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The work of Coifman and Weiss concerning Hardy spaces on spaces of homogeneous
type gives, as a particular case, a definition of HP(Z") in terms of an atomic
decomposition.

Other characterizations of these spaces have been studied by other authors, but it
was an open question to see if they can be defined, as it happens in the classical case,
in terms of a maximal function or via the discrete Riesz transforms.

In this paper, we give a positive answer to this question.

1. Introduction

There are several works related to the general study of Hardy spaces in spaces of
homogeneous type. Let us mention the original definition given in terms of atoms
by Coifman and Weiss in [4], the work of Macfas and Segovia in [9], characterizing
these spaces via a grand maximal function, a maximal characterization given by
Uchiyama in [12] and the atomic decomposition given by Han in [7] in the setting of
Triebel-Lizorkin spaces. When we look at the discrete case Z, we must exclude the
last two mentioned papers, because they work under the restriction of considering
spaces of homogeneous type with no points of positive measure.

In the one-dimensional case, some work has been done in order to study some
other characterizations of Hardy spaces on Z. In [3], the authors studied the equiva-
lence of several definitions for HP(Z), the classical one in terms of atoms introduced
in [4], a second one in terms of the discrete Hilbert transform introduced by Eoff
in [5], and finally via maximal and square functions. The case N > 1 presented
some technical problems and remained open until now. In this paper we prove the
equivalence with the original atomic definition of H?(ZY), with others in terms of
a discrete maximal function or the discrete Riesz transforms.

In §2, we extend the maximal definition of HP(Z) in terms of the discrete
Poisson kernel given in [3] to an arbitrary dimension and prove, in the range
(N —1)/N < p < 1, its equivalence with a definition in terms of the boundedness in
¢P(ZN) of the discrete Riesz transforms, which are the natural substitute in several
variables of the discrete Hilbert transform.
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In §3, we shall show that the maximal definition of H?(Z") is equivalent with
the atomic characterization, proving in this way that these new spaces agree with
the original one of [4].

We shall use the standard notation about multi-indexes due to Schwartz.

We shall write f ~ g to indicate the existence of two positive universal constants
A and B, so that Af < g < Bf and constants such as C' may change from one
occurrence to the next.

Also, for a function F defined in RV, we shall use the notation F¢ to indicate
the sequence {F(n)},czv whenever a different definition is not explicitly written.

We shall write x to indicate the convolution between two sequences.

Let ER be the set of slowly increasing C*° functions f with Suppf C [-R,RN
The elements of Fr are functions of exponential type. It is a well-known fact that
if a function is in LP(R"Y) and its Fourier transform has compact support on, say,
the cube (—1, )", then its LP(R")-norm is comparable to the ¢P(ZN)-norm of its
samples on the set Z", that is (see [2]), if g € Ep with R < 2, then, for 0 < p < oo,

gl oy = g llew zv)- (1.1)
In [3] (see also [1]), some useful extensions of (1.1) were proved.

THEOREM 1.1. Let 0 < p, ¢ < 00 and 0 < R < . Let {g;(-)}1>0 be a family of
jointly measurable functions in Er. Then

S ([ lawr Y s [ ([ laer]

nezN

The inequality < holds without any restriction on R.

2. Discrete Hardy spaces of several variables

As we did in [3] for one variable, we can consider the following maximal definition
of Hardy spaces on Z .

DEFINITION 2.1. Let 0 < p < 1 and let us consider the discrete Poisson kernel

t

d —
Pt (n) - CN(t2+n2)(N+1)/25

n#0, P0)=0,

where C'y is a normalized constant depending on the dimension. Then we define

HE(Z) = {a € P(Z); sup| P xa| € £7(ZV)},
t>0

max

with the p-norm

lall gz, zvy) = llallep @y + | i;lg |Ptd*a|||€p(ZN)'

As we mentioned in § 1, we shall also consider the restriction to Z" of the Riesz
kernel R; of order j in RY, that is,

m;

Rd() ||—N+1, paral < j < N, ifm=(my,...,my) € ZV\ {0},
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and R;(0) = 0. The discrete Riesz transforms, R;-i, applied to a sequence a are the
convolution operators

d _ (pd _ mj — Ny
(Rfa)(m) = (R{ xa)(m) = ) (O ey
n#m
In the same way as we did in dimension N = 1 in terms of the discrete Hilbert
transform (see [3,5]), we can give the following definition.
DEFINITION 2.2. Let 0 < p < 1 and let us define

HZD

Poa(ZN) ={a € (Z¥): Rla € P(ZV), 1 < j < N},
with the p-norm

N
@y = llallerzvy + Z | RS all¢n ().

Jj=1

lall

Riesz

In order to prove the equivalence of the spaces introduced above (theorem 2.6),
we need some previous results.

We shall denote by R;j(x) = x;/|x|N*! the usual kernel in RY that defines the
Riesz transform of order j, and we also write, for a function f in RY,

ij = p.V.(Rj * f)a
whenever it makes sense.

LEMMA 2.3. Let k > 1 be a fized integer, let o € S(RY) such that

/ pdr =1
RN

/ z%p(x)dz =0
RN

for every multi-indexr o with 1 < |a] < k— 1. Then

and, for k> 2, let

|Rjp1/¢(2x") — Rj(2")] < C/t
uniformly in ' € Xn_1 (the (N — 1)-dimensional sphere).

Proof. First of all, we observe that we can write, for any f € S(RY) and 2/ € Yn_1,
Rif)= [ 3R =) - T ) dy
lyl<2/3
b R -~y dy =t I
ly[>2/3
By the mean-value theorem, we have

c
A A I
ly|<2/3 lyl
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where 2(y) € [z' —y, 2" +y]. f now f =y, then [V(py1/)(2)| = ¥ /4(2)], where
¥ = |Vy|. Since 2(y) € [2/ —y,2' +y] C B(z',2) C B(0,3)°, we have [z(y)| > 3.
Therefore, using the decay of ¢, we have

C 1 1
e[ pielF)eold)
1l ly|<2/3 ly| N1 tk tk

For I, we obtain that
I = / Ri(y)e1/:(2" — y) dy
lyl>2/3, |2’ —yl< |yl /2

+ / Ri(y)e1e(x' —y)dy = I3 + I4.
lyl>2/3, |2’ —y|>|y|/2

For 14, we use the fact that |R;(y)| < C on |y| > % and, again, the decay of ¢ to
obtain

1
i< [ Cloyele =lay<e [ faula=0(5).
ly[>2/3, |2 —y|>|yl/2

|z|>1/3

Let Py_1[Rj, z'] be the Taylor polynomial of degree k — 1 of R; in 2’. Using the
assumptions on ¢, we have that

Ig - Rj(.l‘/)

= / Ri(y)e1e(z' —y)dy
ly1>2/3, |o’ —y|< |yl/2

1 aaRj / o /
> = (x)/RN(y—x) p1e(2’ —y)dy

laf! Oz
0< Jal< k—1

/ (R(6) = Pos Ry, | () oe’ = ) dy
ly[>2/3, |z’ —yl< |yl|/2

1 0°R; , ,
2 T

0< |al< k—1

k—1
=I;— Y I

|| =0

/ (y —2") %1 (a" —y)dy
lyl<2/3U2"—y|>|y|/2

For every term in I, we use

OR; .,
<C
2w
uniformly in ' € ¥y_1, and the fact that for |y| < £, 2 <[z’ — y| < 2, to obtain
]| ’ 1
ly =2’ *p1(a’ —y)ldy < C l1/2(2)ldz = O\ 3 )-
lyl<2/3 [2]>1/3
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On the other hand, if [+ — y[ > 3[y| and |y| > 2, we have [z’ — y| > %, and therefore

al|yN
/ Iy—x’l'a'lw/t(x’—y)ldyéC/ thMdz=O<ik>,
2’ —y|>|yl/2 1215178 (L4 [2[t) t

where we have taken M = N + |« + k.
For I5, we use the decay of ¢ to obtain

15| < / Cly -
[y|>2/3, |[x"—y|< |yl/2

< 1/ tN d
Stk Jry (14t —y|)MF 4

ofz)

/|kL dy
(L+tlz" —yhM

O
COROLLARY 2.4. If o € S(RY) and k > 1 are as in the previous lemma,
1
(i) = Ry(e) + 0 3 )
for every x € RV \ {0}.
Proof. If ' = x/|z| € X n_1, we observe that
(Rjp)(x) = |z|~N Rjp1 10 (2)
and, as a consequence of the previous lemma,
/ / 1
Rjp1)1z)(2") — R;(2) = O(w)
Therefore,
_ 1
(i) ~ Ryfa) = ol ™ Ry @) ~ 1507 = Ok )
O

LEMMA 2.5. Let o € S(RY) be such that ¢ = 1 in a neighbourhood of zero and
0 <p<oo. Then

{iglg |Pi(n) = (P * ) (n) [} nez (o) € E(Z7).
Proof. We write

(P ¢)(n) = Pu(n) = /R el () — 1)etmme de. (2.1)

If we denote by Hy(&) = e 2mHel(p(€) — 1), we observe that the hypotheses as-
sumed on ¢ imply that H; € C°°(RY), the partial derivative of H; with respect to
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every multi-index « is uniformly bounded on ¢t > 0, and

0“H;

lim £ =0.
lel—oo D€ €=
Hence, if n;,,...,n;, are the non-vanishing components not equal to zero of
n = (n1,...,ny), and we integrate by parts repeatedly in the integral (2.1) with
respect to the corresponding variables &;,,...,&;,, we have
1 PH; . o

P, P, : 2 (£)e?mnE ¢,

(P o)) = i) = o | G (©
where ji1, ..., ji are the non-vanishing components of the multi-index j that corre-
spond to the variables &;,, ..., &;, , respectively. From here, we obtain that

(o)) = 2] = O —re )

Taking ji,...,jr big enough, depending on p, we get the result. O
THEOREM 2.6. Let (N —1)/N < p <1, then

HZD

Rlesa(ZN) = Hr;lr)lax(ZN)a
with equivalent HP -norms.

Proof. Let 0 < R < % and let ¢ be a radial function of Er such that ¢ =1 in a
neighbourhood of zero. Take a € Hf, ZN) and set

1esz(

g(z) = Z a(n)p(z —n) € LARY) N Ex.

neZN

Using Fourier’s inversion theorem, it follows that, for all 1 < j < N and 2 € RV,
&
(Rjg)(z) = | —iCN |§|g( §) ( )
— / —ICN Z —271'1n F (é—)GQWir{ dé—
R i

nezN
_ aln —i é-J ~ 27ri(r—n)~§
—EZIN ()/RN iCn T (E)e d
= Y an)(Ryp)(z —n). (22)
nezV

Corollary 2.4 tell us that, for every natural number k > 1, if m € ZV \ {0},

Ry ) = By(m) +0(—ir ).
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Since ¢ is radial, R;¢(0) = 0. Then, from (2.2) and taking into account the above
formula k > N(1/p — 1), we obtain that

[(Ri9)® — Rlall, o, < cZ(Zm — ]

n#m
1
CZ(Z la(n |m_n|(N+k)p>
n#m
< CHa’ng(ZN)-

As a consequence of this estimate and (1.1) applied to the function R;g of expo-
nential type, we can deduce that

N N
> IRsgll ey < C Y N(Rig) w2

j=1 =1

N
< c(nanep(ZN) 0y ||R(;a||ep(ZN)>

j=1

= Cllalluz, (2. (2.3)

Riesz

Since g € L%(RY), we can use the known characterization of H?(RY) in terms
of Riesz transforms (see [10]) for the range (N — 1)/N < p < 1 to deduce that
g € HP(RY). Moreover, from (2.3), we obtain that

N
lsup 17 allzsquy < © (Lol + 3 Wsgllznca, ) < Ol vy, (2:4)

Riesz
j=1

where we have also used the fact that, for 0 < p < 1,

lgllLrryy < Cllallerzvy < Cllallgz, vy

Rxeqz

Now, since a € HE. _(ZN) C (P C ¢! and P, € L*(RY), we write, for each t > 0

Riesz
N
and z € R"Y,

(Poxg)(@) = Y a(n)(P* @)@ —n).

nezZN

Therefore, if P¥ = P; % ¢, lemma 2.5 and theorem 1.1 imply that
[sup [P * alllerzvy < Clllallen vy + | sup | P * alllen (z2v))
t>0 t>0
= C(llallerzvy + | Sup (P ) llew (zv))
C(llallgpzvy + |l i;llg |P* glll Lo (mvy)- (2.5)

From (2.4) and (2.5) we conclude that

||a||H£,ax(ZN CHGHH{;,N(ZN)-
A similar argument proves the embedding H?, (ZV) — Hk, (ZN). a

https://doi.org/10.1017/50308210500001517 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001517

32 S. Boza and M. J. Carro

From now on, we shall write H?(Z") to represent the space H?_ (Z™),0 < p < 1.

max

In the same way that it was done in [3] for one variable, the discrete Poisson
kernel P2 can be substituted by &%, where & (n) =t~ V& (n/t) if n # 0, &}(0) = 0,
with @ a function in the Schwartz class with

[ o=t
RN

THEOREM 2.7. Let 0 <p <1 and let & € S be such that
/ o=1.
RN

||a||£P(ZN) + ||§1>118 |‘Fti*a|||ep(ZN) ~ ||a||HP(ZN)

Then

for every a € HP(ZY).

In relation to this last theorem, we can prove the following proposition about the
boundedness of some discrete maximal operators on HP(Z"), which will be useful
in the next section.

PROPOSITION 2.8. Let 0 < p < 1 and & € S(RN). The discrete mazimal operator
with kernel @} is bounded from HP(ZN) into (P(ZN), that is, there ewists some
positive constant C' > 0, independent of a, such that

Isup 124 alllerzvy < Cllallar ).
>

Proof. For a € HP(ZN), and ¢ € S(RY)N Eg such that ¢ = 1 in a zero neighbour-
hood, let us construct the function

@)= Y a(n)p(z —n).

nezZN

As in theorem 2.6, we can show that g € HP(R™) N L?(RY). Moreover,

gl e vy = ||§1>118 |P; * glllrrvy < Cllall grzny. (2.6)

On the other hand, we can write for each ¢t > 0 and m € Z", that
(@0 % g)(m) = (D¢ * ) % a)(m).
If &7 = (¥4 * )9, we deduce, as a consequence of theorem 1.1 and (2.6), that
|| sup |7 * all| o (zay = [l sup [(Ds * )l ¢n(zv)
t>0 t>0
< Ol sup [Py * g|[| Lo (mv)
>0

CHQHHP(]RN)

<
< Cllall o (mvy. (2.7)
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where we have used the fact that the maximal operator associated to the kernel
{®,}>0 is bounded from HP(RY™) to LP(RY), which can be easily proved from the
decay of @ using the atomic decomposition of the space HP(RY) (see [8]).

Now, with a similar proof to that of lemma 2.5, we obtain that

{( @ @) (n) = Po(n)} ez oy € F(ZY),
and thus, as a consequence of (2.7), we conclude that

Isup |2 x alllerzv) < Clllallen vy + Isup |27 x alllerz)) < Cllall e zv)-
> >

3. Atomic decompositions for sequences in HP(Z)

In order to prove the connection with the atomic version of the Hardy spaces on ZV
introduced in [4], we need the following result that relates sequences a in H?(Z")
and functions in HP(RY) constructed from a (see also [3,11]).

THEOREM 3.1. Let 0 < p < 1 and a € HP(ZN). If ¢ € L*(RY), with supp ¢ C
{|z| < A}, then

fl@)= Y a(n)é(z —n) € HP(RV).

neZN

Moreover, there exists a constant C = C(p, N) such that

Il e vy < Cllall gezvy-

Proof. To estimate || f|g» vy, we shall use the maximal characterization of the
spaces HP(RY), with the kernel a function ¥ € S with supp¥ C B(0,1) (see [6]).
Therefore, we write

p
||§1>113|¥7t * FIll Lo mev)

/]RN t>0 /RN gz:N n)¥(z —y)p(y —n)dy
[oe-o( X + ¥ )

/ sup
N
m+[0,1)N >0 In—m|<Co  |n—m|>Co

x (a(n)p(y —n))dy

p

dx

meZN
p
dx

p
dx

N

Y

N
mezZN oD >0 [n—m|< Co

! Z /m+ 0,1)N >0 /RN Z a(n)¢(y —n)(Yi(x —y)

mezZN [n—m|>Co

o) [ e =)oty =) dy

p

_PNO[Wt? ]( ))dy dz
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+ 2 /m+01)N§gg/ > atmely—n)

mezZN |[n—m|>Co

X Pno W, m — n](x —y)dy| dz

= (I) + (II) + (II1),

where Py, [#;, m — n](z — y) denotes the Taylor polynomial of degree
No = [N(1/p—1)]

of ¥y in m — n at the value x — y.
Being ¢ € L%(RY), the maximal function sup,s |¥; * ¢| is locally integrable and
we can estimate (I) as follows:

0-% [ e
Z m+[0,1)N >0

meZN

> Y lawr [ SR P e < Clall v,
m—n-+

N
meZN |m—n|< Co 0, >0

S am)@ )@ —n)| do

[n—m|< Co

To estimate (IT), we observe that, for every multi-index « such that |a| = Ny + 1,
forall M >0and 0 < 0 < 1,
|DWy(m —n—0(x—y—m+n))(z—y—m+n)%

-M
< Ct—N—No—1<1+ |m—”—9(33t—y—m+”)|>

=CtM NNt 4 im —n -0z —y—m+n)|)" M. (3.1)

Since . —m € [0,1)V, |y — n| < A and |m — n| > Cy, taking Cy large enough, we
get
t+ln—m—-0z—y—m+n)|=>Cln—m|

Therefore, if we take M = N + Ny + 1 in (3.1), we obtain that

= (f [ amet-n

meZN [n—m|>Cq
@
X E o |'D v,
|a|:No+1

x(m—-n—-0(x—-—y—m+n))
X(x—y—m+n)*dy

<c Z( 3 M—Z)LvméJMy)ldy)p

meZN “|n—m|>Co

p
>dx

< CH"’H%p(zN)-

https://doi.org/10.1017/50308210500001517 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001517

Hardy spaces on ZN 35
Since supp ¥ C B(0,1), (IIT) can be bounded by means of

No
1 1
III) = E E E —— (D%
(1D /m+[0,1)Nil>111) aln) |a|!tN+|a|( )

meZN [n—m|>Co |ae]=0

X (m_ n) oW —m —y)* dy

p
dx

t

No

S

N >
|a|=0 mezZN 0N t>1

1
Z a(n)W(Dau'/)t

[n—m|>Co
p

x(m=mn) [ ¢y)(r—m—y)*dy dz

RN

> a(n);(Dau'/)t(m —n)
[n—m|>Co
. </[o,1)N

where we have used the following application of proposition 2.8:

No

<Y

>
|| =0 mezZN 21

p

P(y)(x —y)* dy
RN

p
dx)

< ||a’||;;1p(ZN)7

l sup [(D*W) % alllgo(zvy < Cllall oz

Therefore, we have obtained

l sup 1@ * flll e vy < Cllall ge vy

Let us now recall the definition of an atom in HP(ZY) (see [4]).

DEFINITION 3.2. Let 0 < p < 1. We say that a sequence a = {a(n)},czv is an
HP-atom in Z" if the following conditions hold.

(i) There exists a cube Q in Z" such that suppa C Q.
(ii) [lalleo < 1/(#Q)'/P, where #Q represents the cardinality of Q.
(iii) > n%a(n) = 0 for every multi-index o € NV with o] < N(p~! —1).

The atomic space HZ, (Z") consists of the space of sequences a such that
oo
a = Z )\j aj,
j=0

where a; are HP-atoms and > 7% |A;|P < co. Moreover,

1/p
lall sz oy = inf{ (Z w) }

J

where the infimum is taking over all possible representations of a as above.
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The standard proof in the setting of homogeneous-type spaces shows the follow-
ing.
THEOREM 3.3. Let 0 < p < 1. Then the space HE (ZN) is continuously embedded
in HP(ZN).

With the aim of getting an atomic decomposition for sequences in HP(ZY), we
must construct, for each k = [N (1/p — 1)], some auxiliary functions in RY, say Cy,
with some special conditions (see [3] for the case N = 1). The required properties
for C}, are the following.

(i) supp Cy C [—%(k‘ +1), %(k‘—k DY = Q.

(ii) If k is even and m € Z", O, must be a polynomial of degree less than or

equal to k over any cube of the form m + [—1, 3]". (From now on, we shall

restrict ourselves to the case of k£ an even integer, in the remark that follows
theorem 3.7 we shall hint the necessary changes for k odd integer.)

(iii) For every multi-index j € NY such that 0 < |j| < k,

Z m?!Cy(x —m) = Pj(x), = €RN,

meZN

where P; is a polynomial of degree |j| fixed by the following condition
/ Pj(z)dz =n for each n € ZV (3.2)
[—1/4,1/4%

(if n = j = 0, we shall understand that n’ = 1).
Let us now prove that (3.2) determines in a unique way the polynomials P;.

LEMMA 3.4. For each j € NV there exists a unique polynomial P;j(z) of degree |j|
that verifies (3.2).

Proof. Let
Pi(z) = Y Bja,

[sI< 14l

and let us check that the coefficients {BJS-}|S|< |j| are determined in a unique way.
To do this, we observe that

z)dr = B; / (z+n)*dz
/n+[—1/4,1/4]N Z 1/4,1/4]N

IsI< 131

- Z B[ E )]
Is|< 4] [-1/41/4% p<s

= > BSZ< >nﬂ15_ﬂ,
lsI<ljl  B<s
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I, = / % dz.
[—1/4,1/4N

Therefore, the coefficients B have to satisfy the following system:

3 nﬂ[ 3 <;>IS_ﬂB;} =nt V|j| <k

|BI< 1 [sI<|il, s> B8

where

If 8 = j, we obtain '
IOB; =1,

from which the coefficient B; is uniquely determined. Now, if 3 # j, we have that

3 <;> I,_3B; = 0. (3.3)

[sI< il s> 8

On the other hand, if s > 8 and |s| < |3] implies s = 3, then if 8 # j, but |3] = |j],
equation (3.3) reduces to Bf =0.

With this remark, we have fixed all coefficients B? such that |3| = |j]. Let us
suppose that we have solved the system of equations given by (3.3), up to find
coefficients B? with [j] —r < |B8] < |j], 7 = 0 an integer. Now, from (3.3), we obtain
that for |8| = |j| — (r + 1),

- 5 (e

[sI<1dl, s> B8

SRR M V)

l7l=(r+1)< s|< 14, 52 B
S
- R DR (4 T
l7l=r<sl< 5], s> 8
and therefore, Bf is uniquely determined. O

LEMMA 3.5. Fized P; as in the previous lemma, for every j multi-index such that
0 < |j| <k, there exist piecewise polynomial functions Cy verifying conditions (i),
(i1) and (1)
Proof. We represent by

J={j= (- in) €ZY | < 3k, 1<i< N}

We observe that m € J if and only if m + [—%, %]N C Q. For each m € J, let C}"

be a polynomial of degree less than or equal to k, to be found, such that
Ci(z) = C(z), z€-m+[-1 4V,
and write

o (z) = Z Atz +m), ze-m+[-1 3V, (3.4)
l7l<k
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with unknown coefficients {A;'n}le x- In order to verify condition (iii) we impose,
first of all, the equations

> miC(z—m) = Pj(z), =¢€[-1 V. (3.5)
mezZN
Now, if z € [-3,2]V, 2 —m € —m + [—3, 1]V and, from (3.4), we get that (3.5) is
equivalent to the fact that, for every 0 < |j] < k,
P =Y mj(z A;nxs> -y xs@j mm;n>, re[ 4N,
melJ s|< k s|< k meJ

Writing, as in the previous lemma,

Z Bjz®,

[sI< 14l

if we equal coefficients, we observe that for a fixed multi-index s such that |s| < |j],
the system
> mIAT =B, 0<jI<k (3.6)
meJ
holds. And for s such that |s| > [j], Bf =
Given a multi-index s, the system above has (k+1)" unknowns, {A" },ncs, and
(N+k) equations. Since the range of the system (3.6) coincides with the number of
equations, we can choose a subset I C J \ {0} having cardinality

b+ 1N — <N2k>

such that
AT =0 forevery m €I and all |s| < k

and determine the remaining unknowns in a unique way. Then, for m € I, C}* = 0.
In such a way, we have constructed a function Cj satisfying conditions (i), (ii)
and equation (3.5) We must now check that (3.5) is also true for all z € RN, If

z € RY and n € ZV is such thathn—F[—g,%]N, we have
Z m? Cp(x —m) = Z (m 4 n)!Cp(x —n —m)
mezZN meZN

> (Z <i>mo‘nj_a> Cr(x —n—m)

meZN “a<lj

> (i) n/ =Py (x — n),

a<s g

where the last equality follows from (3.5), since x —n € [—%, %]N It is easy to prove

that this last polynomial is equal to P}, checking that it also verifies condition (3.2),
which, following lemma, 3.4, determines P;. This fact shows us that condition (iii)
is true for all z € RV, and so we are done. O
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REMARK 3.6. From the construction of the functions Cj, we observe that, due
to (3.2) and property (iii),

Z / Ck(x—m)dxz/ Py(z)dx =1,
[-1/4,1/4N [—1/4,1/4N

meZN

and for 1 < |j| <k

Z mj/ Ck(x—m)dxz/ Pj(x)dx = 0.
[-1/4,1/4N

1/4,1/4]N
These equations imply that
/ Ci(x)dz =1 and / Ci(xz)dz =0, neczV\{0}.
[—1/4,1/4)N n[—1/4,1/4N
(3.7)

THEOREM 3.7. Let 0 < p < 1 and a € HP(ZY). Then there exists a sequence
{152, such that
> NP < o0
i=0
and a set of HP-atoms in ZN, {a;}32,, verifying
n) = Z)\mi(n), nezV.

Moreover, for a positive constant C > 0, independent of a, we have that
oo 1/p

(S w) " < Clallscavy
i=0

Proof. First, let us assume that k = [N(1/p—1)] is even. Let a € HP(Z"Y), and set

f(z) = Z a(”)X[—1/4,1/4)N(3C —n).

nezhN
By theorem 3.1, f € HP(RV) and
Iz vy < Cllallgezx)-

Since f is also in L2(R%), it can be decomposed in terms of HP-atoms {b; }:> o, that
is,

x) = Z \bi(z) ae. z € RY,
where
S Inl? < Ol

=0

https://doi.org/10.1017/50308210500001517 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001517

40 S. Boza and M. J. Carro

Let us consider, for every i € N, @;, the smallest cube containing the support of
an atom b; and write

Ji={ieN; |Q;|>1/8"} and Jy={ieN; |Q; <1/8"}.

If ¢ € Jy, we have that

1
Q[P

[[biloe < < 8NP,

and hence the series

> Aibi(y)

i€Jy

converges for a.e. z € RV and in the distributions sense to a function in L2(RY).
Thus, for each m € Z~, and C}, the function constructed in the previous lemma,

we get
o= [ (Ero) s
- /[—(k+1)/2,(k+1)/2]N <§ b= y)>0k(y) dy
- /[—(k+1)/2,(k+1)/21N <1ezJ:1 b= y)> crnd

y (Zanom-v)awa. @9
[=(k+1)/2,(k+1) /2N \; 27,

For the first term, using the dominated convergence theorem, we have
/ <Z )\ibi(m—y)>0k(y)dy= Z)\i(bi*Ck)(m).
(=(k+1)/2,(k+1) /2] N gy i€

Let us now see that the second term in (3.8) is equal to 0. If we analyse how
the atomic decomposition is obtained for our function f (see [8]), we see that we
can assume that supp b; Nsupp f # 0. Therefore, if i € J, and [ € ZV, then either

suppb; C 1+ [—2, 2]V, or suppb; N (I + [~3,3]") = 0 and thus

D Aibi(y) =0 ae.ye(@+[-1.3N)N+][-2 2" (3.9)
i€J2

If, as in the previous lemma, we write

J={j=(h1---,jn) €ZN; |jil < 3k, 1 <i < N},
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we obtain from (3.9) that

<Z )\ibi(y)>0k(m —y)dy

i€Ja

B Z /m+j+[—1/2,1/2]N (

/m-?-[—(k-?-l)/?,(k-?-l)/?]N

> )\ibi(y)> Cr(m —y) dy

jeJ i€J2
= / <Z /\ibi(y)>0k(m —y)dy.
Sor I mait-3/8.3/8 \[CT,

Now, given j € J, let ¢; € S(RY), with supp; € m+j + [—5,5] and p; =1
onm+j+[—2, g] . By (3.9), we can write this last equation as

2;(/ (ZM > (y)Cr(m — y)dy>

Since C}, is equal to a polynomial of degree less than or equal to k& on the support
of ¢, we see that o;(-)Cx(m — -) € S(RY), and hence the above expression is

DD Xilbi), Crlm = ) ()
jeJieda

By the cancellation property of the atom b; and the choice of ¢;, we can easily
deduce that for every i € J, and j € J,

(bi(-), Cr(m = );(-)) = (bi(-), Cp(m —-)) = 0,

and therefore

/ > Aibi(m — y)>0k(y) dy = 0.
[~ (k+1)/2,(k+1) /2] <¢er

Consequently, from this argument and (3.7), we have proved that
Z a(m — n)/ Ci(z)dx
ez n[—1/4,1/4]N

= (f*Cx)(m)

= > Ai(bi* Cr)(m)

i€J1

= > Aiaip(m). (3.10)

i€J1

a(m)

Let us now prove that a;; = {(b; * Cx)(m)},, are HP-atoms in ZN . We observe
that the only atoms taking part in (3.10) are those having support in cubes @; with
|Q;] > 1/8" and such that a; ; % 0. Thus we have the following.

(i) supp a; i C supp(b; * Cx) NZN C (Q; + [—3(k + 1), 3(k+ 1)]Y)NZN C B, 1,
with B; . being a ball in Z¥. Since |Q;| > 1/8%, the cardinality of B, ; can
be estimated as #B; x < (k + 2+ |Q:[YM)N < O(k, N)|Qs).
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) C(k) _ C(k,p,N)
e < B, < < :
(11) ||a’1,k||oo X ||b1||oo /RN |Ck(.l‘)|dl' |Q1|1/p (#Bi,k')l/p

(iii) If 0 < |j| < k, using property (iii) of the functions Cy and the cancella-
tion property of the atoms b; for polynomials of degree less than or equal to
kE=[N(1/p—1)], we have

Z m?a; . (m) = Z m? (b; * Cy)(m)

meZN meZN

= 3w [ nwCun ) ay

mezZN
— (_1\ll VP
(-1 /RN bi(y) Pi(—y) dy
= 0.

On the other hand, we have by theorem 3.1 that
Z |)\1|p < CHfHZ})[;D(RN) < CHG’HZ})[:D(ZN)a
i=0

and we get the result. O

REMARK 3.8. If k = [N(1/p—1)] is odd, we must replace the function f above by

fl@) =" a)xpjaza~(@—n), ac€ HY(ZY),

nezZN

In this case, the same proof works if we replace conditions (ii) and (iii) for func-
tions C) by the following ones.

(ii") Ck must be a polynomial of degree less than or equal to k over any cube of
the form m + [0,1]Y, m € ZV.

(iii") For every multi-index j € NV such that 0 < || < k,

Z mICy(z —m) = Pj(z), x€RY,

meZN

where P; is a polynomial of degree |j| fixed by the condition
/ Pj(x)dz =n?, nez®
n+[1/4,3/4]N
(if n = j = 0, we understand that n/ = 1).
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