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The Dirichlet problem

∆u + K(|x|)|u|p−1u = 0 in B,

u = 0 on ∂B

}
(∗)

is considered, where B = {x ∈ R
N : |x| < 1}, N � 3, p > 1, K ∈ C2[0, 1] and

K(r) > 0 for 0 � r � 1. A sufficient condition is derived for the uniqueness of radial
solutions of (∗) possessing exactly k − 1 nodes, where k ∈ N. It is also shown that
there exists K ∈ C∞[0, 1] such that (∗) has at least three radial solutions possessing
exactly k − 1 nodes, in the case 1 < p < (N + 2)/(N − 2).

1. Introduction

We consider the Dirichlet problem

∆u + K(|x|)|u|p−1u = 0 in B,

u = 0 on ∂B,

}
(1.1)

where B = {x ∈ R
N : |x| < 1}, N � 3, p > 1, K ∈ C2[0, 1] and K(r) > 0 for

0 � r � 1.
According to the well-known result of Gidas et al . [6], every positive solution

of (1.1) is radially symmetric if K ′(r) � 0 for 0 � r � 1. On the other hand,
there exist non-radial nodal solutions of (1.1) under somewhat hypotheses (see, for
example, [1, 2]). As pointed out by Seok [17], if K(r) ≡ 1 on [0, 1], u is a solution
of (1.1), the nodal set of u is spherical and u(0) �= 0, then u is radial symmetric. In
this paper we investigate the nodal radial solutions u = u(|x|) of (1.1).

Let u(r) be a radial solution of (1.1), where r = |x|. Then u(r) satisfies the
second-order ordinary differential equation

u′′ +
N − 1

r
u′ + K(r)|u|p−1u = 0 (1.2)

for 0 < r < 1, and the boundary condition

u′(0) = u(1) = 0. (1.3)
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We consider solutions u of problem (1.2)–(1.3) satisfying u(0) > 0 only, since if u
is a solution of (1.2)–(1.3), so is −u.

In this paper we study the uniqueness of solutions of the problem (1.2)–(1.3)
having exactly k − 1 zeros in (0, 1), where k ∈ N. Hence, we consider the following
problem:

u′′ +
N − 1

r
u′ + K(r)|u|p−1u = 0, 0 < r < 1,

u′(0) = u(1) = 0, u(0) > 0,

u has exactly k − 1 zeros in (0, 1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.4)

We define the constant λ and the function V (r) as follows:

λ =
(N − 2)p − (N + 2)

2
, V (r) =

rK ′(r)
K(r)

.

It is known [9,10] that if
V (r) � λ, 0 � r � 1, (1.5)

then problem (1.4) has no solution for every k ∈ N. For example, (1.5) is satisfied
in the case where p � (N + 2)/(N − 2) and K ′(r) � 0 on [0, 1]. We can find more
precise conditions for the non-existence of solutions of (1.4) in [12,22].

The existence results for (1.4) have been obtained by Castro and Kurepa [3],
Dambrosio [4], Esteban [5], Naito [14] and Struwe [18]. The following theorem has
been established by Naito [14, theorem 3].

Theorem 1.1 (Naito). Let k ∈ N. If 1 < p < (N + 2)/(N − 2), then there exists
at least one solution of (1.4).

Now we consider the case where K(r) ≡ 1 on [0, 1]. Then we easily see that
problem (1.4) has at most one solution, since if u is solution of (1.2), so is v(r) :=
αu(α(p−1)/2r) for α > 0. Hence, from theorem 1.1 it follows that if 1 < p <
(N + 2)/(N − 2), then (1.4) has a unique solution for every k ∈ N. Moreover, if
p � (N + 2)/(N − 2), then (1.4) has no solution, since (1.5) holds.

Ni [15] and Ni and Nussbaum [16] considered problems of the form

u′′ +
N − 1

r
u′ + f(r, u) = 0, 0 < r < 1,

u′(0) = u(1) = 0,

⎫⎬
⎭ (1.6)

and derived the sufficient conditions for the uniqueness of positive solutions of (1.6).
Applying the results in [15, theorem 3.19] and [16, theorem 2.47], we conclude that
problem (1.4) with k = 1 has at most one solution if either

p(N − 1) − (N + 3)
2

� V (r) � (N − 1)(p − 1)
2

, 0 < r < 1 (1.7)

or

(N − 2)p − N � V (r) � (N − 2)p + N − 4, 0 < r < 1. (1.8)

In the case when K(r) = rl, l � 0, Nagasaki [13] showed that if 1 < p <
(N + 2 + 2l)/(N − 2), then (1.4) has a unique solution for every k ∈ N, and that

https://doi.org/10.1017/S0308210507000431 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210507000431


Uniqueness of nodal radial solutions 1333

if p � (N + 2 + 2l)/(N − 2), then (1.4) has no solution. In the case when l > 0,
we have K(0) = 0. On the other hand, we assume that K(0) > 0 in this paper.
Yanagida [21] proved that, for each k ∈ N, problem (1.4) has at most one solution if
V (r) is non-increasing. We can apply his result independently of whether K(0) = 0
or K(0) > 0. However, very little is known about the uniqueness of solutions of (1.4)
for the case where V (r) is not non-increasing.

The main result of this paper is as follows.

Theorem 1.2 (main theorem). Let k ∈ N. Assume that

[V (r) − p(N − 2) − N + 4][V (r) − p(N − 2) + N ] − 2rV ′(r) < 0, 0 < r < 1. (1.9)

Then the solution of (1.4) exists and is unique.

Remark 1.3.

(i) Letting r → +0 in (1.9), we have p � N/(N − 2). Hence, by theorem 1.1, we
see that if (1.9) holds, then (1.4) has at least one solution for each k ∈ N.

(ii) There exist K ∈ C2[0, 1] and p > 1 for which (1.7) and (1.8) are not satisfied,
although (1.9) is satisfied (see example 1.5, below).

We have the following corollary of theorem 1.2.

Corollary 1.4. Let k ∈ N. Assume that (1.8) holds and V ′(r) > 0 for 0 < r < 1.
Then the solution of (1.4) exists and is unique.

Example 1.5. We consider the case where p = N/(N − 2) and K(r) = e(2N−3)r.
Then we see that V (r) = (2N − 3)r, so that V (r) is strictly increasing, and neither
(1.7) nor (1.8) is satisfied. Therefore, we cannot apply the results in [15,16,21]. On
the other hand, since

[V (r) − p(N − 2) − N + 4][V (r) − p(N − 2) + N ] − 2rV ′(r)
= ((2N − 3)r − 2N + 2)(2N − 3)r
< (2N − 3 − 2N + 2)(2N − 3)r
= −(2N − 3)r
< 0

for 0 < r < 1, from theorem 1.2, it follows that the solution of (1.4) exists and is
unique for each k ∈ N.

In theorem 1.2 we cannot remove condition (1.9). Indeed, we have the following
result. In particular, it is emphasized that the uniqueness of solutions of (1.4) is
not caused by the smoothness of the function K(r).

Theorem 1.6. Let 1 < p < (N + 2)/(N − 2). For each k ∈ N, there exists K ∈
C∞[0, 1] such that K(r) > 0 for 0 � r � 1 and such that (1.4) has at least three
solutions.

We also note that (1.1) has three positive solutions for some K(r).
In the case N = 1, Moore and Nehari [11] proved that there exists a piecewise

continuous function K such that (1.1) has at least three positive solutions. We use
their idea in the proof of theorem 1.6.
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2. Proof of theorem 1.2

The proof of theorem 1.2 is based on the shooting method. Namely, we consider
the solution u(r, α) of (1.2) satisfying the initial condition

u(0) = α > 0, u′(0) = 0, (2.1)

where α > 0 is a parameter. Since K ∈ C2[0, 1], we see that u(r, α) exists on [0, 1]
and is unique, u, u′ ∈ C1([0, 1] × (0,∞)) and uα(r, α) = ∂u(r, α)/∂α is a solution
of the linearized problem

w′′ +
N − 1

r
w′ + pK(r)|u(r, α)|p−1w = 0, r ∈ (0, 1],

w(0) = 1, w′(0) = 0.

⎫⎬
⎭ (2.2)

(see, for example, [20, §§ 6 and 13]).
We note that u(r, α) and u′(r, α) cannot vanish simultaneously. In fact, if, for

some r0 ∈ (0, 1], u(r0, α) = u′(r0, α) = 0, then, by the uniqueness of the initial-
value problem, u(r, α) ≡ 0 for r ∈ (0, 1], which contradicts (2.1).

We define zi to be the ith zero of u(r, α), if such a zi exists. Then we easily find
that

(−1)iu′(zi, α) = (−1)i d
dr

u(zi, α) > 0 for i = 1, 2, . . . . (2.3)

To prove theorem 1.2, we need the following lemma. The proof will be given in
the next section.

Lemma 2.1. Assume that there exists the kth zero zk of u(r, α) in (0, 1]. Let w be
the solution of (2.2). If (1.9) holds, then (−1)iw(zi) > 0 for i = 1, 2, . . . , k.

Now we employ the Prüfer transformation for the solution u(r, α) of problem (1.2)
and (2.1). For the solution u(r, α) with α > 0, we define the functions ρ(r, α) and
θ(r, α) by

u(r, α) = ρ(r, α) sin θ(r, α),

rN−1u′(r, α) = ρ(r, α) cos θ(r, α),

where ′ = d/dr. Since u(r, α) and u′(r, α) cannot vanish simultaneously, we see that
ρ(r, α) and θ(r, α) are written in the form

ρ(r, α) = ([u(r, α)]2 + r2(N−1)[u′(r, α)]2)1/2 > 0

and

θ(r, α) = arctan
u(r, α)

rN−1u′(r, α)
,

respectively. From u, u′ ∈ C1([0, 1]×(0,∞)), it follows that ρ, θ ∈ C1((0, 1]×(0,∞)).
By a simple calculation we find that

θ′(r, α) = r−N+1 cos2 θ(r, α) + rN−1K(r)|ρ(r, α)|p−1| sin θ(r, α)|p+1 > 0,

for r ∈ (0, 1], which shows that θ(r, α) is strictly increasing in r ∈ (0, 1] for each
fixed α > 0. From (2.1) it follows that ρ(0, α) = α and θ(0, α) ≡ 1

2π(mod 2π). For
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simplicity we take θ(0, α) = 1
2π. It is easy to see that u(r, α) is a solution of (1.4)

if and only if
θ(1, α) = kπ. (2.4)

Hence, the number of solutions of (1.4) is equal to the number of roots α > 0
of (2.4).

Lemma 2.2. Let k ∈ N and let u(r, α0) be a solution of (1.4) for some α0 > 0.
Suppose that (1.9) holds. Then θα(1, α0) > 0.

Proof. Observe that

θα(r, α) =
uα(r, α)rN−1u′(r, α) − u(r, α)rN−1u′

α(r, α)
[u(r, α)]2 + [rN−1u′(r, α)]2

.

Since zk = 1 and u(1, α0) = 0, we obtain

θα(1, α0) =
uα(zk, α0)
u′(zk, α0)

.

Note that (−1)ku′(zk, α0) > 0, by (2.3). It follows from lemma 2.1 that

(−1)kuα(zk, α0) > 0,

which implies that θα(1, α0) > 0. The proof is complete.

Proof of theorem 1.2. Recalling remark 1.3, we see that (1.4) has at least one solu-
tion. We show that the solution of (1.4) is unique. Assume to the contrary that there
exist numbers α1 and α2 such that u(r, α1) and u(r, α2) are solutions of (1.4) and
0 < α1 < α2. Then θ(1, α1) = θ(1, α2) = kπ. Lemma 2.2 implies that θα(1, α1) > 0
and θα(1, α2) > 0. Hence, we see that θ(1, α0) = kπ and θα(1, α0) � 0 for some
α0 ∈ (α1, α2). This contradicts lemma 2.2. Consequently, (1.4) has at most one
solution. The proof of theorem 1.2 is complete.

3. Proof of lemma 2.1

In this section we prove lemma 2.1. Henceforth we assume that there exists the kth
zero zk of u(r, α) in (0, 1]. For the solutions u(r, α) and w(r) of (1.2), (2.1) and
(2.2), respectively, we set

U(t, α) = tu(t1/(N−2), α), W (t) = tw(t1/(N−2)).

Then U = U(t, α) and W = W (t) satisfy

U ′′ + M(t)|U |p−1U = 0, 0 < t � 1, (3.1)
U(0, α) = 0, U ′(0, α) = α, (3.2)

W ′′ + pM(t)|U(t, α)|p−1W = 0, 0 < t � 1, (3.3)
W (0) = 0, W ′(0) = 1, (3.4)

where ′ = d/dt and

M(t) = (N − 2)−2t−p−(N−4)/(N−2)K(t1/(N−2)).
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Set Zi = zN−2
i , i = 1, 2, . . . , k and Z0 = 0. Then we see that

U(Zi, α) = 0, i = 0, 1, 2, . . . , k,

(−1)i−1U(t, α) > 0 for t ∈ (Zi−1, Zi), i = 1, 2, . . . , k,

By (3.1), there exist Si, i = 1, 2, . . . , k such that

Si ∈ (Zi−1, Zi),
U ′(Si, α) = 0, i = 1, 2, . . . , k,

U ′(t, α) > 0 for t ∈ (0, S1),

(−1)iU ′(t, α) > 0 for t ∈ (Si, Si+1), i = 1, 2, . . . , k − 1, (3.5)

(−1)kU ′(t, α) > 0 for t ∈ (Sk, Zk].

Lemma 3.1. Let W be a solution of (3.3), (3.4). Then, for each i ∈ {1, 2, . . . , k},
W has at least one zero in (Zi−1, Zi).

Proof. Let i ∈ {1, 2, . . . , k}. Assume to the contrary that W (t) �= 0 for t ∈
(Zi−1, Zi). Let U be a solution of (3.1), (3.2). We may assume without loss of
generality that W (t) > 0 and U(t) > 0 for t ∈ (Zi−1, Zi), since another case can be
treated similarly. Then we see that U ′(Zi) < 0 and U ′(Zi−1) > 0, and hence

W (Zi)U ′(Zi) − W (Zi−1)U ′(Zi−1) � 0.

An easy computation shows that

(WU ′ − W ′U)′ = (p − 1)M(t)|U |p−1UW, 0 < t � 1. (3.6)

Note that (WU ′ − W ′U)′ is integrable on [0, 1], because of (3.2) and (3.4). Inte-
grating (3.6) over (Zi−1, Zi), we have

W (Zi)U ′(Zi) − W (Zi−1)U ′(Zi−1) > 0.

This is a contradiction. Consequently, W has at least one zero in (Zi−1, Zi).

The following identity plays a crucial part in the proof of lemma 2.1. This identity
has been obtained in [19], by using the idea due to Korman and Ouyang [8]. (See
also [7, lemma 4.1].)

Lemma 3.2. Let U be a solution of (3.1), (3.2), and let W be a solution of (3.3),
(3.4). Then

[[M(t)]−1/2[W ′U ′ − WU ′′] − ([M(t)]−1/2)′WU ′]′ = −([M(t)]−1/2)′′WU ′ (3.7)

for 0 < t � 1.

Proof. By (3.1), we note that U ′′′ = −M ′(t)|U |p−1U − pM(t)|U |p−1U ′ for 0 < t �
1. A direct calculation shows that (3.7) follows immediately.

Lemma 3.3. Let U be a solution of (3.1), (3.2), and let W be a solution of (3.3),
(3.4). Then

lim
t→+0

[[M(t)]−1/2[W ′U ′ − WU ′′] − ([M(t)]−1/2)′WU ′] = 0.
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Proof. In view of (3.2) and (3.4), it is sufficient to show that

lim
t→+0

[M(t)]−1/2U ′′(t) = 0, (3.8)

lim
t→+0

([M(t)]−1/2)′W (t) = 0. (3.9)

Since

lim
t→+0

U(t)
t

= lim
t→+0

U ′(t) = α and p − 1 +
2

N − 2
> 0,

we see that

|[M(t)]−1/2U ′′(t)| = |[M(t)]−1/2M(t)|U(t)|p−1U(t)|
= |M(t)|1/2|U(t)|p

=
1

N − 2
t(p−1+[2/(N−2)])/2[K(t1/(N−2))]1/2

∣∣∣∣U(t)
t

∣∣∣∣
p

,

so (3.8) holds.
We observe that

([M(t)]−1/2)′ = σ(N − 2)tσ−1[K(t1/(N−2))]−1/2

− 1
2 tσ+(1/(N−2))−1[K(t1/(N−2))]−3/2K ′(t1/(N−2)), (3.10)

where

σ =
1
2

(
p +

N − 4
N − 2

)
> 0.

Since limt→+0 W (t)/t = W ′(0) = 1, we have

lim
t→+0

tσ−1W (t) = lim
t→+0

tσ
W (t)

t
= 0 (3.11)

and hence
lim

t→+0
tσ+(1/(N−2))−1W (t) = 0. (3.12)

Combining (3.10)–(3.12), we conclude that (3.9) holds. The proof is complete.

Lemma 3.4. Inequality (1.9) holds if and only if ([M(t)]−1/2)′′ < 0 for 0 < t < 1.

Proof. Set t = rN−2. Then [M(t)]−1/2 = (N − 2)rρ[K(r)]−1/2, where ρ = 1
2 (p(N −

2) + N − 4). Hence, we obtain

d
dt

[M(t)]−1/2 = ρrρ−N+2K−1/2 − 1
2rρ−N+3K−3/2K ′

and

d2

dt2
[M(t)]−1/2

=
rρ−2N+4

(N − 2)K1/2

[
ρ(ρ − N + 2) − 2ρ − N + 3

2
rK ′

K
+

3
4

(
rK ′

K

)2

− 1
2

r2K ′′

K

]
.
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Recall that V (r) = rK ′(r)/K(r). Since r2K ′′/K = rV ′ − V + V 2, we have

4(N − 2)K1/2

rρ−2N+4

d2

dt2
[M(t)]−1/2

= 4ρ(ρ − N + 2) − 2(2ρ − N + 2)V + V 2 − 2rV ′

= (V − 2ρ)(V − 2(ρ − N + 2)) − 2rV ′

= (V − p(N − 2) − N + 4)(V − p(N − 2) + N) − 2rV ′.

Therefore, (1.9) holds if and only if ([M(t)]−1/2)′′ < 0 for 0 < t < 1.

Lemma 3.5. Assume that (1.9) holds. Let W be a solution of (3.3), (3.4). Then
the following hold:

(i) W (t) > 0 for t ∈ (0, S1];

(ii) W has at most one zero in (Si, Si+1] for each i ∈ {1, 2, . . . , k − 1};

(iii) W has at most one zero in (Sk, Zk].

Proof of lemma 3.5. First we prove (i). Suppose that there exists t2 ∈ (0, S1] such
that W (t2) = 0 and W (t) > 0 for t ∈ (0, t2). Then we have W ′(t2) < 0. Since
t2 ∈ (0, S1], we see that U ′(t2) � 0, so that W ′(t2)U ′(t2) � 0. Integrating (3.7)
over (0, t2] and using lemmas 3.3 and 3.4, we have W ′(t2)U ′(t2) > 0. This is a
contradiction. The proof of (i) is complete.

We now prove (ii) only, as we can prove (iii) in exactly the same way.
Assume that there exist t1 and t2 such that Si < t1 < t2 � Si+1, W (t1) =

W (t2) = 0 and W (t) �= 0 for t ∈ (t1, t2). We may suppose that W (t) > 0 for
t ∈ (t1, t2), since the case where W (t) < 0 for t ∈ (t1, t2) can be treated similarly.
Then we have W ′(t1) > 0 and W ′(t2) < 0. Let U be a solution of (3.1), (3.2).
Integrating of (3.7) over [t1, t2] and then multiplying it by (−1)i and using lemma 3.4
and (3.5), we obtain

[M(t2)]−1/2W ′(t2)(−1)iU ′(t2) − [M(t1)]−1/2W ′(t1)(−1)iU ′(t1) > 0.

This contradicts (3.5), W ′(t1) > 0 and W ′(t2) < 0. The proof is complete.

Proof of lemma 2.1. By lemmas 3.1 and 3.5, there exists a number C1 ∈ (S1, Z1)
such that W (t) > 0 for t ∈ (0, C1), W (C1) = 0 and W (t) < 0 for t ∈ (C1, S2]. In
particular, we have W (Z1) < 0. Also from lemmas 3.1 and 3.5 we see that there
exists a number C2 ∈ (S2, Z2) such that W (t) < 0 for t ∈ (S2, C2), W (C2) = 0,
and W (t) > 0 for t ∈ (C2, S3], so that W (Z2) > 0. By continuing this process, we
conclude that (−1)iW (Zi) > 0 for i = 1, 2, . . . , k. This means that (−1)iw(zi) > 0
for i = 1, 2, . . . , k. The proof is complete.

4. Proof of theorem 1.6

In order to prove theorem 1.6 we need the following lemma.

Lemma 4.1. Assume that k ∈ N and 1 < p < (N + 2)/(N − 2). Then there exist
R > 0, L ∈ C∞[0, R] and solutions v0 and v1 of

v′′ +
N − 1

r
v′ + L(r)|v|p−1v = 0 (4.1)
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such that L(r) > 0 for 0 � r � R, v0 has at least k zeros in [0, R), v1 has at most
k − 1 zeros in [0, R] and v1(0) > v0(0) > 0.

The proof of lemma 4.1 is given in the next section. By the well-known fact [21,
lemma 2.1(a)], we note that the solutions vi in lemma 4.1 satisfy v′

i(0) = 0.
We denote by v(r, α) the solution of (4.1) with v(0) = α and v′(0) = 0.
By using the results of Naito [14, lemmas 6.2 and 6.3], we obtain the following

lemma.

Lemma 4.2. Let R > 0 and 1 < p < (N + 2)/(N − 2). Suppose that L ∈ C1[0, R]
and L(r) > 0 for 0 � r � R. Then the following hold:

(i) for sufficiently small α > 0, v(r, α) > 0 on [0, R];

(ii) the number of zeros of v(r, α) in [0, R] tends to ∞ as α → ∞.

Proof of theorem 1.6. Let R > 0 and L ∈ C∞[0, R] as in lemma 4.1. Then there
exist α0 and α1 such that v(r, α0) has at least k zeros in [0, R), v(r, α1) has at most
k − 1 zeros in [0, R], and α1 > α0 > 0. We use the Prüfer transformation for the
solution v(r, α), that is, we define the functions ρ(r, α) and θ(r, α) by

v(r, α) = ρ(r, α) sin θ(r, α),

rN−1v′(r, α) = ρ(r, α) cos θ(r, α),

where ′ = d/dr. We see that θ(R, α0) > kπ and θ(R, α1) < kπ. By lemma 4.2, there
exist α∗, α∗ such that 0 < α∗ < α0 < α1 < α∗, and the following (i) and (ii) are
satisfied:

(i) θ(R, α) < π for α ∈ (0, α∗];

(ii) θ(R, α) > kπ for α � α∗.

Hence, there exist β1, β2 and β3 such that α∗ < β1 < α0 < β2 < α1 < β3 < α∗, and
θ(R, βi) = kπ for i = 1, 2, 3. Consequently, the problem (4.1) with v′(0) = v(R) = 0
and v(0) > 0 has three solutions v1, v2 and v3 possessing exactly k−1 zeros in (0, R).
We find that v1(Rr), v2(Rr) and v3(Rr) are solutions of the problem

u′′ +
N − 1

r
u′ + R2L(Rr)|u|p−1u = 0, 0 < r < 1,

u′(0) = u(1) = 0.

This completes the proof of theorem 1.6.

5. Proof of lemma 4.1

We assume that k ∈ N and 1 < p < (N + 2)/(N − 2). Let ϕ1 be a solution of

u′′ +
N − 1

r
u′ + |u|p−1u = 0, r > 0,

u(0) = 1, u′(0) = 0.
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From 1 < p < (N + 2)/(N − 2) it follows that ϕ1 has infinity many zeros in (0,∞)
(see, for example, [9, 10]). Set Φ1(t) = tϕ1(t1/(N−2)). Then Φ1 has infinity many
zeros in (0,∞) and is a solution of

U ′′ + (N − 2)−2t−p−(N−4)/(N−2)|U |p−1U = 0, t > 0, (5.1)
U(0) = 0, U ′(0) = 1.

Let T1 > 0 such that Φ1(t) has exactly k − 1 zeros in (0, T1) and Φ′
1(T1) = 0 and

(−1)k−1Φ1(T1) > 0. We set

Φ(t, c) = c2/[(p−1)(N−2)]−1Φ1(ct), c > 0.

Then Φ(t, c) is the solution of (5.1) with U(0) = 0 and U ′(0) = c2/[(p−1)(N−2)].
There exists ε > 0 so small that Φ(t, 1 − ε) has exactly k − 1 zeros in (0, T1) and
(−1)k−1∂Φ(T1, 1−ε)/∂t > 0 and (−1)k−1Φ(T1, 1−ε) > 0. We set Φ0(t) = Φ(t, 1−ε).

Let y1 be a solution of

y′′ + |y|p−1y = 0, (5.2)
y(0) = Φ1(T1), y′(0) = 0.

Then there exists ρ > 0 such that y1(ρ) = 0 and y1(t) �= 0 for t ∈ [0, ρ). Take
T2 > T1 to be so large that

|Φ0(T1) + Φ′
0(T1)(T2 − T1)| � 2

(
4π

ρ

)2/(p−1)

. (5.3)

Lemma 5.1. There exists a function Mδ ∈ C∞(0,∞) for each sufficiently small
δ > 0, such that Mδ(t) = (N − 2)−2t−p−(N−4)/(N−2) for 0 < t � T1, Mδ(t) > 0 for
T1 < t < T2, Mδ(t) = 1 for t � T2, and

lim
δ→+0

∫ T2

T1

Mδ(t) dt = 0. (5.4)

Let U0 and U1 be solutions of

U ′′ + Mδ(t)|U |p−1U = 0

with the initial conditions U0(T1) = Φ0(T1), U ′
0(T1) = Φ′

0(T1) and U1(T1) =
Φ1(T1), U ′

1(T1) = 0, respectively. We see that U0(t) = Φ0(t) and U1(t) = Φ1(t)
for 0 < t � T1.

Lemma 5.2. There exist δ0 > 0 and T3 > T2 such that if 0 < δ < δ0, then U0 has
at least one zero in [T1, T3), and U1(t) �= 0 for t ∈ [T1, T3].

Let δ0 and T3 be numbers in lemma 5.2. We assume that 0 < δ < δ0. Then U0
has at least k zeros in (0, T3) and U1 has exactly k − 1 zeros in (0, T3]. We set

R = T
1/(N−2)
3 , L(r) = (N − 2)2rp(N−2)+(N−4)Mδ(rN−2)

and
vi(r) = r−(N−2)Ui(rN−2), i = 1, 2.
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Then we see that v0(r) and v1(r) are solutions of (4.1) and that v0 has at least k
zeros in [0, R] and v1 has exactly k − 1 zeros in [0, R]. From

vi(0) = lim
r→+0

Ui(rN−2)
rN−2 = lim

t→+0

Ui(t)
t

= U ′
i(0), i = 1, 2,

it follows that v1(0) > v0(0) > 0. Since Mδ(t) = (N − 2)−2t−p−(N−4)/(N−2) for
0 < t � T1, we find that L(r) = 1 for 0 < r � T

1/(N−2)
1 . Hence, setting L(0) = 1,

we conclude that L ∈ C∞[0, R] and L(r) > 0 for 0 � r � R. This completes the
proof of lemma 4.1.

Proof of lemma 5.1. Take h ∈ C∞(R) such that h(x) = 0 for x � 0, 0 < h(x) < 1
for x ∈ (0, 1), and h(x) = 1 for x � 1. For example,

h(x) =

∫ 2x−1
−1 g(t) dt∫ 1

−1 g(t) dt
,

where

g(t) =

⎧⎨
⎩exp

(
− 1

1 − t2

)
, |t| < 1,

0, |t| � 1.

Note that h(i)(0) = h(i)(1) = 0, i = 1, 2, . . . . We define the function Mδ(t) by

Mδ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(t), t ∈ (0, T1],

h

(
1 − t − T1

δ

)
m(t) + δh

(
t − T1

δ

)
, t ∈ (T1, T1 + δ),

δ, t ∈ [T1 + δ, T2 − δ],

(1 − δ)h
(

t − T2 + δ

δ

)
+ δ, t ∈ (T2 − δ, T2),

1, t � T2,

where m(t) = (N − 2)−2t−p−(N−4)/(N−2). Then we find that Mδ ∈ C∞(0,∞),
Mδ(t) > 0 for t > 0 and Mδ(t) satisfies (5.4).

To prove lemma 5.2 we need the following two lemmas.

Lemma 5.3. Let T ∈ R and let c > 0. Let y be a solution of (5.2) with |y(T )| >
2(2π/c)2/(p−1). Then y has at least one zero in (T, T + c).

Proof. We may assume without loss of generality that T = 0 and y(0) > 0, since
if y is a solution of (5.2), then ±y(t + T ) is also a solution of (5.2). Assume to the
contrary that y(t) > 0 for t ∈ (0, c). Then we see that y′′(t) < 0 for t ∈ (0, c), so
that y(t) is concave on (0, c). Hence, we have

y(t) � y(0)
c

(c − t) � 1
2y(0) > µ2/(p−1), 0 � t � 1

2c, (5.5)

where µ = 2π/c. Set v(t) = sin(µt). Then v is a solution of

v′′ + µ2v = 0, v(0) = v( 1
2c) = 0.
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From (5.5) it follows that |y(t)|p−1 > µ2 for 0 � t � 1
2c. By applying Sturm’s

comparison theorem, we conclude that y has at least one zero in (0, 1
2c). This is a

contradiction. The proof is complete.

Lemma 5.4. Let c1 and c2 be constants with c1 �= 0 and c1c2 � 0. For every
sufficiently small δ > 0, let vδ be the solution of

v′′ + Mδ(t)|v|p−1v = 0, v(T1) = c1, v′(T1) = c2,

where Mδ(t) is the function in lemma 5.1. Then vδ(t) and v′
δ(t) converge to c1 +

c2(t − T1) and c2 uniformly on [T1, T2] as δ → +0, respectively.

Proof. We may assume without loss of generality that c1 > 0. We first show that
vδ(t) > 0 on [T1, T2] for all sufficiently small δ > 0. Note that vδ(T1) = c1 >
0. Assume to the contrary that there exist sequences {δn}∞

n=1 and {zn}∞
n=1 such

that limn→∞ δn = 0, zn ∈ (T1, T2], vδn(zn) = 0 and vδn(t) > 0 on [T1, zn) for n =
1, 2, . . . . We see that

v′
δ(t) = c2 −

∫ t

T1

Mδ(s)|vδ(s)|p−1vδ(s) ds (5.6)

and

vδ(t) = c1 + c2(t − T1) −
∫ t

T1

(t − s)Mδ(s)|vδ(s)|p−1vδ(s) ds (5.7)

for t ∈ [T1, T2], so that 0 � vδn
(t) � C for t ∈ [T1, zn], where C = c1 + c2(T2 − T1).

Therefore, we find that

vδn
(zn) � c1 − Cp

∫ zn

T1

(zn − s)Mδn
(s) ds � c1 − CpT2

∫ T2

T1

Mδn
(s) ds.

From (5.4) it follows that vδN
(zN ) > 0 for some large N . This is a contradiction.

Let δ > 0 be sufficiently small. Since vδ(t) > 0 for t ∈ [T1, T2], by (5.7), we see
that 0 < vδ(t) � C for t ∈ [T1, T2]. From (5.6) and (5.7) it follows that

0 � c2 − v′
δ(t) � Cp

∫ T2

T1

Mδ(s) ds

and

0 � c1 + c2(t − T1) − vδ(t) � CpT2

∫ T2

T1

Mδ(s) ds

for t ∈ [T1, T2]. Hence, (5.4) implies that vδ(t) and v′
δ(t) converge to c1 + c2(t − T1)

and c2 uniformly on [T1, T2], respectively. The proof is complete.

Proof of lemma 5.2. Let y0 be the solution of (5.2) with

y0(T2) = Φ0(T1) + Φ′
0(T1)(T2 − T1), y′

0(T2) = Φ′
0(T1).

In view of (5.3), lemma 5.3 implies that y0 has at least one zero in (T2, T2 + 1
2ρ).

Lemma 5.4 implies that limδ→+0 U0(T2) = y0(T2) and limδ→+0 U ′
0(T2) = y′

0(T2).
Therefore, by a general theory on the continuous dependence of solutions on initial
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conditions (see, for example, [20, § 13]), we see that U0 has at least one zero in
(T2, T2 + 3

4ρ) for all sufficiently small δ > 0.
Again by lemma 5.4 we find that U1(t) �= 0 on [T1, T2] for all sufficiently small

δ > 0, limδ→+0 U1(T2) = Φ1(T1) and limδ→+0 U ′
1(T2) = 0. We note that y1(t − T2)

is the unique solution of (5.2) with y(T2) = Φ(T1) and y′(T2) = 0 and y1(t−T2) �= 0
for t ∈ [T2, T2 +ρ). Hence, U1(t) �= 0 on [T1, T2 + 3

4ρ] for all sufficiently small δ > 0,
by a general theory on the continuous dependence of solutions on initial conditions.
The proof is complete.
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