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A procedure for testing the significance of a subset of explanatory variables in a
nonparametric regression is proposédir test statistic uses the kernel method
Under the null hypothesis of no effect of the variables undet testshow that

our test statistic has amhP>/2 standard normal limiting distributigrwherep, is

the dimension of the complete set of regress@nsr test is one-sideatonsistent
against all alternatives and detects local alternatives approaching the null at rate
slower thann~Y2h~P2/4 Our Monte-Carlo experiments indicate that it outper-
forms the test proposed by Fan and(LP96 Econometrica64, 865—890.

1. INTRODUCTION

In recent yearsconsiderable work has been devoted to testing a parametric
regression model against a semi- or a nonparametric alternAtivapproach
that has attracted a lot of attention relies on smoothing techniques and com-
pares the parametric fit with a smooth nonparametric. @x@mples include
Cleveland and Devlin1988, Eubank and Spiegelmafi990, Eubank and
Hart (1993, Gozalo(1993, Hardle and Mamme1993, Chen(1994), Horo-
witz and Hardle(1994, Hong and White(1995, and Zheng(1996, among
otherst

In contrastthe issue of testing a nonparametric null against a nonparametric
alternative has attracted less attenti@rleading case where such a situation
naturally arises is testing the significance of some explanatory variables in a
regression functionwWell-known procedures have been proposed in parametric
settings but their outcomes crucially depend on the choice of the parametric
specification When it is not desirable to adopt a finite parameterizatizon-
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NONPARAMETRIC SIGNIFICANCE TESTING 577

parametric regression provides a suitable alternativepecial case that has
been investigated in several previous papers is the problem of testing for no
effect To our knowledgethe general case where the nonparametric null is non-
degenerate has been considered only in a few published st@healo(1993
considers conditional moment tests that are made consistent against all alterna-
tives through randomizatiotyatchew(1992 considers the difference in resid-
ual sums of squares and uses sample splitting to circumvent its well-known
vn-degeneracy in a nested situatiovhereas Lavergne and Vuorig996 treat
the nonnested cage

Our objective is to propose a testing procedure for the significance of a sub-
set of explanatory continuous variables in a nonparametric regresgioch
circumvents the drawbacks of previously proposed procedNiaasely our pro-
cedure does not use randomization but is nevertheless consistent against any
deviation from the null hypothesis of no effect of the variables under liest
stead of using sample splitting or weightjnge deal with theyn-degeneracy
issue to obtain a test statistic with a faster rate tk@nOur test statistic is
based on the kernel methddle characterize its asymptotic distribution not only
under the null hypothesis but also under a sequence of local alternafiues
assumptions do not require normality or homoscedasticity of the regression er-
rors and are not much more demanding on the bandwidths and on the consid-
ered functions than in nonparametric estimati@hough our test statistic is
similar in spirit to that recently proposed by Fan and(19964, we require
less restrictive theoretical conditions on the smoothing paraméters result
our testing procedure does not require oversmoothing of the null regression
model relative to the alternative one and hence puts both models on equal foot-
ing. In small samplesour simulation results show that our test statistic is nearly
unbiased under the null hypothesis and leads to a test that is more powerful
than Fan and Li's under a wide spectrum of alternatives

The paper is organized as followls Section 2 we present our test statistic
and we study its asymptotic properties under a sequence of local alternatives
We also show how our framework can accommodate the special case of testing
the joint significance of all the regressofection 3 studies the small sample
behavior of our testing procedure by means of Monte-Carlo experiments and
compares it with the one proposed by Fan and19963. All the proofs are
relegated to Section. 4

2. THEORETICAL RESULTS

Suppose X,;,Y:), i =1,...,nis a random sample from @, + 1)-variate dis-
tribution of (X,,Y) and letX; C X, be ap;-vector 0 < p; < p,. Throughout
we denote densities of; and X, by f;(-) andf,(-). Let E[Y|X;] = r1(X;) and
E[Y|X5] = ro(X5). The null hypothesis of interest I8y:r1(X;) = ro(X,) as,
or equivalentlyHy: E[us| X,] = 0 as.,, whereu; = Y — ry(X;). Our procedure
can be viewed as a test of the unconditional moment restri&jeR¥(X,)] = 0,
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with W(X,) = E(u,| X,) f2(X;) f,(X,). Indeed this particular choice makes the
test consistent against any alternativeHgpas
E{u; E(ug|X5) f2(Xq) f2(X5)] = E[E?(uy] X5) F2(Xp) f2(X,)]
= E[(ra(Xz) — ra(Xp) 2f2(Xp) fo(X,)]1.
Let K andL be two kernels ofiRPz andRPy, respectivelyand leth andg be
two bandwidthsTo testH,, we consider

1
Vi = n@ >0 (Y = Y (Y, = YD) Lk Ljt K, (2.1)
a

whereY, denotes summation over the arrangements dfstinct elementsi,
e yimt from {1,...,n} with n‘™ = n!/(n — m)! the number of these arrange-
ments and where_ ik = g~ P:L[(Xy; — Xw)/g] andK; = h™P2K[(Xy — X5)/h].

The statisticV, is simple to compute and in particular does not require any
trimming. It constitutes a natural basis for testiklg, because it actually esti-
mateskE [u, ¥ (X,)]. Indeed assuming thati; f;(Xy;) is observeda sample an-
alog of the latter is

1
Von = @ 2 Ugi Fr(Xg)ugy F1(Xq5) Ky
a
Fan and Li(19964 obtain their statigtidn from Vy, by replacinguy; f;(Xy;) by
its leave-one-out kernel estimatg; f;;. Although our test statistic resembles

Fan and Li's it was derived independently and differs from theirs by some
important terms Specifically

NV, = n(n—1)3%, — n®Vy, — 2n®V,, + n@V,,

with
1
Vi, = e 2 (Y = YO Y, = Y Lok Lo K
a

1
Vy, = = E) > - Yi) (Y — Yi) Lij Lok K
a

1 o Vs
) Ea:(Yi = Y)(n—1) 0y fy Ly Ky + ﬁ,
1 2] 2
Van = W ;(Yi - Yj) Lnij Knij-
In effect our statisticV, removes all “diagonal” terms frorh,, thus reducing

the bias of the statistic without altering its properties as a test statistidfor
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A similar idea has been recently proposed by Heffer(i$07) for unbiased
estimation of central moments ly-statistics In small samplegthe bias reduc-
tion can be substantishs our Monte-Carlo study of Section 3 shows prac-
tice, one may use the preceding formula instead2f) to computeV,,.

To study the behavior df,, under the null and some local alternative hypoth-
eses simultaneouslwe write

Hin:ra(Xz) = ry(Xy) +8,d(X;), with &, € [0,1].

We letd(X;) =0 if 8, = 0. This general formulation allows us to include local
alternativeswhose rates of convergence lty are given bys,,. We need the
following definitions and assumptions

DEFINITION 1.

(i) UP is the class of integrable uniformly continuous functions fifto R.
(i) Dr’;q is the class of ntimes differentiable functions froP to R, with deriva-
tives of order m that are uniformly Lipschitz continuous of order q

DEFINITION 2. P, m = 2, is the class of gen integrable functions K
RP — R with compact support satisfyinfiK(s) ds= 1 and

p
Jsfl...sng(s) ds=0 for0< Dao,=m-1,¢=0 [i.
i=1
Assumption 1 {(X,;,Y;),i = 1,...,n} is an independent and identically dis-
tributed (i.i.d.) sample from an absolutely continuo(sith respect to Le-
besgue measurép, + 1)-variate distributionandE[Y?®] < co.

Assumption 2

(i) f1(X1) andri(Xy)f1(Xy1) belong to/Pr N D,ﬁ’qul, m; = 2, and alsoE(u?|X,) X
f1(Xy1) belongs ta/P.
(i) f2(X2), ra(Xa) f1(Xe) f2(X2), E(UZ[ Xo) F2(X1) F(X,) andE(uf[X,) f1(Xy) f2(X;)
belong tol/P=
(i) K(-) € Kf2andL(-) € K.

THEOREM 1 Under Assumption% and2, if h — 0, g — 0, nhP2 — +oo,
ngP — oo, hP/gPr — 0, and nhP2/2g2(M*a%) 5 O, then as n— oo,

(i) nhP2/2V, %5 N(Cu, w?) if 62nhP2/2 — C < oo,

(i) nhP2/2V, 25 4 oo if 52nhP2/2 — oo,
whereu = E[d?(X,) f2(X;) f(X;)] andw? = 2E[E?(uf| X,) f4(Xy) £2(X,)] X
JK?(s)ds

Remark 1 As shown in Section 4V, has the same behavior ¥g,. In gen-

eral Vp, is such thatvn[Vy, — E(Von)] converges to a normal distribution
N(0,72), where 72 is the semiparametric efficiency bound for estimating
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E[u; ¥(X,)]. But underH,, we have bothE(Vy,) = 0 and72 = 0. This de-
generacy leads us to consider higher-order terms in the expansig.dfor
this we use a central limit theorem for degenetatstatistics(see Hall 19844.4

Remark 2 Assumption 2 requires smoothness conditions on the underlying
functions and kernels that are standard in nonparametric estim&timictions
of X, are assumed to be at least as smooth as functioXs.dfhis is compat-
ible with the nested situation under consideratimstead Fan and Li(1996a
requires similar smoothness of the constrained and unconstrained regression
functions

Remark 3 The generalization of our test to the situation where some of the
X, are discrete with finite support is straightforwaes discrete variables nei-
ther create any bias nor change the variance of the nonparametric estimators
Our general results are not affectethere bandwidths only apply to continu-
ous regressorsn particular when all regressorX; are discrete and all regres-
sors under test are continugumir assumptions on the bandwidths reduce to
the usual oned.e, h — 0 andnhP/2 — +oo.

Remark 4 One of the main problems in obtaining asymptotic distributions
of semiparametric estimators is the relative vanishing rates of the bias and vari-
ance terms from nonparametric estimatibor instanceSamarov1993 notes
that the bias term may dominate the variance term for his test statidit
(198441984h finds that the squared bias term of the integrated square error of
kernel estimators is of ordér®. In the context of parametric specification test-
ing, Hong (1993 and Gozalq1995 find a bias term of ordeh? and propose a
statistic that balances it with the variance tetmour context the bias prob-
lem arises in each of the two smoothing stepg nonparametric regression of
Y on X; and the projection of the residual on X,. The form of our statistic
eliminates the bias in the second step thatE(Vy,) = 0 underH,. On the
other handthe bias from the first step is controlled through the “bias” condi-
tion nhP2/2g2(Mm*a) 5 0 as in Fan and L{19964.

Remark 5 Though the theory is developed for a generic bandwidtbr h)
in each stepit is straightforward to extend it to a vanishing individual band-
width for each regressor in each sfejm this caseone should replacg®: and
hP2 by g,0;...9,, andh h,...h, , respectivelyThe “bias” condition becomes
nllz, hil/z[maXﬂ,..., p. 9i J2mta) 0,

Remark 6 Our assumptions on the bandwidths include the usual.dries
condition on the ratidP2/gP: means that the variance of nonparametric estima-
tors in the model wittp, regressors is smaller than the variance of nonparamet-
ric estimators in the complete mod&his seems reasonable in view of the higher
sparsity of the data in high dimensional spad¢eading to the well-known “curse
of dimensionality’ In our testing frameworkthis condition can be better un-
derstood by considering individual bandwidtihs this caseit seems natural to
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use individual bandwidths for the regress#ssnot under test that are identical
between both stepmamely g = h;, i = 1,...,p;, to avoid incorrect rejection

of the null hypothesisThen our ratio condition reduces ﬂ)ipiplﬂ h, — 0. This

is no longer restrictive as vanishing individual bandwidths are obviously
necessary to obtain a consistent tettnce our “ratio” condition on the relative
rates of the bandwidths seems to be minimal for testing the significance of
continuous regressark contrast when the regressors under test are disgrete
Hi')ip1+1hi need not vanishso that restricted and nonrestricted nonparametric
estimates jointly determine the limit distribution of the test statisticstudied

by Lavergne(2000.

Fan and Li(19963 require the stronger conditidm’2/g?: — 0. As a result
Fan and Li’s testing procedure excludes a large domain of bandwidtiad-
ing the optimal bandwidth rates for estimation”/[P*2(m*al when the dimen-
sion of X, is close to the dimension &f,, and this for any degree of smoothness
in the underlying regressionBor instancethis arises whemp, = 2 andp, = 1
or whenp, = 3 andp, = 2. In contrast our testing procedure allows for a
broader choicgincluding the optimal estimation rates when the constrained re-
gression is sufficiently smootlthough these optimal estimation rates need not
be optimal for testing purposdsee Guerre and Lavergnt999.

The asymptotic variance? can be written as

2E[(u, X)) PE Ly F60)) 21X, ] [ KE(9) s

It depends on the kernel througtK 2(s) ds This quantity can be minimized in
the class of product nonnegative even kernels by choosing the Epanechnikov
kernel(see Epanechnikou969. Following (2.1), an estimator of? is

2
wi = G D5 = YO = Y ) (Y, = YO Y = Vi) Lik Lnite Lojt Lo hP2KZ.
a

An alternative estimatomvhich is computationally less demanding but more
biased in small sampless

2 U
of = o 2 05 0 fE fEh K, (2.2)
a

where 0y; f;; is the kernel estimator ofiy; f,(Xy;). The consistency of either
form of w? is shown using similar arguments as in the proof of Theorem 1
(see Sec4). Therefore we can propos@hP2’2V, /w,, as a test statistic fa,.
From Theorem by letting 6, = 0 or 1, this test statistic is asymptotically
N(0,1) underHgy and diverges toroo against any fixed alternative td,. The
test is therefore a one-sided normal tedioreover the test has power to
detect local alternatived,, approaching the null at rate slower than
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(vihP=/4)~1 This rate agrees with that found in parametric specification test-
ing procedures that use smoothfhg

Although Theorem 1 suggests that suitable critical values for our testing pro-
cedure can be obtained from the standard normal distributesults from Eu-
bank and LaRiccig1993 and Hardle and Mamme(1993, among others
indicate that the normal approximation may not be adequate for small sample
sizes Indeed our test statistic behaves like a weighted sum of chi-squares
an asymptotic sensand accordingly may approach normality sloywgspe-
cially for high dimensional setting©ne alternative is to use @* approxima-
tion, as proposed by HalL983 and Buckley and Eaglesdt988 and used by
Eubank and LaRiccigl993 and Cher(1994) in the context of parametric spec-
ification testing Although such a correction may help in high dimensioihs
did not prove very useful in our limited Monte-Carlo experimentbere the
normal approximation seems to work wellnother alternative is to use resam-
pling techniquessuch as the wild bootstrap considered by Héardle and Mam-
men (1993. The theoretical justification of such a technique in our context
and specifically the conditions under which it applisdeft for further research

Last it is possible to extend our procedure to the case wipere O, i.e.,
testing for no effect of all the regressoXs. In this case the null hypothesis of
interest isHg: ro(X,) = C = E(Y) as. To testHg, we can readily modify2.1)
to get

1

Vo = w 2(Y| - Yk)(Yj - YI)Knij'
a

As before we consider the local alternatives(X,) = E(Y) + §,d(X,), with
8, € [0,1]. Our Assumption 2 now reduces to the usual one in nonparametric
estimation namely the following assumption

Assumption 3

(i) f2(X2), ra(Xz)f2(Xz), Var(Y[X;)fo(X,), and E((Y — ¢)*Xz)f2(X,) belong to
Ur2,

(i) K € k£,

COROLLARY 1. Under Assumption% and 3, if h — 0, nhP2 — +oco, then
as n— oo,

(i) nhP/2V* %5 N(Cu* w*2) if §2nhP2/2 — C < oo,
(i) nhP/2v* 25 100 if §2nhP2/2 — oo,

Where,LL* = E[dZ(XZ) f2(X2)] and w*2 = 2E[Val’2(Y\X2) fz(Xz)]sz(S) ds

A consistent estimator ab*? is

2
Wi = 5 D% = YO (¥ = Ye) (% = Y (%) = Y )Pk,
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Alternatively a simpler estimator analogous (22) can be computed as
#2 2 V)2 V) 2h P2 2
Wy = WZ(Y. -Y) (Y] =Y)*h 2Knij,
a

whereY is the empirical mean of th¥’s. The latter is computationally less
costly but more biased in small samples than the formeconsistent one-
sided normal test for no effect of, in the regression of can thus be based
onnhP/2V*/wk. As beforg this test has power to detect local alternatives ap-
proaching the null at a rate slower thamhr=/4)~1,

Many other tests have been previously proposed for the special case of test-
ing for no effect as reviewed in Hart'$1997) monographBecause the null is
very simple in this caset is possible to apply the empirical process approach
and to derive omnibus testsee e.g., Buckley 1991 Bierens 1982 1990.
Alternatively, tests based on smoothing ideas have been considseeck.g.,
Eubank and Hart1993. In particular it is possible to allow for data-driven
smoothing parameters in such te&se Barry and Hartigari990 or to con-
struct a test based on the smoothing parameter itseé Eubank and Hart
1992. However with the exception of Bierengl982 1990, all these tests
have been developed in the special case of a single regressor and homoscedas-
tic errors In addition the limiting behavior of some of these tests is nonstandard

The statisticV; resembles Zheng'61996 statistic for parametric specifica-
tion testing in the case where the parametric model reduces to the constant re-
gression but removes all “diagonal” terms from the latter to make it unbiased
under the nullindeed because the estimation of the smallest regression model
is actually parametric¢here is no bias corresponding to this stage the form
of our statistic also eliminates the bias in the second stagetable feature of
our statistic is that it is unbiased under the null hypotheisés E(V) = 0
underHy. This is especially valuable in small samples

3. MONTE-CARLO STUDY

In this sectionwe investigate the small sample behavior of our test and study
its performances relative to Fan and L{$9963 test (hereafterthe FL teskL
We generate data through

Y = aX; + bX3+ d(W) + U, (3.1)

whereX; andW are independent and distributed I4€0,1) and U is indepen-
dently distributed of the regressors B$0,02). The null hypothesis corre-
sponds tad(W) = 0, and we consider different forms of alternatives as specified
by d(-). We impose the restriction th&[d(W)] = 0, so that the nonparametric
regressiorr,(X;) remains the same whatever the data generating prodéss
set the parameteis b, ando? to —1, 1, and 4 respectivelyso that the part of
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the variance ofY explained in its nonparametric regressionXonis moderatg
i.e, 71%

We consider smal{n = 100) and moderatén = 200) sample sizes and run
2,000 replicationsWe chooseK(-) andL(-) as product kernels of the univari-
ate Epanechnikov kernel with suppdrt1,1], i.e., L(u) = (3/4)(1 — u®)I[|u| =
1]. As indicated in Remark ,5we can use individual bandwidth¥he band-
width parameter for the restricted model is choseg aséxln‘1/5, wheres,  is
the estimated standard deviation X{. This corresponds to the usual rule of
thumb in kernel estimatiofsee e.g., Hardle 1991). For the unrestricted model
we keep the same smoothing parameter as in the restricted one for the first
dimension i.e.,, X;, and choose the parameter for the second dimensian
W, ash, = c§yn~¥5 wheres,, is the estimated standard deviationvif Keep-
ing the same bandwidth for regressors that are common to both madels
caseX;, seems a natural choice in our testing framewdttr the regressors
under testi.e., W, we apply the same rule of thumb with an additional varying
constant to investigate the sensitivity of our results to the smoothing param-
eter’s choicd

The design of the alternatives has been chosen to investigate the power of
the competing tests with respect to the magnitude and the frequendfy)of
For the magnitudewe consider three linear alternatives of the form

d(W) = aW,

with @ = 0.5, 1, and 2 correspondingespectivelyto DGP;, DGP,, andDGP;.

This allows us to compare the performances of the nonparametric tests to the
standard Fisher test based on the true m@8@). Alternatives corresponding

to varying frequencies are defined through

d(W) = sin(é7W),

with 6 = 2, 1, 5, and 2 corresponding respectively @GP,, DGP;, DGP;, and
DGP;. These departures from the null are of special interastit is known
that smoothing tests of parametric specifications are sensitive to the frequency
of the alternativeg§see Eubank and Hari993 Fan and Lj 1996h Kuchib-
hatla and Hart1996 Hart, 1997). We expect that such a feature will hold for
nonparametric significance tests

Table 1 reports our Monte-Carlo results for the null hypothéBigP,) and
the linear alternatives-or each sample size = 100 200), we let the constant
c be 025, 0.5, 1, 2, 4. For each casehe first and second rows give the mean
with standard deviation in parentheses of our test and the FlLrésgtectively
For computational reasonwe use the simplesbut biased estimator of the
variance(2.2). The third and fourth rows give empirical levels of rejections for
our test and the FL tesThe first figure corresponds to a 5% nominal level
whereas the second one corresponds to a 10% nominal femekach sample
size the last row reports empirical rejection rates of th¢est for the same
nominal levels

https://doi.org/10.1017/50266466600164059 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466600164059

TABLE 1. Null and linear alternatives

NONPARAMETRIC SIGNIFICANCE TESTING

585

n c DGR DGP; DGP, DGP;
100 Q25 -0019 (0.876 0.148 (0.909 0583 (0.949 1683 (0.899)
-0350 (0.959 -0.159 (0.999 0340 (1044 1620 (0.973

33% 87% 56% 118%  143% 253%  537%  694%

21%  52% 37% 85%  115% 200%  513%  661%

05 —0007 (0.857) 0231 (0.922  0.838 (1009 2353 (0.986)
0462 (0.941) -0190 (1014 0506 (1112 2268 (1075

41%  85% 78% 141%  215% 334%  770%  858%

20%  48% 51% 87%  161% 244%  731%  823%

1.0 0010 (0.8000 0335 (0.918 1170 (1085 3241 (1136
—~0620 (0.877) -0247 (1010 0711 (1197 3120 (1.239

36%  74% 90% 154%  313%  434%  919%  961%

15%  33% 48% 84%  218% 303%  886%  929%

2.0 0018 (0.707 0450 (0.895 1556 (1173 4279 (1.329
-0852 (0.779 -0358 (0.989 0909 (1299 4070 (1.450

24%  53% 98% 169%  426% 543%  980%  990%

07%  16% 41%  64%  271%  351%  954%  974%

4.0 0018 (0503 0497 (0.755 1714 (1090  4.686  (1.297)
1144 (0564 —0598 (0.842 0790 (1215  4.220 (1433

12%  22% 73% 131%  482% 609%  991%  998%

01%  02% 21%  30%  220% 314%  970%  980%

Ftest 51% 101%  695% 792%  997%  999%  1000% 1000%
200 025 0007 (0.915  0.301 (0.95) 1080 (1015  3.018 (0.970
—-0.308 (0.964 0010 (1002 0855 (1.07) 2974 (1016

43% 96% 79% 156%  288%  426%  918%  956%

24%  56% 57% 111%  237%  349%  903%  948%

0.5 0012 (0.901) 0425 (0974 1520 (1109 4227 (1134
-0430 (0.95) 0017 (1029 1205 (1174 4164 (1189

54% 96%  118% 185%  442% 568%  987%  994%

25%  55% 71% 123%  345% 458%  983%  991%

1.0 0015 (0.856 0596 (1.011) 2129 (127) 5898 (1.397)
—~0.604 (0.905 0024 (1072 1685 (1347 5804 (L.467)

45% 82%  150% 237% = 624%  726%  998%  999%

15%  33% 75% 125%  482%  592%  997%  998%

2.0 0016 (0.763  0.807 (1057  2.877 (1481  7.944 (1725
—-0.848 (0.809 0005 (1123 2247 (1579  7.780 (1816

29% 66%  192% 278%  795%  863%  1000% 1000%

0.6%  14% 83% 131%  629%  719%  1000% 1000%

4.0 0019 (0558  0.949 (0.967)  3.364 (1496  9.245 (1.830
-1153 (0596 -0.150 (1030 2461 (1593  8.868 (1935

0.9% 25%  208% 310%  875%  931%  1000% 1000%

01%  01% 66% 99%  695%  770%  1000% 1000%

Ftest 52% 106%  931% 969%  1000% 1000%  1000% 1000%

The first column relates to the null hypothesisrst, the mean of our test
statistic is very close to zeya.e,, our test statistic is nearly unbiasedespec-
tive of the smoothing parametésee Remark 3 This is in sharp contrast with
the FL test statisticwhich is always negatively biasgdp to —1.15. Second
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the standard deviations of both test statistics are smaller tharnTbieis due
partly to the fact that the simple variance estimd®®) always overestimates
the varianceAlthough both tests exhibit empirical sizes that are smaller than
the nominal onesthe FL test can be considerably undersized as a result of its
strong negative biasThe size of our test is much closer to its nominal size
especially for bandwidths that are somewhat smaller than the rule of thumb
The empirical level as a function of the bandwidth displays an inversé&
shapeas for very small bandwidthis,, our statistic is identically zero

Regarding the linear alternativewe find that the FL test statistic is more
variable than oursMoreover our test statistic has a higher mean than the FL
one which is due to the negative bias of the latfEhis leads to a systematic
higher empirical power for our teshs expectedpower is increasing with the
magnitude of the departure from the nuk measured byg. Our test can de-
tect small linear alternatives such R&P;, unlike the FL testwhich has close
to trivial power in this situationFurthermorethe power performance of our
test can equal that of the Fisher téseeDGP;), although the design is ideal
for the latter Our results also indicate that the highest power is attained for our
test for the largest tried bandwidtwhich is expected because the alternative is
linear and the kernel smoother is a straight line for large bandwittbwever
using an infinite bandwidth should ultimately lead to a trivial power

Table 2 has the same structure as Table 1 and reports results relative to the
sinus alternativesAs in Table 1 our test statistic exhibits a larger mean and a
smaller variance than the FL one and hence achieves higher power in all cases
The empirical power as a function bf displays an invers& shape for both
tests As shown in Figure Jlour test uniformly dominates the FL test for a large
range of bandwidthsThe maximum power of our test can be up to 50% higher
It is achieved for a bandwidth that increases with the smoothness of the alter-
nativg as could be expectedHence our results suggest that the bandwidth
should be adapted to the frequency of the alternatiagnely the higher the
frequencythe smaller the bandwidth should.be

For comparative purposewe also provide the empirical rejection rates of
the F-test assuming a linear specification\t The lowest frequency alterna-
tive DGP; is close to a linear specification in the rangel,1]. Given thatw
is N(0,1), the F-test therefore performs quite welvhereas our test has ac-
ceptable power up to 78%-or high frequency alternativd3GP, and DGPs,
the F-test has trivial power irrespective of sample simdereas our test can
attain an empirical power of 50% or 68%espectivelyfor a moderate sample
size of 200

In summary our test has better size and power than the FL test in all cases
and seems to exhibit good properties for a wide range of nonlinear alternatives
Our Monte-Carlo study points out the importance of the bandwidth choreere
is clearly a trade-off between size and powklbetter sized test seems to be
achieved by slight undersmoothing relative to the rule of thuwtiereas better
power is obtained in most cases by oversmoothing of the variable under test

https://doi.org/10.1017/50266466600164059 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466600164059

NONPARAMETRIC SIGNIFICANCE TESTING 587
TABLE 2. Sinus alternatives
n c DGR, DGP; DGP; DGR,
100 Q25 0563 (0.979 0564 (0.982 0571 (0.984 0540 (0.971)
0.288 (1.069 0.291 (1.072 0.297 (1.077) 0.265 (1.065
150% 247% 150% 253% 154% 254%  144% 243%
112%  199% 117%  202% 124% 204%  110% 191%
0.5 0.705 (1.007) 0.798  (1.041) 0.815 (1.053 0.773 (1.039
0.319 (1.100 0422 (1.136 0441 (1152 0397 (1139
182%  285% 220% 317% 220% 326%  206% 312%
126% 2Q1% 160% 233% 160% 235%  146% 226%
1.0 0598 (0.914 1010 (1086 1093 (1130 1.055 (1.116)
0.025 (1.000 0.478 (1.189 0571 (1.234 0532 (1222
132%  222% 266% 375% 299% 408%  286%  388%
6.6% 116% 168% 238% 187% 269%  181%  262%
2.0 —0.030 (0.705 0.848 (0.944) 1232 (L1249 1.296 (1.155
-0.906 (0.779 0.056 (1.033 0.479 (1.228 0555 (1.265
22%  44% 181%  279% 319% 440%  352% 461%
0.6%  10% 75% 125% 165% 230%  178% 260%
4.0 0.050 (0.497) 0.046 (0.541) 0.713 (0.79) 1071 (0.922
-1.107 (0558 -—1.116 (0.602 —0.384 (0.871) 0.013 (1.018
0.7%  23% 13%  28% 118% 206%  234% 363%
02%  02% 02%  03% 25%  43% 65% 108%
F-test  46%  99% 55%  99% 222% 321%  6Q08% 723%
200 Q25 1068 (1.054) 1.078 (1.058 1.073 (1047 1005 (1033
0.813 (1.109 0.825 (1114 0.821 (1103 0.750 (1.089
29.8%  416% 289%  422% 294% 421%  275% 398%
236% 336% 231%  339% 229% 339%  213% 312%
0.5 1361 (1.148 1482 (1172 1498 (1165 1408 (1.142
0.996 (1.209 1126 (1.235 1143 (1229 1051 (1.205
386% 505% 426%  545% 436% 550%  402% 526%
289%  393% 323%  434% 329% 435%  297% 406%
1.0 1305 (1.113 1911 (1.299 2027 (1339 1937 (1313
0.759 (1.172 1401 (1.367) 1525 (1412 1433 (1.386
36.3% 478% 540% 666% 578% 700%  551% 662%
215% 316% 395% 497% 434% 532%  410% 504%
2.0 0144 (0.799 1.837 (1.238 2418 (14600 2465 (1.482
-0.715 (0.847) 1.076 (1.304) 1691 (1540 1746 (1566
47%  86% 524%  644% 678% 773%  690% 777%
1.0%  21% 301%  408% 471% 565%  482% 583%
4.0 0.088 (0571 0.362 (0.703 1722 (1136 2.299 (1.305
-1.078 (0.612 —0.792 (0.745 0.647 (1.200 1261 (1.382
15%  32% 59% 106% 474% 614%  671% 768%
0.1%  02% 04%  11% 187% 265%  352% 447%
F-test 51% 103% 53% 112% 340% 466%  856% 913%

https://doi.org/10.1017/50266466600164059 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466600164059

588 PASCAL LAVERGNE AND QUANG VUONG

power
(S

Empirical
T

— [V test
- - Fltest ||
o e Fisher test

Bandwidth constant

Ficure 1. Empirical power of competing test®GPs with n = 200 at 10% level

Our limited experiments suggest that the usual rule of thgow 1) leads to
an acceptable compromise between size and power

Our procedure has been implemented within the XploRe environment by
Pascal Lavergne and Gilles Teyssiésee http//www.xplore-statde/help/
Ivtesthtml).

4. PROOFS

Notations: In what follows f; = f1(Xy;), fo = f2(Xy), i = ri(Xyp), e =
r2(Xa), U =Y, = Ii, Uy =Y, — Iy, di = d(Xy), andZ; stands for(Y;, Xz), i =
0,1,...,n. Also K = |K| andL = [L| andi, j,k,1,i’,j’, k’,1" refer to indices that
are pairwise different unless stated otherwie letf = (n — 1) 3, Lo
and more generally for any index senot containingi with cardinality |1/,

fl=(n—-1-[1)7? ki ket Lnik-
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4.1. Proof of Theorem 1
AsY; — Y= (y — u) + (r; — rp), and asK(-) is even we have from(2.1)

1
Vi = n@ > — Ui) (U — up) Lk Loy K
a
2
+ n@ > (U — Ui) (1) — 1) Lk Loji K
a

1
+ @ é(ri — 1) (r; = 1) Lniclpy Kpj = 1+ 215 + 15,

where

n—-2 1 ( -2 1 N
|1: (2)2 iy IJ Knj * ——% 3 n(z)Eui(fiJ_fi)ujijnij

- 2
a a
2 fi 1
E] 2 ui(F = f)u Ly Koy + n@ > Uiy L Ly K
a a

1
- W Z Uj Uj Lk L e K

n—2
= —n [Mont 2031+ 1] —=2l13—= 2l 4+ 15— 116,

1 a
I, = W Ea) u; £ (rj = ) Ly Ky + RE) Ea: u (' = fi) (rj = 1)Ly Ky

1
T @ > U(ry = r) Lkl Knjg = o1 + 1o = 13
a
Propositions 1-11 study each of the preceding te@udlecting resultsit fol-
lows that
nhP/2V, = A, + 85nhP/2 ., + 6,vAihP2/20,(1),
NhP2/2[1; — Vy, ] = 87nhP2/20,(1) + 8,yAhP2/20,(1) + 0,(1),
nhPz/2|, = 52nhP/20,(1) + §,vihP2/20,(1) + 8, nhPz/2gM* Q) (1)
+0p(1),
nhP/21; = o,(1),
whereA,, -5 N(0, w?). Therefore
NhP2/2[V, =V, ] = 65nhP2/?0,(1) + §,yNhP2/20,,(1)
+ 8,nhP/2gM* 40O (1) + 0,(1).
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In case(i), nhP2/2[V,, — Vp,] = 0,(1) andnhP2/2y,, 45 N(Cu, w?), as
S.WAihP2/2 = (82nhPe/2)V2hP/4 = o(1)

and

§nnhp2/zg(m1+%) = (63nhpz/z)l/z(nhp2/2g2(m1+‘h))1/2 — 0(1)

In case(ii), nhP>2[V,, — Voa ] = 0,(87nhP2/2) andnhP2/2V;,, = §3nhP2/2[ u, +

op(1)], as
p2/4
S,VNhP2/2 = (§2nhP=/2) W = 0(62nhP2/2)
and
(nhP2/2g2(mu+ay) )1/2
nnhPe/2g(Mra) = (§ZnhP=/?) (62nhpe/2)1/2 = 0(85nhP=/2), u

4.1.1. Distribution of ¥,

PROPOSITION 1nhP/2\,, = A, + &82nhP/2u, + &,vnhP/2B,,
where un — w1, Ay 5 N(O,w3), and B, 5 2N(0,& — 62u?), with § =
im0 6y and & = E[uzd?(X,) fH(Xy) f7(X,)].

Proof Write Von = Ugn + Won — 6n, where Hn(Zi,Zj) = Uy f; fj Knij’ 0, =
E[Hn(Z1, Zo)], Won = (2/n) X E[HA(Z;, Z0)|Z;] and

n\1 B
Uon = <2) EHn(Zi,Zj)

i<j
n -1
= <2> 2 {H(Zi,Z)) = E[H(Zi, Z0)1Zi]1 = E[Hn(Zo,Z)1Z)]+ 6,}.
i<j
0]
0n = E[u; fiu; f; Ky 1 = E[(uy + 8,0 fi (Uy + 8,0 Ky ]
= 3§E[di f; dj fj Knij] = 3§/~Ln,
with pn = p = E[d?(X,) f2(X1) f2(Xo)], as8nd(Xz) f1(X1) f2(Xz) € UP2 and

by Lemma 1
(ii) Distribution of Wy,

E[E?(Hn(Z;,Z0)1Zi)] = E[U? f2E2(ug fo Kol Z))]
= SFE[U? fi2E?(dy fo Kiol Z))] = 83,

with £, — & = E[ufd?(X;) f1(X1) fF(X)], @s8,d(X2) fa(Xa) f2( X2) € UP> and
by Lemma 1 Now E|E[Hn(Z;,Z))|Zi]|” = E[uf " E” [uo foKpio| Zi ]| = O(1) =
o(n*/271) for 2 < v = 4, asE|Y?”| < . Thus by Theorem 71 of Hoeffding
(1948,

Wy, — 20,1 = 25N(0,é — 52u2).
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(i) Distribution of Ug,: As E[Hn(Zi,Z,-)|Zi] = 0, by Theorem 1 of Hal(19843,

E[GZ] + n'E[AF]

nhP2/2Uy, %5 N(0,w?)  if

where G,(Zi,Z)) = E[Hn(Zi,Zo)Hn(Z;,Z0)|Zi,Z;] and 02 = 2lim,_,.,

hP2E(H?2). By definition of Hn(Z;, Z;), the preceding condition is equivalent to

E[GI]+n'E[HA] _
E2[HZ] -

o(1), (4.1)

where Gn(Zi,Z;)) = E[Hn(Zi,Zo)Hn(Z},20)|Zi, Z;], and w? = 2limn
hPE(HZ). Let 02(Xp) = E(U3[Xy). As a?(X,) f2(X)F(X,) € UPs by
Lemma 1

hPE[HZ(Z;,Z)] = hPE[0?(Xy) 02 (X)) 2 F2K 5] = 072,

where w? = 2E[c*(X,) fAH (X)) T(X)][K?(s)ds As E(uf|X,)f(X,) X
f,(X5) € UP2 by Lemma 1

E[HA1 = E[uful £ f7K% 1= E[E(Uf|Xy) fE(Ut Xy fi K 1 = O(h—3z2),

As Gn(Zi,Z)) = v fiyf; E[UZ(XZ,O)flz(xl,O)KniOKnj0|X2i7X2j], we have by
Lemma 1

2
E[GE] = f%% fiZUzzj sz[f”zz,oflz(xl,o)KnioKnjofz(xz,o)dxz,o]

X fy1 f dXy5 A

= hfzpszfzzi fiza-gj sz[fo'z(xzi —hg)fZ(Xy; — hs)K(s)

Xaj — Xai 2
X Kls+ B f,(X5 — hs)ds

X fyi Ty dXy; dXy

= h_pzfozzi fi202(Xy + ht) f2(Xy; + hty)

2
X [jo-z(XZi — h9) f2(Xy — hs)K(s)K(s+ t)fo(Xy — h9) ds}

X fy (X + ht) dX,; dt

2
= h—pzf[o-Z(Xz)]4f18(xl)f24(x2) dxzf |:fK(S)K(5+ t) d5:|

X dt+ o(h™P)
=0O(h™2),

wheres; andt; denote the firsip; elements ofs andt. Thus condition(4.1)
holds ash — 0 andnhPz — co. Collecting resultsProposition 1 follows H
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4.1.2. U-Statistics Let U, = (1/n™)3,H.(Z,...,Z;, ) be an arbitrary
U-statistic where theZ;’s are ii.d. but H, is not necessarily symmetri¢dhen

) 1 zg n@m-c) %
- ):<_> 1(Ag,Ay)
n n(m =0 ¢ [Aq[=c=|Az] u
" (©
=20 D 1(AyLAy), “2)
& [Aq]=c=|A,]

where > (© denotes summation over sefs and A, of (ordered positions of

lengthc,
(A1, A;) = E[Hn(Z,,...,Z;, )Ha(Z Z )1,

1170 1122 Tm

and thei’s in positionA; coincide with thegj’s in positionA, and are pairwise

distinct otherwiseNote that this formula corrects equatioh.l) in Stute(19917).

In what follows we leté. = > (©1(A,,A,) and intensively usé4.2) to bound

E(U2). Indeedif Z. denotes the vector of commdiy's, we have by condition-

ing onZ,

12(A1,A;) = E?[E[Hn(Zi,,.... Zi )| ZJE[HA(Z),, ..., Z;, )| Zc]]
=E[E*[H\(Z;,...,Z )IZI]E[E?[HA(Z;,, ..., Z; )] Z:]]

jpoe e

by Cauchy—Schwartz inequality

PROPOSITION 2 nhP2/2| ; = §,yAihP2/20,(1) + 0,(1).

Proot 1,3 is aU-statistic with kerneH(Z;, Z;, Z;) = u; fiu Ly; Ky;. To use
(4.2), we need to compute the correspondiigc = 0,1,2,3.

(i) £&2 = 0O(g ™). Indeed we have
E(HnlZi,Z)) = u fi Ky E(u Ly [Z) =0,
E(H,lZi,Z)) = ui fiu E(Ly Kyl 2, Z)),
E(HnlZ;,Z) = u Loy E(U; fi Ky [Z)) = 8, Ly E(d fi Ky [ Z)).

Then usingK = |K| andL = |L|, we have by successive applications of
Lemma 1

E[E?(Hn|Zi,2)] = E[U? f2UPE(Ly Koyl Zi, Z)E(Loy Ky 121, 2))]
= O(g ™) E[U fPUPE(L oy Kny 1 Zi, Z)E(K 124, Z))]
= O(g™P)E[U? fi2ufL oy K F2(X5)] = O(g™™),
E[E?(H,|Z;,Z)] = SFE[Uf L E(d; fi Kyl Z))]
= SZE[ufL3; d2 £ 2 (Xy)]
= 820(g P E[UPL  d? 2 17(Xg)] = O(g™™).
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(i) &1 = O(82). Indeed E(HalZ)) = E(HplZ) = 0 and E(H,|Z) = 8y
E(d, fi Lnjl Knij ‘Z|) Then

E[E2(H,Z)] = 8FE[UPE?(d; f Ly K1 Z))]
= O(ar%)E[UFEZ(Lnn d; f; 5, 12))] = O(87).

(iii) E[H,] = 0. Thusé&y = 0.
(iv) €3 =0(g Pth™P2), asE[H?Z] equals

E[u?u? f2LE; KS1 = O(g Ph P2)E[u?u? f2L o K 1= O(g~PthP2).
Collecting resultsE(nhP2/2], 5)2 = §2nhP20(1) + hP/gP0O(1) + O(ngP) ™t W
PROPOSITION 3 nhP/2|, 5 = 0,(1).

Proot 1,5 is aU-statistic with kerneH(Z;, Z;, Zy, Z;) = uU; LyicLnj Knjj-

(i) €3 =0(g ?M). Indeed we have

E(H,lZ,Z;,Zy) = ueLoi Ky E(U Ly 1Z)) =0,

E(HWZi,Z,Z) = u Ly Ky E(uc Lyl Zi) =0,

E(HnlZi, 2, Z)) = uuy Lo E(Liy Ky 12, Z)),

E(Hn|ZJ-,Zk, Z)) = uy Loy E(Lyi Ky |Z]-,Zk).

Then we have by successive applications of Lemma 1

E[E?(Hn|Zi,Z, Z))] = E[URUPLEE(Ly Ko | Zi, Z)E (Lo Ky 123, Z))]

= O(g?P)E[UgufL i E(L oy K| Zi, Z))E(K | 24, Z))]
= O(gizpl)E[uEulanikLnjl Koij T2 ] = O(g—2m),

E[EZ(Hn|Zjazk7 Z)] = E[U§U|2|—r21j| Ez(LnikKnij |Zj,zk)] =0(g~%™).

(il) &2, =0(g™P). Indeed we hav&(H,|Z;,Zj) = E(HnlZ;,Zy) = E(HWZ;,Z)) =
E(HnlZ;,Zy) = E(HalZ;,Z)) = 0 andE(Hn| Zy, Zy) = Uty E(LnikLnj Knij| Zi, Zy),
and
E[E*(HnlZ, Z))] = E[uZuf E(LnicLnj Knij| Zis ZDE(LnieLngt K| 2, Z))]

= O(g’pl)E[uEuFE(LnikLn“ Kij |Zk,Z|)E(Lnjr| Knijr|Zk, Z)]
= O(g™P)E[URUPL nikL oy Ky 71 = O(g ™).

(i) & =0.

(iv) E[H,] = 0. Thusé&, = 0.

(V) €4 =0(g ?hP2), asE[H?Z] equals
E[uguf L3 L5 K1 = O(g™2Pth ) E[UR UL L oy Ky ] = O(g™2Ph™P2).

Collecting result€€(nhP2/2|, 5)? = (hPz/gP)[O(1) + O(ngP) ] + O(ngP:) 2 M
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PROPOSITION 4 njP2/2|, g = §2nhP2/20,(1) + 0,(1).

Proof (n — 3)l,6 is a U-statistic with kernelH,(Z;, Z;, Z,) = uju;Lni X
LnjkKnj. Using a reasoning similar to the one followed in Propositign 3
it is not difficult to show that this U-statistic is such thaté; =
O(g2»h~2%), & = O(g~?h~%) + O(g ™h2%), £ = O(h~2%), and
E[H,] = O(82g ™). Hence E(nhP’?l )2 = O(82nhP2/2)2(ngP+)~2 +
O(nhP2)~1 + O(n?gPhP2)~1 + O(ngPr)~2 + O(ngP) 2(nhP2)~%, [

PROPOSITION 5 nhP/2l, ; = §,viihP2/?0,(1) + Snnhpz/zg(ml+ql)0p(1) +
0p(1).
Proot 1, is aU-statistic with kerneHn(Z;, Z;,Z,) = u; fi(r; — ;) L Ky«
(i) £&2=o0(h7P2) + o(g~P). Indeed we have
E(H,1Z;,Z) = u i Ky EX(r; — 1)L 1 Z)),
E(HnlZi,2Z) = u G EW(r; — r) Ly Ky Zi, Z)),
E(HalZ;,Z)) = 8,(r; — 1)Ly E(d: f Ky [ Z)).

First, we use the fact tha&[(r; — r))Ly|Z;] = O(g™* %)) = o(1) uniformly in
Z; by a standard Taylor expansion argumesat that

E[E?(HnlZi,Z)] = E[Uf fPKEE>((r; — 1)Ly [Z))]
= O(h™P)E[u? fiZKnij Ez((rj —r)LylZ)]=o0(h7P2).
Now, by successive applications of Lemma 1
E[E*(H,1Z,Z)] = E[u? f2E((r; — 1)Ly Ky Zi, Z))
X E((rj = r)Lpn Knj 1 Zi, Z))]
= 0(g P)E[WF2E(r — nLyy Knil Zi, Z))
X E([ry = n|KnirlZi,Z))]
=o0(g™™),
E[EZ(Hn|ijZ| )= SEE[(rj - |’|)2L%j| E2(d f; Knij\zj )
= O(839 P)E[(r; — ) 2Ly d? 21571 = o(g ™).
(i) &, =0(g?Mm*aw)) + o(62). Indeed by a similar reasoning t@),
E[E?(HnlZ)] = E[uf fi2E2 (Ko E((r; = 1)L [Z))1Z))]
= O(g*M*W)E[uf fPE*(K )] = O(g?mFa),
E[E?(HalZ))] = E[E?(u; fi(r; — 1)Ly Ky [Z))] = O(g?mraw),
E[E?(H,|Z)] = E[E*((r; = r) Loy E(u; fi Ky 1Z))12))]
= SAE[EZ((r; — )Ly d; f; f512))] = 0(57).

https://doi.org/10.1017/50266466600164059 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466600164059

NONPARAMETRIC SIGNIFICANCE TESTING 595
(iii )
E(H,) = E[u; i (r; = r) Ly Ky ]
~ 8, E[(r; — r)Lpy d, T 5]
~ 0(8,9'™ " ®)E[d, f, f,;] = O(5,g ™" ).
(iv) é3=o0(g ™h™"2), asE[HZ] = E[u? fi?(r; — r))2LE; K51 = o(g™Ph™P2).

Collecting results E(nhP2/2], )2 = §2n2hP20(g2™* %)) + nhP2O(g2Mm*®) +
0(82nhP2) + o(1) + o(hP/gP) + o(ngP) L [ |

PROPOSITION 6 nhp2/2I2,3 = 0p(1).

Proof |273 is a U-statistic with kel’neHn(Zi,Zj,Zk, Z|) = Uk(rj - r|)|_nik X
Ly Knj. Using a reasoning similar to the one followed in Propositiorit %
not difficult to show that thidU-statistic is such thag, = o(h P2g~2P1), &, =
o(gPth™P2) + o(g™2), &, = o(g ™), &1 = O(g*™* %), andE[H,] = 0.
Hence E(nhP/2l, ;)2 = nhP20(g>™*®) + o(hPy/gP)[1 + (ngP)t] +
o(ngP)~* + o(ng™) "2 u

PROPOSITION 7 nhP/2|, = nhP2/20,(g2M*%)) + o,(1).

Proof |5 is aU-statistic with kerneHn(Z;, Z;, Zy, Z)) = (r; — r)(r; — 1) X
LnikLnji Knjj. Similarly to the proof of Proposition 5 fa, 3, we can show that
é4 = o(h™P2g™2P1), &5 = o(h™Pg™P) + o(g™%™), &, = o(g™™), & =
o(g?™*a)) On the other hand
E[H,] = E[(r; =) (r; = r) Lo Loy Ko 1 = O(g2(m*a),
so thatE(nhP2/21;)2 = n?hP20(g*M %)) + o(1). u

4.1.3. The Remaining Terms

PROPOSITION 8 nhP2/2| ; = §2nhP2/2g (1) + 8,vihP2/20,(1) + 0,(1).

Proof We denotg fi — f;) by Afi!. We havel,; = (1/n®) 3, u, Afu, f, Ky
so that

1\2 : »
E(Ifl) = <W> |:§ Ui AfiJuJ' fj ij:||:§ Ui!Afi! Uj’fj’Kni’j’}’

where the first{respectivelythe seconglsum is taken over all arrangements of
different indices andj (respectivelydifferent indices’ andj’).

Let X, be theo-algebra generated by all thé;’s and A,, be E[A?f|Z;,
Z;,Z;, Zj'], which iso(1) uniformly by Lemma 2We consider three situations
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(i) All indices are differentn® terms
Ely Afijuj f; Knj ui/Afi';,uj/fj/Kmfj/]
= SAE[AFf AR £ E(dyd dir o Ky Koy X0)]
= SAE[f, £, dd d o Ky Koy E(ARARY | Z0,2,,2,0, 2]

= 8;‘1/\,1 E| f] fj'di dj di'dj’ Knij Kni'j’

= 0(8%A,).
(i) One index is common t§i,j} and{i’,j’}: 4n® terms
(i, = |) E[U,ZAf,]UJ f] KnijAfij,Uj’fj’Knij']

Xyl

= 63 A0 El f; fj’UiZdj i Ky Knij | = O(82A,),
(j"=1) Ely, AfijUjijZKnijUi’Afi“<ni’j]

= 62E[Af f,2A% E(d uPd, Ky K | X0)]

= 85 A Elfi2d uPd Ky Ky | = O(83A,),
(i"=])  E[u AR P Ky A Uy f K]

= 82E[AF AR £ E(d uPdy Ky K| X0)]

= 82X,E[f £ d U2dy Ky Koo | = O(82A,).

The casg’ =i is similar toi’ = j.
(iii) Two indices in common téi, j} and{i’,j’}: 2n® terms We have

E[u?u?(Af))?2KZ] = O(A,/hP) and

E[uZu?Af Aff £ K2 1= O(A,/hP2).
Therefore

E(nhP2/2] ;)% = §2n%hP20(A,) + 62nhP20(A,,) + O(A,).

The proposition then follows from, = o(1) uniformly (see Lemma R |
PROPOSITION 9 nhP/2l, , = §2nhP2/?0,(1) + §,yAihP2/?0,(1) + 0,(1).

Proof The proof is very similar to the proof of Proposition 8 figr; and is
not reported

https://doi.org/10.1017/50266466600164059 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466600164059

NONPARAMETRIC SIGNIFICANCE TESTING 597

PROPOSITION 10 nhP/2l, , = §2nhP2/2g (1) + 8,vihP2/20,(1) + 0,(1).

Proof We denote (f*' — f) by aAf’. We havel,, = (1/n®) x
Ea U; Afij,l U, Lnjl Knij and

o
E(1£4) =< (3)> [EU Af Ly Knij:||:2 Uy Af) uI’Lnj’I'Kni’j’:|,
a

where the first(respectivelythe secongsum is taken over all arrangements
of pairwise different indices, j, andl (respectivelypairwise different indices
i’,j’, andl’). Let X, be theo-algebra generated by all thg;’s and wherei,,

is E[AzfJ '|Z,, Zi,Z,,Z,Zy, 2], which iso(1) uniformly by Lemma 2 We
consider four situations and employ a similar strategy as in the proof of
Proposition 8

(i) All indices are differentn® terms
Ely Mij’I Uy Ly Kiij Ui Afi]; ! Uy L K]
= 6 E[LnJILnJI d dld dI KanKnI] E(Af“ fJ v |Z|, ]7Z|7ZI s & ,ZI )]
= 0(82A,).

(i) One index is common t({)l i,1yand{i’,j,1'}: 9n® terms For case(i’ = i),
ELUP AR Uy Loy Koy AR Uy Loy K1 = 82ELAR Loy AR Loy u2dy dy X
Kpij Knij- 1 = O(82 A,,). Similar computations for the other cases lead to the same
result

(i) Two indices are common tg,,1} and{i’,j’,1’}: 18n“ terms

(i=i" and j=j")

E[u?Af U Loy AF Uy Ly K21 = 82E[AF) Loy AR Loy u?d d K31
= 0(82,/hP2) = O(A,,/hP2),

(i=i" and 1=1")

ELUP AR U2 Ly K AR L K 1= (A /g P E[UZUPL oy Ky K ]
=0(A,/g"),

In other casessimilar computations lead to eith€(A,/gP:) or O(A,,/hP2).
(iv) Three indices are common {@ j,1} and{i’,j’,1'}: 6n® terms For instanceif

(i=i"j=j,andl =1, E[u3(af"")2u2 L2 K51 = O(A,/(gPhP2)). In the

remaining caseghe corresponding expectations are@llA,,/(gPthP2)).

Therefore from(4.2) we get
E[nhP/21 ]2 = §#n>hP20(A,,) + 82nhP20(A,,) + hP/gPO(A,) + O(A,)
+(ngP)tO(Ay).

The proposition then follows from,, = o(1) uniformly (see Lemma 2 u
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PROPOSITION 11 nhP/2l, , = §2nhP=/20,(1) + §,viihP2/20,(1) + 0,(1).

Proof The proof is very similar to the proof of Proposition 10 fey and is
not reported

4.1.4. Lemmas

LEMMA 1. For any function (-) € UP and any integrable kernel K),

fl(X)—K( H >dX—I(x)fK(u)du

Proof This result comes from the well-known Bochner lemma

sup - 0.

xERP

LEMMA 2. If the density {(X,) € U™ and ng” — oo, E[4?%])]Z,
Z,,21,,Z;] = o(1) and E[A%f"'|Z,,Z;,2,,Z,/,Z;:,Z,] = o(1) uniformly in the
indices

Proof From the definition ofAf,’,

E[A%)1Z,2;,2,,2,] = E[(f' - E(f)12,,2,,2,,2,))?2,,2,, 2, Z;']
+[E(fl|zl, J7Z|’azj’)_fi]2'

Becausd,! — E( f;j|Zi,Z,-,Zi',Zj') = (=2 Sigqijini (Laik — E(Lni Z0),
whose summands areonditional onZ;, independent with zero mean

Elf -E(f12,2,2,2))?Z,2,Z,Z]

=(n—272 3 E(L%lzZ)=0(n"g ™).
ke {i, j,i%j"}

As
E(fl|Z|’ i ATR J)
= (=2 Ly + Loy + (n— HE(Lil Z)],

(E(f)Z2,2,,Z,2) - ]2

1 2
:[n_Z(Lnii’ Lnij f)—i——E(|_nlk fi|Zi):|

=[O(n"*g™P) + O(n"*) + o(1)]* = o(D).

The proof for the second part is similar and is therefore not reported H
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4.2. Proof of Corollary 1

Letui =Y, —c. As Y, — Y, = (U — uy), and asK(-) is even we have

. l 2 1
Vi = @ 2 U K — i 20U UKy + g 2 U Ky
n a n a n a

=Vgn — 2V, + V.

Each of these terms can be studied using the same techniques as in the proof of
Theorem 1so that we have

NhP2/2vz, = A% + 82nhP2/2% + §,yAihP2/2B:,

whereA; % N(0, 0*2), uk — w*, B: -3 2N(0, £* — §21*2), with 8 = lim,,_,., 8,
and¢&* = E[(Y — ¢)?d?(X,) f 2(Xz)], nhP/2Vj = §,yRhP2/20,,(1) + 0,(1) and
nhP2/2V;: = 0,(1). Collecting resultsit follows that

NhP/2V = AL + 65nhP2/2p + 8,yAhP2/20, (1) + 0,(1),

whereA; 5 N(0,w*2?) andu’, — w*. The end of the proof is similar to that of
Theorem 1 ]

NOTES

1. Another approach uses empirical processes based on residuals of the parametritse®del
Bierens 1982 199Q Diebolt, 1995 Stute 1997). Extension of the empirical process approach to
the comparison of two nonparametric models would inevitably also rely on smoothing techniques

2. Unpublished related work includes Ait-Sahal&ickel, and Stoker(1994), Gozalo (1995,
and Delgado and Gonzalez-Manteid®98.

3. Fan and Li(1996a also impose that the two kernetq-) andL(-) are product kernels with
the same univariate kernel

4. As we consider local alternatives and a finer decompositioV,gfthis prevents us from
using Fan and Li'¥1996 proofs

5. One could also consider a more general form of kernel estimators as in Roli#&3).

6. Itis always possible to modify our test statistic and make it consistent against some chosen
local yn-alternativesThis is done by adding to our test statistic a suitdfikest statistic based on
the estimated residuals and by deriving the resulting limiting distribution

7. In our setupwe havem; = 2 andq; = 1, so that our bandwidths satisfy the conditions of
Theorem 1
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