simulations. Page 356 of: 33rd Aerospace Sciences Meeting and Exhibit.CrossRefGoogle Scholar
Kim, W. W., and Menon, S. 1997. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. Page 210 of: 35th Aerospace Sciences Meeting and Exhibit.CrossRefGoogle Scholar
Kuncoro, I. W., Pambudi, N. A., Biddinika, M. K., Widiastuti, I., Hijriawan, M., and Wibowo, K. M. 2019. Immersion cooling as the next technology for data center cooling: A review. Paper 044057 of: J. Phys.: Conf. Series, vol. 1402. IOP Publishing.Google Scholar
Laguna-Zarate, L., Barrios-Piña, H., Ramírez-León, H., García-Díaz, R., and Becerril-Piña, R. 2021. Analysis of Thermal Plume Dispersion into the Sea by Remote Sensing and Numerical Modeling. J. Mar. Sci. Eng., 9(12), 1437.CrossRefGoogle Scholar
Laitinen, A., Saari, K., Kukko, K., Peltonen, P., Laurila, E., Partanen, J., and Vuorinen, V. 2020. A computational fluid dynamics study by conjugate heat transfer in OpenFOAM: A liquid cooling concept for high power electronics. Int. J. Heat Fluid Flow, 85, 108654.CrossRefGoogle Scholar
Larsson, J., Kawai, S., Bodart, J., and Bermejo-Moreno, I. 2016. Large eddy simulation with modeled wall-stress: Recent progress and future directions. Mech. Eng. Rev., 3(1), 15–00418.CrossRefGoogle Scholar
Launder, B. E., and Spalding, D. B. 1983. The numerical computation of turbulent flows. Pages 96–116 of: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion. Elsevier.Google Scholar
Launder, B. E., Reece, G. Jr., and Rodi, W. 1975. Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech., 68(3), 537–566.CrossRefGoogle Scholar
Lefebvre, A. H. 1983. Gas Turbine Combustion. Hemisphere Publishing Corp.Google Scholar
LeVeque, R. J. 1992. Numerical Methods for Conservation Laws. Springer.CrossRefGoogle Scholar
Liang, G., and Mudawar, I. 2017. Review of spray cooling – Part 1: Single-phase and nucleate boiling regimes, and critical heat flux. Int. J. Heat Mass Transf., 115, 1174–1205.Google Scholar
Lilly, D. K. 1966. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Manuscript, 123.Google Scholar
Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn., 4(3), 633–635.CrossRefGoogle Scholar
Liou, T. M., and Hwang, J. J. 1992. Turbulent Heat Transfer Augmentation and Friction in Periodic Fully Developed Channel Flows. J. Heat Transf., 114(1), 56–64.CrossRefGoogle Scholar
Luo, L., Yan, H., Yang, S., Du, W., Wang, S., Sunden, B., and Zhang, X. 2018. Convergence angle and dimple shape effects on the heat transfer characteristics in a rotating dimple-pin fin wedge duct. Num. Heat Transf. A Appl., 74(10), 1611–1635.Google Scholar
Menon, S. 1998. A New Approach to Validate Subgrid Models in Complex High Reynolds Number Flows. Tech. Rept. Georgia Institute of Technology, Atlanta, School of Aerospace Engineering.CrossRefGoogle Scholar
Menter, F. R., Kuntz, M., and Langtry, R. 2003. Ten years of industrial experience with the SST turbulence model. Turb. Heat Mass Transf., 4(1), 625–632.Google Scholar
Molochnikoc, V., Mazo, A., Okhotnikov, D., and Goltsman, A. 2017. Mechanism of transition to turbulence in a circular cylinder wake in a channel. MATEC Web Conf., 115, 02008.Google Scholar
Murata, A., and Mochizuki, S. 2001. Comparison between laminar and turbulent heat transfer in a stationary square duct with transverse or angled rib turbulators. Int. J. Heat Mass Transf., 44(6), 1127–1141.Google Scholar
Nelson, W. C., and Kim, C. J. 2012. Droplet actuation by electrowetting-on-dielectric (EWOD): A review. J. Adhes. Sci. Technol., 26(12–17), 1747–1771.CrossRefGoogle Scholar
Nicoud, F., and Ducros, F. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust., 62(3), 183–200.CrossRefGoogle Scholar
Oboukhov, A. M. 1949. Structure of the temperature field in turbulent flows. Isv. Geogr. Geophys. Ser., 13, 58–69.Google Scholar
Oliet, C, Oliva, A, Castro, J, and Perez-Segarra, CD. 2007. Parametric studies on automotive radiators. Appl. Therm. Eng., 27(11–12), 2033–2043.CrossRefGoogle Scholar
Olsson, C. O., and Sunden, B. 1998. Experimental study of flow and heat transfer in rib-roughened rectangular channels. Exp. Thermal Fluid Sci., 16(4), 349–365.CrossRefGoogle Scholar
Park, J. S, Han, J. C, Huang, Y., Ou, S., and Boyle, R. J. 1992. Heat transfer performance comparisons of five different rectangular channels with parallel angled ribs. Int. J. Heat Mass Transf., 35(11), 2891–2903.CrossRefGoogle Scholar
Piomelli, U., Ferziger, J., Moin, P., and Kim, J. 1989. New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids A, 1(6), 1061–1068.CrossRefGoogle Scholar
Piomelli, U. 2008. Wall-layer models for large-eddy simulations. Progress in Aerospace Sciences, 44(6), 437–446.CrossRefGoogle Scholar
Pope, S. B. 2004. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys., 6(1), 35.CrossRefGoogle Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
Rau, G., C¸akan, M., Moeller, D., and Arts, T. 1998. The effect of periodic ribs on the local aerodynamic and heat transfer performance of a straight cooling channel. J. Turbomachinery, 120(2), 368–375.Google Scholar
Rayleigh, Lord 1916. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. The Lond. Edinb. Dubl. Phil. Mag. & J. Sci., 32(192), 529–546.Google Scholar
Revankar, S. T. 2019. Nuclear hydrogen production. Pages 49–117 in: Storage and Hybridization of Nuclear Energy. Elsevier.Google Scholar
Ring, T. A. 1996. Fundamentals of Ceramic Powder Processing and Synthesis. Elsevier.Google Scholar
Roelofs, F., Gopala, V. R., Van Tichelen, K., Cheng, X., Merzari, E., and Pointer, W. D. 2013. Status and future challenges of CFD for liquid metal cooled reactors. Presentation International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenario.Google Scholar
Sabato, M., Fregni, A., Stalio, E., Brusiani, F., Tranchero, M., and Baritaud, T. 2019. Numerical study of submerged impinging jets for power electronics cooling. Int. J. Heat Mass Transf., 141, 707–718.CrossRefGoogle Scholar
Sagaut, P. 2006. Large Eddy Simulation for Incompressible Flows: An Introduction. Springer.Google Scholar
Šalić, A., Tušek, A., and Zelić, B. 2012. Application of microreactors in medicine and biomedicine. J. Appl. Biomed., 10(3), 137–153.CrossRefGoogle Scholar
Schumann, U. 1975. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys., 18(4), 376–404.CrossRefGoogle Scholar
Settle, M. 1978. Volcanic eruption clouds and the thermal power output of explosive eruptions. J. Volcanol. Geoth. Res., 3(3–4), 309–324.CrossRefGoogle Scholar
Sharma, A., Tyagi, V. V., Chen, C. R., and Buddhi, D. 2009. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev., 13(2), 318–345.CrossRefGoogle Scholar
Shaw, R. K., and Sekulic, D. P. 2003. Fundamentals of Heat Exchanger Design. Wiley.CrossRefGoogle Scholar
Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., and Zhu, J. 1995. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comp. Fluids, 24(3), 227–238.CrossRefGoogle Scholar
Smagorinsky, J. 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev., 91(3), 99–164.2.3.CO;2>CrossRefGoogle Scholar
Spalding, D. B. 1961. A single formula for the law of the wall. J. Appl. Mech., 28(3), 455–458.CrossRefGoogle Scholar
Speziale, C. G. 1985. Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence. J. Fluid Mech., 156, 55–62.CrossRefGoogle Scholar
Sundén, B. 2005. High Temperature Heat Exchanger. Pages 226–238 in: 5th Int. Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Shah, R. K., Ishizuka, M., Rudy, T. M., and Wadekar, V. V. (eds). Engineering Conferences International.Google Scholar
Sundén, B., and Wang, L. 2003. Relevance of heat transfer and heat exchangers for greenhouse gas emissions. Pages 101–112 in: Advances in Heat Transfer Engineering, Sundén, B. and Vilemas, J. (eds). Begell House.Google Scholar
Sunden, B., Meyer, J., Dirker, J., John, B., and Mukkamala, Y. 2021. Local measurements in heat exchangers: A systematic review and regression analysis. Heat Transfer Engineering, 43, 1529–1565.Google Scholar
Sweby, P. K. 1984. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal., 21(5), 995–1011.CrossRefGoogle Scholar
Tang, H., Tang, Y., Wan, Z., Li, J., Yuan, W., Lu, L., Li, Y., and Tang, K. 2018. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Appl. Energy, 223, 383–400.CrossRefGoogle Scholar
Taslim, M. E., and Wadsworth, C. M. 1997. An experimental investigation of the rib surface-averaged heat transfer coefficient in a rib-roughened square passage. J. Turbomachinery, 119(2), 381–389.CrossRefGoogle Scholar
Taslim, M. E., Li, T., and Kercher, D. M. 1996. Experimental heat transfer and friction in channels roughened with angled, V-shaped, and discrete ribs on two opposite walls. J. Turbomachinery, 118(CONF-940626-).CrossRefGoogle Scholar
Tessicini, F., Li, N., and Leschziner, M. A. 2006. Simulation of three-dimensional separation with a zonal near-wall approximation. In: Proc. ECCOMAS CFD, vol. 2006.Google Scholar
Tsai, Y. C., Liu, F. B., and Shen, P. T. 2009. Investigations of the pressure drop and flow distribution in a chevron-type plate heat exchanger. Int. Commun. Heat Mass Transf., 36, 574–578.CrossRefGoogle Scholar
Tuckerman, D. B., and Pease, R. F. W. 1981. High-performance heat sinking for VLSI. IEEE Electron Device Lett., 2(5), 126–129.Google Scholar
Vreman, B., Geurts, B., and Kuerten, H. 1994. Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid Mech., 278, 351–362.CrossRefGoogle Scholar
Wang, J., Hu, Z., Du, C., Tian, L., and Baleta, J. 2021. Numerical study of effusion cooling of a gas turbine combustor liner. Fuel, 294, 120578.CrossRefGoogle Scholar
Wang, L., and Sundén, B. 2005. Experimental investigation of local heat transfer in a square duct with continuous and truncated ribs. Exp. Heat Transf., 18(3), 179–197.CrossRefGoogle Scholar
Wang, L., Salewski, M., and Sundén, B. 2010. Turbulent flow in a ribbed channel: Flow structures in the vicinity of a rib. 34(2), 165–176.Google Scholar
Wang, Meng, and Moin, Parviz. 2002. Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Physics of Fluids, 14(7), 2043–2051.CrossRefGoogle Scholar
Webb, R. L., and Kim, N. H. 2005. Principles of Enhanced Heat Transfer. Taylor & Francis.Google Scholar
Weibel, J. A., and Garimella, S. V. 2013. Recent advances in vapor chamber transport characterization for high-heat-flux applications. Adv. Heat Transf., 45, 209–301.CrossRefGoogle Scholar
White, F. M. 2008. Fluid Mechanics. McGraw-Hill.Google Scholar
Wilcox, D. C. 1998. Turbulence Nodeling for CFD, Vol 2. DCW industries La Canada, CA.Google Scholar
Wilcox, D. C. 2008. Formulation of the kw turbulence model revisited. AIAA Journal, 46(11), 2823–2838.CrossRefGoogle Scholar
Won, S. Y., Mahmood, G. I., and Ligrani, P. M. 2003. Flow structure and local Nusselt number variations in a channel with angled crossed-rib turbulators. Int. J. Heat Mass Transf., 46(17), 3153–3166.CrossRefGoogle Scholar
Zhang, L., and Che, D. 2011. Turbulence Models for Fluid Flow and Heat Transfer Between Cross-Corrugated Plates. Numer. Heat Transf. A: Appl., 60, 410–440.CrossRefGoogle Scholar
Zhu, X., and Haglind, F. 2020. Relationship between inclination angle and friction factor of chevron-type plate heat exchangers. Int. J. Heat Mass Transf., 162, 120370.CrossRefGoogle Scholar
Zohuri, B. 2015. Application of Compact Heat Exchangers for Combined Cycle Driven Efficiency in Next Generation Nuclear Power Plants: A Novel Approach. Springer.CrossRefGoogle Scholar

References

Alff, F., Böhm, M, Clauß, W., Oschwald, M., and Waidmann, W. 1994. Supersonic combustion of hydrogen/air in a scramjet combustion chamber. In: 45th International Astronautical Congress, Jerusalem, Israel. IAF 94-S.4.429.Google Scholar
Allaire, G., Clerc, S., and Kokh, S. 2002. A five-equation model for the simulation of interfaces between compressible fluids. Journal of Computational Physics, 181(2), 577–616.CrossRefGoogle Scholar
Anderson, W. R., McQuaid, M. J., Nusca, M. J., and Kotlar, A. J. 2010. A detailed, finite-rate, chemical kinetics mechanism for monomethylhydrazine-red fuming nitric acid systems. Tech. rept. ARL-TR-5088. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5066. Weapons and Materials Research Directorate, ARL.Google Scholar
Balsara, D. S., and Shu, C.-W. 2000. Monotonicity preserving weighted essentially nonoscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 160(2), 405–452.CrossRefGoogle Scholar
Banerjee, S., Krahl, R., Durst, F., and Zenger, Ch. 2007. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. Journal of Turbulence, 8, N32.CrossRefGoogle Scholar
Berglund, M., and Fureby, C. 2007. LES of supersonic combustion in a scramjet engine model. Proceedings of the Combustion Institute, 31(2), 2497–2504.CrossRefGoogle Scholar
Berglund, M., Fedina, E., Fureby, C., Tegnér, J., and Sabel’nikov, V. 2010. Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet. AIAA Journal, 48(3), 540–550.CrossRefGoogle Scholar
Bilger, R. W. 1993. Conditional moment closure for turbulent reacting flow. Physics of Fluids A: Fluid Dynamics, 5(2), 436–444.CrossRefGoogle Scholar
Bray, K. N. C. 1996. The challenge of turbulent combustion. Symposium (International) on Combustion, 26(1), 1–26.CrossRefGoogle Scholar
Cao, C., Ye, T., and Zhao, M. 2015. Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach. Chinese Journal of Aeronautics, 28(5), 1316–1327.CrossRefGoogle Scholar
Chapuis, M., Fedina, E., Fureby, C., Hannemann, K., Karl, S., and Schramm, J. Martinez. 2013. A computational study of the HyShot II combustor performance. Proceedings of the Combustion Institute, 34(2), 2101–2109.Google Scholar
Charlette, F., Meneveau, C., and Veynante, D. 2002. A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combustion and Flame, 131(1), 159–180.Google Scholar
Cook, A. W. 2009. Enthalpy diffusion in multicomponent flows. Physics of Fluids, 21(5), 055109.CrossRefGoogle Scholar
Dai, J., Xu, F., Cai, X., and Mahmoudi, Y. 2021. Effects of velocity shear layer on detonation propagation in a supersonic expanding combustor. Physics of Fluids, 33(10), 105110.CrossRefGoogle Scholar
Davis, S. 1988. Simplified second-order Godunov-type methods. SIAM Journal on Scientific and Statistical Computing, 9(3), 445–473.CrossRefGoogle Scholar
Drikakis, D. 2002. Embedded turbulence model in numerical methods for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 39(9), 763–781.CrossRefGoogle Scholar
Drikakis, D., and Tsangaris, S. 1993. On the solution of the compressible Navier–Stokes equations using improved flux vector splitting methods. Applied Mathematical Modelling, 17(6), 282–297.CrossRefGoogle Scholar
Drikakis, D., Hahn, M., Mosedale, A., and Thornber, B. 2009. Large eddy simulation using high-resolution and high-order methods. Proceedings of the Royal Society A, 367(1899), 2985–2997.Google Scholar
Drikakis, D. 2003. Advances in turbulent flow computations using high-resolution methods. Progress in Aerospace Sciences, 39(6), 405–424.CrossRefGoogle Scholar
Drikakis, D., and Geurts, B. J. 2002. Turbulent Flow Computation. Vol. 66. Springer.CrossRefGoogle Scholar
Drummond, J. P. 2014. Methods for prediction of high-speed reacting flows in aerospace propulsion. AIAA Journal, 52(3), 465–485.CrossRefGoogle Scholar
Emory, M., and Iaccarino, G. 2014. Visualizing turbulence anisotropy in the spatial domain with componentality contours. Pages 123–138 of: Center for Turbulence Research, Stanford University. Annual Research Briefs. Stanford University.Google Scholar
Feng, H., Huang, C., and Wang, R. 2014. An improved mapped weighted essentially non-oscillatory scheme. Applied Mathematics and Computation, 232, 453–468.CrossRefGoogle Scholar
Fureby, C., Fedina, E., and Tegnér, J. 2014. A computational study of supersonic combustion behind a wedge-shaped flameholder. Shock Waves, 24, 41–50.CrossRefGoogle Scholar
Fureby, C. 2020. The complexity of LES of high-speed reactive flows for combustor applications. In: AIAA Scitech 2020 Forum.CrossRefGoogle Scholar
Fureby, C., and Nilsson, T. 2024. Coarse graining supersonic combustion. In Coarse Graining Turbulence: Modeling and Data-Driven Approaches and their Applications, Grinstein, Fernando F., Pereira, Filipe S., and Germano, Massimo (eds). Cambridge University Press.Google Scholar
Grinstein, F. F. 2024. Numerical simulations and coarse graining. In Coarse Graining Turbulence: Modeling and Data-Driven Approaches and Their Applications, Grinstein, Fernando F., Pereira, Filipe S., and Germano, Massimo (eds). Cambridge University Press.Google Scholar
Grinstein, F. F., Margolin, L. G., and Rider, W. J. 2007. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. R. 1997. Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III. Journal of Computational Physics, 131(1), 3–47.CrossRefGoogle Scholar
Heiser, W., Pratt, D., Daley, D., and Mehta, U. 1994. Hypersonic Airbreathing Propulsion. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Henrick, A. K., Aslam, T. D., and Powers, J. M. 2005. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 207(2), 542–567.CrossRefGoogle Scholar
Huang, Z.-W., He, G.-Q., Qin, F., and Wei, X.-G. 2015. Large eddy simulation of flame structure and combustion mode in a hydrogen fueled supersonic combustor. International Journal of Hydrogen Energy, 40(31), 9815–9824.CrossRefGoogle Scholar
Jiang, G.-S., and Shu, C.-W. 1996. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1), 202–228.CrossRefGoogle Scholar
Karantonis, K., Kokkinakis, I. W., Thornber, B., and Drikakis, D. 2021. Compressibility in suddenly expanded subsonic flows. Physics of Fluids, 33(10), 105106.CrossRefGoogle Scholar
Kee, R. J., Rupley, F. M., and Miller, J. A. 1989 (September). Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics. Tech. rept. SAND-89-8009. Sandia National Lab.(SNL-CA), Livermore, CA.Google Scholar
Kim, K. H., and Kim, C. 2005. Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows: Part II: Multi-dimensional limiting process. Journal of Computational Physics, 208(2), 570–615.CrossRefGoogle Scholar
Klimenko, A. Yu. 1990. Multicomponent diffusion of various admixtures in turbulent flow. Fluid Dynamics, 25, 327–334.CrossRefGoogle Scholar
Kokkinakis, I. W., Drikakis, D., Ritos, K., and Spottswood, S. M. 2020a. Direct numerical simulation of supersonic flow and acoustics over a compression ramp. Physics of Fluids, 32, 066107.CrossRefGoogle Scholar
Kokkinakis, I. W., Drikakis, D., and Youngs, D. L. 2019. Modeling of Rayleigh–Taylor mixing using single-fluid models. Phys. Rev. E, 99(Jan), 013104.CrossRefGoogle ScholarPubMed
Kokkinakis, I. W., Drikakis, D., and Youngs, D. L. 2020b. Vortex morphology in Richtmyer–Meshkov-induced turbulent mixing. Physica D: Nonlinear Phenomena, 407, 132459.CrossRefGoogle Scholar
Kokkinakis, I. W., and Drikakis, D. 2015. Implicit Large Eddy Simulation of weakly-compressible turbulent channel flow. Computer Methods in Applied Mechanics and Engineering, 287, 229–261.CrossRefGoogle Scholar
Kokkinakis, I. W., Drikakis, D., Youngs, D. L., and Williams, R. J. R. 2015. Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing. International Journal of Heat and Fluid Flow, 56, 233–250.CrossRefGoogle Scholar
Lee, Wei-Shen, and Pan, Kuo-Long. 2020. Computational investigation of an ethylene-fueled supersonic combustor assisted by a porous cylindrical burner. Aerospace Science and Technology, 107, 106350.CrossRefGoogle Scholar
Liu, X.-D., Osher, S., and Chan, T. 1994. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115(1), 200–212.CrossRefGoogle Scholar
Magnussen, B. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. Proceedings of the 9th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics. doi:10.2514/6.1981-42.Google Scholar
Nichols, R. H., Tramel, R. W., and Buning, P. G. 2008. Evaluation of two high-order weighted essentially nonoscillatory schemes. AIAA Journal, 46(12), 3090–3102.CrossRefGoogle Scholar
Nilsson, T., Zhong, S., and Fureby, C. 2021. LES of H2-air jet combustion in high enthalpy supersonic crossflow. Physics of Fluids, 33(3), 035133.CrossRefGoogle Scholar
Oevermann, M. 2000. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerospace Science and Technology, 4(7), 463–480.CrossRefGoogle Scholar
Potturi, A., and Edwards, J. 2012. LES/RANS simulation of a supersonic combustion experiment. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.CrossRefGoogle Scholar
Rana, Z. A., Thornber, B., and Drikakis, D. 2011. Transverse jet injection into a supersonic turbulent cross-flow. Physics of Fluids, 23(4), 046103.CrossRefGoogle Scholar
Ritos, K., Kokkinakis, I. W., Drikakis, D., and Spottswood, S. M. 2017. Implicit large eddy simulation of acoustic loading in supersonic turbulent boundary layers. Physics of Fluids, 29(4), 046101.CrossRefGoogle Scholar
Ritos, K., Kokkinakis, I. W., and Drikakis, D. 2018a. Physical insight into a Mach 7.2 compression corner flow. In: 2018 AIAA Aerospace Sciences Meeting.CrossRefGoogle Scholar
Ritos, K., Kokkinakis, I. W., and Drikakis, D. 2018b. Performance of high-order implicit large eddy simulations. Computers & Fluids, 173, 307–312.CrossRefGoogle Scholar
Ritos, K., Kokkinakis, I. W., and Drikakis, D. 2018c. Physical insight into the accuracy of finely-resolved iLES in turbulent boundary layers. Computers & Fluids, 169, 309–316.CrossRefGoogle Scholar
Ritos, K., Drikakis, D., and Kokkinakis, I. W. 2019. Wall-pressure spectra models for supersonic and hypersonic turbulent boundary layers. Journal of Sound and Vibration, 443, 90–108.CrossRefGoogle Scholar
Safer, K., Bounif, A., Safer, M., and Gökalp, I. 2010. Free turbulent reacting jet simulation based on combination of transport equations and PDF. Engineering Applications of Computational Fluid Mechanics, 4(2), 246–259.CrossRefGoogle Scholar
Shu, C. 2009. High-order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Review, 51(1), 82–126.CrossRefGoogle Scholar
Shu, C. W. 1990. Numerical experiments on the accuracy of ENO and modified ENO schemes. Journal of Scientific Computing, 5(2), 127–149.CrossRefGoogle Scholar
Shu, C.-W. 1998. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Pages 325–432 of: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, A. Quarteroni (ed). Springer.Google Scholar
Spekreijse, S. 1987. Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws. Mathematics of Computation, 49, 135–155.CrossRefGoogle Scholar
Spiteri, R., and Ruuth, S. 2002. A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM Journal on Numerical Analysis, 40(2), 469–491.CrossRefGoogle Scholar
Sweby, P. K. 1984. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 21(5), 995–1011.CrossRefGoogle Scholar
Taylor, Ellen M., Wu, Minwei, and Martn, M. Pino. 2007. Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. Journal of Computational Physics, 223(1), 384–397.CrossRefGoogle Scholar
Thornber, B., and Drikakis, D. 2008. Implicit Large-Eddy Simulation of a deep cavity using high-resolution methods. AIAA Journal, 46(10), 2634–2645.CrossRefGoogle Scholar
Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., and Williams, R. J. R. 2008. An improved reconstruction method for compressible flows with low Mach number features. Journal of Computational Physics, 227(10), 4873–4894.CrossRefGoogle Scholar
Thornber, B., Drikakis, D., Youngs, D. L., and Williams, R. J. R. 2010. The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability. Journal of Fluid Mechanics, 654, 99–139.CrossRefGoogle Scholar
Titarev, V. A., and Toro, E. F. 2004. Finite-volume WENO schemes for three-dimensional conservation laws. Journal of Computational Physics, 201(1), 238–260.CrossRefGoogle Scholar
Toniato, P. 2019. Free-jet testing of a Mach 12 scramjet in an expansion tube. Ph.D. thesis, The University of Queensland.CrossRefGoogle Scholar
Toro, E. F. 1991. A linearized Riemann solver for the time-dependent Euler equations of gas dynamics. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 434(1892), 683–693.Google Scholar
Toro, E. F. 1995. Direct Riemann solvers for the time-dependent Euler equations. Shock Waves, 5(1), 75.CrossRefGoogle Scholar
Toro, E. F., Spruce, M., and Speares, W. 1994. Restoration of the contact surface in the HLL–Riemann solver. Shock Waves, 4(1), 25–34.CrossRefGoogle Scholar
Toro, E. F. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction. 3rd ed. Springer.CrossRefGoogle Scholar
Tsoutsanis, P., Kokkinakis, I. W., Könözsy, László, D., Dimitris, W., Robin J. R., and Youngs, David L. 2015. Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem. Computer Methods in Applied Mechanics and Engineering, 293, 207–231.Google Scholar
van Leer, B. 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. Journal of Computational Physics, 23(3), 263–275.CrossRefGoogle Scholar
van Leer, B. 1979. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics, 32(1), 101–136.CrossRefGoogle Scholar
Waidmann, W., Alff, F., Böhm, M., Brummund, U., Clauß, W., and Oschwald, M. 1996. Supersonic combustion of hydrogen/air in a scramjet combustion chamber. Space Technology, 15(6), 421–429.Google Scholar
Williams, F. A. 2000. Progress in knowledge of flamelet structure and extinction. Progress in Energy and Combustion Science, 26(4), 657–682.CrossRefGoogle Scholar
Wirth, M., and Peters, N. 1992. Turbulent premixed combustion: A flamelet formulation and spectral analysis in theory and IC-engine experiments. Symposium (International) on Combustion, 24(1), 493–501.CrossRefGoogle Scholar
Wu, Kun, Zhang, Peng, Yao, Wei, and Fan, Xuejun. 2017. Numerical investigation on flame stabilization in DLR hydrogen supersonic combustor with strut injection. Combustion Science and Technology, 189(12), 2154–2179.CrossRefGoogle Scholar
Wu, M., and Martn, M. P. 2007. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA Journal, 45(4), 879–889.CrossRefGoogle Scholar
Xiang, Z., Yang, S., Xie, S., Li, J., and Ren, H. 2020. Turbulence–chemistry interaction models with finite-rate chemistry and compressibility correction for simulation of supersonic turbulent combustion. Engineering Applications of Computational Fluid Mechanics, 14(1), 1546–1561.CrossRefGoogle Scholar
Xu, H., He, Y., Strobel, K. L., Gilmore, C. K., Kelley, S. P., Hennick, C. C., Sebastian, T., Woolston, M. R., Perreault, D. J., and Barrett, S. R. H. 2018. Flight of an aeroplane with solid-state propulsion. Nature, 563, 532–535.CrossRefGoogle ScholarPubMed
Zanotti, O., and Dumbser, M. 2016. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables. Computational Astrophysics and Cosmology, 3(1), 1–32.CrossRefGoogle ScholarPubMed
Zhao, X., Xia, Z., Ma, L., Li, C., Fang, C., Natan, B., and Gany, A. 2021. Research progress on solid-fueled Scramjet. Chinese Journal of Aeronautics, 35(1), 398–415.Google Scholar

References

Adams, N. A., and Shariff, K. 1996. A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems. J. Comp. Phys., 127, 27.CrossRefGoogle Scholar
Alekseev, V. A., Christensen, M., and Konnov, A. A. 2015. The Effect of Temperature on the Adiabatic Burning Velocities of Diluted Hydrogen Flames: A Kinetic Study Using an Updated Mechanism. Comb. Flame, 162, 1884.CrossRefGoogle Scholar
Andreadis, D. 2004. Scramjet Engines Enabling the Seamless Integration of Air and Space Operations. Industrial Physicist, 10, 24.Google Scholar
Balland, S., and Vincent-Randonnier, A. 2015. Numerical Study of the Hydrogen/Air Combustion with CEDRE on LAERTE Dual Mode Ramjet Combustion Experiment. In Proc. 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. doi:10.2514/6.2015-3629.CrossRefGoogle Scholar
Bardina, J., Ferziger, J. H., and Reynolds, W. C. 1992. Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous, Incompressible, Turbulent Flows. Technical Report TF-19, Stanford University.Google Scholar
Batchelor, G. K., and Townsend, A. A. 1949. The Nature of Turbulent Motion at Large Wave-numbers. Proc. Roy. Soc. London A, 199, 238.Google Scholar
Baurle, R. A., and Girimaji, S. S. 2003. Assumed PDF Turbulence–Chemistry Closure with Temperature Composition Correlations. Comb. Flame, 134, 131.CrossRefGoogle Scholar
Bermejo-Moreno, I., Larsson, J., Bodart, J., and Vicquelin, R. 2013. Wall-Modeled Large-Eddy Simulations of the HIFiRE-2 Scramjet. Center for Turbulence Research Annual Research Briefs, 3.Google Scholar
Bissinger, N. C., Koschel, W., and Sacher, P. W. Walther, R. 2001. Scramjet Investigations within the Germain Hypersonics Technology Program. Page 119 of: Scramjet Propulsion, Curran, E. T., and Murthy, S. N. B. (eds). AIAA Prog. in Astronautics and Aeronautics.CrossRefGoogle Scholar
Boris, J. P. 2013. Flux-Corrected Transport looks at Forty. Comp. Fluids, 84, 113.CrossRefGoogle Scholar
Boyce, R. R. Sullivan, G., and Paull, A. 2003. The HyShot Scramjet Flight Experiment – Flight Data and CFD Calculations Compared. In Proc. 12th AIAA International Space Planes and Hypersonic Systems and Technologies. doi:10.2514/6.2003-7029.CrossRefGoogle Scholar
Branley, N., and Jones, W. P. 2001. Large Eddy Simulation of a Turbulent Non-Premixed Flame. Comb. Flame, 127, 1914.CrossRefGoogle Scholar
Cao, C., Taohong, Y., and Majie, Z. 2015. Large Eddy Simulation of Hydrogen/air Scramjet Combustion using Tabulated Thermo-Chemistry Approach. Chin. J. Aeronautics, 28, 1316.CrossRefGoogle Scholar
Chapuis, M., Fedina, E. Fureby, C., Hannemann, K., Karl, S., and Martinez Schramm, J. 2012. A Computational Study of the HyShot II Combustor Performance. Proc. Comb. Inst., 34, 2101.Google Scholar
Chinzei, N., Mitani, T., and Yatsuyanagi, N. 2001. Scramjet Engine Research at the National Aerospace Laboratory in Japan. Page 1159 of: Scramjet Propulsion, Curran, E. T., and Murthy, S. N. B. (eds). AIAA Prog. In Astronautics and Aeronautics.Google Scholar
Chomiak, J. 1970. A Possible Propagation Mechanism of Turbulent Flames at High Reynolds Numbers. Comb. Flame, 15, 319.CrossRefGoogle Scholar
Colin, O., Ducros, F., Veynante, D., and Poinsot, T. 2000a. A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion. Phys. Fluids., 12, 1843.CrossRefGoogle Scholar
Colin, O., Ducros, F., Veynante, D., and Poinsot, T. 2000b. A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion. Phys. Fluids., 12, 1843.CrossRefGoogle Scholar
Cook, A. W., and Cabot, W. H. 2005. Hyperviscosity for Shock-Turbulence Interactions. J. Comp. Phys., 203, 379.CrossRefGoogle Scholar
Cook, A. W., and Riley, J. J. 1994. A Subgrid Model for Equilibrium Chemistry in Turbulent Flows. Phys. Fluids, 6, 2868.CrossRefGoogle Scholar
Curran, E. T., Heiser, W. H., and Pratt, D. T. 1996. Fluid Phenomena in Scramjet Combustion Systems. Annu. Rev. Fluid Mech., 28, 323.CrossRefGoogle Scholar
Davidenko, D. M., Gökalp, I., Dufour, E., and Magre, P. 2003. Numerical Simulation of Hydrogen Supersonic Combustion and Validation of Computational Approach. In Proc. 12th AIAA International Space Planes and Hypersonic Systems and Technologies. doi:10.2514/6.2003-7033.CrossRefGoogle Scholar
Dowdy, D. R., Smith, D. B., Taylor, S. C., and Williams, A. 1990. The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen–Air Mixtures. Proc. Comb. Inst., 23, 325.Google Scholar
Drikakis, D., Fureby, C., Grinstein, F. F., and Liefendahl, M. 2007. ILES with Limiting Algorithms. Page 94 of: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, Grinstein, F. F., Margolin, L., and B., Rider (eds). Cambridge University Press.Google Scholar
Echekki, T., and Mastorakos, E. 2011. Turbulent Combustion Modeling. Springer.CrossRefGoogle Scholar
Ehn, A. 2012. Towards Quantitative Diagnostics using Short-Pulse Laser Techniques. Ph.D. thesis, Faculty of Engineering, Lund University, Lund, Sweden.Google Scholar
Eklund, D. R., and Stouffer, S. D. 1994. A Numerical and Experimental Study of a Supersonic Combustor Employing Swept Ramp Fuel Injectors. In Proc. 30th Joint Propulsion Conference and Exhibit. doi:10.2514/6.1994-2819.CrossRefGoogle Scholar
Erlebasher, G., Hussaini, M., Speciale, C., and Sang, T. 1992. Towards the Large Eddy Simulation of Compressible Turbulent Flows. J. Fluid Mech., 238, 155–185.Google Scholar
Falempin, F. H. 2001. Scramjet Developments in France. Page 47 of: Scramjet Propulsion, Curran, E. T., and Murthy, S. N. B. (eds). AIAA Prog. in Astronautics and Aeronautics.CrossRefGoogle Scholar
Fedina, E., Fureby, C., Bulat, G., and Maier, W. 2017. Assessment of Finite Rate Chemistry Large Eddy Simulation Combustion Models. Flow, Turb. and Comb., 99, 385.CrossRefGoogle ScholarPubMed
Fotia, M. L., and Driscoll, J. F. 2012. Isolator–Combustor Interactions in a Direct-Connect Ramjet–Scramjet Experiment. J. Prop. Power, 28, 83.CrossRefGoogle Scholar
Fotia, M. L., and Driscoll, J. F. 2013. Ram–Scram Transition and Flame/Shock-Train Interactions in a Model Scramjet Experiment. J. Prop. Power, 29, 261.CrossRefGoogle Scholar
Fureby, C. 2000. Large Eddy Simulation of Combustion Instabilities in a Jet-Engine Afterburner Model. Comb. Sci. Tech, 161, 213.CrossRefGoogle Scholar
Fureby, C. 2009. LES Modeling of Combustion for Propulsion Applications. Phil. Trans. R. Soc. A, 367, 2957.CrossRefGoogle ScholarPubMed
Fureby, C. 2021a. Subgrid Models, Reaction Mechanisms, and Combustion Models in Large-Eddy Simulation of Supersonic Combustion. AIAA J., 59, 215.CrossRefGoogle Scholar
Fureby, C. 2021b. Supersonic Turbulent Combustion Physics – Grand Challenges for Numerical Modeling. Pages 25–26 of: Stratospheric Flying Opportunities for High-Speed Propulsion Concepts. The von Karman Institute Lecture Series.Google Scholar
Fureby, C. 2022. High Fidelity Numerical Simulations of Combustion for Airbreathing Engines. In: HiSST: 2nd Int. Conf. on High-Speed Vehicle Science Technology.CrossRefGoogle Scholar
Fureby, C., and Grinstein, F. F. 2002. Large Eddy Simulation of High Reynolds-Number Free and Wall Bounded Flows. J. Comp. Phys., 181, 68.CrossRefGoogle Scholar
Fureby, C., and Norrison, D. 2019. RANS, DES and LES of the Flow Past the 6:1 Prolate Spheroid at 10° and 20° Angle of Incidence. In Proc. AIAA Scitech 2019 Forum. doi:10.2514/6.2019-0085.CrossRefGoogle Scholar
Gamba, M., and Mungal, M. G. 2015a. Ignition, Flame Structure and Near-Wall Burning in Transverse Hydrogen Jets in Supersonic Crossflow. J. Fluid Mech., 780, 226.CrossRefGoogle Scholar
Gamba, M., and Mungal, M. G. 2015b. Ignition, Flame Structure and Near-Wall Burning in Transverse Hydrogen Jets in Supersonic Crossflow. J. Fluid Mech., 780, 226.CrossRefGoogle Scholar
Gamba, M., Miller, V. A., and Mungal, M. G. 2014. The Reacting Transverse Jet in Supersonic Crossflow: Physics and Properties. In Proc. 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. doi:10.2514/6.2014-3107.CrossRefGoogle Scholar
Gardner, A. D., Hannemann, K., Streelant, J., and Paull, A. 2004. Ground Testing of the HyShot Supersonic Combustion Flight Experiment in HEG and Comparison with Flight Data. In Proc. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. doi:abs/10.2514/6.2004-3345.CrossRefGoogle Scholar
Genin, F., and Menon, S. 2009. Simulation of Turbulent Mixing Behind a Strut Injector in Supersonic Flow. AIAA Journal, 48(3) 526–539.Google Scholar
Giacomazzi, E., Bruno, C., and Favini, B. 2000. Fractal Modeling of Turbulent Combustion. Comb. Theory and Modeling, 4, 391.Google Scholar
Giacomazzi, E., Picchia, F. R., and Arcidiacono, N. 2007. On the Distribution of Lewis and Schmidt Numbers in Turbulent Flames. In Proc. 30th Event of the Italian Section of the Combustion Institute.Google Scholar
Grinstein, F. F., and Fureby, C. 2007. On Flux Limiting based Implicit Large Eddy Simulation. J. Fluids Eng., 129, 1483.Google Scholar
Gruber, M. R., Jackson, K., and Liu, J. 2008. Hydrocarbon-Fueled Scramjet Combustor Flow path Development for Mach 6–8 HIFire Flight Experiments. Tech. Rept. ADA532732. Air Force Research Lab, Wright–Patterson AFB, OH Propulsion Directorate.Google Scholar
Gruber, M. R., Jackson, K., Eklund, D., Barhorst, T., Hass, N., Storch, A., and Liu, J. 2009. Instrumentation and Performance Analysis Plans for the HIFiRE Flight 2 Experiment. In Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. doi:10.2514/6.2009-5032.CrossRefGoogle Scholar
Guiterrez, L. F., Tamagno, J. P., and Elaskar, S. A. 2016. RANS Simulation of Turbulent Diffusive Combustion Using OpenFoam. J. Appl. Fluid Mech., 9, 669.Google Scholar
Hairer, E., and Wanner, G. 1991. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. Springer.CrossRefGoogle Scholar
Hannemann, K., and Martinez Schramm, J. 2007. High Enthalpy, High Pressure Short Duration Testing of Hypersonic Flows. Page 1081 of: Springer Handbook of Experimental Fluid Mechanics, Tropea, C., Foss, J., and Yarin, A. (eds). Springer.Google Scholar
Hannemann, K., Karl, S., Martinez Schramm, J., and Steelant, J. 2010. Methodology of a Combined Ground Based Testing and Numerical Modeling Analysis of Supersonic Combustion Flow Paths. Shock Waves, 20, 353.CrossRefGoogle Scholar
Hannemann, K., Martinez Schramm, J., Laurence, S., and Karl, S. 2015. Shock Tunnel Free Flight Force Measurements using a Complex Model Configuration. Pages 2–6 of: 8th European Symp. on Aerothermodynamics for Space Vehicles.Google Scholar
Hassan, E., Luke, E., Walters, K., Peterson, D., Eklund, D., and Hagenmaier, M. 2017. Computations of a Hydrogen-Fueled Scramjet Combustor on Locally Refined Meshes. Flow. Turb. Comb., 99, 437.CrossRefGoogle Scholar
Hassan, E., Peterson, D. M., Walters, K., and Luke, E. A. 2018. Reacting Dynamic Hybrid Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation of a Supersonic Cavity. In Proc. 52nd AIAA/SAE/ASEE Joint Propulsion Conference. doi:10.2514/6.2016-4566.CrossRefGoogle Scholar
Hawkes, E. R., and Cant, R. S. 2001. Implications of a Flame Surface Density Approach to Large Eddy Simulation of Premixed Turbulent Combustion. Comb. Flame, 126, 1617.CrossRefGoogle Scholar
Hawkes, E. R., Sankaran, R., Sutherland, J. C., and Chen, J. H. 2005. Direct Numerical Simulation of Turbulent Combustion: Fundamental Insights Towards Predictive Models. J. Phys. Conf. Ser., 165, 65.Google Scholar
Heinz, S. 2020. A Review of Hybrid RANS-LES Methods for Turbulent Flows: Concepts and Applications. Prog. Aerosp. Sci., 114, 100597.CrossRefGoogle Scholar
Heiser, W. H., Pratt, D. T, and Mehta, U. 1994. Hypersonic Airbreathing Propulsion. AIAA Education Series.CrossRefGoogle Scholar
Heltsley, W. N., Snyder, J. A., Houle, A. J., Davidson, D., Mungal, M. G., and Hanson, R. K. 2006. Design and Characterization of the Stanford 6 inch Expansion Tube. In Proc. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. doi:10.2514/6.2006-4443.CrossRefGoogle Scholar
Huang, Z. W., He, G. Q., Qin, F., and Wei, X. G. 2015. Large Eddy Simulation of Flame Structure and Combustion Mode in a Hydrogen Fueled Supersonic Combustor. Int. J. Hydrogen Energy, 40, 9815.CrossRefGoogle Scholar
Ingenito, A., Cecere, D., and Giacomazzi, E. 2013. Large Eddy Simulation of Turbulent Hydrogen-fueled Supersonic Combustion in an Air Cross-Flow. Shock Waves, 12, 481.Google Scholar
Jachimowski, C. J. 1988. An Analytical Study of the Hydrogen–air Reaction Mechanism with Application to Scramjet Combustion. NASA-TP-2791.Google Scholar
Jackson, K., Gruber, M. R., and Barhorst, T. 2009. The HIFiRE Flight 2 Experiment: an Overview and Status Update. In Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. doi:10.2514/6.2009-5029.CrossRefGoogle Scholar
Jeong, J., and Hussain, F. 1995. On the Identification of a Vortex. J. Fluid Mech., 285, 69.CrossRefGoogle Scholar
Jones, W. P., Marquis, A. J., and Wang, F. 2015. Large Eddy Simulation of a Premixed Propane Turbulent Bluff Body Flame using the Eulerian Stochastic Field Method. Fuel, 140, 514.CrossRefGoogle Scholar
Juniper, M., Darabiha, N., and Candel, S. 2003. The Extinction Limits of a Hydrogen Counterflow Diffusion Flame above Liquid Oxygen. Comb. Flame, 135, 87.CrossRefGoogle Scholar
Karl, S. 2011. Numerical Investigation of a Generic Scramjet Configuration. PhD Thesis, University of Dresden.Google Scholar
Karl, S., Hannemann, K., Steelant, J., and Mack, A. 2006. CFD Analysis of the HyShot Supersonic Combustion Flight Experiment Configuration. In Proc. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. doi:10.2514/6.2006-8041.CrossRefGoogle Scholar
Karl, S., Schramm, J. M., Laurence, S., and Hannemann, K. 2011a. CFD Analysis of Unstart Characteristics of the HyShot-II Scramjet Configuration in the HEG Shock Tunnel. In Proc. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. doi:10.2514/6.2011-2309.CrossRefGoogle Scholar
Karl, S., Schramm, J. M., and Hannemann, K. 2011b. Post-Test Analysis of the LAPCAT-II Subscale Scramjet. Pages 26–29 of: HiSST: Int. Conf. on High-Speed Vehicle Science Technology.Google Scholar
Karl, S., Schramm, J. M., and Hannemann, K. 2020. Post-Test Analysis of the LAPCAT-II Subscale Scramjet. CEAS Space J., 12, 385.CrossRefGoogle Scholar
Kawai, S., and Lele, S. K. 2008. Localized Artificial Diffusivity Scheme for Discontinuity Capturing on Curvilinear Meshes. J. Comp. Phys., 227, 9498.CrossRefGoogle Scholar
Kim, W.-W., and Menon, S. 1995. A New Dynamic One Equation Subgrid-scale Model for Large Eddy Simulations. In Proc. 33rd Aerospace Sciences Meeting and Exhibit. doi:10.2514/6.1995-356.CrossRefGoogle Scholar
Koo, H., and Donde, P. Raman, V. 2013. LES-Based Eulerian PDF Approach for the Simulation of Scramjet Combustors. Proc. Comb. Inst., 34, 2093.Google Scholar
Kurgaonov, A., and Tadmor, E. 2000. New High Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations. J. Comp. Phys., 160, 241.Google Scholar
Kurgaonov, A., Noelle, S., and Petrova, G. 2001. Semidiscrete Central Upwind Schemes for Hyperbolic Conservation Laws and Hamilton–Jacobi Equations. SIAM J. Sci. Comp., 23, 707.Google Scholar
Kwon, O. C., and Faeth, G. M. 2001. Flame/Stretch Interactions of Premixed Hydrogen-Fueled Flames: Measurements and Predictions. Comb. Flame, 124, 590.CrossRefGoogle Scholar
Lacaze, G., Vane, Z., and Oefelein, J. C. 2017. Large Eddy Simulation of the HIFiRE Direct Connect Rig Scramjet Combustor. In Proc. 55th AIAA Aerospace Sciences Meeting. doi:10.2514/6.2017-0142.CrossRefGoogle Scholar
Langener, T. Steelant, J., Karl, S., and Hannemann, K. 2012. Design and Optimization of a Small Scale M=8 Scramjet Propulsion System. In Proc. Space Propulsion 2012.Google Scholar
Langener, T., and Steelant, J. 2014. The LAPCAT MR2 Hypersonic Cruiser Concept. 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, 7–12.Google Scholar
Larsson, J., Kawai, S., Bodart, J., and Bermejo-Moreno, I. 2016. Large Eddy Simulation with Modeled Wall-stress: Recent Progress and Future Directions. Mech. Eng. Rev., 3, 1.CrossRefGoogle Scholar
Larsson, J. L., Vicquelin, R., and Bermejo-Moreno, I. 2011. Large Eddy Simulations of the HyShot II Scramjet. Center for Turbulence Research Annual Research Briefs, 63.Google Scholar
Laurence, S. J., Karl, S., Martinez Schramm, J., and Hannemann, K. 2013. Transient Fluid-Combustion Phenomena in a Model Scramjet. J. Fluid Mech., 772, 85.Google Scholar
Layton, W., and Lewandowski, R. 2006. Residual Stress of Approximate Deconvolution Large Eddy Simulation Models of Turbulence. J. Turb., 46, 1.Google Scholar
Magnussen, B. F. 1981. On the Structure of Turbulence and Generalized Eddy Dissipation Concept for Chemical Reactions in Turbulent Flow. 19th AIAA Aerospace Meeting, St. Louis.CrossRefGoogle Scholar
Marinov, N. M., Westbrook, C. K., and Pitz, W. J. 1995. Detailed and Global Chemical Kinetics Model for Hydrogen. 8th Int. Symp. on Transport Properties, San Fransisco, CA, USA.Google Scholar
Menon, S. 2000. Subgrid Combustion Modeling for Large Eddy Simulations. Int. J. Engine Res., 1, 209.CrossRefGoogle Scholar
Menon, S., and Fureby, C. 2010. Computational Combustion. In: Encyclopedia of Aerospace Engineering, Blockley, R., and Shyy, W. (eds). John Wiley and Sons.Google Scholar
Menter, F. R. 1994. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J., 32, 1598.CrossRefGoogle Scholar
Micka, D. J. 2010. Combustion Stabilization, Structure, and Spreading in a Laboratory Dual-Mode Scramjet Combustor. Ph.D. thesis, The University of Michigan.Google Scholar
Micka, D. J., and Driscoll, J. F. 2008a. Dual-Mode Combustion of a Jet in Cross-Flow with Cavity Flame-holder. In Proc. 46th AIAA Aerospace Sciences Meeting & Exhibit. doi.org/10.2514/6.2008-1062.CrossRefGoogle Scholar
Micka, D. J., and Driscoll, J. F. 2008b. Reaction Zone Imaging in a Dual-Mode Scramjet Combustor using CH-PLIF. In Proc. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. doi.org/10.2514/6.2008-5071.CrossRefGoogle Scholar
Micka, D. J., and Driscoll, J. F. 2009. Combustion Characteristics of a Dual-Mode Scramjet Combustor with Cavity Flameholder. Proc. Comb. Inst., 32, 2397.CrossRefGoogle Scholar
Moin, P., Squires, K., Cabot, W., and Lee, S. 1991. A Dynamic Subgrid‐scale Model for Compressible Turbulence and Scalar Transport. Phys. Fluids A, 3, 2746.CrossRefGoogle Scholar
Nicoud, F., and Ducros, F. 1999. Subgrid-scale Stress Modelling based on the Square of the Velocity Gradient Tensor. Flow. Turb. Comb., 62, 183.CrossRefGoogle Scholar
Nilsson, T., and Fureby, C. 2021. LES of H2-air Jet Combustion in High Enthalpy Supersonic Crossflow. Phys. Fluids, 33, 035133.CrossRefGoogle Scholar
Nilsson, T., Yu, R., Doan, N. A. K., Langella, I., Swaminathan, N., and Bai, X. S. 2019. Filtered Reaction Rate Modelling in Moderate and High Karlovitz Number Flames: an a Priori Analysis. Flow Turb. Comb., 103, 643.CrossRefGoogle Scholar
Nordin-Bates, K., Fureby, C., Karl, S., and Hannemann, K. 2017. Understanding Scramjet Combustion using LES of the HyShot II Combustor. Proc. Comb. Inst., 36, 2893.CrossRefGoogle Scholar
Oevermann, M. 2000. Numerical Investigation of Turbulent Hydrogen Combustion in a SCRAMJET using Flamelet Modeling. Aerosp. Sci. Tech., 4, 463.CrossRefGoogle Scholar
Øksendal, B. 2003. Stochastic Differential Equations. Springer.CrossRefGoogle Scholar
Oschwald, M., Guerra, R., and Waidmann, W. 1993. Investigation of the Flowfield of a Scramjet Combustor with Parallel H2-Injection through a Strut by Particle Image Displacement Velocimetry. Page 498 of: Int. Symp. On Special topics in Chem. Prop.CrossRefGoogle Scholar
Philips, G. M., and Taylor, P. J. 1996. Theory and Applications of Numerical Analysis. Academic Press.Google Scholar
Pino Martin, M., Piomelli, U., and Candler, G. V. 2000. Subgrid-Scale Models for Compressible Large-Eddy Simulations. Theoret. Comp. Fluid Dyn., 13, 361.CrossRefGoogle Scholar
Piomelli, U. 2008. Wall-Layer Models for Large-Eddy Simulations. Prog. Aero. Sci., 44, 437.CrossRefGoogle Scholar
Piomelli, U., Ferziger, J., Moin, P., and Kim, J. 1989. New Approximate Boundary Conditions for Large Eddy Simulations of Wall-Bounded Flows. Phys. Fluids A 1, 1061.CrossRefGoogle Scholar
Pitsch, H. 2006. Large-Eddy Simulation of Turbulent Combustion. Annu. Rev. Fluid Mech., 38, 453.CrossRefGoogle Scholar
Potturi, A. S., and Edwards, J. 2012. LES/RANS Simulation of a Supersonic Combustion Experiment. In Proceedings of the 50th AIAA Aerospace Sciences Meeting. https://arc.aiaa.org/doi/10.2514/6.2012-611,CrossRefGoogle Scholar
Potturi, A. S., and Edwards, J. 2013. Investigation of Subgrid Closure Models for Finite-Rate Scramjet Combustion. In Proceedings of the 43rd Fluid Dynamics Conference. https://doi.org/10.2514/6.2013-2461.CrossRefGoogle Scholar
Sabelnikov, V., and Fureby, C. 2013. LES Combustion Modeling for High Re Flames using a Multi-phase Analogy. Comb. Flame, 160, 83.CrossRefGoogle Scholar
Sabelnikov, V. A., and Penzin, V. I. 2001. Scramjet Research and Development in Russia. Page 223 of: Scramjet Propulsion, Curran, E. T., and Murthy, S. N. B. (eds). AIAA Prog. in Astronautics and Aeronautics.CrossRefGoogle Scholar
Sagaut, P. 2001. Large Eddy Simulation for Incompressible Flows. Springer.CrossRefGoogle Scholar
Saghafian, A., Tarrapon, V., and Pitsch, H. 2015a. An Efficient Flamelet-Based Combustion Model for Compressible Flows. Comb. Flame, 162, 652.CrossRefGoogle Scholar
Saghafian, A., Shunn, L., Philips, D., and Ham, F. 2015b. Large Eddy Simulations of the HiFiRE Scramjet using a Compressible Flamelet/Progress Variable Approach. Proc. Comb. Inst., 35, 2163.CrossRefGoogle Scholar
Samuelsen, S., McDonell, V., Greene, M., and Beerer, D. 2006. Correlation of Ignition Delay with Natural Gas and IGCC type Fuels. Technical Report DOE Award Number: DE-FC26-02NT41431; University of California: Irvine.Google Scholar
Schramm, J. M. 2021. Experimental Investigations on Hypersonic Combustion in a Large-scale High Enthalpy Short Duration Facility. Pages 25–26 of: Stratospheric Flying Opportunities for High-Speed Propulsion Concepts. The von Karman Institute.Google Scholar
Schramm, J. M., Karl, S., Hannemann, K, and Streelant, J. 2008. Ground Testing of the HyShot II Scramjet Configuration in HEG. In Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference https://doi.org/10.2514/6.2008-2547.CrossRefGoogle Scholar
Schumann, U. 1975. Subgrid Scale Model for Finite Difference Simulations of Turbulent Flow in Plane Channels and Annuli. J. Comp.Phys., 18, 3765.CrossRefGoogle Scholar
Segal, C. 2009. The Scramjet Engine: Processes and Characteristics. Cambridge University Press.CrossRefGoogle Scholar
Seleznev, R. K. 2018. History of Scramjet Propulsion Development. IOP Conf. Series: J. Physics: Conf. Series, 1009, 012028.Google Scholar
Slack, M., and Grillo, A. 1977. Investigation of Hydrogen-Air Ignition Sensitized by Nitric Oxide and by Nitrogen Oxide. NASA Report CR-2896.Google Scholar
Smagorinsky, J. 1963. General Circulation Experiments with the Primitive Equations. I: The Basic Experiment. Mon. Weather Rev., 91, 99.2.3.CO;2>CrossRefGoogle Scholar
Smart, M. K., Hass, N. E., and Paull, A. 2006. Flight Data Analysis of the HyShot II Flight Experiment. AIAA J., 44, 2366.CrossRefGoogle Scholar
Smooke, M. D., and Giovangigli, V. 1991. Formulation of the Premixed and Nonpremixed Test Problems. Page 1 of: Lecture Notes in Physics: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, Smooke, M. D. (ed). Springer.CrossRefGoogle Scholar
Snyder, A. D., Robertson, J., Zanders, D. L., and Skinner, G. B. 1965. Shock Tube Studies of Fuel-Air Ignition Characteristics. Report AFAPL-TR-65-93-1965.Google Scholar
Spalart, P. R., Jou, W. H., Strelets, M., and Allmaras, S. R. 1997. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. Page 137 of: Advances in DNS/LES, Liu, C. and Liu, Z. (eds). Greyden Press.Google Scholar
Spalding, B. 1961. A Single Formula for the Law of the Wall. Transactions of the ASME J. Appl. Mech., 28, 455.CrossRefGoogle Scholar
Speziale, C. G. 1998. Turbulence Modeling for Time-dependent RANS and VLES: A Review. AIAA J., 36, 173.CrossRefGoogle Scholar
Steelant, J., Varvill, R., Defoort, S., Hanneman, K., and Marini, M. 2015. Achievements Obtained for Sustained Hypersonic Flight within the LAPCAT-II Project. In Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. https://doi.org/10.2514/6.2015-3677.CrossRefGoogle Scholar
Stoltz, S., and Adams, N. A. 2001. The Approximate Deconvolution Model for Large-Eddy Simulations of Compressible Flows and its Application to Shock-Turbulent-Boundary-Layer Interaction. Phys. Fluids, 13, 2985.Google Scholar
Stoltz, S., Adams, N. A., and Kleiser, L. 2001. An Approximate Deconvolution Procedure for Large-Eddy Simulation. Phys. Fluids, 11, 1699.Google Scholar
Storch, A. M., Bynum, M., Liu, J., and Gruber, M. 2011. Combustor Operability and Performance Verification for HIFiRE Flight 2. In Proceedings of 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. https://doi.org/10.2514/6.2011-2249.CrossRefGoogle Scholar
Strang, G. 1968. On Construction and Comparison of Difference Schemes. SIAM J. Num. Anal., 5, 506.CrossRefGoogle Scholar
Sunami, T., Magre, P., Bresson, A., Grisch, F., Orain, M., and Kodera, M. 2005. Experimental Study of Strut Injectors in a Supersonic Combustor using OH-PLIF. In Proceedings of the 13th International Space Planes and Hypersonics Systems and Technologies Conference. https://doi.org/10.2514/6.2005-3304.CrossRefGoogle Scholar
Tanahashi, M., Fujimura, M., and Miyauchi, T. 2000. Coherent Fine Scale Eddies in Turbulent Premixed Flames. Proc. Comb. Inst., 28, 5729.CrossRefGoogle Scholar
Tuttle, S. G., Carter, C. D., and Hsu, K. Y. 2014. Particle Image Velocimetry in a Non-Reacting and Reacting High-Speed Cavity. J. Propul. Power, 30, 576.CrossRefGoogle Scholar
Vicquelin, R., Fiorina, B., Payet, S., Darabiha, N., and Gicquel, O. 2011. Coupling Tabulated Chemistry with Compressible CFD Solvers. Proc. Comb. Inst., 33, 1481.CrossRefGoogle Scholar
Vincent-Radonnier, A., Moule, Y., and Ferrier, M. 2014. Combustion of Hydrogen in Hot Air Flows within LAPCAT-II Dual Mode Ramjet Combustor at Onera-LAERTE Facility – Experimental and Numerical Investigation. In Proceedings of the 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. https://doi.org/10.2514/6.2014-2932.CrossRefGoogle Scholar
Vincent-Randonnier, A., Ristori, A., Sabelnikov, V., Zettervall, N., and Fureby, C. 2018. An Experimental and Computational Study of Hydrogen-Air Combustion in the LAPCAT II Supersonic Combustor. Proc. Comb. Inst., 37, 3703.Google Scholar
Viola, N., Fusaro, R., Saracoglu, B., Schram, C., Grewe, V., Martinez, J., Marini, M., Hernandez, S., Lammers, K., Vincent, A., Hauglustaine, D., Liebhardt, B., Linke, G., and Fureby, C. 2021. Main Challenges and Goals of the H2020 STRATOFLY Project. Aerotecnica Missili and Spazio, 100, 95.CrossRefGoogle Scholar
Waidmann, W., Brummund, U., and Nuding, J. 1995a. Experimental Investigation of Supersonic Ramjet Combustion (SCRAMJET). Page 1473 of: Eighth Int. Symp. on Transp. Phenom. in Comb.Google Scholar
Waidmann, W., Alff, F., Brummund, U., M., Böhm, W., Clauss, and Oschwald, M. 1995b. Supersonic Combustion of Hydrogen/Air in a Scramjet Combustion Chamber. Space Tech., 15, 421.CrossRefGoogle Scholar
Wang, H., You, X., Joshi, A. V., Davis, S. G., Laskin, A., Egolfopoulos, F., and Law, C. K. 2007. USC Mech. Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. Mechanism and additional information is available at https://ignis.usc.edu/USC_Mech_II.htm.Google Scholar
Yanenk, N. N., and Shokin, Y. I. 1969. First Differential Approximation Method and Approximate Viscosity of Difference Schemes. Phys. Fluids, 12, 28.Google Scholar
Zettervall, N., and Fureby, C. 2018. A Computational Study of Ramjet, Scramjet and Dual-mode Ramjet Combustion in Combustor with a Cavity Flameholder. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2018-1146.CrossRefGoogle Scholar
Zhouqin, F., Mingbo, S., and Weidong, L. 2010. Flamelet/Progress-Variable Model for Large Eddy Simulation of Supersonic Reacting Flow. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA Paper 2010–6878.Google Scholar

References

Abdallah, J., and Clark, R. E. 1985. TOPS: A Multigroup Opacity Code. Technical report LA–10454. Los Alamos National Laboratory, Los Alamos, USA.Google Scholar
Abu-Shawareb, H., Acree, R., Adams, P., Adams, J., Addis, B., Aden, R., Adrian, P., Afeyan, B. B., Aggleton, M., and et al., Aghaian. 2022. Lawson criterion for ignition exceeded in an inertial fusion experiment. Physical Review Letters, 129(Aug), 075001.CrossRefGoogle Scholar
Amendt, Peter. 2021. Entropy generation from hydrodynamic mixing in inertial confinement fusion indirect-drive targets. Physics of Plasmas, 28(7), 072701.CrossRefGoogle Scholar
ASME. 2009. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer – ASME V&V 20–2009. ASME.Google Scholar
Blue, B. E., Robey, H. F., Glendinning, S. G., and et al. 2005. Three-dimensional hydrodynamic experiments on the national ignition facility. Physics of Plasmas, 12(5), 056313.CrossRefGoogle Scholar
Brachet, M. E., Meiron, D. I., Orzag, S. A., Nickel, B. G., Morf, R. H., and Frisch, U. 1983. Small scale structure of the Taylor-Green vortex. Journal of Fluid Mechanics, 130, 411–452.CrossRefGoogle Scholar
Brown, L. S., Preston, D. L., and Singleton, R. 2005. Charged particle motion in a highly ionized plasma. Physics Reports, 410(4), 237–333.CrossRefGoogle Scholar
Cheng, B., Kwan, T. J. T., Wang, Y. M., Yi, S. A., Batha, S. H., and Wysocki, F. J. 2016. Effects of preheat and mix on the fuel adiabat of an imploding capsule. Physics of Plasmas, 23(12), 120702.CrossRefGoogle Scholar
Chiravalle, V. 2022. Verification and validation of two hydrodynamic methods for HEDP simulations. https://doi.org/10.1155/2022/8720064.CrossRefGoogle Scholar
Clark, D. S., Haan, S. W., Cook, A. W., Edwards, M. J., Hammel, B. A., Koning, J. M., and Marinak, M. M. 2011. Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs. Physics of Plasmas, 18(8), 082701.CrossRefGoogle Scholar
Clark, D. S., Weber, C. R., Milovich, J. L., Salmonson, J. D., Kritcher, A. L., Haan, S. W., Hammel, B. A., Hinkel, D. E., Hurricane, O. A., Jones, O. S., Marinak, M. M., Patel, P. K., Robey, H. F., Sepke, S. M., and Edwards, M. J. 2016. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility. Physics of Plasmas, 23(5), 056302.CrossRefGoogle Scholar
Clark, D. S., Weber, C. R., Milovich, J. L., Pak, A. E., Casey, D. T., Hammel, B. A., Ho, D. D., Jones, O. S., Koning, J. M., Kritcher, A. L., Marinak, M. M., Masse, L. P., Munro, D. H., Patel, M. V., Patel, P. K., Robey, H. F., Schroeder, C. R., Sepke, S. M., and Edwards, M. J. 2019. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Physics of Plasmas, 26(050601).CrossRefGoogle Scholar
Colella, P. 1985. A direct Eulerian MUSCL scheme for gas dynamics. SIAM Journal on Scientific and Statistical Computing, 6(1), 104–117.CrossRefGoogle Scholar
Colella, P., and Woodward, P. R. 1984. The piecewise parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics, 54(1), 174–201.CrossRefGoogle Scholar
Colgan, J., Kilcrease, D. P., Magee, N. H., and et al. 2016. A new generation of Los Alamos opacity tables. Astrophysical Journal, 817(2), 116.CrossRefGoogle Scholar
Davidovits, S., Weber, C. R., and Clark, D. S. 2022. Modeling ablator grain structure impacts in ICF implosions. Physics of Plasmas, 29(11), 112708.CrossRefGoogle Scholar
Dimotakis, P. E. 2000. The mixing transition in turbulent flows. Journal of Fluid Mechanics, 409, 69–98.CrossRefGoogle Scholar
Dolence, J. C., and Masser, T. 2017 (18–22 September). A new directionally unsplit option for hydrodynamics in the Eulerian AMR code xRage. In: International Conference on Numerical Methods for Multi-Material Fluid Flows (MultiMat).Google Scholar
Drikakis, D., Fureby, C., Grinstein, F. F., and Youngs, D. 2007. Simulation of transition and turbulence decay in the Taylor-Green vortex. Journal of Turbulence, 8(20).CrossRefGoogle Scholar
Eça, L., and Hoekstra, M. 2014. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. Journal of Computational Physics, 262, 104–130.CrossRefGoogle Scholar
Fatenejad, M., Fryxell, B., Wohlbier, J., and et al. 2013. Collaborative comparison of simulation codes for high-energy-density physics applications. Astrophysical Journal, 9(1), 63–66.Google Scholar
Foster, J. M., Rosen, P. A., Wilde, B. H., Hartigan, P., and Perry, T. S. 2010. Mach reflection in a warm dense plasma. Physics of Plasmas, 17(11), 056313.CrossRefGoogle Scholar
Fryxell, B., Olson, K., Ricker, P., and et al. 2000. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophysical Journal – Supplement Series, 131(1), 273–334.CrossRefGoogle Scholar
George, W. K., and Davidson, L. 2004. Role of initial conditions in establishing asymptotic flow behavior. AIAA Journal, 42(3), 438–446.CrossRefGoogle Scholar
Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N., Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, W. R., Ranta, D., and Stefan, R. 2008. The RAGE radiation-hydrodynamic code. Computational Science & Discovery, 1(1), 015005.CrossRefGoogle Scholar
Grinstein, F. F. 1995. Self-induced vortex ring dynamics in subsonic rectangular jets. Physics of Fluids, 7(10), 2519–2521.CrossRefGoogle Scholar
Grinstein, F. F. 2017. Initial conditions and modeling for simulations of shock driven turbulent material mixing. Computers and Fluids, 151, 58–72.CrossRefGoogle Scholar
Grinstein, F. F. 2001. Vortex dynamics and entrainment in rectangular free jets. Journal of Fluid Mechanics, 437, 69–101.CrossRefGoogle Scholar
Grinstein, F. F., Saenz, J. A., Dolence, J. C., Masser, T. O., Rauenzahn, R. M., and Francois, M. M. 2019. Effects of operator splitting and low Mach-number correction in turbulent mixing transition simulations. Computers and Mathematics with Applications, 78(2), 437–458.CrossRefGoogle Scholar
Grinstein, F. F., Saenz, J. A., and Germano, M. 2021. Coarse grained simulations of shock-driven turbulent material mixing. Physics of Fluids, 33(035131).CrossRefGoogle Scholar
Grinstein, F. F., Pereira, F. S., and Rider, W. J. 2023. Numerical approximations formulated as LES models. Chap. 10 of: Numerical Methods in Turbulence Simulations, Moser, R. (ed). Elsevier.Google Scholar
Haan, S. W., Lindl, J. D., Callahan, D. A., et al. 2011. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Physics of Plasmas, 18(051001).CrossRefGoogle Scholar
Hahn, M., Drikakis, D., Youngs, D. L., and Williams, R. J. R. 2011. Richtmyer–Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow. Physics of Fluids, 23, 046101.CrossRefGoogle Scholar
Haines, B. M., Vold, E. L., Molvig, K., Aldrich, C., and Rauenzahn, R. 2014a. The effects of plasma diffusion and viscosity on turbulent instability growth. Physics of Plasmas, 21, 092306.CrossRefGoogle Scholar
Haines, B. M., Clark, D. S., Weber, C. R., Edwards, M. J., Batha, S. H., and Kline, J. L. 2020a. Cross-code comparison of the impact of the fill tube on high yield implosions on the National Ignition Facility. Physics of Plasmas, 27(8).CrossRefGoogle Scholar
Haines, B. M., Shah, R. C., and Smidt, J. M. 2020b. The rate of development of atomic mixing and temperature equilibration in inertial confinement fusion implosions. Physics of Plasmas, 27(10).CrossRefGoogle Scholar
Haines, B. M. 2015. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions. Physics of Plasmas, 22(8).CrossRefGoogle Scholar
Haines, B. M., Grinstein, F. F., Welser-Sherrill, L., Fincke, J. R., and Doss, F. W. 2013. Simulation ensemble for a laser-driven shear experiment. Physics of Plasmas, 20(9), 092301.Google Scholar
Haines, B. M., Grinstein, F. F., and Fincke, J. R. 2014b. Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance. Physical Review E, 89(5).CrossRefGoogle ScholarPubMed
Haines, B. M., Grim, G. P., Fincke, J. R., Shah, R. C., Forrest, C. J., Silverstein, K., Marshall, F. J., Boswell, M., Fowler, M. M., Gore, R. A., Hayes-Sterbenz, A. C., Jungman, G., Klein, A., Rundberg, R. S., Steinkamp, M. J., and Wilhelmy, J. B. 2016. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants ICF experiments. Physics of Plasmas, 23(072709).CrossRefGoogle Scholar
Haines, Brian M., Yi, S. A., Olson, R. E., Khan, S. F., Kyrala, G. A., Zylstra, A. B., Bradley, P. A., Peterson, R. R., Kline, J. L., Leeper, R. J., and Shah, R. C. 2017a. The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules. Physics of Plasmas, 24(7), 072709.Google Scholar
Haines, Brian M., Aldrich, C. H., Campbell, J. M., Rauenzahn, R. M., and Wingate, C. A. 2017b. High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions. Physics of Plasmas, 24(5), 052701.Google Scholar
Haines, Brian M., Olson, R. E., Sweet, W., Yi, S. A., Zylstra, A. B., Bradley, P. A., Elsner, F., Huang, H., Jimenez, R., Kline, J. L., Kong, C., Kyrala, G. A., Leeper, R. J., Paguio, R., Pajoom, S., Peterson, R. R., Ratledge, M., and Rice, N. 2019. Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions. Physics of Plasmas, 26(1), 012707.CrossRefGoogle Scholar
Haines, Brian M., Shah, R. C., Smidt, J. M., Albright, B. J., Cardenas, T., Douglas, M. R., Forrest, C., Glebov, V. Yu, Gunderson, M. A., Hamilton, C. E., Henderson, K. C., Kim, Y., Lee, M. N., Murphy, T. J., Oertel, J. A., Olson, R. E., Patterson, B. M., Randolph, R. B., and Schmidt, D. W. 2020c. Observation of persistent species temperature separation in inertial confinement fusion mixtures. Nature Communications, 11, 544.Google Scholar
Haines, Brian M., Keller, D. E., Long, K. P., McKay, M. D., Medin, Z. J., Park, H., Rauenzahn, R. M., Scott, H. A., Anderson, K. S., Collins, T. J. B., Green, L. M., Marozas, J. A., McKenty, P. W., Peterson, J. H., Vold, E. L., Di Stefano, C., Lester, R. S., Sauppe, J. P., Stark, D. J., and Velechovsky, J. 2022a. The development of a high-resolution Eulerian radiation-hydrodynamics simulation capability for laser-driven Hohlraums. Physics of Plasmas, 29(8), 083901.CrossRefGoogle Scholar
Haines, Brian M., Sauppe, J. P., Albright, B. J., Daughton, W. S., Finnegan, S. M., Kline, J. L., and Smidt, J. M. 2022b. A mechanism for reduced compression in indirectly driven layered capsule implosions. Physics of Plasmas, 29(4), 042704.CrossRefGoogle Scholar
Hammel, B. A., Haan, S. W., Clark, D. S., Edwards, M. J., Langer, S. H., Marinak, M. M., Patel, M. V., Salmonson, J. D., and Scott, H. A. 2010. High-mode Rayleigh–Taylor growth in NIF ignition capsules. High Energy Density Physics, 6(2), 171–178.CrossRefGoogle Scholar
Harten, A., Lax, P. D., and van Leer, B. 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1), 35–61.CrossRefGoogle Scholar
Hussain, A. K. M. F., and Husain, H. S. 1989. Elliptic jets. Part I. Characteristics of unexcited and excited jets. Journal of Fluid Mechanics, 208, 257–320.CrossRefGoogle Scholar
Jeong, J., and Hussain, F. 1995. On the identification of a vortex. Journal of Fluid Mechanics, 285, 69–94.CrossRefGoogle Scholar
Lee, Y. T., and More, R. M. 1984. An electron conductivity model for dense plasmas. Physics of Fluids, 27(5), 1273–1286.Google Scholar
LePape, S., Hopkins, L. F. Berzak, Divol, L., Pak, A., Dewald, E. L., Bhandarkar, S., Bennedetti, L. R., Bunn, T., Biener, J., Crippen, J., Casey, D., Edgell, D., Fittinghoff, D. N., Gatu-Johnson, M., Goyon, C., Haanl, S., Hatarik, R., Havre, M., Ho, D. D.-M., Izum, N., Jaquez, J., Khan, S. F., Kyrala, G. A., Ma, T., Mackinnon, A. J., MacPhee, A. G., MacGowan, B. J., Meezan, N. B., Milovich, J., Millot, M., Michel1, P., Nagel1, S. R., Nikroo, A., Patel, P., Ralph, J., Ross1, J. S., Rice, N. G., Strozzi, D., Stadermann, M., Volegov, P., Yeamans, C., Weber, C., Wild, C., Callahan, D., and Hurricane, O. A. 2018. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Physical Review Letters, 120(24), 245003.Google Scholar
Leweke, T., Le, Dizés, S., and Williamson, C. H. K. 2016. Dynamics and instabilities of vortex pairs. Annual Review of Fluid Mechanics, 48(1), 507–541.CrossRefGoogle Scholar
Lindl, John. 1995. Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Physics of Plasmas, 2(11), 3933–4024.CrossRefGoogle Scholar
Lyon, S. P., and Johnson, J. D. 1992. SESAME: The Los Alamos National Laboratory Equation of State Database. Technical Report LA-UR-92-3407. Los Alamos National Laboratory, Los Alamos, USA.Google Scholar
McClarren, R. G., and Wohlbier, J. G. 2011. Solutions for ion-electron–radiation coupling with radiation and electron diffusion. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(1), 119–130.CrossRefGoogle Scholar
McNally, J. R., Rothe, K. E., and Sharp, R. D. 1979. Fusion Re-activity Graphs and Tables for Charged Particle Reactions. Technical Report. Oak Ridge National Laboratory, Oak Ridge, TN, USA.CrossRefGoogle Scholar
Mihalas, D., and Mihalas, B. W. 2013. Foundations of Radiation Hydrodynamics. Courier Corporation.Google Scholar
Mikaelian, K. 1993. Effect of viscosity on Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Physical Review E, 47(1), 375–383.CrossRefGoogle ScholarPubMed
Miller, S. C., and Goncharov, V. N. 2022. Instability seeding mechanisms due to internal defects in inertial confinement fusion targets. Physics of Plasmas, 29(8), 082701.CrossRefGoogle Scholar
Molvig, K., Simakov, A. N., and Vold, E. L. 2014. Classical transport equations for burning gas–metal plasmas. Physics of Plasmas, 21(092709).CrossRefGoogle Scholar
Nuckolls, J., Wood, J., Thiessen, A., and Zimmerman, G. 1972. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139–142.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., Rauenzahn, R., and Girimaji, S. S. 2021. Modeling and simulation of transitional Rayleigh–Taylor flow with partially-averaged Navier–Stokes equations. Physics of Fluids, 33, 115118.CrossRefGoogle Scholar
Pickworth, L. A., Hammel, B. A., Smalyuk, V. A., Robey, H. F., Benedetti, L. R., Hopkins, L. Berzak, Bradley, D. K., Field, J. E., Haan, S. W., Hatarik, R., Hartouni, E., Izumi, N., Johnson, S., Khan, S., Lahmann, B., Landen, O. L., LePape, S., MacPhee, A. G., Meezan, N. B., Milovich, J., Nagel, S. R., Nikroo, A., Pak, A. E., Petrasso, R., Remington, B. A., Rice, N. G., Springer, P. T., Stadermann, M., Widmann, K., and Hsing, W. 2018. Visualizing deceleration-phase instabilities in inertial confinement fusion implosions using an “enhanced self-emission” technique at the National Ignition Facility. Physics of Plasmas, 25(5), 054502.Google Scholar
Pradeep, D. S., and Hussain, F. 2001. Core dynamics of a strained vortex: instability and transition. Journal of Fluid Mechanics, 447, 247–285.CrossRefGoogle Scholar
Rasmus, A. M., Stefano, C. A. Di, Flippo, K. A., and et al. 2019. Shock-driven hydrodynamic instability of a sinusoidally perturbed high-Atwood number oblique interface. Physics of Plasmas, 26(6), 062103.CrossRefGoogle Scholar
Ristorcelli, J. R., Gowardhan, A. A., and Grinstein, F. F. 2013. Two classes of Richtmyer–Meshkov instabilities: A detailed statistical look. Physics of Fluids, 25(044106).CrossRefGoogle Scholar
Robey, H. F., Boehly, T. R., Celliers, P. M., Eggert, J. H., Hicks, D., Smith, R. F., Collins, R., Bowers, M. W., Krauter, K. G., Datte, P. S., Munro, D. H., Milovich, J. L., Jones, O. S., Michel, P. A., Thomas, C. A., Olson, R. E., Pollaine, S., Town, R. P. J., Haan, S., Callahan, D., Clark, D., Edwards, J., Kline, J. L., Dixit, S., Schneider, M. B., Dewald, E. L., Widmann, K., Moody, J. D., Döppner, T., Radousky, H. B., Throop, A., Kalantar, D., DiNicola, P., Nikroo, A., Kroll, J. J., Hamza, A. V., Horner, J. B., Bhandarkar, S. D., Dzenitis, E., Alger, E., Giraldez, E., Castro, C., Moreno, K., Haynam, C., LaFortune, K. N., Widmayer, C., Shaw, M., Jancaitis, K., Parham, T., Holunga, D. M., Walters, C. F., Haid, B., Mapoles, E. R., Sater, J., Gibson, C. R., Malsbury, T., Fair, J., Trummer, D., Coffee, K. R., Burr, B., Berzins, L. V., Choate, C., Brereton, S. J., Azevedo, S., Chandrasekaran, H., Eder, D. C., Masters, N. D., Fisher, A. C., Sterne, P. A., Young, B. K., Landen, O. L., Van Wonterghem, B. M., MacGowan, B. J., Atherton, J., Lindl, J. D., Meyerhofer, D. D., and Moses, E. 2012. Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation. Physics of Plasmas, 19(4), 042706.CrossRefGoogle Scholar
Robey, H. F., MacGowan, B. J., Landen, O. L., LaFortune, K. N., Widmayer, C., Celliers, P. M., Moody, J. D., Ross, J. S., Ralph, J., LePape, S., Berzak Hopkins, L. F., Spears, B. K., Haan, S. W., Clark, D., Lindl, J. D., and Edwards, M. J. 2013. The effect of laser pulse shape variations on the adiabat of NIF capsule implosions. Physics of Plasmas, 20(5), 052707.CrossRefGoogle Scholar
Sauppe, J. P., Haines, B. M., Palaniyappan, S., et al. 2019. Modeling of direct-drive cylindrical implosion experiments with an Eulerian radiation-hydrodynamics code. Physics of Plasmas, 26(4), 042701.CrossRefGoogle Scholar
Sauppe, J. P., Palaniyappan, S., Tobias, B. J., and et al. 2020. Demonstration of scale-invariant Rayleigh–Taylor instability growth in laser-driven cylindrical implosion experiments. Physical Review Letters, 124(18), 185003.CrossRefGoogle ScholarPubMed
Toro, E. F., Spruce, M., and Speares, W. 1994. Restoration of the Contact Surface in the HLL-Riemann Solver. Shock Waves, 4(1), 25–34.CrossRefGoogle Scholar
Vold, E. L., Rauenzahn, R. M., Aldrich, C. H., Molvig, K., Simakov, A. N., and Haines, B. M. 2017. Plasma transport in an Eulerian AMR code. Physics of Plasmas, 24(042702).CrossRefGoogle Scholar
Weber, C. R., Clark, D. S., Cook, A. W., Busby, L. E., and Robey, H. F. 2014. Inhibition of Turbulence in Inertial-Confinement-Fusion Hot Spots by Viscous Dissipation. Physical Review E, 89, 053106.CrossRefGoogle ScholarPubMed
Weber, C. R., Clark, D. S., Pak, A., Alfonso, N., Bachmann, B., Berzak Hopkins, L. F., Bunn, T., Crippen, J., Divol, L., Dittrich, T., Kritcher, A. L., Landen, O. L., Le Pape, S., MacPhee, A. G., Marley, E., Masse, L. P., Milovich, J. L., Nikroo, A., Patel, P. K., Pickworth, L. A., Rice, N., Smalyuk, V. A., and Stadermann, M. 2020. Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube. Physics of Plasmas, 27(3), 032703.CrossRefGoogle Scholar
Yao, J., and Hussain, F. 2022. Vortex reconnection and turbulence cascade. Annual Review of Fluid Mechanics, 54, 317–347.CrossRefGoogle Scholar
Zhou, Y. 2007. Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations. Physics of Plasmas, 14(082701).CrossRefGoogle Scholar
Zhou, Y. 2017a. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Physics Reports, 720-722, 1–136.Google Scholar
Zhou, Y. 2017b. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Physics Reports, 723-725, 1–160.Google Scholar

References

Andrejczuk, M., Grabowski, W., Reisner, J., and Gadian, A. 2010. Cloud-aerosol interactions for boundary-layer stratocumulus in the Lagrangian Cloud Model. Journal of Geophysical Research, 115, doi:10.1029/2007JD009445.CrossRefGoogle Scholar
Brown, A. L., Mendoza, H., Koo, E., and Reisner, J. 2019. A high flux forest fire scenario for assessing relative model accuracy for CFD tools. In WSSCI Fall Technical Meeting October 14–15, Albuquerque, NM. www.osti.gov/servlets/purl/1642799.Google Scholar
Cappucci, M. 2018. California’s Carr fire spawned a true fire tornado. www.snexplores.org/article/californias-carr-fire-spawned-true-fire-tornado.Google Scholar
Coen, J. L., Cameron, M., Michalekes, J., Patton, E. G., Riggan, P. J., and Yedinak, K. M. 2013. WRF-fire: Coupled weather–wildland fire modeling with the weather research and forecasting model. Journal of Applied Meteorology and Climatology, 52, 16–38.CrossRefGoogle Scholar
Georgiou, G. K., Christoudia, T., Proestos, Y., Kushta, J., Pikridas, M., Scaire, J., Savvides, C., and Lelieveld, J. 2022. Evaluation of WRF-Chem model (v3.9.1.1) real-time air quality forecasts over the Eastern Mediterranean. Geoscientific Model Development, 15, 4129–4146.Google Scholar
Hammer, J. 2011. The great Japan earthquake of 1923. Smithsonian Magazine,Google Scholar
Jeffery, C. A., and Reisner, J. M. 2006. A study of cloud mixing and evolution using PDF methods. 1. Cloud front propagation and evaporation. Journal of Atmospheric Science, 63, 2848–2864.CrossRefGoogle Scholar
Lareau, N. P., Nauslar, N. J, and Abatzoglou, J. T. 2018. The Carr fire vortex: A case of pyrotornadogenesis? Geophysical Research Letters, 45(23), 13:107–13:115. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL080667.CrossRefGoogle Scholar
Linn, R. R., Reisner, J. M., Colman, J., and Winterkamp, J. L. 2002. Studying wildfire behaviour using FIRETEC. International Journal of Wildland Fire, 11, 233–246.CrossRefGoogle Scholar
Linn, R. R, Goodrock, S. L., Brambilla, S., Brown, M. J., Middleton, R. S., O’Brien, J. J., and Hiers, J. K. 2020. QUIC-fire: A fast running simulation tool for prescribed fire planning. Environmental Modeling and Software, 125, 104616.CrossRefGoogle Scholar
McGrattan, K., and Floyd, J. 2021. Current and future parameters used by FDS. In ASTM Symposium on Obtaining Data for Fire Growth Models. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933774.Google Scholar
McIntosh, L. A. 1987. Select Bibliography on Nuclear Winter. https://apps.dtic.mil/sti/citations/ADA180834.Google Scholar
Oyama, M., and Oochi, Y. 2011. Latest scientific view on local fallout and black rain. Hiroshima city, Japan. www.hisof.jp/01publication/0102contents.pdf.Google Scholar
Pernin, P. 1971. The great Peshtigo fire: An eyewitness account. The Wisconsin Magazine of History, 54(4), 246–272.Google Scholar
Ramani, R., Reisner, J., and Shkoller, S. 2019. A space-time smooth artificial viscosity method with wavelet noise indicator and shock collision scheme, Part 2: The 2-D case. Journal of Computational Physics, 387, 45–80.Google Scholar
Reisner, J. 2016. Cloud modeling: An example of why small scale details matter for accurate prediction. Pages 134–167 of: Coarse Grained Simulation and Turbulent Mixing, Grinstein, F. F. (ed). Cambridge University Press.Google Scholar
Reisner, J., Bruintjes, R. T., and Rasmussen, R. 1998. An examination on the utility of forecasting supercooled liquid water in a mesoscale model. Quarterly Journal of the Royal Meteorological Society, 124, 1071–1107.CrossRefGoogle Scholar
Reisner, J., Angelo, G. D., Koo, E., Even, W., Hecht, M., Hunke, E., Comeau, D., Bos, R., and Cooley, J. 2018. Climate impact of a regional nuclear weapons exchange: An improved assessment based on detailed source calculations. Journal of Geophysical Research: Atmospheres, 123, 2752–2772.Google Scholar
Reisner, J., Koo, E., Hunke, E., and Dubey, M. 2019. Reply to comment by Robock et al. on “Climate impact of a regional nuclear weapon exchange: An improved assessment based on detailed source calculations”. Journal of Geophysical Research: Atmospheres, 124, (12), 959–962.Google Scholar
Reisner, J. M., Josephson, A. J., Gorkowski, K. J., Koo, E., Thompson, D. K., Schroeder, D., and Dubey, M. K. 2023. Informed multi-scale approach applied to the British Columbia fires of late summer 2017. Journal of Geophysical Research: Atmospheres, 128, e2022JD037238.Google Scholar
Rothermel, R. C. 1972. A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-115, 1–40.Google Scholar
Salmon, F., Lacanette, D., Mindeguia, J.-C., and Sirieix, C. 2018. FIREFOAM simulation of a localized fire in a gallery. Journal of Physics: Conference Series, 1107, 042017.Google Scholar
Schar, C., and Smolarkiewicz, P. K. 1996. A synchronous and iterative flux-correction formulism for coupled transport equations. Journal of Computational Physics, 128, 101–120.CrossRefGoogle Scholar
Sutou, S. 2020. Black rain in Hiroshima: a critique to the Life Span Study of A-bomb survivors, basis of the linear no-threshold model. Genes and Environment, 42.CrossRefGoogle Scholar
Tiezen, S. R., O’Hern, T. J., Weckman, E. J., and Schefer, R. W. 2004. Experimental study of the effect of fuel mass flux on a 1-m diameter methane fire and comparison with a hydrogen fire. Combustion and Flame, 139, 126–141.Google Scholar
United States Strategic Bombing Survey. 1946. The United States bombing survey: The effects of the atomic bomb on Hiroshima and Nagasaki. www.trumanlibrary.gov/library/research-files/united-states-strategic-bombing-survey-effects-atomic-bombs-hiroshima-and?documentid=NA&pagenumber=1.Google Scholar
Vaillant, J. 2023. The world’s first wildfire tornado blazed a path of destruction through Australia. Smithsonian Magazine.Google Scholar
Veregin, H. 1993. The role of uncertainty in nuclear winter modeling. Global Environmental Change, 3, 228–255.CrossRefGoogle Scholar
Anderson, J. D. 1998. A History of Aerodynamics. Cambridge University Press.Google Scholar
Balachandar, S. 2024. Fundamentals of Dispersed Multiphase Flows. Cambridge University Press.CrossRefGoogle Scholar
Celik, I., Klein, M., Freitag, M., and Janicka, J. 2006. Assessment Measures for URANS/DES/LES: An Overview with Applications. J. Turbul., 7, N48.CrossRefGoogle Scholar
Frisch, U. 1995. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Fureby, C. 2009. LES Modeling of Combustion for Propulsion Applications. Phil. Trans. R. Soc. A, 367, 2957–2969.CrossRefGoogle ScholarPubMed
Fureby, C., and Tabor, G. 1997. Mathematical and Physical Constraints On Large–Eddy Simulations. Theor. Comput. Fluid Dyn., 9, 85–102.CrossRefGoogle Scholar
George, W. K., and Davidson, L. 2004. Role of Initial Conditions in Establishing Asymptotic Flow Behavior. AIAA J., 42, 438–446.CrossRefGoogle Scholar
Germano, M. 2007. A Direct Relation between the Filtered Subgrid Stress and the Second Order Structure Function. Phys. Fluids, 19, 038102/2.CrossRefGoogle Scholar
Grinstein, F. F. 2016. Coarse Grained Simulation and Turbulent Mixing. Cambridge University Press.CrossRefGoogle Scholar
Kokkinakis, I.W., and Drikakis, D. 2015. Implicit Large Eddy Simulation ofWeakly Compressible Turbulent Channel Flow. Comput. Methods. Appl. Mech. Eng., 287, 229–261.CrossRefGoogle Scholar
Leonard, A. 1975. Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows. Adv. in Geophysics, 18A, 237–248.CrossRefGoogle Scholar
Lesieur, M. 2008. Turbulence in Fluids. Springer.CrossRefGoogle Scholar
Moore, W. C., and Balachandar, S. 2019. Lagrangian Investigation of Pseudo-Turbulence in Multiphase Flow Using Superposable Wakes. Phys. Rev. Fluids, 4, 114301.CrossRefGoogle Scholar
Moser, R. D., Haering, S. W., and Yalla, G. R. 2021. Statistical Properties of Subgrid-Scale Turbulence Models. Annu. Rev. Fluid Mech., 53, 255–286.CrossRefGoogle Scholar
Parish, E. J., and Duraisamy, K. 2017. Non-Markovian Closure Models for Large Eddy Simulations Using the Mori–Zwanzig Formalism. Phys. Rev. Fluids, 2, 014604.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., and Eça, L. 2022. Verification and Validation: The Path to Predictive Scale-Resolving Simulations of Turbulence. ASME J. Verification, Validation, andUncertainty Quantification, 7(2), 021003.Google Scholar
Pope, S. B. 1990 (July). Computations of Turbulent Combustion: Progress and Challenges. In: Twenty Third Symposium (International) on Combustion.CrossRefGoogle Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
Reisner, J. M., Josephson, A. J., Gorkowski, K. J., Koo, E., Thompson, D. K., Schroeder, D., and Dubey, M. K. 2023. Informed Multi-Scale Approach Applied to the British Columbia Fires of Late Summer 2017. J. Geophys. Res. Atmospheres, 128, e2022JD037238.CrossRefGoogle Scholar
Richardson, L. F. 1927. The Deferred Approach to the Limit. Trans. R. Soc. London Ser., A226, 229–361.Google Scholar
Roache, P. J. 1997. Quantification of Uncertainty in Computational Fluid Dynamics. Annu. Rev. Fluid Mech., 29, 123–160.CrossRefGoogle Scholar
Sagaut, P., Deck, S., and Terracol, M. 2006. Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press.CrossRefGoogle Scholar
Tsinober, A. 2014. The Essence of Turbulence as a Physical Phenomenon. Springer.CrossRefGoogle Scholar
Vassilicos, J. C. 2015. Dissipation in Turbulent Flows. Annu. Rev. Fluid Mech., 47, 95–114.CrossRefGoogle Scholar
Warming, R. F., and Hyett, B. J. 1974. The Modified Equation Approach and the Stability and Accuracy Analysis of Finite-Difference Methods. J. Comp. Phys., 14, 159–179.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×