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1. Introduction

Let Ω ⊂ R
N , N � 2, be a smooth and bounded domain. Yudovič [30], Pohožaev

[26] and Trudinger [29] proved, in an independent way, that

u ∈ W 1,N
0 (Ω) implies

∫
Ω

e|u|
N′

dx < ∞, (1.1)

where N ′ = N/(N − 1). Moreover, for any higher growth, the corresponding
integral can be infinite for a suitable choice of u. After that, Moser [23] improved
this assertion, showing that if u ∈ W 1,N

0 (Ω), then

sup
‖∇u‖

W
1,N
0 (Ω)

�1

∫
Ω

eα|u|N′
dx

{
� c|Ω|, if α � αN

= ∞, if α > αN
(1.2)

where αN = Nω
1/(N−1)
N−1 , c is a constant which depends on N , and ωN−1 is the

measure of the unit sphere in R
N . Inequality (1.2) is now called Trudinger–Moser
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inequality and the term eαN |u|N′
is known as critical Trudinger–Moser growth.

Several generalizations, extensions and applications of the Trudinger–Moser
inequality have been given in recent years, we quote for instance [1–3,7,13,14,
24,25,27]. An equation where (1.2) plays a role in dimension N = 2 is{−Δu = h(x, u) in Ω,

u = 0 on ∂Ω,
(1.3)

where h(x, u) = λueu2
and λ > 0 is a free parameter. Existence of solution for

equation (1.3) has been considered in Ω ⊂ R
2 in many papers with h in a more

general form, where h(x, u) is continuous and behaves like exp(α|u|2) as |u| → ∞,
see [2,4,10,13–15,22,27]. The Trudinger–Moser inequality combined with the
variational approach is a powerful tool to obtain existence of solution. This is the
reason why most of papers treat problem (1.3) by means of variational meth-
ods, and then usually it is assumed that h has subcritical or critical growth.
In [10], the authors considered the subcritical problem (1.3) with a small sub-
linear perturbation on the nonlinearity, without imposing any extra hypotheses
like Ambrosetti–Rabinowitz conditions (or some additional conditions) to obtain
Palais–Smale or Cerami compactness condition. For elliptic systems, we quote [11].
For a related problem in higher dimensions, consult [8]. The goal of this paper is
to study problems where the function h has supercritical growth, meaning that for
every σ > 0,

lim
s→∞

|h(x, s)|
eσs2 = ∞ uniformly in x. (1.4)

More precisely we consider the following problem⎧⎨⎩−Δu = λuq(x)−1 + f(x, u) in B,
u > 0 in B,
u = 0 on ∂B,

(1.5)

where B ⊂ R
2 denotes the open unit ball centred at the origin, λ > 0 is a parameter,

q ∈ C(B) is radially symmetric and such that

× 1 < q− � q(x) � q+ < 2, q−, q+ ∈ R, (1.6)

f : B × R → R is a continuous function radially symmetric in the first variable
(1.7)

satisfying the following condition

0 � sf(x, s) � a1|s|p(x)exp(β|s|2+g(x)), (1.8)

where

β > 0, p, g ∈ C(B) are radially symmetric functions and a1 > 0 is a constant
(1.9)

such that

2 < p− � p(x) � p+ < ∞, p−, p+ ∈ R, (1.10)
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and either g ≡ 0 or g verifies the following two conditions

(g1) g(0) = 0 and g(x) > 0 for x �= 0,

(g2) there exists some c > 0 and some γ > 2 such that g(x) � c/(− log |x|)γ for |x|
near 0.

From now on, when a function defined in B is radial, for convenience, we will use
the same notation to represent the function on x or r = |x|.
Notice that the function g(r) = rα, with α > 0, satisfies conditions (g1) and (g2).

We are able to state our main result.

Theorem 1.1. Suppose (1.6)–(1.10) and that either g ≡ 0 or satisfy (g1) and
(g2). Then there exists λ∗ > 0 such that for every λ ∈ (0, λ∗) problem (1.5)
possesses at least one positive radially symmetric solution uλ ∈ H1

0 (B). Further-
more, ‖uλ‖H1

0 (B) → 0 as λ → 0.

In some particular cases the solution does not exist for λ > 0 large.

Theorem 1.2. Assume the hypotheses of theorem 1.1. If f(r, t) = tp(r)−1

exp(βt2+g(r)) and λ > 0 is sufficiently large, then problem (1.5) has no positive
radially symmetric solution uλ ∈ H1

0 (B).

Remark 1.3. In fact, since p, q and g are bounded from above and from below, by
the method of the proof of theorem 1.2 we observe that the nonexistence result is
valid for nonradial solutions too.

Notice that the exponential growth in (1.8) goes beyond the usual Trudinger–
Moser critical behaviour, since 2 + g(r) � 2. Notice also that f in (1.7)–(1.8)
behaves like (1.4). We point out that Ngô and Nguyen [24] studied problem (1.5) for
λ = 0, but imposing the Ambrosetti–Rabinowitz condition on the function f . We
can solve (1.5) under weaker assumptions on f using the Galerkin method, which
consists of studying approximate problems. For the existence result in a similar
supercritical regime, we cite [7]. In our approach, it is important to mention that it
is necessary to verify regularity up to the boundary for the approximate solutions
un in order to apply the comparison principle and guarantee that the approximate
solutions are bounded away from zero. Thus, we can take the limit and ensure that
the limit solution does not vanish. To this matter, we also use an approximation
scheme in the nonlinearity, where f is replaced by an approximating sequence of
Lipschitz functions due to Strauss [28].

The paper is organized as follows. Section 2 contains some preliminaries, results
concerning to Lebesgue spaces with variable exponents and a comparison princi-
ple due to [19]. Section 3 is devoted to prove the existence of a solution to the
approximate problem. Thus, we present the approximating sequence of Lipschitz
functions and some important properties. Section 4 is devoted to the proof of the
main results.
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2. Preliminaries

2.1. Variable exponent

We start this section presenting some results of the Lebesgue and Sobolev spaces
with variable exponents (we refer to [16, chapter 3] for the definition and properties
of these spaces). Set

L∞
+ (B) :=

{
y : y ∈ L∞(B), inf

x∈B
y(x) > 1

}
,

where B ⊂ R
2 is the unit ball centred at the origin. For any y ∈ L∞

+ (B), we define

y− = y−(B) := inf
x∈B

y(x), y+ = y+(B) := sup
x∈B

y(x).

For y ∈ L∞
+ (B), the space

Ly(x) :=
{

u : is real measurable,
∫

B

|u(x)|y(x)dx � ∞
}

is a Banach space equipped with the norm

‖u‖y(x) := inf

{
σ > 0,

∫
B

∣∣∣∣u(x)
σ

∣∣∣∣y(x)

dx � 1

}
.

Proposition 2.1. If u ∈ Ly(x)(B), ‖u‖y(x) = λ, then

• if λ � 1, then λy− �
∫

B

|u(x)|y(x)dx � λy+ ,

• if λ � 1, then λy+ �
∫

B

|u(x)|y(x)dx � λy− .

The embedding H1
0 (B) ↪→ Ly+(B) is compact and Ly+(B) ↪→ Ly(x)(B) is contin-

uous.

Proposition 2.2. If y ∈ L∞
+ (B) then

H1
0 (B) ↪→ Ly(x)(B)

is compact.

We denote by H1
0,r(B) the subspace of radially symmetric functions of the space

H1
0 (B) (which is the usual Sobolev spaces of radially symmetric functions on B),

i.e.

H1
0,r(B) = {u ∈ H1

0 (B) : u = u(|x|)}.
The following result was proved in [24, proposition 2.1].
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Proposition 2.3. Let g : [0, 1) → [0,∞) be a continuous function. If g satisfies
conditions (g1) and (g2), then there holds

sup
u∈H1

0,r(B):
∫

B
|∇u|2dx�1

∫
B

exp(4π|u|2+g(|x|))dx < ∞. (2.1)

The usual Trudinger–Moser inequality, introduced in [23,29], will be very
important for our purpose. Namely, given u ∈ H1

0 (B), then

eσ|u|2 ∈ L1(B) for every σ > 0, (2.2)

and there exists a positive constant L, such that

sup
‖u‖

H1
0(B)�1

∫
B

eσ|u|2dx � L|B| for every σ � 4π, (2.3)

where |B| =
∫

B
1 dx.

Remark 2.4. The following inequality from [24] do also holds by considering
suitable conditions on g,

sup
u∈H1

0,r(B):
∫

B
|∇u|2dx�1

∫
B

exp((4π + g(|x|))|u|2)dx < ∞. (2.4)

Analysing lemma 3.2 we conclude (2.4) would produce the same results of this
paper, because exp((4π + g(|x|))|u|2) � exp(β|u|2) for some constant β > 0. In our
context, since g is bounded, (2.1) is more general than (2.4).

2.2. Comparison principle

Let Ω be a bounded domain in R
2. Consider the problem⎧⎨⎩

−Δu = h(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(2.5)

Definition 2.5. For u ∈ C(Ω) with u � 0, we call u a weak supersolution of (2.5)
if ∫

Ω

(uΔφ + h(x, u))φdx � 0 for φ ∈ C∞
0 (Ω)+,

where

C∞
0 (Ω)+ := {φ ∈ C∞

0 (Ω) : φ � 0}.
A weak subsolution is defined by the reverse inequality. We call u a weak solution
if it is both a weak supersolution and a weak subsolution.

In the following, we present a comparison result due to [19] (see also [6]).
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Proposition 2.6. Let Ω be a bounded open set in R
2 and h : Ω × R → R be a

continuous function. Then the following are equivalent.

(i) For any x ∈ Ω, h(x, s)/s is non-increasing with respect to s ∈ (0,∞). For any
x0 ∈ Ω, 0 < a < b and ε > 0, it holds that

h(x, a)/a − h(x, b)/b > 0 at some x ∈ B(x0, ε).

(ii) Let B0 be any open subset of Ω and u, v a weak subsolution and a weak
supersolution in B0, respectively, and u, v > 0 in B0. If u � v on ∂Ω, then
u � v in B0.

3. Auxiliary problem

3.1. Approximate functions

To prove theorem 1.1 we approximate f by Lipschitz functions fk : B × R → R

defined by

fk(r, s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−k[F (r,−k − 1
k ) − F (r,−k)], if s � −k,

−k[F (r, s − 1
k ) − F (r, s)], if −k � s � − 1

k ,
k2s[F (r,− 2

k ) − F (r,− 1
k )], if − 1

k � s � 0,
k2s[F (r, 2

k ) − F (r, 1
k )], if 0 � s � 1

k ,
k[F (r, s + 1

k ) − F (r, s)], if 1
k � s � k,

k[F (r, k + 1
k ) − F (r, k)], if s � k,

(3.1)

where Fs = f and F (r, 0)=0.
The following approximation result was proved in [28] and uses the explicit

expression of the sequence (3.1).

Lemma 3.1. Let f : B × R → R be a continuous function such that sf(r, s) � 0 for
every s ∈ R. Then the sequence of Lipschitz functions (3.1) satisfies

(i) sfk(r, s) � 0 for every s ∈ R;

(ii) ∀ k ∈ N there is a continuous function ck(r) such that |fk(r, ξ) − fk(r, η)| �
ck(r)|ξ − η| for every ξ, η ∈ R;

(iii) fk converges uniformly to f in bounded sets.

The sequence fk of the previous lemma has some additional properties, similar
to the found in [8–11]. In what follows, we will denote g∞ = sup|r|�1 g(r).

Lemma 3.2. Assume (1.6)–(1.10) and that either g ≡ 0 or satisfy (g1) and (g2).
Then the sequence fk of lemma 3.1 satisfies

(i) ∀ k ∈ N, 0 � sfk(r, s) � K1|s|p(r) exp(β22+g∞ |s|2+g(r)) for every |s| � 1/k;
(ii) ∀ k ∈ N, 0 � sfk(r, s) � K1|s|2 exp(β22+g∞ |s|2+g(r)) for every |s| � 1/k,

where K1 is a positive constant independent of k.
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Proof. Everywhere in this proof the constant a1 is the one of (1.8).
First Case. Suppose that −k � s � −1/k.
By the mean value theorem, there exists η ∈ (s − 1/k, s) such that

fk(r, s) = −k
[
F
(
r, s − 1

k

)
− F (r, s)

]
= −kFs(r, η)

(
s − 1

k
− s
)

= f(r, η)

and

sfk(r, s) = sf(r, η).

Since s − 1/k < η < s < 0 and f(r, η) < 0, we have sf(r, η) � ηf(r, η). Therefore,

0 � sfk(r, s) � ηf(r, η)
� a1|η|p(r) exp(β|η|2+g(r))

� a1

∣∣∣s − 1
k

∣∣∣p(r)

exp
(
β
∣∣∣s − 1

k

∣∣∣2+g(r))
� a1

(
|s| + 1

k

)p(r)

exp
(
β
(
|s| + 1

k

)2+g(r))
� a1(2|s|)p(r) exp(β(2|s|)2+g(r))
� a12p+ |s|p(r) exp(β22+g∞ |s|2+g(r)).

Second Case. Assume 1/k � s � k.
By the mean value theorem, there exists η ∈ (s, s + 1/k) such that

fk(r, s) = k
[
F
(
r, s +

1
k

)
− F (r, s)] = kFs(r, η)

(
s +

1
k
− s
)

= f(r, η)

and

sfk(r, s) = sf(r, η).

Since 0 < s < η < s + 1/k and f(r, η) > 0, we have sf(r, η) � ηf(r, η). Therefore,

0 � sfk(r, s) � ηf(r, η)
� a1|η|p(r) exp(β|η|2+g(r))

� a1

∣∣∣s +
1
k

∣∣∣p(r)

exp
(
β
∣∣∣s +

1
k

∣∣∣2+g(r))
� a12p+ |s|p(r) exp(β22+g∞ |s|2+g(r)).

Third Case. Suppose that |s| � k, then

fk(r, s) =

⎧⎪⎨⎪⎩
−k
[
F
(
r,−k − 1

k

)
− F (r,−k)

]
, if s � −k

k
[
F
(
r, k +

1
k

)
− F (r, k)

]
, if s � k.

(3.2)

If s � −k, by the mean value theorem, there exists η ∈ (−k − 1/k,−k) such that

fk(r, s) = k
[
F
(
r,−k − 1

k

)
− F (r,−k)

]
= −kFs(r, η)

(
− k − 1

k
− (−k)

)
= f(r, η)

and

sfk(r, s) = sf(r, η).

https://doi.org/10.1017/prm.2021.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.4


298 Luiz F. O. Faria and Marcelo Montenegro

Since −k − 1/k < η < −k < 0 and k < |η| < k + 1/k, we conclude that

0 � sfk(r, s) =
s

η
ηf(r, η)

� |s|
|η|a1|η|p(r) exp(β|η|2+g(r))

� a1|s|
(
k +

1
k

)p(r)

exp
(
β
(
k +

1
k

)2+g(r))
� a1|s|

(
|s| + 1

k

)p(r)

exp
(
β
(
|s| + 1

k

)2+g(r))
� a1|s|(2|s|)p(r) exp(β(2|s|)2+g(r))
� a12p+ |s|p(r) exp(β22+g∞ |s|2+g(r)).

(3.3)

If s � k, by the mean value theorem, there exists η ∈ (k, k + 1/k) such that

fk(r, s) = k
[
F
(
r, k +

1
k

)
− F (r, k)] = kFs(r, η)

(
k +

1
k
− k
)

= f(r, η).

By using similar computations to conclude (3.3) one has

0 � sfk(r, s) = sf(r, η) =
s

η
ηf(r, η) � a12p+ |s|p(r) exp(β22+g∞ |s|2+g(r)).

Fourth Case. Assume −1/k � s � 1/k, then

fk(r, s) =

⎧⎪⎨⎪⎩
k2s
[
F
(
r,−2

k

)
− F

(
r,−1

k

)]
, if −1

k
� s � 0,

k2s
[
F
(
r,

2
k

)
− F

(
r,

1
k

)]
, if 0 � s � 1

k
.

(3.4)

If −1/k � s � 0, by the mean value theorem, there exists η ∈ (−2/k,−1/k) such
that

fk(r, s) = k2s
[
F
(
r,−2

k

)
− F

(
r,−1

k

)]
= k2sFs(r, η)

(
− 2

k
−
(
− 1

k

))
= −ksf(r, η).

Therefore

0 � sfk(r, s) = −ks2f(r, η) =−k
s2

η
ηf(r, η)

� k
s2

|η|ηf(r, η)

� a1k|s|2|η|p(r)−1 exp(β|η|2+g(r))

� a1k|s|2
(2

k

)p(r)−1

exp
(
β
∣∣∣2
k

∣∣∣2+g(r))
� a12p(r)|s|2
� a12p+ exp(β22+g∞)|s|2 exp(β|s|2+g(r)).

(3.5)

If 0 � s � 1/k, by the mean value theorem, there exists η ∈ (1/k, 2/k) such that

fk(r, s) = k2s
[
F
(
r,

2
k

)
− F

(
r,

1
k

)]
= k2sFs(r, η)

(2
k
− 1

k

)
= ksf(r, η).

https://doi.org/10.1017/prm.2021.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.4


Solution for elliptic equations with Trudinger–Moser growth 299

By using similar computations to conclude (3.5) one obtains

0 � sfk(r, s) = ks2f(r, η) = k
s2

|η|ηf(r, η)

� a12p+ exp(β22+g∞)|s|2 exp(β|s|2+g(r)).

The proof of the lemma follows by taking K1 = a12p+ exp(β22+g∞), where a1 is
given in (1.8). �

The following result presents a growth behaviour to the sequence of functions
ck(·), and the proof can be found in [9, proposition 5].

Proposition 3.3. One can choose the sequence of Lipschitz constants ck(·), defined
in lemma 3.1, satisfying the following estimates

ck(r) � Ck sup
t

{
|f(r, t)|; t ∈

[
−k − 1

k
, k +

1
k

]}
,∀r ∈ [0, 1], (3.6)

with C a constant independent of r and k.

3.2. Approximate equations

To prove theorem 1.1 we first show the existence of a solution to the following
auxiliary problem{

−Δv = λ(v+)q(r)−1 + fn(r, v+) +
1
n

in B,

v = 0 on ∂ B,
(3.7)

where fn, n ∈ N, are given by lemmas 3.1 and 3.2, v+ = max{v, 0} and v− =
v+ − v. In this section, for simplicity of notation we will omit the index n in the
solution v. We will use the Galerkin method together with lemma 3.4, which is a
consequence of the Brouwer fixed-point theorem (see [20, theorem 5.2.5]).

Lemma 3.4. Let Φ : R
d → R

d be a continuous function such that 〈Φ(ξ), ξ〉 � 0 for
every ξ ∈ R

d with |ξ| = � for some � > 0. Then, there exists z0 in the closed ball
B�(0) such that Φ(z0) = 0.

The main result in this section is the following.

Lemma 3.5. Suppose (1.6)–(1.10) and that either g ≡ 0 or satisfy (g1) and (g2).
There exists λ∗ > 0 and n∗ ∈ N such that for every λ ∈ (0, λ∗) and n � n∗ problem
(3.7) has a weak positive solution v ∈ H1

0 (B) ∩ C1,β(B) for some β ∈ (0, 1).

Proof. Let B = {w1, w2, . . . , wm, . . . } be an orthonormal basis of H1
0,r(B) and define

Wm = [w1, w2, . . . , wm],

to be the space generated by {w1, w2, . . . , wm}. Define the function F : R
m → R

m

such that

I(η) = (I1(η), I2(η), . . . , Im(η))
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where η = (η1, η2, ..., ηm) ∈ R
m,

Ij(η) =
∫

B

∇v∇wjdx − λ

∫
B

(v+)q(r)−1wjdx −
∫

B

fn(r, v+)wjdx − 1
n

∫
B

wjdx,

j = 1, 2, . . . , m, and

v =
m∑

i=1

ηiwi ∈ Wm.

Therefore

(I(η), η) =
∫

B

|∇v|2dx − λ

∫
B

(v+)q(r)dx −
∫

B

fn(r, v+)v+dx − 1
n

∫
B

vdx. (3.8)

Given v ∈ Wm, we define

B+
n =

{
x ∈ B : |v(x)| � 1

n

}
and

B−
n =

{
x ∈ B : |v(x)| <

1
n

}
.

Thus, we rewrite (3.8) as

(I(η), η) = (I(η), η)P + (I(η), η)N ,

where

(I(η), η)P =
∫

B+
n

|∇v|2dx − λ

∫
B+

n

(v+)q(r)dx −
∫

B+
n

fn(r, v+)v+dx − 1
n

∫
B+

n

vdx

and

(I(η), η)N =
∫

B−
n

|∇v|2dx − λ

∫
B−

n

(v+)q(r)dx −
∫

B−
n

fn(r, v+)v+dx − 1
n

∫
B−

n

vdx.

In what follows, we consider

‖v‖H1
0 (B) = � (3.9)

for some 0 < � � 1 to be chose later. The proof will be given in several steps. In
what follows, C will denote a generic constant.
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Step 1. Since 1 < q− � q(r) � q+ < 2, by propositions 2.1 and 2.2 we obtain∫
B+

n

(v+)q(r)dx �
∫

B

(v+)q(r)dx � C1‖v‖q−
H1

0 (B)
. (3.10)

By virtue of lemma 3.2(i), we get∫
B+

n

fn(x, v+)v+dx�C

∫
B+

n

|v+|p(r) exp(β22+g∞ |v|2+g(r))dx

�C

(∫
B+

n

|v+|2p(r)dx

)1/2(∫
B+

n

exp(β23+g∞ |v|2+g(r)dx)
)1/2

�C2‖v‖p−
H1

0 (B)

(∫
B+

n

exp(β23+g∞ |v|2+g(r)dx)
)1/2

.

(3.11)
It follows from (3.10) and (3.11) that

(I(η), η)P �
∫

B+
n

|∇v|2dx − λC1‖v‖q−
H1

0 (B)

−C2‖v‖p−
H1

0 (B)

(∫
B+

n

exp(β23+g∞ |v|2+g(r)dx)
)1/2

− C3

n
‖v‖H1

0 (B)

�
∫

B+
n

|∇v|2dx − λC1‖v‖q−
H1

0 (B)

−C2‖v‖p−
H1

0 (B)

(∫
B+

n

exp(β23+g∞ |v|2+g(r)dx)
)1/2

− C3

n
,

(3.12)
where the constant Ci, i = 1, 2, 3 does not depend on n and m.

Step 2. We estimate the other integral,∫
B−

n

(v+)q(r)dx �
∫

B−
n

|v|q(r)dx � |B| 1
nq−

. (3.13)

By virtue of lemma 2.2(ii) we get∫
B−

n

fn(r, v+)v+dx �
∫

B−
n

C4|v+|2 exp(β22+g∞ |v+|2+g(r))dx � C4|B| 1
n2

, (3.14)

where C4 = a1 (a1 is the one of (1.8)). It follows from (3.13) and (3.14) that

(I(η), η)N �
∫

B−
n

|∇v|2dx − λ |B| 1
nq−

− C4|B| 1
n2

− |B|
n2

. (3.15)

Notice that∫
Bn

exp(β23+g∞ |v|2+g(r))dx �
∫

Bn

exp
(
β23+g∞�2

( |v|
�

)2+g(r) )
dx. (3.16)

By choosing

� �
(

4π

β23+g∞

)1/2

,
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we deduce, from (2.1) and (2.3), that

sup
v∈H1

0,r(B):
∫

B
|∇v|2dx�1

∫
B

exp
(
β23+g∞�2

( |v|
�

)2+g(r) )
dx < D. (3.17)

Since ∫
B+

n

|∇v|2dx +
∫

B−
n

|∇v|2dx =
∫

B

|∇v|2dx,

it follows by (3.12) and (3.15) that

(I(η), η) � �2 − λC1�
q− − C2C5�

p− − C3

n
− λ |B| 1

nq−
− C6|B| 1

n2
, (3.18)

where

C5 = D1/2. (3.19)

For

� �
(

1
2C2C5

)(1/p−−2)

, (3.20)

we have

�2 − C2C5�
p− � �2

2
.

Let � := min
{
1, (4π/β23+g∞)1/2, (1/2C2C5)1/p−−2

}
, and hence

(I(η), η) � �2

2 − λ(C1�
q− + |B|) − C3

n
− C6|B| 1

n2
. (3.21)

Define ρ = �2/8 and

λ∗ =
�2

4(C1�q− + |B|) .

We choose n∗ ∈ N such that

C3

n∗ + C6|B| 1
(n∗)2

<
�2

8
.

Let η ∈ R
m, such that |η| = �, then for λ < λ∗ and n � n∗ we obtain

(I(η), η) � ρ > 0. (3.22)

Step 3. Since fn is a Lipschitz function, for every n ∈ N, it easy to see that F :
R

m → R
m is a continuous function. By lemma 3.4, for every m ∈ N there exists ym ∈

R
m with |ym| � � such that I(ym) = 0, that is, there exists vm ∈ Wm satisfying

‖vm‖H1
0 (B) � � for every m ∈ N

and such that∫
B

∇vm∇wdx = λ

∫
B

((vm)+)q(r)−1wdx +
∫

B

fn(r, (vm)+)wdx +
1
n

∫
B

wdx,

(3.23)
for all w ∈ Wm.
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Since Wm ⊂ H1
0,r(B), ∀m ∈ N and � does not depend on m, then the sequence

(vm) is bounded in H1
0,r(B). By taking a subsequence, if necessary, there exists

v ∈ H1
0,r(B) such that

vm ⇀ v weakly in H1
0,r(B), (3.24)

vm → v strongly in L2(B) and a.e. in B. (3.25)

Thus,

‖v‖H1
0 (B) � lim inf

m→∞ ‖vm‖H1
0 (B) � �. (3.26)

By lemma 3.1(ii) and proposition 3.3, we obtain

|fn(r, (vm)+) − fn(r, v+)| � Cn|(vm)+ − v+| � Cn|vm − v|.

Hence, (3.25) leads to

fn(r, (vm)+) → fn(r, v+) in L2(B). (3.27)

Take k ∈ N, then for every m � k one has∫
B

∇vm∇wkdx = λ

∫
B

(vm)q(r)−1
+ wkdx +

∫
B

fn(r, (vm)+)wkdx +
1
n

∫
B

wkdx,

(3.28)
for all wk ∈ Wk. Thus from (3.24), we obtain∫

B

∇vm∇wkdx →
∫

B

∇v∇wkdx. (3.29)

We use (3.27), and the compact embedding H1
0 (B) ↪→ Lq(r)(B). Letting m → ∞,

by using the convergences before, it follows that

λ

∫
B

(vm)q(r)−1
+ wkdx +

∫
B

fn(r, (vm)+)wkdx

→ λ

∫
B

v
q(r)−1
+ wkdx +

∫
B

fn(r, v+)wkdx. (3.30)

By (3.29) and (3.30)∫
B

∇v∇wkdx = λ

∫
B

v
q(r)−1
+ wkdx +

∫
B

fn(r, v+)wkdx +
1
n

∫
B

wkdx, ∀wk ∈ Wk.

(3.31)

But [Wk]k∈N is dense in H1
0,r(B), hence by linearity we get∫

B

∇v∇wdx = λ

∫
B

v
q(r)−1
+ wdx +

∫
B

fn(r, v+)wdx +
1
n

∫
B

wdx, ∀w ∈ H1
0,r(B).

(3.32)

https://doi.org/10.1017/prm.2021.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.4


304 Luiz F. O. Faria and Marcelo Montenegro

Now, we borrow some ideas from [5,9] to guarantee that v is a (weak) solution
to problem (3.7), that is, v satisfies∫

B

∇v∇wdx = λ

∫
B

v
q(r)−1
+ wdx +

∫
B

fn(r, v+)wdx +
1
n

∫
B

wdx, ∀w ∈ H1
0 (B).

(3.33)

For the reader’s convenience, we will keep the proof here. Define the operator Ψ :
H1

0 (B) → (H1
0 (B))′ by

〈Ψ(v), w〉 =
∫

B

∇v∇wdx − λ

∫
B

v
q(r)−1
+ wdx −

∫
B

fn(r, v+)wdx − 1
n

∫
B

wdx,

for all v, w ∈ H1
0 (B), where (H1

0 (B))′ denote the dual space of H1
0 (B) (the space

of bounded linear functionals on H1
0 (B)). Since v satisfies equality (3.32), then

〈Ψ(v), wr〉 = 0,∀wr ∈ H1
0,r(B).

Notice that H1
0,r(B) is a closed subspace of the Hilbert space H1

0 (B), so that, we
can write

H1
0 (B) = H1

0,r(B) ⊕ (H1
0,r(B))⊥.

Therefore, for any w ∈ H1
0 (B) we can split it as

w = wr + w⊥, with wr ∈ H1
0,r(B) and w⊥ ∈ (H1

0,r(B))⊥.

On the other hand, since H1
0,r(B) is also a Hilbert space, we can identify, through

the duality, Ψ(v) with an element in H1
0,r(B). Then 〈Ψ(v), w⊥〉 = 0. Thus

〈Ψ(v), w〉 = 〈Ψ(v), wr〉 + 〈Ψ(v), w⊥〉 = 0, ∀ w ∈ H1
0 (B),

and hence, v is a (weak) solution to problem (3.7).
Furthermore, v � 0 in B. In fact, using as a test function in (3.33) the function

v− we obtain∫
B

∇v∇v−dx = λ
∫

B
v

q(r)−1
+ v−dx +

∫
B

fn(r, v+)v−dx +
1
n

∫
B

v−dx. (3.34)

Hence

−‖v−‖2

H1
0(B)

= λ

∫
B

v
q(r)−1
+ v−dx +

∫
B

fn(r, v+)v−dx +
1
n

∫
B

v−dx � 0.

Therefore, v− ≡ 0 a.e. in B.
The first inequality in hypothesis (1.8) and the equation in (3.7) guarantee that

v �= 0. Here the presence of 1/n > 0 is needed. Hence the equation (3.7) has a
weak solution v ∈ H1

0 (B). Next, we observe that hypothesis (1.8), lemma 3.1 and
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proposition 3.3 allow us to refer to [21, theorem 7.1, chapter 7] from which we
infer that v ∈ L∞(B). Indeed, notice that the function

Fn(r, v) = λ(v+)q(r)−1 + fn(r, v) +
1
n

satisfies

0 � sign(v)Fn(r, v) �λ|v|q(r)−1 + cn(r)|v| + 1
n

� C̃(n)(1 + |v|).
Since C(n) ∈ L∞(B), it is possible to choose α2 = 1 in condition (7.2) of [21].
Thus, we can apply [21, theorem 7.1, chapter 7] to obtain v ∈ L∞(B). Now, from
0 < q− − 1 � q(r) − 1 � q+ − 1 < 1 and fn is Lipschitz, we infer that λvq(r)−1 +
fn(r, v) + 1/n ∈ Ls(B) for all s > 2. Hence v ∈ C1,β(B) with 0 < β < 1, see [17].
Therefore, v ∈ H1

0 (B) ∩ C1,β(B). Applying the strong maximum principle and Hopf
boundary point lemma [17, pages 34 and 35], entails v > 0 in B and ∂v/∂ν < 0 on
∂B holds. �

Remark 3.6. To apply [21, theorem 7.1] and infer that v ∈ L∞(B), notice that
it is necessary to consider the approximating functions fn (given by lemma 3.1)
instead of f .

4. Proof of theorem 1.1

The next result was proven in [9, lemma 4.1].

Lemma 4.1. For any constant b > 0 the problem⎧⎨⎩ −Δu = buq(r)−1 in B,
u > 0 in B,
u = 0 on ∂B,

(4.1)

admits a solution u0 ∈ C1(B).

Remark 4.2. Notice that the Hopf boundary point lemma [17], page 34, ensures
that ∂u0/∂ν < 0 on ∂B holds. �

Now, for each λ ∈ (0, λ∗), we are able to prove theorem 1.1. For each n ∈ N

we know (by lemma 3.5) that equation (3.7) has a (weak) solution un ∈ H1
0 (B) ∩

C1,β(B), for some β ∈ (0, 1).
By (3.26) we have that

‖un‖H1
0 (B) � �, ∀n ∈ N,

and � does not depend on n. Thus, by passing to a subsequence, there exists uλ ∈
H1

0,r(B) such that

un ⇀ uλ weakly in H1
0 (B) as n → ∞. (4.2)
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By Sobolev compact imbedding we get

un → uλ strongly in L2(B) and a.e. in B. (4.3)

Note that ⎧⎨⎩ −Δun � λu
q(r)−1
n in B,

un > 0 in B,
un = 0 on ∂ B.

(4.4)

By lemma 4.1 and proposition 2.6 with b = λ, it follows that

un � u0 in B, ∀n ∈ N. (4.5)

Letting n → ∞ in (4.5) we obtain

uλ � u0 > 0 a.e. in B,

showing that uλ > 0 in B.
Next we prove that uλ is a solution of (1.5). Since

un → uλ a.e. in B,

we have

fn(·, un(·)) → f(·, uλ(·)) a.e. in B, (4.6)

by the uniform convergence of lemma 3.1(iii).
Since fn(r, ·) is continuous, we obtain

fn(r, un)2 → fn(r, uλ)2 a.e. in B. (4.7)

Since ‖un‖H1
0 (B) � �, by (1.8), (3.17), and Hölder inequality, for (un)+ �= 0, we get

∫
B

|fn(r, un)|2dx � C‖un‖2(p−−1)

H1
0 (B)

×
⎛⎝∫

B

exp

(
β23+g∞�2

(
|(un)+|

‖(un)+‖H1
0 (B)

)2+g(r))
dx

⎞⎠1/22+g∞

< C, (4.8)

for each n. Thus, by (4.8) (‖fn(·, un(·))‖L2(B))∞n=1 is a bounded sequence of num-
bers, and by (4.7) we have fn(r, un) → f(r, uλ) a.e. in B, then [18, theorem 13.44]
leads to

fn(r, un) ⇀ f(r, uλ) weakly in L2(B). (4.9)
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Recall from (3.33) that∫
B

∇un∇wdx = λ

∫
B

uq(r)−1
n wdx +

∫
B

fn(r, un)wdx +
1
n

∫
B

wdx, ∀w ∈ H1
0 (B).

(4.10)

By (4.9), (4.10) and the compact embedding H1
0 (B) ↪→ Lq(r)(B), taking n → ∞,

we have∫
B

∇uλ∇wdx = λ

∫
B

u
q(r)−1
λ wdx +

∫
B

f(r, uλ)wdx, ∀w ∈ H1
0 (B). (4.11)

Now we will deduce that ‖uλ‖H1
0 (B) → 0 as λ → 0. Using w = un as a test

function in (4.10), we obtain∫
B

|∇un|2dx = λ

∫
B+

n ∪B−
n

uq(r)
n dx +

∫
B+

n ∪B−
n

fn(r, un)undx +
1
n

∫
B+

n ∪B−
n

undx

� λC1‖un‖q−
H1

0 (B)
+ C2‖un‖p−

H1
0 (B)

×
⎛⎝∫

B

exp

(
β23+g∞‖un‖2

H1
0 (B)

(
|un|

‖un‖H1
0 (B)

)2+g(r))
dx

⎞⎠1/2

+
C3

n
‖un‖H1

0 (B) + λ |B| 1
nq−

+ C6|B| 1
n2

� λC1 + C2C5‖un‖p−
H1

0 (B)
+

C3

n
+ λ |B| 1

nq−
+ C6|B| 1

n2
, (4.12)

where C1, C2, C3, C5 and C6 are given in (3.10)–(3.12), (3.19) and (3.18),
respectively. Since un �= 0, from (4.12), we have the following estimate

‖un‖2
H1

0 (B)
(1 − C2C5‖un‖p−−2

H1
0 (B)

) � λC1 +
C3

n
+ λ |B| 1

nq−
+ C6|B| 1

n2
.

(4.13)
By (3.20), we obtain

‖ũn‖p−−2

H1
0 (B)

� 1
2C2C5

.

Thus,

‖un‖H1
0 (B) �

[
2

(
λC1 +

C3

n
+ λ |B| 1

nq−
+ C6|B| 1

n2

)]1/2

. (4.14)

By (4.2) and (4.14), we obtain

‖uλ‖H1
0 (B) � lim inf

n→∞ ‖un‖H1
0 (B) � [2λC1]1/2. (4.15)

Thus, we conclude the proof. �
We proceed to prove theorem 1.2, we use an idea inspired in [12].
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Proof. Assume by contradiction that that λ∗ = ∞. Then there is a sequence λn →
∞ and solutions un ∈ C1(B), un > 0 in B. Define

P (r, t) = λtq(r)−1 + tp(r)−1eβt2+g(r)
,

P1(t) = λtq−−1 + tp+−1eβt2

and

P2(t) = λtq+−1 + tp−−1eβt2 .

We will show that there is a constant Cλ > 0 such that

P (r, t) � min {P1(t), P2(t)} � Cλt for t > 0.

In fact there exist constants C1,λ > 0 and C2,λ > 0 such that P1(t) � C1,λt and
P2(t) � C2,λt for t > 0. And the asserted constant is Cλ = min{C1,λ, C2,λ}. We
will make the calculations for P1(t), the reasoning for P2(t) is analogue. Define
the function Q1(t) = P1(t)t−1. Then Q1(t) → ∞ as t → 0+ and as t → ∞. The
minimum value is Q1(t1) = C1,λ, where t1 > 0 is the unique root of

eβt2tp+−q− [2βt2 + p+ − 2] = λ(2 − q−).

Notice that t1 increases as λ increases. And the constant C1,λ has the same
behaviour with respect to λ. Here we are considering λ sufficiently large. Let σ1 > 0
the first eigenvalue of the Laplacian and ϕ1 > 0 the associated first eigenfunction
satisfying { −Δϕ1 = σ1ϕ1 in B

ϕ1 = 0 on ∂B.

Since C1,λn
→ ∞ as λn → ∞, for each given δ > 0, there is λn0 such that C1,λn0

�
σ1 + δ + 1. Hence the solution un0 > 0 of (1.5) corresponding to λn0 satisfies{−Δun0 � (C1,λ0 − 1)un0 � (σ1 + δ)un0 in B

un0 = 0 on ∂B.

On the other hand, taking ε > 0 small enough we obtain εϕ1 < un0 in B, this is
possible because un0 � u0 and ∂u0/∂ν < 0 on ∂B, see remark 4.2. Furthermore, we
have {−Δ(εϕ1) = (εσ1)ϕ1 � (σ1 + δ)(εϕ1) in B,

ϕ1 = 0 on ∂B,

and hence εϕ1 is a sub-solution. By the sub-super-solution method, there is a
solution εϕ1 < ζ < un0 in B of{−Δζ = (σ1 + δ)ζ in B

ζ = 0 on ∂B.

We thus have a contradiction to the fact that σ1 is isolated, so we really have
λ∗ < ∞. �
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30 V. I. Yudovič. Some estimates connected with integral operators and with solutions of
elliptic equations. Dokl. Akad. Nauk SSSR. 138 (1961), 805–808.

https://doi.org/10.1017/prm.2021.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.4

	1 Introduction
	2 Preliminaries
	2.1 Variable exponent
	2.2 Comparison principle

	3 Auxiliary problem
	3.1 Approximate functions
	3.2 Approximate equations

	4 Proof of theorem 1.1
	References

