Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-06T16:18:01.462Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 February 2025

Steven R. Pride
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, P. W. & Friedman, R. S., 2011. Molecular Quantum Mechanics, Oxford University Press, Oxford.Google Scholar
Balluffi, R. W., Allen, S. M., & Carter, W. C., 2005. Kinetics of Materials, Wiley-Interscience, Hoboken, NJ.CrossRefGoogle Scholar
Batchelor, G. K., 1967. An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge.Google Scholar
Bohm, D., 1952. A suggested interpretation of the quantum theory in terms of ‘hidden variables.’ I, Physical Review, 85, 166179.CrossRefGoogle Scholar
Borg, R. J. & Dienes, G. J., 1988. An Introduction to Solid State Diffusion, Academic Press, San Diego.Google Scholar
Breen, S. J., Pride, S. R., Masson, Y., & Manga, M., 2022. Stable drainage in a gravity field, Advances in Water Resources, 182, 104150.CrossRefGoogle Scholar
Butkov, E., 1968. Mathematical Physics, Addison Wesley, Reading, MA.Google Scholar
Cahn, J. W. & Hilliard, J. E., 1958. Free energy of a nonuniform system. I. Interfacial free energy, Journal of Chemical Physics, 28, 258267.CrossRefGoogle Scholar
Callen, H. B., 1985. Thermodynamics and an Introduction to Thermostatistics, 2nd ed., John Wiley & Sons, New York.Google Scholar
Curie, P., 1894. Sur la symétrie dans les phènomènes physiques: symétrie d’un champ électrique et d’un champ magnétique, Journal de Physique, 3, 393415.Google Scholar
deGroot, S. R., 1951. Thermodynamics of Irreversible Processes, North Holland, Amsterdam.Google Scholar
Dussan, E. B. & Davis, S. H., 1974. On the motion of a fluid-fluid interface along a solid surface, Journal of Fluid Mechanics, 65, 7195.CrossRefGoogle Scholar
Feder, J., Flekkoy, E. G., & Hansen, A., 2023. Physics of Flow in Porous Media, Cambridge University Press, Cambridge.Google Scholar
Feynman, R. P., 1963. The Feynman Lectures on Physics, vol. 1, Addison Wesley, Reading, MA.Google Scholar
Flekkøy, E. G., Pride, S. R., & Toussaint, R., 2017. Onsager symmetry from mesoscopic time-reversibility and the hydrodynamic dispersion tensor for coarse-grained systems, Physical Review E, 95, 022136.CrossRefGoogle ScholarPubMed
Fourier, J., 1822. Théorie Analytique de la Chaleur, Firmin Didot Père & Fils, Paris.Google Scholar
Happel, J. & Brenner, H., 1983. Low Reynolds Number Hydrodynamics, Mechanics of Fluids and Transport Processes, Martinus Nijhoff Publishers, The Hague.CrossRefGoogle Scholar
Israelachvili, J. N., 2011. Intermolecular and Surface Forces, 3rd ed., Academic Press, San Diego.Google Scholar
Jackson, J. D., 1975. Classical Electrodynamics, 2nd ed., John Wiley & Sons, New York.Google Scholar
Kong, J. A., 1986. Electromagnetic Wave Theory, John Wiley & Sons, New York.Google Scholar
Körner, T. W., 1988. Fourier Analysis, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M., 1984. Electrodynamics of Continuous Media, 2nd ed., Pergamon, New York.Google Scholar
Landau, L. D. & Lifshitz, E. M., 1986. Theory of Elasticity, 3rd ed., Pergamon, New York.Google Scholar
Landau, L. D. & Lifshitz, E. M., 1987. Fluid Mechanics, 2nd ed., Pergamon, New York.Google Scholar
Lebedev, L. P., Cloud, M. J., & Eremeyev, V. A., 2010. Tensor Analysis with Applications in Mechanics, World Scientific Publishing, Singapore.CrossRefGoogle Scholar
Liouville, J. & Sturm, C., 1837. Extrait d’un mémoire sur le développement des fonctions en séries dont les différents termes sont assujettis à satisfaire à une même équation différentielle linéaire, contenant un paramètre variable, Journal de Mathématiques Pures et Appliquées, 2, 220233.Google Scholar
Lyklema, J., 1991. Fundamentals of Interface and Colloid Science. Volume 1: Fundamentals, Academic Press, London.Google Scholar
Masson, Y. J. & Pride, S. R., 2015. Mapping the mechanical properties of rocks using automated microindentation tests, Journal of Geophysical Research, 120, 71387155.CrossRefGoogle Scholar
Nayfeh, A. H., 1973. Perturbation Methods, Wiley-Interscience, Hoboken, NJ.Google Scholar
Nye, J. F., 1957. Physical Properties of Crystals, Oxford University Press, Oxford.Google Scholar
Onsager, L., 1931. Reciprocal relations in irreversible processes, Physical Review, 37, 405426.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P., 2007. Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, Cambridge.Google Scholar
Rowlinson, J. S., 1979. Translation of J. D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density,” Journal of Statistical Physics, 20, 197244.CrossRefGoogle Scholar
Shannon, C. E., 1948. A mathematical theory of communication, The Bell System Technical Journal, 27, 379423.CrossRefGoogle Scholar
Stokes, G. G., 1851. On the effect of internal friction of fluids on the motion of pendulums, Transactions of the Cambridge Philosophical Society, 9(8), 8106.Google Scholar
Stratton, J. A., 1941. Electromagnetic Theory, McGraw-Hill, New York.Google Scholar
Sturm, C., 1836. Mémoire sur les équations différentielles linéaires du second ordre, Journal de Mathématiques Pures et Appliquées, 1, 106186.Google Scholar
Swift, M. R., Orlandini, E., Osborn, W. R., & Yeomans, J. M., 1996. Lattice-Boltzmann simulations of liquid-gas and binary fluid systems, Physical Review E, 54, 50415052.CrossRefGoogle ScholarPubMed
Taylor, G. I., 1953. Dispersion of soluble matter in solvent flowing slowly through a tube, Proceedings of the Royal Society of London, Series A, 219, 186203.Google Scholar
Van Dyke, M. D., 1964. Perturbation Methods in Fluid Mechanics, Academic Press, New York.Google Scholar
Weiner, J. H., 2002. Statistical Mechanics of Elasticity, Dover, New York.Google Scholar
Young, T., 1805. An essay on the cohesion of fluids, Philosophical Transactions of the Royal Society of London, 95, 6587.CrossRefGoogle Scholar
Zhang, J. Z. H., 1999. Theory and Application of Quantum Molecular Dynamics, World Scientific Publishing, Singapore.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Steven R. Pride, University of California, Berkeley
  • Book: An Introduction to Continuum Physics
  • Online publication: 06 February 2025
  • Chapter DOI: https://doi.org/10.1017/9781108951982.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Steven R. Pride, University of California, Berkeley
  • Book: An Introduction to Continuum Physics
  • Online publication: 06 February 2025
  • Chapter DOI: https://doi.org/10.1017/9781108951982.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Steven R. Pride, University of California, Berkeley
  • Book: An Introduction to Continuum Physics
  • Online publication: 06 February 2025
  • Chapter DOI: https://doi.org/10.1017/9781108951982.016
Available formats
×