Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-04T04:12:07.206Z Has data issue: false hasContentIssue false

2 - Biomass

Published online by Cambridge University Press:  24 January 2025

Sven Gjedde Sommer
Affiliation:
Aarhus Universitet, Denmark
Morten Lykkegaard Christensen
Affiliation:
Aalborg University, Denmark
Birgir Norddahl
Affiliation:
University of Southern Denmark
Morten Ambye-Jensen
Affiliation:
Aarhus Universitet, Denmark
Maria Cinta Roda-Serrat
Affiliation:
University of Southern Denmark
Get access

Summary

For all uses of biomass, it is of paramount importance that we not only have information about biomass availability and its usefulness for bioprocessing for making any kind of commodity or chemicals, but that we are also aware that the use of biomass for bioprocessing often competes with a growing need for food. This chapter gives an overview of the global need for food, the potential of biomass production, and an introduction to the carbon cycle. The reader is introduced to production and collection of biomasses from land use, biomass of the future from the ocean, and biomass by separation of organic waste. Usefulness and ease of using biomass are related to composition; therefore, methods to analyze biomass composition and quality are presented.

Type
Chapter
Information
Bioprocesses
A Comprehensive Guide to Sustainable Resources in the Non-Fossil Era
, pp. 8 - 81
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BP. (2019). BP Statistical Review of World Energy, 68th ed. Available at www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (last accessed October 2019).Google Scholar
Krausmann, F., Lauk, C., Haas, W., and Wiedenhofer, D. (2018). From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015. Global Environmental Change: Human and Policy Dimension 52, 131140. doi: 10.1016/j.gloenvcha.2018.07.003.CrossRefGoogle ScholarPubMed
Krausmann, F., Erb, K. H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., et al. (2013). Global human appropriation of net primary production doubled in the 20th century. PNAS 110, 1032410329.CrossRefGoogle ScholarPubMed
Cramer, W., Bondau, A. F., Woodward, F., Printice, I. C., Betts, R. A., Brovkin, R., et al. (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology 7, 357373.CrossRefGoogle Scholar
Thomsen, S. T., Kadar, Z., and Schmidt, J. E. (2014). Compositional analysis and projected biofuel potentials from common West African agricultural residues. Biomass & Bioenergy 63, 210217. doi: 10.1016/j.biombioe.2014.01.045.CrossRefGoogle Scholar
Bernal, P. M., Sommer, S. G., Chadwick, D., Qing, C., Guoxue, L., and Michel, F. C. Jr. (2017). Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Advances in Agronomy 144, 143233.CrossRefGoogle Scholar
Nkoa, R. (2014). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agronomy for Sustainable Development 34, 473492. doi: 10.1007/s13593-013-0196-z.CrossRefGoogle Scholar
Bar-On, Y. M., Phillips, R., and Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America 115, 65066511. doi: 10.1073/pnas.1711842115.CrossRefGoogle ScholarPubMed
Roser, M., Ritchie, H., and Ortiz-Ospina, E. (2013). World Population Growth. Published online at OurWorldInData.org. Available at https://ourworldindata.org/world-population-growth (last accessed July 7, 2020).Google Scholar
United Nations. (2019a). The World at Six Billion. Available at www.un.org/esa/population/publications/sixbillion/sixbilpart1.pdf (last accessed August 28, 2019).Google Scholar
United Nations. (2019b). World Population Prospects 2019. Available at https://population.un.org/wpp/ (last accessed August 18, 2019).Google Scholar
Ryu, Y., Berry, J. A., and Baldocchi, D. D. (2019). What is global photosynthesis? History, uncertainties and opportunities. Remote Sensing of Environment 223, 95114. doi: 10.1016/j.rse.2019.01.016.CrossRefGoogle Scholar
Zhu, X.-G., Long, S. P., and Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology 61, 235261. doi: 10.1146/annurev-arplant-042809-112206.CrossRefGoogle ScholarPubMed
Liu, L., Guan, L., and Liu, X. (2017). Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence. Agricultural and Forest Meteorology 232, 19. doi: 10.1016/j.agrformet.2016.06.014.CrossRefGoogle Scholar
Hay, R., and Porter, J. (2006). The Physiology of Crop Yield, 2nd ed. Oxford: Blackwell.Google Scholar
Farquhar, G. D., von Caemmerer, S., and Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 7890.CrossRefGoogle Scholar
Le Quèrè, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., et al. (2018). Global carbon budget 2017. Earth System Science Data 10, 405448. doi: 10.5194/essd-10-405-2018.CrossRefGoogle Scholar
Taboada, F. G., Barton, A. D., Stock, C. A., Dunne, J., and John, J. G. (2019). Seasonal to interannual predictability of oceanic net primary production inferred from satellite observations. Progress in Oceanography 170, 2839. doi: 10.1016/j.pocean.2018.10.010.CrossRefGoogle Scholar
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence, D. M., and Gentine, P. (2019). Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 254257. doi: 10.1038/s41586-018-0848-x.CrossRefGoogle ScholarPubMed
Li, P., Peng, C. H., Wang, M., Li, W. Z., Zhao, P. X., Wang, K. F., et al. (2017). Quantification of the response of global terrestrial net primary production to multifactor global change. Ecological Indicators 76, 245255. doi: 10.1016/j.ecolind.2017.01.021.CrossRefGoogle Scholar
Zhao, M., and Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940943.CrossRefGoogle ScholarPubMed
Alexander, P., Brown, C., Arneth, A., Finnigan, J., Moran, D., and Rounsevell, M. D. A. (2017). Losses, inefficiencies and waste in the global food system. Agricultural Systems 153, 190200. doi: 10.1016/j.agsy.2017.01.014.CrossRefGoogle ScholarPubMed
Kummu, M., Guillaume, J. H. A., de Moel, H., Eisner, S., Flörke, M., Porkka, M., et al. (2016). The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports 6, #38495. doi: 10.1038/srep38495.CrossRefGoogle ScholarPubMed
FAO. (2020). FishStatJ: Software for Fishery and Aquaculture, Statistical Time Series. Rome: Food and Agricultural Organization of the United Nations.Google Scholar
Erisman, J. W., Leach, A., Bleeker, A., Atwell, B., Cattaneo, L., and Galloway, J. (2018). An integrated approach to a nitrogen use efficiency (NUE) indicator for the food production–consumption chain. Sustainability 10, 925. doi: 10.3390/su10040925.CrossRefGoogle Scholar
Willett, W., Rockstrom, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., et al. (2019). Food in the anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393(10170), 447492. doi: 10.1016/S0140-6736(18)31788-4.CrossRefGoogle ScholarPubMed
Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H. W., Van Vuuren, D. P., Willems, J., et al. (2013). Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences (USA) 110, 2088220887. doi: 10.1073/pnas.1012878108.CrossRefGoogle ScholarPubMed
Ludemann, C. I., Gruere, A., Heffer, P., and Dobermann, A. (2022). Global data on fertilizer use by crop and by country. Scientific Data 9, 501. doi: 10.1038/s41597–022-01592-z.CrossRefGoogle ScholarPubMed
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636639.CrossRefGoogle Scholar
Sutton, M. A., Oenema, O., Erisman, J. W., Leip, A., van Grinsven, H., and Winiwarter, W. (2011). Too much of a good thing. Nature 472, 159161. doi: 10.1038/472159a.CrossRefGoogle ScholarPubMed
Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., and Tiwari, B. (2017). Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. FOODS 6, #53. doi: 10.3390/foods6070053.CrossRefGoogle ScholarPubMed
D’Odorico, P., Davis, K. F., Rosa, L., Carr, J. A., Chiarelli, D., Dell’Angelo, J., et al. (2018). The global food–energy–water nexus. Reviews of Geophysics 56, 456531. doi: org/10.1029/2017RG000591.CrossRefGoogle Scholar
FAO. (2017). Food and agriculture data. Available at www.fao.org/faostat/en/#home (last accessed September 25, 2019).Google Scholar
Bentsen, N. S., Felby, C., Thorsen, B. J., and Jellesmark, B. (2014). Agricultural residue production and potentials for energy and materials services. Progress in Energy and Combustion Science 40, 5973. doi: 10.1016/j.pecs.2013.09.003.CrossRefGoogle Scholar
Asseng, S., Martre, P., Maiorano, A., Rötter, R. P., O’Leary, G. J., Fitzgerald, G. J., et al. (2018). Climate change impact and adaptation for wheat protein. Global Change Biology 25, 155173. doi: 10.1111/gcb.14481.CrossRefGoogle ScholarPubMed
Senapati, N., Semenov, M. A., Halford, N. G., Hawkesford, M. J., Asseng, S., Cooper, M., et al. (2022). Global wheat production could benefit from closing the genetic yield gap. Nature Food 3, 532541. doi: 10.1038/s43016–022-00540-9.CrossRefGoogle ScholarPubMed
Lassaletta, L., Billen, G., Garnier, J., Bouwman, L., Velazquez, E., Mueller, N. D., and Gerber, J. S. (2016). Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environmental Research Letters 11(9), #095007. doi: 10.1088/1748-9326/11/9/095007.CrossRefGoogle Scholar
Marton, J. (1971). Lignins: Occurrence, Formation, Structure and Reactions. New York: Wiley-Interscience.Google Scholar
Vazifehkhoran, A. H., Triolo, J. M., Larsen, S. U., Stefanek, K., and Sommer, S. G. (2016). Assessment of the variability of biogas production from sugar beet silage as affected by movement and loss of the produced alcohols and organic acids. Energies 9, #368. doi: 10.3390/en9050368.CrossRefGoogle Scholar
Hafner, S. D., Howard, C., Muck, R. E., Franco, R. B., Montes, F., Green, P. G., et al. (2013). Emission of volatile organic compounds from silage: Compounds, sources, and implications. Atmospheric Environment 77, 827839. doi: 10.1016/j.atmosenv.2013.04.076.CrossRefGoogle Scholar
Cazaudehore, G., Schraauwers, B., Peyrelasse, C., Lagnet, C., and Monlau, F. (2019). Determination of chemical oxygen demand of agricultural wastes by combining acid hydrolysis and commercial COD kit analysis. Journal of Environmental Management 250, #109464. doi: 10.1016/j.jenvman.2019.109464.CrossRefGoogle ScholarPubMed
Andre, L., Pauss, A., and Ribeiro, T. (2017). A modified method for COD determination of solid waste, using a commercial COD kit and an adapted disposable weighing support. Bioprocess and Biosystems Engineering 40, 473478. doi: 10.1007/s00449-016-1704-8.CrossRefGoogle Scholar
Møller, H. B., Sommer, S. G., and Ahring, B. K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26, 485495.CrossRefGoogle Scholar
Van Soest, P. J. (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists 46(5), 829835. doi: doi.org/10.1093/jaoac/46.5.829.Google Scholar
McDonald, P., and Henderson, A. R. (1964). Determination of water-soluble carbohydrates in grass. Journal Science Food Agriculture 15, 395398.CrossRefGoogle Scholar
Mariotti, F., Tome, D., and Mirand, P. P. (2008). Converting nitrogen into protein: Beyond 6.25 and Jones’ factors. Critical Review Food Science Nutrition 48, 177184.CrossRefGoogle Scholar
Borregaard. (2019). Borregaard has one of the world’s most advanced and sustainable biorefineries. Available at www.borregaard.com/Products-Solutions (last accessed October 2019).Google Scholar
Haberl, H., Beringer, T., Bhattacharya, S. C., Erb, K. H., and Hoogwijk, M. (2010). The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability 2, 394403. doi: 10.1016/j.cosust.2010.10.007.CrossRefGoogle ScholarPubMed
IEA. (2019). Key World Energy Statistics. Available at www.iea.org/statistics/balances/ (last accessed October 7, 2019).Google Scholar
Sommer, S. G., Ward, A. J., and Leahy, J. J. (2013). Bioenergy production. In: Sommer, S. G., Christensen, M. L., Schmidt, T., and Jensen, L. S. (eds.), Animal Manure: Treatment and Management, 1st ed. Hoboken, NJ: John Wiley & Sons, 237267.Google Scholar
Phyllis. (2019). PHYLLIS: The Composition of Biomass and Waste. Available at www.ecn.nl/phyllis/ (last accessed November 6, 2019).Google Scholar
United Nations. (2019). Environment: Global Environmental Outlook GEO-6: Summary for Policymakers. Nairobi: United Nations. doi: 10.1017/9781108639217.Google Scholar
FAO. (2023). Crops and Livestock Production. Available at www.fao.org/faostat/en/#data/QCL (last accessed September 1, 2023).Google Scholar
World Bank. (2019). Statistics. Available at https://data.worldbank.org/indicator/AG.LND.AGRI.ZS (last accessed August 23, 2019).Google Scholar
Xue, L., Liu, G., Parfitt, J., Liu, X., Van Herpen, E., Stenmarck, Å., et al. (2017). Missing food, missing data? A critical review of global food losses and food waste data. Environmental Science and Technology 51, 66186633. doi: 10.1021/acs.est.7b00401.CrossRefGoogle Scholar
Bouma, J., Broll, G., Crane, T. A., Dewitte, O., Rogier, C., Schulte, P. O., and Towers, W. (2012). Soil information in support of policy making and awareness raising. Current Opinion in Environmental Sustainability 4, 552558. doi: 10.1016/j.cosust.2012.07.001.CrossRefGoogle Scholar
Anonymous. (2010). Food: The growing problem. Nature 466, 546547. doi: 10.1038/466546a.CrossRefGoogle Scholar
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions I cultivated plane. Nature 478, 337342. doi: 10.1038/nature10452.CrossRefGoogle Scholar
Achten, W. M. J., Verchot, L., Franken, Y. J., Mathijs, E., Singh, V. P., Aerts, R., and Muys, B. (2008). Jatropha biodiesel production and use. Biomass and Bioenergy 32, 10631084. doi: 10.1016/j.biombioe.2008.03.003.CrossRefGoogle Scholar
Praveen, K., Vimal Shandra, S., and Mithilesh Kumar, J. (2016). Jatropha curcas phytotomy and applications: Development as a potential biofuel plant through biotechnological advancements. Renewable and Sustainable Energy Reviews 59, 818838. doi: 10.1016/j.rser.2015.12.358.Google Scholar
Gylling, M., Jørgensen, U., Bentsen, N. S., Kristensen, I. T., Dalgaard, T., Felby, C., et al. (2016). The +10 Million Tonnes Study: Increasing the Sustainable Production of Biomass for Biorefineries, updated ed. Frederiksberg: Department of Food and Resource Economics.Google Scholar
Jørgensen, U., Elsgaard, L., Sørensen, P., Olsen, P., Vinther, F. P., Kristensen, E. F., et al. (2013). Biomasseudnyttelse i Danmark – potentielle ressourcer og bæredygtighed. DCA report 033. ISBN: 978-87-92869-82-1.Google Scholar
Sommer, S. G., Hamelin, L., Olesen, J. E., Montes, F., Jia, W., Qing, C., and Triolo, J. M. (2016). Agricultural waste biomass. In: Iakovou, E., Bochtis, D., Vlachos, D., and Aidonis, D. (eds.), Supply Chain Management for Sustainable Food Networks. Hoboken, NJ: John Wiley & Sons, 67106.Google Scholar
Kemausuor, F., Kamp, A., Thomsen, S. T., Bensah, E. C., and Østergård, H. (2014). Assessment of biomass residue availability and bioenergy yields in Ghana. Resources, Conservation and Recycling 86, 2837. doi: 10.1016/j.resconrec.2014.01.007.CrossRefGoogle Scholar
Silpa, K., Yao, L. C., Bhada-Tata, P., and Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development. Washington, DC: World Bank. Available at https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f-28552410e90a (last accessed January 1, 2024).Google Scholar
Kumar, A., and Samadder, S. R. (2017). A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management 69, 407422. doi: 10.1016/j.wasman.2017.08.046s.CrossRefGoogle ScholarPubMed
Naroznova, I., Møller, J., Larsen, B., and Scheutz, C. (2016). Evaluation of a new pulping technology for pre-treating source-separated organic household waste prior to anaerobic digestion. Waste Management 50, 6574. doi: 10.1016/j.wasman.2016.01.042.CrossRefGoogle ScholarPubMed
Geyer, R., Jambeck, J. R., and Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances 3, e1700782.CrossRefGoogle Scholar
Moretti, P., Morais de Araujo, J., Borges de Castilhos, A. Jr., Buffiere, P., Gourdon, R., and Bayard, R. (2020). Characterization of municipal biowaste categories for their capacity to be converted into a feedstock aqueous slurry to produce methane by anaerobic digestion. Science of the Total Environment 716, #137084. doi: 10.1016/j.scitotenv.2020.137084.CrossRefGoogle ScholarPubMed
Götze, R., Boldrin, A., Scheutz, C., and Astrup, T. F. (2016). Physico-chemical characterisation of material fractions in household waste: Overview of data in literature. Waste Management 49, 314. doi: 10.1016/j.wasman.2016.01.008.CrossRefGoogle ScholarPubMed
Knickmeyer, D. (2020). Social factors influencing household waste separation: A literature review on good practices to improve the recycling performance of urban areas. Journal of Cleaner Production 245, #118605.CrossRefGoogle Scholar
Huerta-Pujol, O., Gallart, M., Soliva, M., Martínez-Farré, F. X., and López, M. (2011). Effect of collection system on mineral content of biowaste. Resources, Conservation and Recycling 55, 10951109. doi: 10.1016/j.resconrec.2011.06.008.CrossRefGoogle Scholar
Jensen, N. B., Rothmann, M., Petersen, P., Appelqvist, B., Munksgaard, R., and Hvid-Jacobsen, D. (2016). Kildesorteret organisk dagrenovation (KOD). Report from Rambøll, Dokument ID 1100025133-1948874964-55sen.Google Scholar
Meirhofer, M., Piringer, G., Rixrath, D., Sommer, M., and Ragossnig, A. M. (2013). Implementing an advanced waste separation step in an MBT plant: Assessment of technical, economic and environmental impacts. Waste Management and Research 31, 3545. doi: 10.1177/0734242X13493958.CrossRefGoogle Scholar
Cecchi, F., and Cavinato, C. (2019). Smart approaches to food waste final disposal. International Journal of Environmental Research and Public Health 16, #2860. doi: 10.3390/ijerph16162860.CrossRefGoogle ScholarPubMed
Albizzati, P. F., Tonini, D., and Astrup, T. F. (2021). High-value products from food waste: An environmental and socio-economic assessment. Science of the Total Environment 755, #142466. doi: 10.1016/j.scitotenv.2020.142466.CrossRefGoogle ScholarPubMed
Ishchenko, V. (2019) Heavy metals in municipal waste: The content and leaching ability by waste fraction. Journal of Environmental Science and Health, Part A 54, 14481456. doi: 10.1080/10934529.2019.1655369.CrossRefGoogle ScholarPubMed
Duarte, C. M., Bruhn, A., and Krause-Jensen, D. (2021). A seaweed aquaculture imperative to meet global sustainability targets. Nature Sustainability 5, 185193. doi: 10.1038/s41893–021-00773-9.CrossRefGoogle Scholar
Van der Heide, M. E., Stødkilde, L., Nørgaard, J. V., and Studnitz, M. (2021). The potential of locally-sourced European protein sources for organic monogastric production: A review of forage crop extracts, seaweed, starfish, mussel, and insects. Sustainability 13, #2303. doi: 10.3390/su13042303.CrossRefGoogle Scholar
Holdt, S. L., and Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology 23, 543597. doi: 10.1007/s10811–010-9632-5.CrossRefGoogle Scholar
Corino, C., Modina, S. C., Di Giancamillo, A., Chiapparini, S., and Rossi, R. (2019). Seaweeds in pig nutrition. Animal 9, #1126. doi: 10.3390/ani9121126.Google ScholarPubMed
Kinley, R. D., Martinez-Fernandez, G., Matthews, M. K., de Nys, R., Magnusson, M., and Tomkins, N. W. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, 259, #120836.CrossRefGoogle Scholar
Overland, M., Mydland, L. T., and Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture 99, 1324. doi: 10.1002/jsfa.9143.CrossRefGoogle ScholarPubMed
Buck, H. J. (2019). The desperate race to cool the ocean before it’s too late. MIT Technology Review. Available at www.technologyreview.com/2019/04/23/136001/the-desperate-race-to-cool-the-ocean-before-its-too-late/ (last accessed April 28, 2019).Google Scholar
Duarte, C. M., Wu, J., Xiao, X., Bruhn, A., & Krause-Jensen, D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Frontiers in Maritime Science 4. doi: 10.3389/fmars.2017.00100.Google Scholar
Araujo, R., Calderon, F. V., Lopez, J. S., Azevedo, I. C., Bruhn, A., Fluch, S., et al. (2021). Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Frontiers in Marine Science 7, #626389. doi: 10.3389/fmars.2020.626389.CrossRefGoogle Scholar
Naseri, A., Jacobsen, C., Sejberg, J. J. P., Pedersen, T. E., Larsen, J., Hansen, K. M., and Holdt, S. L. (2020). Multi‐extraction and quality of protein and carrageenan from commercial spinosum (Eucheuma denticulatum). Foods 9, #1072. doi: 10.3390/foods9081072.CrossRefGoogle ScholarPubMed
Santiago, A., and Moreira, R. (2020). Drying of edible seaweeds. In Torres, M. D., Kraan, S., and Dominguez, H. (eds.), Advances in Green and Sustainable Chemistry, Sustainable Seaweed Technologies. Amsterdam: Elsevier, 131154. doi: 10.1016/B978–0-12-817943-7.00004-4.CrossRefGoogle Scholar
Ghadiryanfar, M., Rosentrater, K. A., Keyhani, A., and Omid, M. (2016). A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews 54, 473481. doi: 10.1016/j.rser.2015.10.022.CrossRefGoogle Scholar
Ward, G. M., Faisan, J. P. Jr., Cottier-Cook, E. J., Gachon, C., Hurtado, A. Q., Lim, P. E., et al. (2020). A review of reported seaweed diseases and pests in aquaculture in Asia. Journal World Aquaculture Society 51, 815828. doi 10.1111/jwas.12649.CrossRefGoogle Scholar
Stephenson, P. G., Moore, C. M., Terry, M. J., Zubkov, M. V., and Bibby, T. S. (2011). Improving photosynthesis for algal biofuels: Toward a green revolution. Trends in Biotechnology 12, 615623. doi: 10.1016/j.tibtech.2011.06.005.CrossRefGoogle Scholar
Chisti, Y. (2013). Constraints to commercialization of algal fuels. Journal of Biotechnology 167, 201–214. doi: 10.1016/j.jbiotec.2013.07.020.CrossRefGoogle ScholarPubMed
Park, J. B. K., Craggs, R. J., and Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology 102, 3542. doi: 10.1016/j.biortech.2010.06.158.CrossRefGoogle ScholarPubMed
Markou, G., and Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances 31, 15321542. doi: 10.1016/j.biotechadv.2013.07.011.CrossRefGoogle ScholarPubMed
Ferreira, A. F., Ribeiro, L. A., Batista, A. P., Marques, P. A. S. S., Nobre, B. P., Palavra, A. M. F., et al. (2013) A biorefinery from Nannochloropsis sp. microalga: Energy and CO2 emission and economic analyses. Bioresource Technology 138, 235244.CrossRefGoogle ScholarPubMed
Coulson, S., Palacios, T., and Vitetta, L. (2015). Perna canaliculus (green-lipped mussel): Bioactive components and therapeutic evaluation for chronic health conditions. Progress in Drug Research, 70, 91132. doi: 10.1007/978-3-0348-0927-6_3.CrossRefGoogle ScholarPubMed
Widdows, J. (1991). Physiological ecology of mussel larvae. Aquaculture 94, 147163.CrossRefGoogle Scholar
Jørgensen, C. B. (1981). Mortality, growth, and grazing impact of a cohort of bivalve larvae, Mytilus edulis L. Ophelia 20(2), 185192. doi: 10.1080/00785236.1981.10426570.CrossRefGoogle Scholar
Riisgård, H. U., and Møhlenberg, F. (1979). An improved automatic recording apparatus for determining the filtration rate of Mytilus edulis as a function of size and algal concentration. Marine Biology 52, 6167.CrossRefGoogle Scholar
Steeves, L., Aguera, A., Filgueira, R., Strand, O., and Strohmeier, T. (2022). High-frequency responses of the blue mussel (Mytilus edulis) feeding and ingestion rates to natural diets. Journal of Marine Science and Engineering 10(9), #1290. doi: 10.3390/jmse10091290.CrossRefGoogle Scholar
Steeves, L., Vimond, C., Strohmeier, T., Casas, S., Strand, O., Comeau, L. A., and Filgueira, R. (2022). Relationship between pumping rate and particle capture efficiency in three species of bivalves. Marine Ecology Progress Series 691, 5568. doi: 10.3354/meps14063.CrossRefGoogle Scholar
Petersen, J. K., Bjerre, A.-B., Hasler, B., Thomsen, M., Nielsen, M. M., & Nielsen, P. (2016). Blå biomasse – potentialer og udfordringer for opdræt af muslinger og tang. DTU Aqua-rapport nr. 312-2016. Copenhagen: Institut for Akvatiske Ressourcer, Danmarks Tekniske Universitet.Google Scholar
Towers, L. (2010). How to farm New Zealand Mussel. Health, Husbandry, Breeding & Genetics. Available at https://thefishsite.com/articles/cultured-aquatic-species-new-zealand-mussel (last accessed March 2022).Google Scholar
Bruhn, A., Flindt, M. R., Hasler, B., Krause-Jensen, D., Larsen, M. M., Maar, M., et al. (2020). Marine virkemidler – beskrivelse af virkemidlernes effekter og status for vidensgrundlag. Aarhus: Aarhus Universitet. Available at http://dce2.au.dk/pub/SR368.pdf (last accessed July 4, 2024).Google Scholar
Petersen, J. K., Taylor, D., Bergström, P., Buer, A.-L., Darecki, M., Filippelli, R., et al. (2020). Policy Guidelines for Implementation of Mussel Cultivation as a Mitigation Measure for Coastal Eutrophication in the Western Baltic Sea. DTU Aqua. DTU Aqua-rapport No. 362-2020. doi: 10.11581/dtu:00000079.CrossRefGoogle Scholar
Sommer, S. G., and Knudsen, L. (2021). Impact of Danish livestock and manure management regulations on nitrogen pollution, crop production, and economy. Frontier Sustainability 2, #658231. doi: 10.3389/frsus.2021.658231.CrossRefGoogle Scholar
Klinglmair, M., Lemming, C., Jensen, L. S., Rechberger, H., Fruergaard Astrup, T., and Scheutz, C. (2015). Phosphorus in Denmark: National and regional anthropogenic flows. Resources, Conservation and Recycling 105, 311324. doi: 10.1016/j.resconrec.2015.09.019.CrossRefGoogle Scholar
Afrose, S., Hammershøj, M., Nørgaard, J. V., Engberg, R. M., and Steenfeldt, S. (2016). Influence of blue mussel (Mytilus edulis) and starfish (Asterias rubens) meals on production performance, egg quality and apparent total tract digestibility of nutrients of laying hens. Animal Feed Science and Technology 213, 108117. doi: 10.1016/j.anifeedsci.2016.01.008.CrossRefGoogle Scholar
Nørgaard, J. V., Petersen, J. K., Tørring, D. B., Jørgensen, H., and Lærke, H. N. (2015). Chemical composition and standardized ileal digestibility of protein and amino acids from blue mussel, starfish, and fish silage in pigs. Animal Feed Science and Technology 205, 9097. doi: 10.1016/j.anifeedsci.2015.04.005.CrossRefGoogle Scholar
Langeland, M., Vidakovic, A., Vielma, J., Lindberg, J. E., Kiessling, A., and Lundh, T. (2016). Digestibility of microbial and mussel meal for Arctic charr (Salvelinus alpinus) and Eurasian perch (Per-ca fluviatilis). Aquaculture Nutrition 22, 485495. doi: 10.1111/anu.12268.CrossRefGoogle Scholar
Carboni, S., Kaur, G., Pryce, A., McKee, K., Desbois, A. P., Dick, J. R., and Galloway, S. D. R. (2019). Mussel consumption as a “food first” approach to improve Omega-3 status. Nutrients 11, #1381. doi: 10.3390/nu11061381.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×