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1. Introduction

Let Q C RN, N > 2, be a smooth and bounded domain. Yudovi¢ [30], Pohozaev
[26] and Trudinger [29] proved, in an independent way, that

u € Wol’N(Q) implies / el dz < 00, (1.1)
Q

where N’ = N/(N —1). Moreover, for any higher growth, the corresponding

integral can be infinite for a suitable choice of u. After that, Moser [23] improved

this assertion, showing that if u € W™ (Q), then

! < i <
sup / elul™ gy {\ o, ifesay (1.2)
<1Ja =

“V“”wg«Nm) = 00, ifa>an

1/(N-1)
N—-1

where ay = Nw
measure of the unit sphere in RY. Inequality (1.2) is now called Trudinger—Moser

, ¢ is a constant which depends on N, and wy_1 is the
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inequality and the term e®™ lel™ is known as critical Trudinger—Moser growth.

Several generalizations, extensions and applications of the Trudinger—Moser

inequality have been given in recent years, we quote for instance [1-3,7,13,14,

24,25,27]. An equation where (1.2) plays a role in dimension N = 2 is
{—Au =h(z,u) in Q

u=>0 on 01, (1.3)

where h(z,u) = Aue”” and A >0 is a free parameter. Existence of solution for
equation (1.3) has been considered in 2 C R? in many papers with h in a more
general form, where h(x,u) is continuous and behaves like exp(a|u|?) as |u| — oo,
see [2,4,10,13-15,22,27]. The Trudinger-Moser inequality combined with the
variational approach is a powerful tool to obtain existence of solution. This is the
reason why most of papers treat problem (1.3) by means of variational meth-
ods, and then usually it is assumed that h has subcritical or critical growth.
In [10], the authors considered the subcritical problem (1.3) with a small sub-
linear perturbation on the nonlinearity, without imposing any extra hypotheses
like Ambrosetti-Rabinowitz conditions (or some additional conditions) to obtain
Palais—Smale or Cerami compactness condition. For elliptic systems, we quote [11].
For a related problem in higher dimensions, consult [8]. The goal of this paper is
to study problems where the function A has supercritical growth, meaning that for
every o > 0,

lim W = oo uniformly in x. (1.4)

s—oo e

More precisely we consider the following problem

—Au = I~ ¢ f(z,u) in B,
u>0 in B, (1.5)
u=20 on 0B,

where B C R? denotes the open unit ball centred at the origin, A > 0 is a parameter,

q € C(B) is radially symmetric and such that

x1<g-<q(x)<g+ <2,9-,q9+ €R, (1.6)
f: B xR — R is a continuous function radially symmetric in the first variable
(1.7)
satisfying the following condition
0 < sf(w,s) < ar|s|"exp(B]s|*T9)), (1.8)

where

B >0, p,g € C(B) are radially symmetric functions and a; > 0 is a constant
(1.9)
such that

2<p<plr) <py <oo,p_,py €R, (1.10)
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and either g = 0 or g verifies the following two conditions

(91) g(0) =0 and g(z) > 0 for x # 0,

(g2) there exists some ¢ > 0 and some v > 2 such that g(z) < ¢/(—log|x|)” for |z|
near 0.

From now on, when a function defined in B is radial, for convenience, we will use
the same notation to represent the function on z or r = |z|.
Notice that the function g(r) = r%, with a > 0, satisfies conditions (g1) and (g2).
We are able to state our main result.

THEOREM 1.1. Suppose (1.6)—(1.10) and that either g =0 or satisfy (g1) and
(92). Then there exists \* >0 such that for every X\ € (0,\*) problem (1.5)
possesses at least one positive radially symmetric solution uy € H}(B). Further-
more, |[uxgr () — 0 as A — 0.

In some particular cases the solution does not exist for A > 0 large.

THEOREM 1.2. Assume the hypotheses of theorem 1.1. If f(r,t) =tP(")-1
exp(Bt2T9)) and X\ > 0 is sufficiently large, then problem (1.5) has no positive
radially symmetric solution uy € H}(B).

REMARK 1.3. In fact, since p, ¢ and g are bounded from above and from below, by
the method of the proof of theorem 1.2 we observe that the nonexistence result is
valid for nonradial solutions too.

Notice that the exponential growth in (1.8) goes beyond the usual Trudinger—
Moser critical behaviour, since 2+ g(r) > 2. Notice also that f in (1.7)-(1.8)
behaves like (1.4). We point out that Ngé and Nguyen [24] studied problem (1.5) for
A =0, but imposing the Ambrosetti-Rabinowitz condition on the function f. We
can solve (1.5) under weaker assumptions on f using the Galerkin method, which
consists of studying approximate problems. For the existence result in a similar
supercritical regime, we cite [7]. In our approach, it is important to mention that it
is necessary to verify regularity up to the boundary for the approximate solutions
Uy, in order to apply the comparison principle and guarantee that the approximate
solutions are bounded away from zero. Thus, we can take the limit and ensure that
the limit solution does not vanish. To this matter, we also use an approximation
scheme in the nonlinearity, where f is replaced by an approximating sequence of
Lipschitz functions due to Strauss [28].

The paper is organized as follows. Section 2 contains some preliminaries, results
concerning to Lebesgue spaces with variable exponents and a comparison princi-
ple due to [19]. Section 3 is devoted to prove the existence of a solution to the
approximate problem. Thus, we present the approximating sequence of Lipschitz
functions and some important properties. Section 4 is devoted to the proof of the
main results.
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2. Preliminaries

2.1. Variable exponent

We start this section presenting some results of the Lebesgue and Sobolev spaces
with variable exponents (we refer to [16, chapter 3] for the definition and properties
of these spaces). Set

LE(B) = {y ty € L¥(B), inf y(z) > 1}7
where B C R? is the unit ball centred at the origin. For any y € L (B), we define

y- =y-(B) = inf y(x), y; =y (B):=supy(z).
z€B z€B
For y € LY (B), the space
L@ = {u : is real measurabl&/ Ju(z)|Y@dz < oo}
B

is a Banach space equipped with the norm

y(x)
||u||y(x) =inf{ o > 0,/ de <15.
B

PROPOSITION 2.1. If u € LY@ (B), |[ull, @) = A, then

u(z)

ag

o if A>=1, then \V- < / Ju(z)|Y@dz < X+,
B

o if A< 1, then N+ < / Ju(z) V@ dz < \Y-.
B

The embedding H{ (B) < LY+ (B) is compact and L¥+(B) — L¥®)(B) is contin-
uous.
PROPOSITION 2.2. If y € LY (B) then
Hg(B) — LY“)(B)
is compact.

We denote by H&yr (B) the subspace of radially symmetric functions of the space
H}(B) (which is the usual Sobolev spaces of radially symmetric functions on B),
i.e.

Hy . (B) = {u € Hy(B) : u = u(|z|)}.

The following result was proved in [24, proposition 2.1].
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PROPOSITION 2.3. Let g:[0,1) — [0,00) be a continuous function. If g satisfies
conditions (g1) and (g2), then there holds

sup / exp(4n|u?*902DYdz < . (2.1)
u€Hg (B): [ [Vul?dz<1 /B

The usual Trudinger-Moser inequality, introduced in [23,29], will be very
important for our purpose. Namely, given u € H}(B), then

eo\u|2 c Ll(B) for every o > 0, (2:2)

and there exists a positive constant L, such that

sup / eolul’qz < L|B| for every o < 4m, (2.3)
B

”“”Hé(3><1

where |B| = [, 1dz.

REMARK 2.4. The following inequality from [24] do also holds by considering
suitable conditions on g,

sup / exp((4m + g(|z]))|u|*)dz < co. (2.4)
w€Hj . (B): [ [Vul?dz<1 /B

Analysing lemma 3.2 we conclude (2.4) would produce the same results of this
paper, because exp((47 + g(|x]))|u|?) < exp(B|u|?) for some constant 3 > 0. In our
context, since g is bounded, (2.1) is more general than (2.4).

2.2. Comparison principle

Let € be a bounded domain in R2?. Consider the problem

—Au=h(z,u) in €,

u>0 in £, (2.5)
u=0 on 0f.
DEFINITION 2.5. For u € C(Q) with u > 0, we call u a weak supersolution of (2.5)
if
/(uA(b—I— h(z,u))pdr <0 for ¢ € CF° ()T,
Q
where

Co2 ()" = {9 € C5°(Q) : ¢ > 0}.

A weak subsolution is defined by the reverse inequality. We call u a weak solution
if it is both a weak supersolution and a weak subsolution.
In the following, we present a comparison result due to [19] (see also [6]).
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PROPOSITION 2.6. Let Q be a bounded open set in R? and h: QxR =R be a
continuous function. Then the following are equivalent.

(i) Foranyx € Q, h(x,s)/s is non-increasing with respect to s € (0,00). For any
0 €Q,0<a<bande >0, it holds that

h(z,a)/a—h(z,b)/b>0 at some x € B(xo,¢).

(ii)  Let Bgy be any open subset of Q and u, v a weak subsolution and a weak
supersolution in By, respectively, and u,v >0 in By. If u<v on 0N, then
u < v in By.

3. Auxiliary problem

3.1. Approximate functions

To prove theorem 1.1 we approximate f by Lipschitz functions fr : BxR —= R

defined by
—k[F(r,—k — +) — F(r,—k)], if s < —k,
fk[F(r,sf%)fF(r,s)], if —kisif%,
_JRS[E(r =) = F(r,—p)l, i -3 <s<0,
Tlras) =3 k2ol P, 2) ~ F(r, 1)) i o<s<i G
k[F(r,s + %) — F(r,s)], if  +<s<k,
k[F(Tak+E)7F(r7k)L if S>ka

where Fs = f and F(r,0)=0.
The following approximation result was proved in [28] and uses the explicit
expression of the sequence (3.1).

LEMMA 3.1. Let f : B x R — R be a continuous function such that sf(r,s) = 0 for
every s € R. Then the sequence of Lipschitz functions (3.1) satisfies

(i) sfx(r,s) =0 for every s € R;

(ii) Yk € N there is a continuous function ci(r) such that |fr(r,&) — fr(r,n)| <
ck(r)|€ —n| for every &,n € R;

(iii) fx converges uniformly to [ in bounded sets.

The sequence fj of the previous lemma has some additional properties, similar
to the found in [8-11]. In what follows, we will denote goc = supy, <1 g(r).

LEMMA 3.2. Assume (1.6)—(1.10) and that either g =0 or satisfy (¢1) and (g2).
Then the sequence fi of lemma 3.1 satisfies

(i) VEEN, 0< sfi(r,s) < Ki|s|P") exp(522+9=|s]>t9()) for every |s| > 1/k;
(i) Vk €N, 0 < sfy(r,s) < K1|s|? exp(82219>|s[>T9() for every |s| < 1/k,

where K1 is a positive constant independent of k.
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Proof. Everywhere in this proof the constant a is the one of (1.8).
First Case. Suppose that —k < s < —1/k.
By the mean value theorem, there exists n € (s — 1/k, s) such that

fr(r,s) = —k:[F(ns - %) - F(r,s)} = —kFy(r,n) (S - % - s) = f(r,n)
and

ka(T, S) = Sf(’f‘, 77)
Since s — 1/k <n < s <0and f(r,n) <0, we have sf(r,n) < nf(r,n). Therefore,

0 < ka(T,S) <’I7f<7’7 77)
< ar|n]P™) exp(Bn|2 ()
1 p(r) 12+g(r)
S(JJ‘S—E‘ eXp(ﬁ‘s—E )

1\ p(r) 1\ 2+g(r)
<a1(|8|+g) CXp <ﬁ<|8|+z) )
a1 (2]s])P) exp(B(2]s])>T9M)
< ar 27+ [s[P(") exp(B22 o |s|2Ho (),

Second Case. Assume 1/k < s < k.
By the mean value theorem, there exists € (s, s + 1/k) such that

fre(r,s) = k[F(r,s + %) — F(r,s)] = kFs(r,n) (s + % - s) = f(r,n)
and

sfr(r;s) = sf(r,n).
Since 0 < s <n < s+ 1/k and f(r,n) > 0, we have sf(r,n) < nf(r,n). Therefore,

0 < ka(rﬂS) <7]f(7'7 7])
< ay[nlPt) exp(Bln[>H9)
1 p(r)

< 5] ‘S + %‘

<a 2P+ |5|p(r) exp([322+900 |s|2+g(r))_

1 |2+g(r)
exp | Bls + — )

Third Case. Suppose that |s| > k, then

—k[F(r, k- %) — F(r, —k)], i s<—k

fu(r,s) = (3.2)

1

-) - i > k.
k:[F(r,k‘—l—k) F(r,k)], if s>k
If s < —k, by the mean value theorem, there exists n € (—k — 1/k, —k) such that

il ) = K[F(r—k = 2) = Fr, k)] = kEfrom) (— k= 1 — (-R)) = f(rm)
and

sfr(r;s) = sf(r,m).
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Since —k —1/k <n < —k <0and k < |n| < k+ 1/k, we conclude that

0 < sfi(r,s)= %Uf(rv n)

s T T
< |n||a1|77|”( ) exp(Bln[>+)

<ayls] (k + l)p(r) exp (ﬂ (k + l)2+g(r)) (3.3)

ENT “1 24l
<a1|s|(\8\+g> exp (ﬂ(|8|+* )

<aq|s|(2]s))P) exp(B(2]s))2+9M)
< ap 20+ [s[P7) exp(322F 9= |s[H9()).

If s > k, by the mean value theorem, there exists n € (k, k + 1/k) such that

1 1
filr.s) = k[F ok + ) = P k)] = kE,(rym) (k+ 2 = k) = f().
By using similar computations to conclude (3.3) one has
0 < sfilrs) = sflrm) = “nf(rm) < 12" |s|P) exp(82+9=[s|*90)),
n
Fourth Case. Assume —1/k < s < 1/k, then

]CQS[F(T,*%) - F(r,f%)}, if —% < s <0,

R (PP AN I
If —1/k < s < 0, by the mean value theorem, there exists 7 € (—2/k, —1/k) such
that
=t o)
A R
Therefore

2
0 < sful(r,s) = —ksf(r,n) = —k%nf(n m)
2
< k%nf(r, n)

<arkls]?[n|P™) " exp(Bn|**9() (3:5)

2\ p(r)—1 2 12+g(r)
<abls? (1) e (8] )

< algp(f‘)|3|2
< a12P+ exp(B2219=)|s|? exp(B]s|*T9().

If 0 < s < 1/k, by the mean value theorem, there exists n € (1/k,2/k) such that

= 5[ (r.2) - ] =k (- ) =t
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By using similar computations to conclude (3.5) one obtains

2
s
0< sfi(r,s) = ks> f(r,n) = kwnf(r, n)
< a12P+ exp(32219=)|s| exp(B]s[>H9().
The proof of the lemma follows by taking K; = a12P+ exp((32219=), where a; is
given in (1.8). O

The following result presents a growth behaviour to the sequence of functions
¢k (+), and the proof can be found in [9, proposition 5].

PROPOSITION 3.3. One can choose the sequence of Lipschitz constants c(+), defined
in lemma 3.1, satisfying the following estimates

cr(r) < Cksup{|f(r,t)|;t € {—k— %,k-i- ]1] } ,Vr € [0, 1], (3.6)

with C' a constant independent of r and k.

3.2. Approximate equations

To prove theorem 1.1 we first show the existence of a solution to the following
auxiliary problem

1
—Av = (r—-1 S
{ Av = A(vg)? + fulryvy) + - in B, (3.7)

v=0 on 0B,

where f,, n € N, are given by lemmas 3.1 and 3.2, v; = max{v,0} and v_ =
vy — v. In this section, for simplicity of notation we will omit the index n in the
solution v. We will use the Galerkin method together with lemma 3.4, which is a
consequence of the Brouwer fixed-point theorem (see [20, theorem 5.2.5]).

LEMMA 3.4. Let ® : R — R? be a continuous function such that (®(£),&) =0 for
every § € R? with €] = o for some o > 0. Then, there exists zy in the closed ball
B,(0) such that ®(z) = 0.

The main result in this section is the following.

LEMMA 3.5. Suppose (1.6)—(1.10) and that either g =0 or satisfy (g1) and (gz2).
There exists \* > 0 and n* € N such that for every A € (0, A*) and n = n* problem
(3.7) has a weak positive solution v € H(B) N CYP(B) for some 3 € (0,1).

Proof. Let B = {wy,ws, ..., Wn, ...} bean orthonormal basis of Hj ,.(B) and define
Wm = [wl,wg, N ,’U.)m],

to be the space generated by {wy,ws, ..., w,,}. Define the function F : R™ — R™
such that

I(n) = (Ii(n), I2(n), .. ., I;m(n))
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where n = (11,72, .., lm) € R™,

1
Ij(n):/BV@ijdac—)\/B(1J+)‘1(T)_1111jdav—/Bfn(v",mr)wjdac—E/Bwjd:lc7

j=1,2,...,m, and

m
v = mei e Wh.

i=1

Therefore

(I(n),n):/B\Vv|2dxf)\/B(v+)q(T)dmf/Bfn(r,er)v+dxf%/Bvdx. (3.8)

Given v € W,,, we define

BI:{:UEB:|U($)|>%}

and
By ={aeB: @) < %}

Thus, we rewrite (3.8) as

(I(n),m) = (L(n),n)p + ()N,

where
Ul me = / [Voldz - A/ (042" dz — / fu(ryvp)vede — l/ vdx
B B B; n Jg#t
and
(. mar = / [Veltdz - A/ (v)1dz — [ fulr,vsJopde - l/ vdz.
By By B= -

In what follows, we consider
vl a2y = 0 (3.9)

for some 0 < o <1 to be chose later. The proof will be given in several steps. In

what follows, C' will denote a generic constant.
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Step 1. Since 1 < ¢ < ¢q(r) < ¢4 < 2, by propositions 2.1 and 2.2 we obtain

/ (03)7dz < / (04)1da < C o], - (3.10)
Bt B 0

By virtue of lemma 3.2(i), we get

/ fn(x,v+)v+dx<C’/ [uy [P exp(B22F9% |v]2F9()) dz:
B; B}

1/2
<C (/ |v+|2p(’")dx) </ exp(ﬁ23+g°°|v|2+g(r)dx))
Bt B

n n

1/2
<Cz||v||1;;é(3) (/B+ exp(ﬁ23+goo|1)2+g(r)dx)) ,

1/2

(3.11)
It follows from (3.10) and (3.11) that
(mnr> [ 1VoPde =2l
. p 3 2 12 Cs
~Callllyy ([ exp(a2 o= l000) ) = Lol g
>/B+ [Vol?dz — AC ol % .
. p 3 2 12 Cs
_CQHU| H:%(B) (/B* exp(ﬁQ +goo|U| +9(T)d:r)) -
(3.12)
where the constant C;, i = 1,2,3 does not depend on n and m.
Step 2. We estimate the other integral,
1
/ (v) M dz < / 01" dz < | B|—. (3.13)
By By "

By virtue of lemma 2.2(ii) we get

1
fn(r,vp)vypde </ Calvy)? exp(82%F9= vy |90 da < C’4|B|$, (3.14)
B,

Bn
where Cy = a1 (a; is the one of (1.8)). It follows from (3.13) and (3.14) that
1 1 |B|
2
() > [ 9P - XIBI G- - CuBLG - 5 819

Notice that

/ exp(f2° 9 o) de < /

B, By

By choosing
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we deduce, from (2.1) and (2.3), that

|U| 2+g(r)
sup / exp (B23+9°° 0? <> )dm < D.
vEH} (B):fp |Vv|2de<1 /B 4%

Since
/ |Vv\2dx—|—/ |Vv|2dx:/ |Vo|2da,
B B B

n

it follows by (3.12) and (3.15) that

C
(Im).m) > 0°=ACr0™ — CaCs0"~ = — =\ \B\— — ColB— —
where
Cs = D'/2.
For
1 (1/p-—-2)
0 < )
205,C5
we have
2
0> — C2C50P~ > %
Let ¢ := min {1, (47/B23+9=)1/2 (1/2C5C5)'/P- =2}, and hence

2 C 1
Im).m) > & = ACie™ +|B|) ~ —> ~ Co|B|

Define p = 0?/8 and
2

N
4(Cyo9- +|BJ)
We choose n* € N such that
Cs 1 0?
+ C6| | < —
(n*)> =~ 8~

Let n € R™, such that |n| = g, then for A < A* and n > n* we obtain
(I(n),m) = p>0.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Step 3. Since f,, is a Lipschitz function, for every n € N, it easy to see that F :
R™ — R™ is a continuous function. By lemma 3.4, for every m € N there exists y,,, €
R™ with |y,,| < o such that I(y,,) = 0, that is, there exists v, € W, satisfying

|vm|| 2By < o for every m € N

and such that

/Bvade:c:)\/B((vm)+)q(r)’1wdx+/Bfn(r, (vm)+)wdm+%/

B

for all w € W,,.
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Since W,,, C H&,T (B), Vm € N and p does not depend on m, then the sequence
(vm) is bounded in Hg,.(B). By taking a subsequence, if necessary, there exists
v € Hj .(B) such that

U — v weakly in H&VT(B), (3.24)
Uy — v strongly in L*(B) and a.e. in B. (3.25)

Thus,
0]l z2(B) < I}T?EgofHUmHHol(B) <o (3.26)

By lemma 3.1(ii) and proposition 3.3, we obtain
[fu(r, (Um)+) = fulr,ve)| < Cnf(vm)+ — vi| < Cnfoy — vl

Hence, (3.25) leads to

Tn(ry (V) 4) — fu(r,vy) in L2(B). (3.27)

Take k£ € N, then for every m > k one has

N 1
/ Vo, Vwgdr = )\/ (vm)j_(” 1wkdx+/ Fn(r, ()4 )wrde + —/ widez,
B B B n.JB

(3.28)
for all wy, € W. Thus from (3.24), we obtain

/Vumekdxﬁ/ VoVwdx. (3.29)
B B

We use (3.27), and the compact embedding H}(B) — L1 (B). Letting m — oo,
by using the convergences before, it follows that

3 ot et [ (o) e
B B
—>)\/ Ui(r)_lwkdx—k/ Sfn(r,vi)wide. (3.30)
B B
By (3.29) and (3.30)

_ 1
/Vvakdx:/\/ vi(T) 1wkdx+/ fn(r,mr)wkderf/ wigdx, Yw, € Wi.
B B B nJB
(3.31)

But [Wj]ren is dense in Hg ,.(B), hence by linearity we get

_ 1

/Vqud:c:A/ 3" 1wdx+/ fn(r,v+)wdx+—/ wdz, Yw € H . (B).
B B B nJp '

(3.32)
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Now, we borrow some ideas from [5,9] to guarantee that v is a (weak) solution
to problem (3.7), that is, v satisfies

/Vvadx:)\/ vi(r)_lwdm—i—/ fn(r,v+)wdx+l/ wdz, Yw € Hi(B).
B B B nJp
(3.33)

For the reader’s convenience, we will keep the proof here. Define the operator W :
H(B) — (Hg(B))" by

_ 1
(¥ (v),w) :/ Vvadx—)\/ ’Ui(r) 1wdz—/ fn(r,v_s_)wdx—f/ wdz,
B B B nJp

for all v,w € H}(B), where (Hg(B))' denote the dual space of H{(B) (the space
of bounded linear functionals on H}(B)). Since v satisfies equality (3.32), then

(P(v),w.) =0,YVw, € H&T(B).

Notice that Hol’r(B) is a closed subspace of the Hilbert space H{(B), so that, we
can write

Hy(B) = Hy,.(B) & (H; .(B))*.
Therefore, for any w € H}(B) we can split it as
w=w, +w, with w, € H&’T(B) and wt € (H&,T(B))J‘.

On the other hand, since H(},T(B) is also a Hilbert space, we can identify, through
the duality, ¥(v) with an element in H§ ,.(B). Then (¥(v), w) = 0. Thus

<\IJ(U),U/> - <\I](U)7w?“> + <\IJ(1})7U)J‘> =0, Vwe H&(B)a

and hence, v is a (weak) solution to problem (3.7).
Furthermore, v > 0 in B. In fact, using as a test function in (3.33) the function
v_ we obtain

. 1
/ VoVe_dz = X[y vi( Ty da + I fulr,vp)v_dz + g/ vodz. (3.34)
B B

Hence

_ 1
—[Jv_]? :/\/Bvi(r) 1v_dx—|—/Bfn(7",v+)v_dx—|—ﬁ/Bv_dx20.

B} (B)

Therefore, v_ =0 a.e. in B.

The first inequality in hypothesis (1.8) and the equation in (3.7) guarantee that
v # 0. Here the presence of 1/n > 0 is needed. Hence the equation (3.7) has a
weak solution v € H}(B). Next, we observe that hypothesis (1.8), lemma 3.1 and
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proposition 3.3 allow us to refer to [21, theorem 7.1, chapter 7] from which we
infer that v € L°°(B). Indeed, notice that the function

1
F,(r,v) = /\(v_s_)q(’”)*1 + fu(r,v) + -
satisfies

1
0 < sign(v)Fy,(r,v) < )\|fu|q(r)’1 +en(r)|v] + =
. n

<C(n)(1+|v]).

Since C(n) € L*°(B), it is possible to choose ap =1 in condition (7.2) of [21].
Thus, we can apply [21, theorem 7.1, chapter 7] to obtain v € L*°(B). Now, from
0<q —1<q(r)—1<qy—1<1 and f, is Lipschitz, we infer that Av9(")~—1 +
fu(r,v) +1/n € L*(B) for all s > 2. Hence v € C*#(B) with 0 < 8 < 1, see [17].
Therefore, v € HE(B) N CY#(B). Applying the strong maximum principle and Hopf
boundary point lemma [17, pages 34 and 35], entails v > 0 in B and dv/0v < 0 on
0B holds. O

REMARK 3.6. To apply [21, theorem 7.1] and infer that v € L°°(B), notice that
it is necessary to consider the approximating functions f, (given by lemma 3.1)
instead of f.

4. Proof of theorem 1.1

The next result was proven in [9, lemma 4.1].

LEMMA 4.1. For any constant b > 0 the problem
—Au=bu?"-1 in B,
u>0 in B, (4.1)
u=20 on 0B,

admits a solution uy € C*(B).

REMARK 4.2. Notice that the Hopf boundary point lemma [17], page 34, ensures
that dug/dv < 0 on dB holds. O

Now, for each A € (0,\*), we are able to prove theorem 1.1. For each n € N
we know (by lemma 3.5) that equation (3.7) has a (weak) solution u,, € Hg(B) N
CY#(B), for some 3 € (0,1).

By (3.26) we have that

[unllm1 By < 0, Vn €N,

and o does not depend on n. Thus, by passing to a subsequence, there exists uy €
Hj ,.(B) such that

u, — uy weakly in HJ(B) as n — oo. (4.2)
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By Sobolev compact imbedding we get

U, — uy strongly in L*(B) and a.e. in B. (4.3)
Note that
—Auy, > Al B,
Up > 0 in B, (4.4)
U, =0 on OB.

By lemma 4.1 and proposition 2.6 with b = A, it follows that

Up = ug in B, Vn € N. (4.5)
Letting n — oo in (4.5) we obtain

uy = ug > 0 a.e. in B,

showing that uy > 0 in B.
Next we prove that uy is a solution of (1.5). Since

U, — Uy a.e. in B,

we have

fuCun(4)) = f(-,ua(r)) ae. in B, (4.6)

by the uniform convergence of lemma 3.1(iii).
Since fy,(r,-) is continuous, we obtain

fn(ryun)? — folr,uy)? ae. in B. (4.7)
Since |lun||g1 () < o, by (1.8), (3.17), and Hélder inequality, for (u,)4 # 0, we get

2 2(p-—1)
[ 1000 00) Pz < Clun 58

|(un)+] 2+g(r) 1/27 e
X / exp | B23+9 g2 | )l dx <O, (4.8)
B H(“n)+HH(}(B)

for each n. Thus, by (4.8) (|| fn(-,un(-))|lL2(B))5=1 is a bounded sequence of num-
bers, and by (4.7) we have f,(r,u,) — f(r,u)) a.e. in B, then [18, theorem 13.44]
leads to

fn(ryuy) = f(r,uy) weakly in L?*(B). (4.9)
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Recall from (3.33) that

1
/Vuandx:)\/ uz(r)_lwdx—&—/ fn(T,un)de-i-*/ wdz, Yw € H(B).
B B B n.JB
(4.10)

By (4.9), (4.10) and the compact embedding H{}(B) < L") (B), taking n — oo,
we have

/Vu,\dex:/\/ ui(r)flwdx—i—/ f(ryuy)wdz, Yw e Hy(B). (4.11)
B B B

Now we will deduce that [luxl[zip) — 0 as A — 0. Using w =u, as a test
function in (4.10), we obtain

1
/ |V, [2de = A u%(r)dx + / frn(ryup)upde + — / Uy dx
B BiuB, BiuB;, n JBfuBy

< )\Cl| un”?‘;é(B) + C2||Un ZI)-IE(B)
| 2+g(r) 1/2
X ex 234900 144,112 _ MUnl dx
/B p (ﬂ H ”H(}(B) <|unH5(B)

Cs 1 1

+ ?”un”H(}(B) + )\|B|f +Ce\3\ﬁ
C 1 1

S AC1+ CoCslunllfya ) + —3 + B+ Co|B| . (4.12)

where Ci, Cs, C3, C5 and Cg are given in (3.10)-(3.12), (3.19) and (3.18),
respectively. Since u,, # 0, from (4.12), we have the following estimate

_-2 03 1 1
||un||2 (1 — C3C5]|up| 1;11 B)) < MO+ —=+A |B|n7 + C6|B|ﬁ
(4.13)
By (3.20), we obtain
~ p_—2 ].
< -
||u’n| Hé(B) X 20205.
Thus,
C 1 1\
lunllmis) < 2<A01+3+A|B|+06IB|2>] : (4.14)
n nd- n
By (4.2) and (4.14), we obtain
luxllag () < liminf [[un| gy s) < [2ACy]Y2. (4.15)
Thus, we conclude the proof. O

We proceed to prove theorem 1.2, we use an idea inspired in [12].
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Proof. Assume by contradiction that that A* = oc. Then there is a sequence \,, —
oo and solutions u,, € C*(B), u, > 0 in B. Define

P(T, t) = )\t(I(T‘)—l + tp(r)_legterg(r),

Py(t) = A9t 4+ 1ot
and
Py(t) = A9+~ 1 4 o188
We will show that there is a constant C > 0 such that
P(r,t) > min{P(t), P(t)} > Cxt  for t>0.

In fact there exist constants Cq,y >0 and Cy ) > 0 such that P;(¢t) > Ci ¢t and
Py(t) > Cyt for t > 0. And the asserted constant is C = min{C; x,Cs}. We
will make the calculations for P;(t), the reasoning for P(t) is analogue. Define
the function Qy(t) = Py(t)t!. Then Q(t) — 0o as t — 0% and as t — oo. The
minimum value is Q1(t1) = Cy x, where t; > 0 is the unique root of

Bty —a- 262 +py —2] = A2 —q ).

Notice that t¢; increases as A increases. And the constant C  has the same
behaviour with respect to A. Here we are considering A sufficiently large. Let o7 > 0
the first eigenvalue of the Laplacian and ¢ > 0 the associated first eigenfunction
satisfying

—Ap; =011 in B
1 =0 on O0B.

Since C,x, — 00 as A, — oo, for each given 6 > 0, there is \,,, such that Clv)\no >
o1+ + 1. Hence the solution w,, > 0 of (1.5) corresponding to A, satisfies

—Aupy = (Crag — Dty = (01 +0)up, in B
Up, = 0 on O0B.

On the other hand, taking € > 0 small enough we obtain ep; < u,, in B, this is
possible because u,, > ug and dug/Ov < 0 on OB, see remark 4.2. Furthermore, we
have

—A(epr) = (eo1)p1 < (01 +6)(ep1) in B,
v1=0 on 0B,

and hence ey is a sub-solution. By the sub-super-solution method, there is a
solution ep; < ¢ < uy, in B of

—A(=(01+6)¢ in B
¢=0 on OB.

We thus have a contradiction to the fact that o; is isolated, so we really have
A* < oo. O
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