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The propagation of wave disturbances in water of varying depth bounded above
by ice sheets is discussed, accounting for gravity, compressibility and elasticity
effects. Considering the more realistic scenario of elastic ice sheets reveals a
continuous spectrum of acoustic–gravity modes that propagate even below the cutoff
frequency of the rigid surface solution where surface (gravity) waves cannot exist. The
balance between gravitational forces and oscillations in the ice sheet defines a new
dimensionless quantity Ka. When the ice sheet is relatively thin and the prescribed
frequency is relatively low (Ka � 1), the free-surface bottom-pressure solution is
retrieved in full. However, thicker ice sheets or propagation of relatively higher
frequency modes (Ka � 1) alter the solution fundamentally, which is reflected in an
amplified asymmetric signature and different characteristics of the eigenvalues, such
that the bottom pressure is amplified when acoustic–gravity waves are transmitted
to shallower waters. To analyse these scenarios, an analytical solution and a
depth-integrated equation are derived for the cases of constant and varying depths,
respectively. Together, these are capable of modelling realistic ocean geometries and
an inhomogeneous distribution of ice sheets.

Key words: compressible flows, geophysical and geological flows, waves/free-surface flows

1. Introduction
The propagation of wave disturbances accounting for both gravity and

compressibility effects has been increasingly attracting attention for studying
acoustic–gravity wave (AGW) theory, due to its broad applications with high societal
and scientific impact. To name a few, AGW theory has been employed in the context
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FIGURE 1. Schematic view of the fluid domain.

of early detection of tsunamis (Yamamoto 1982; Stiassnie 2010; Kadri & Stiassnie
2012; Cecioni et al. 2014; Oliveira & Kadri 2016; Kadri 2017); volcanic eruptions
and storms (Caplan-Auerbach et al. 2014; Renzi & Dias 2014); nonlinear interaction
and energy exchange with the upper ocean (Kadri & Stiassnie 2013; Kadri 2015,
2016b; Kadri & Akylas 2016); deep ocean water transport (Kadri 2014); and the
effect of earth–sea system coupling, which has led to a better understanding of
the propagation of wave disturbances at the interface between two media (Chierici,
Pignagnoli & Embriaco 2010; Eyov et al. 2013; Abdolali, Kirby & Bellotti 2015;
Kadri 2016a).

Due to the increasing effects of climate change and sea level rise, a rise in the
frequency and destructiveness of natural disasters in arctic zones is foreseen (Hansen
2007). These include, but are not limited to, submarine earthquakes, and mass failure
and oscillation of large ice blocks. The latter can be possibly triggered by storms,
atmospheric and ocean currents, ice block shrinkage, ice slides and ice-quakes. To
tackle this problem, a proper surface boundary condition is thus required. The vast
majority of literature on the propagation of wave disturbances in a compressible
ocean under the effects of gravity considers the upper boundary as a free surface,
leading to the mutual generation of surface-gravity waves and AGWs. In the presence
of a layer of ice on the surface, the properties of the aforementioned waves may
change fundamentally. Recently, Kadri (2016a) studied the generation of AGWs by a
vertically oscillating rigid ice block, and argued that at the given settings, and without
elasticity, gravity waves cannot be accounted for, and acoustic modes propagate at
very specific frequencies.

In the present paper, we examine the effects of elasticity, focusing on AGWs in a
water column of depth h(x, y, t) bounded by a rigid bottom, and allowing either a
free surface or an elastic ice sheet at the surface of thickness d(x, y, t). The vertical
coordinate, z, is measured positively upwards from the undisturbed surface, and x and
y denote the horizontal Cartesian coordinates, as illustrated in figure 1. The presence
of an ice layer often requires deriving proper orthogonality relations (Zakharov 2008).
Nevertheless, note that here the acoustic–gravity length scale far exceeds the width
of the ice layer, which is confined to the surface, and thus all energy initially found
in the AGWs will effectively remain in the liquid layer. Therefore, transmission to
or reflection from the ice layer is neglected. The governing equations are described
in a velocity potential form and applied to a circular disturbance (§ 2). The role of
an elastic ice sheet on the surface compared to a free surface and rigid ice sheet
is investigated in § 3. An analytical closed form solution of the bottom pressure is
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derived, and computations are carried out for the case of constant depth (§ 4). Then,
in order to emphasise the role of the ice sheets, we consider variable ice thickness,
water depth and source, and a depth-integrated mild-slope equation is developed and
validated (§§ 5 and 6). Finally, concluding remarks are given in § 7.

2. Governing equations
For a circular disturbance of radius R, the governing equation in cylindrical form

(x2
+ y2
= r2) for linearised, inviscid motion in a compressible medium with velocity

determined by the gradient of a potential, u=∇Φ, is given by

Φtt − c2

(
Φrr +

1
r
Φr +Φzz

)
= 0, −h 6 z 6 0, (2.1)

where c is the sound speed in water. The bottom boundary condition is given by

Φz + ht +Φrhr = 0, z=−h, (2.2)

ht =−
ζ0

τ
H
(
R2
− r2

)
H(t(τ − t)), (2.3)

where H is the Heaviside step function, ζ0 is its final vertical displacement, and τ is
the duration of its displacement. The kinematic and dynamic boundary conditions at
the free surface, with an overlying ice sheet layer, are

ηt =Φz,

gη+Φt +
δP
ρ
= 0,

z= 0,

 (2.4)

where g is the gravitational acceleration, ρ is the density of water and δP is the
pressure exerted by the moving ice sheet on the water column. Note that (2.1) neglects
the background compressibility of the static water column. This effect is important
for the long-range propagation of tsunamis, for example, but has been shown to be
negligible for the acoustic modes of propagation; see Abdolali & Kirby (2017). The
equation for pressure exerted by an elastic ice sheet on the underlying water column
is given by Schulkes, Hosking & Sneyd (1987),

δP= ρi dηtt +D∇4
r η+ T∇2

r η, (2.5)

which includes the effect of the weight of the ice layer relative to its vertical motion,
the effect of bending stress, and the effect of in-plane tension or compression in the
ice layer (T > 0 corresponds to compression). Note that the lateral stress T has to
be effectively large to impact wave propagation, therefore T = 0 is taken in this study.
Here we consider an ice sheet of density ρi=917 kg m−3, thickness d, Young’s elastic
modulus E = 109 N m−2 and Poisson’s ratio ν = 1/3. The flexural rigidity of ice is
defined by Hosking, Sneyd & Waugh (1988),

D=
d3E

12(1− ν2)
= c2

i ρi
d3

12
, (2.6)

where ci = 3700 m s−1 is the sound speed in the ice layer. Combining the dynamic
and kinematic boundary conditions at the surface equations (2.4) and (2.5) yields

ρgΦz + ρΦtt + ρi dΦttz +D∇2
r (∇

2
rΦz)+ T∇2

rΦz = 0, z= 0. (2.7)
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FIGURE 2. The pressure time series and corresponding spectrum plotted 200 km from the
epicentre at z= 0 with varying ice thickness, d = 0 (free surface), 5, 10 and 20 m, in a
constant depth h= 1500 m, for a unit source area with semilength b= 15 km and ht =

sin (2πf0t) for a rise time τ = 2/f0= 5 s. (a) Envelope for the first four modes for different
ice thicknesses. The comparison in each subplot is for each ice thickness comparing the
amplitude of corresponding modes. (b) Superposition of the acoustic modes. (c) Frequency
spectrum for the whole time series.

3. The role of the ice sheet

A calculation was carried out for the case of constant depth for different flexible ice
sheet thicknesses on the surface compared to a free surface (d = 0). The governing
equation in fluid and boundary conditions at the surface and bottom are defined
in (2.1), (2.2), and (2.4). We used h= 1500 m, ρ = 1024 kg m−3, ρi = 917 kg m−3,
c= 1500 m s−1, ci = 3700 m s−1, for a unit source area with semilength b= 15 km
and ht = sin(2πf0t) for a rise time τ = 2/f0= 5 s. The results are depicted in figure 2
for the case of ice sheet thickness d= 0 (black) and d = 5, 10 and 20 m at 200 km
from the epicentre. Panel (a) shows the envelope of pressure time series for the
first four modes; panel (b) shows the superposition of acoustic modes P; and panel
(c) shows the corresponding frequency spectrum P̃. For the free-surface boundary
condition case (d = 0), the majority of energy is in the first mode. Increasing the
ice thickness amplifies the pressure below the surface and also manifests in higher
modes (unlike the case of the free surface).

The frequency spectra of pressure signals at z = 0 calculated from sets of
computations, for the cases of a free surface, and rigid and flexible ice sheets on the
surface are shown in figure 3. The water depth is h = 3000 m, the semifault length
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FIGURE 3. Pressure spectrum at z = 0 for the cases of a free surface, and a rigid and
flexible ice sheet (d= 30 m), in a constant depth h= 3000 m, for a unit source area with
semilength b= 30 km and ht = sin (2πf0t) for f0 = 0.55 Hz, shown by the vertical dotted
line, and a rise time τ = 2/f0. The peak frequencies for the case of a rigid ice sheet on
the surface can be evaluated using f (n)= nc/2h= 0.25, 0.5, 0.75, 1, . . . Hz, while the cases
of a free surface and flexible ice sheet can be approximated using f (n) = (2n− 1)c/4h=
0.125, 0.375, 0.625, 0.825, . . . Hz.

b= 30 km and ht = sin (2πf0t) for f0 = 0.55 Hz. For the case of a rigid bottom, the
peak frequencies are calculated using f (n) = nc/2h, whereas for the cases of a free
surface and a flexible ice sheet, it can be evaluated using f (n) = (2n− 1)c/4h, where
ω= 2πf .

4. Analytical solution
4.1. Dispersion relation

Defining the Fourier transform of the velocity potential

ϕ(r, z, ω)=
1
√

2π

∫
∞

−∞

Φ(r, z, t) exp (−iωt) dt, (4.1)

the governing equation and boundary conditions become

ω2

c2
ϕ +∇2

r ϕ + ϕzz = 0, −h 6 z 6 0, (4.2)

−ω2ϕ + (g− ρ̃ dω2)+ D̃∇2
r

(
∇

2
r ϕz
)
+ T̃∇2

r ϕz = 0, z= 0, (4.3)

ϕz +
iζ0

τ
√

2π

1− e−iωτ

ω
H(R2

− r2), z=−h, (4.4)

where ∇2
r is the horizontal gradient, ρ̃=ρi/ρ, D̃=D/ρg, T̃=T/ρg. Using the method

of separation of variables, the field equation results in two ordinary differential
equations, which upon substitution in the boundary conditions result in the dispersion
relation,

ω2
=−

gλn tan(λnh)

1− d̃λn tan(λnh)

(
1+ D̃k4

n − T̃k2
n

)
, (4.5)
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FIGURE 4. Gravity wavenumber k2
r =ω

2/c2
+ λ2

0 for the imaginary roots of the dispersion
relation λ0 (4.5) for varying ice sheet thickness d/h (a); corresponding phase celerity cr
(b). The solid black line is for the case of a free surface.

where d̃= ρ̃d, subscript n denotes the mode number, and

λ2
n =

ω2

c2
− k2

n. (4.6)

For AGWs, λn and kn are real, and n= 1, 2, . . . ,N, where N is the highest possible
AGW number; for the surface-gravity mode, λ0 is imaginary and k0 is real; and for
the evanescent modes, kn is imaginary, with n > N. When there is no overlying ice
sheet, d= 0, equation (4.5) reduces to the classical dispersion relation given by ω2

=

−gλn tan(λnh). In figure 4, the gravity wavenumber kr and phase celerity cr=ω/kr are
shown in panels (a) and (b), respectively, for varying ice sheet thickness 06 d/h6 0.1,
where h= 1500 m. Comparison between wavenumbers in the presence of an ice sheet
and for the case of a free surface, d= 0, shows that, for lower frequencies, the gravity
wavenumbers are identical, and at higher frequencies, the wavenumber is reduced with
respect to the free-surface condition. It shows that inclusion of the elastic ice sheet
in the dispersion relation is negligible for long-period waves such as tsunamis, tides
and surges, while, for shorter waves, this effect is significant. On the other hand, in
figure 5, the solutions of the dispersion relation for real separation variables λn are
shown for the first three acoustic modes. For a given frequency, if k2

n=ω
2/c2
− λ2

n 6 0,
the acoustic mode is evanescent, whereas for k2

n > 0, the acoustic mode is progressive.
In order to compare the separation variable changes due to the presence or absence
of an ice sheet on the surface, values of λn are plotted for 06 d/h6 0.1 in panel (a).
The corresponding phase celerity compared to the d= 0 case is shown in panel (b).
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FIGURE 5. Dispersion relation solution for acoustic–gravity modes (λn=1,2,3) obtained
from (4.5) for varying ice sheet thickness d/h (a); corresponding phase celerity (b). The
frequency range where k2

n = ω
2/c2
+ λ2

n 6 0 represents the evanescent mode where mode
n is not propagating. The solid black line is for the case of a free surface.

Rearranging (4.5) by isolating tan(λnh) leads to the form

tan (λnh)=
1

λnd̃ (1−Ka)
(
1+ D̃k4

n − T̃k2
n

) , (4.7)

where Ka ≡ g/d̃ω2 is a dimensionless quantity that accounts for the effects of gravity
relative to oscillations in the ice sheet layer. This quantity can also be described by
Ka = Fr−1St−2, where Fr and St represent the Froude and Strouhal numbers. For the
leading AGWs with corresponding kn � 1, the term (D̃k4

n − T̃k2
n) can be neglected,

and the contribution of the ice sheet is encapsulated in the thickness of the ice sheet,
or equivalently by Ka. The eigenvalues change fundamentally depending on whether
Ka� 1 or Ka� 1, and can be approximated by

λnh=

{(
n− 1

2

)
π, Ka� 1,

(n− 1)π, Ka� 1.
(4.8)

These unique characteristics for the propagation of AGWs under elastic ice sheets
are illustrated in the graphical solution of (4.7) presented in figure 6. Note that for
the physical AGW problem at hand, the prescribed frequency is O(1) or more; for
frequencies much smaller than unity the eigenvalues can be approximated by the rigid
solution, though this scenario is not considered here as it is not physical.

In figure 7(a), gravity k0 and the first four acoustic wavenumbers kn are shown for
ice sheet thickness d= 20 m with h= 4000 m. For a given frequency, the wavenumber
can be either evanescent if k2

=ω2/c2
− λ2 6 0 or progressive if k2 > 0.
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FIGURE 6. Dispersion relation for ω= 2π/10 at depth h= 4000 m with Ka = 25, 0.25
and 0.025. The dash-dot lines and solid lines represent tan(λnh) and the right-hand side
(RHS) of (4.7), respectively. The solution of (4.7) at cross points are shown for each ice
thickness. An asymmetric signature can be seen at higher modes when Ka� 1.

4.2. Far-field bottom pressure
The velocity potential is found by constructing inner (r<R) and outer (r>R) regions,
following similar steps as presented by Hendin & Stiassnie (2013). For the inner
region one needs to include a particular solution,

s(z)=
iζ0c

τ
√

2π

1− e−iωτ

ω2

α cos
(ω

c
z
)
+ sin

(ω
c

z
)

cos
(ω

c
h
)
+ α sin

(ω
c

h
) , α =

g− d̃ω2
+ D̃k4

ω c
. (4.9)

In the inner region the effect of the overlying ice sheet on the propagating modes is
amplified. For a free surface, α reduces to g/ωc and the solution originally obtained
by Hendin & Stiassnie (2013) for a circular disturbance at the sea floor with a free-
surface condition is retrieved. Following a standard matching technique between the
inner and outer regions, and applying continuity at r=R, we obtain a solution for the
AGW modes in the outer region of the form

Φ(out)(r, z, t)=−
4Rζ0

τ

N∑
n=1

∫
∞

ωsn

λn

ωkn

cos λn(z+ h) sin(ωτ/2)
sin(2λnh)+ 2λnh

× J1(knR)
[
J0(knr) sin

(
ωt−

ωτ

2

)
−Y0(knr) cos

(
ωt−

ωτ

2

)]
dω, (4.10)

where J and Y are Bessel functions of the first and second kinds. Finally, the
bottom pressure is given by pb = −ρΦt; substituting into (4.10) yields the far-field
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FIGURE 7. Far-field bottom-pressure record for the first four AGW modes evaluated
by analytical solution (4.19) at 1000 km from the epicentre for disturbance radius R =
15 km, depth h = 4 km, duration τ = 10 s and vertical amplitude ζ0 = 1 m. (a)
Gravity wavenumber and the first four imaginary roots of the dispersion relation given
by k2

n = ω
2/c2
− λ2

n. Time series of the first four AGW modes (b) and the corresponding
spectrum (c).

bottom pressure

p(out)
b =

4ρRζ0

τ

N∑
n=1

∫
∞

ωsn

λn

kn

sin (ωτ/2)
sin(2λnh)+ 2λnh

J1(knR)

×

[
J0(knr) cos

(
ωt−

ωτ

2

)
+Y0(knr) sin

(
ωt−

ωτ

2

)]
dω. (4.11)

In the far field, when r is very large, the Bessel functions can be approximated
asymptotically:

J0(knr)=

√
2

πknr
cos
(

knr−
π

4

)
, (4.12)

Y0(knr)=

√
2

πknr
sin
(

knr−
π

4

)
. (4.13)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

80
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.808


On the propagation of acoustic–gravity waves under elastic ice sheets 649

Substituting the Bessel approximations back into the pressure relation gives

p(out)
b =

4ρRζ0

τ

N∑
n=1

∫
∞

ωsn

√
2

πknr
λn

kn

sin (ωτ/2)
sin(2λnh)+ 2λnh

J1(knR)

× cos
(

knr−ωt+
ωτ

2
−

π

4

)
dω. (4.14)

Defining the phase of the n-mode as

gn(ω)= kn(ω)
r
t
−ω

(
1−

τ

2t

)
−

π

4t
where kn(ω)=

√
ω2

c2
− λ2

n, (4.15)

the point of stationary phase is then at ω=ωs,n, where ∂gn/∂ω= 0, so that

∂gn

∂ω
=

ωs,n√
ω2

s,n/c2 − λ2
n

r
c2t
−

(
1−

τ

2t

)
= 0, (4.16)

or by isolating ωs,n,

ωs,n =
λs,nc√

1− [r/c(t− τ/2)]2
, ks,n =

λs,n√
[r/c(t− τ/2)]2 − 1

, (4.17a,b)

where λs,n obeys (4.8) and

∂2gn

∂2ω
=

λ2
s,nr/c2t(

ω2
s,n/c2 − λ2

s,n

)3/2 . (4.18)

So finally we can write

pb =
8ρRζ0c

rτ

N∑
n=1

λs,n

ks,n

sin
(ωs,nτ

2

)
2λs,nh

J1
(
ks,nR

)
cos
[
ks,nr−ωs,n

(
t−

τ

2

)
−

π

4

]
. (4.19)

When Ka � 1 then (4.19) reduces to the free-surface solution (see e.g. Hendin &
Stiassnie 2013), whereas when Ka � 1 the eigenvalues change fundamentally. The
solution of (4.19) for a circular disturbance of R = 15 km with duration τ = 10 s,
residual displacement ζ0 = 1 m, d = 20 m and h = 4 km are shown in figure 7.
The results are presented in terms of bottom-pressure time series for the first four
AGW modes, at a distance of 1000 km from the epicentre in panel (b) with the
corresponding spectrum in panel (c).

5. Mild-slope equation for an elastic ice sheet
Next we develop a mild-slope equation (MSE) based on the eigenfunction

structure for the problem with constant layer depths h. Similar to the ideas of
MSE, presented in Kirby (1992) for an incompressible fluid, the solution of a system
of ice–water–bottom as a waveguide is sought by wave equations in the water layer
that satisfy the boundary conditions imposed by a possibly moving rigid sea bottom
(i.e. an earthquake) and the flexible ice plate. Employing the governing equation
and boundary conditions described in § 2, we derive a mild-slope model following a
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similar approach as described by Sammarco et al. (2013) and Abdolali et al. (2015).
Using the separation, Φ = f (z)ψ(x, y, t), we write the governing equation (2.1), which
yields

1
c2
( fψ)tt −∇

2
r ( fψ)− fzzψ = 0. (5.1)

Upon multiplication by f and integration over the depth, followed by using Leibniz’s
rule and the boundary conditions at the free surface and the bottom, we neglect
second-order terms in the substrate slope, staying within the classic mild-slope
framework and obtain the MSE:[(

In
1

c2
+

1
g

)
ψn,t

]
,t

−∇r · (In
1∇rψn)+ In

2ψn +
1
ρg

∂

∂t
(δP)−

hn,t

cosh(λnh)
= 0. (5.2)

Substituting (2.5) in (5.2) yields[(
In

1

c2
+

1
g

)
ψn,t

]
,t

−∇r · (In
1∇rψn)+ In

2ψn

+∇
2
r (D̃∇

2
r ηt)+∇r(T̃∇rηt)+

d̃
g
ηttt −

hn,t

cosh(λnh)
= 0. (5.3)

Using the kinematic boundary condition at surface, ηt = fz|0ψn = λn tanh(λnh)ψn, we
obtain the final form of the hyperbolic MSE for weakly compressible fluid in the
arctic zones,[(

In
1

c2
+

1+ d̃λn tanh(λnh)
g

)
ψn,t

]
,t

−∇r · (In
1∇rψn)+ In

2ψn

+∇
2
r

[
D̃∇2

r (λn tanh(λnh)ψn)
]
+∇r

[
T̃∇r (λn tanh(λnh)ψn)

]
=

hn,t

cosh(λnh)
. (5.4)

We allow slow variations in the ice properties (D(x) and T(x)). The model coefficients
are

In
1 =

∫ 0

−h
f 2 dz=

sinh(2λnh)+ 2λnh
4λn cosh2(λnh)

, In
2 =

∫ 0

−h
f 2
z dz= λn

sinh(2λnh)− 2λnh
4 cosh2(λnh)

. (5.5a,b)

It should be noted that the depth-integrated models cannot consider sharp changes,
either of the ice properties or of the bottom topography. This is due to mild-slope
variation of the parameters and also due to the absence of higher-order terms.
Moreover, depth-integrated models cannot take into account any vertical variability of
parameters, such as sound speed profile, which affect high-frequency signals.

6. Model validation
Sample computations have been carried out to verify if the 2D model in the form

of a mild-slope approximation (5.4) along with the analytical solution (4.19) can
replace the 3D model concerning the direct numerical solution of (2.1). Note that the
3D model refers to the numerical solution of (2.1) with boundary conditions defined
by (2.2) and (2.4). To start with, the analytical solution is compared to the 2D model
for the first AGW mode at a distance of 90 km from the epicentre of a circular
disturbance (R = 15) in a domain with 100 km radius. Although the analytical
solution is based on an approximation for a relatively large distance (far field),
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FIGURE 8. Bottom-pressure oscillations of the first mode of the AGW at 90 km from
the epicentre of a circular disturbance according to the analytical solution (4.19) (black)
and the depth-integrated model (5.4) (grey). The fault and water geometries are similar to
figure 7.

we have chosen 90 km from the epicentre to avoid lengthy numerical computations
for the 2D model. For the 2D model, frequency bands of width 1f = 0.02 Hz have
been selected to discretise the forcing spectrum. The Sommerfeld radiation condition
is applied at the outer open boundary, so that the waves leave the domain freely. To
correctly reproduce the wavefield, for a given frequency the maximum mesh size is
selected as 1x= L/20, where L is the wavelength. The time step is chosen according
to the Courant number 61. The summation of model output for narrow frequency
bands (0.05 6 f 6 0.2) is in good agreement in terms of signal modulation, arrival
time and peak frequency, f (1) = 0.093 Hz, with the analytical solution for the first
acoustic mode (figure 8).

In the second case, we validate the solutions for the case of constant depth h=3 km
and ice coverage d= 20 m. The domain consists of a vertical section in x–z through
laterally uniform domains with no y-dependency. The source fault has a semilength
of b = 15 km with a maximum vertical displacement of ζ0 = 1 m. The numerical
solvers are applied on a computational domain 500 km in length; given the symmetry
of the problem about the middle of the earthquake (x= 0), a fully reflective boundary
condition is applied and computations are undertaken only for half of the physical
domain. The computational time needed to reproduce 500 s of real-time simulation
was approximately an order of magnitude less than for the 3D model. The results
are presented for a virtual bottom gauge at x = 200 km in figure 9 in terms of the
bottom pressure P and the corresponding spectrum P̃. Results in panels (a,b) relate
to the case of f0 = 0.2 Hz and τ = 10 s, while those in panels (c,d) relate to the
case of f0 = 0.4 Hz and τ = 5 s. The 3D model (black) and depth-integrated model
(light grey) are in optimal agreement. The first three peak frequencies correspond to
the cutoff frequency. The maximum number of AGW modes, Nmax, is determined from
(4.6) and (4.8), with kn = 0 (corresponding to the cutoff frequency), so that

Nmax =

{⌊
ωh/cπ+ 1

2

⌋
, Ka� 1,

bωh/cπ+ 1c , Ka� 1,
(6.1)

where the special brackets represent the floor function, i.e. largest integer from below.
In the case Ka � 1 all progressive acoustic modes have to be considered in order
to capture the whole spectrum properly, in particular upon transmission to shallower
waters.
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FIGURE 9. Bottom-pressure time series (a,c) and corresponding spectra (b,d) according to
the 3D (black) and depth-integrated (light grey) models at X = 200 km from the source
and in a constant depth, h= 3000 m, d= 20 m; the water and ice characteristics are the
same as in figure 7. For a unit source area with semilength b= 15 km and ht= sin(2πf0t)
with a rise time τ = 2/f0. (a,b) f0= 0.2 Hz and τ = 10 s and (c,d) f0= 0.4 Hz and τ = 5 s.

In the third case, a varying sea water depth with constant ice sheet thickness is
considered in order to reveal AGW properties in deep and shallow water for the case
of an earthquake in the shallower part of the continental shelf (case i) and in the
deeper part of the computational domain (case ii). In figure 10, panels (a,b) depict the
domain geometries, while panels (c,d) and (e, f ) present the results in terms of bottom
pressure at distances of X1= 150 and X2= 350 km, respectively, from the moving sea
bed. For case i, where the water depth at the generation zone is 2 km, the first three
peak frequencies are approximately 0.187, 0.56 and 0.93 Hz, which can propagate
towards points X1 and X2, as there is enough room in the wave guide. On the other
hand, for case ii, the shallower part on the right-hand side of the domain filters out the
first acoustic mode at the source depth and, therefore, only the signals at frequencies
higher than 0.187 Hz can reach point X2. The results from the 3D and 2D solvers are
in good agreement in terms of amplitude, modulation and peak frequencies.

In the fourth case, the domain is partially covered by a 175 km long ice sheet
with d = 15 m thickness (figure 11). The rest of the numerical domain is subjected
to barometric pressure (d = 0). The bed deformation, ice and water characteristics
have the same values as previously. The bottom-pressure time series are plotted at
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FIGURE 10. The case of varying sea bottom and constant ice sheet thickness with a
tsunamigenic source at the shallower part (case i) and deeper part (case ii). (a,b) The
computational domain. (c,e) Bottom-pressure time series and (d, f ) corresponding spectra
at point X1, 150 km, and point X2, 350 km from the source, respectively. For a unit
source area with semilength b = 15 km, d = 20 m and ht = sin(2πf0t) with a rise time
τ = 1/f0 = 5 s.

X1 = 100 km in 2 km depth with an ice sheet on the surface in panels (b,c) and
at X2 = 360 km in 3 km depth with a free-surface boundary in panels (d,e). As is
shown in figure 11, the formation of acoustic–gravity waves in the source region is
characterised by the local depth and ice sheet properties, where both 3D (black) and
2D (light grey) models have similar time series and frequency spectra.

7. Concluding remarks

We studied the effects of ice sheets on propagating acoustic–gravity waves (AGWs)
in both constant and varying water depths. To this end, we present an analytical model
along with numerical 2D depth-integrated and 3D models. The analytical model is
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FIGURE 11. The case of varying sea bottom and partial ice sheet coverage over the
surface with a tsunamigenic source at the shallower part. (a) The computational domain.
(b,c) Bottom-pressure time series and corresponding spectrum at point X1, 100 km from
the tsunamigenic source; (d,e) bottom-pressure time series and corresponding spectrum at
point X2, 360 km from the tsunamigenic source. The water and ice sheet characteristics
are the same as in figure 2. For a unit source area with semilength b= 15 km, d= 15 m
and ht = sin(2πf0t) with a rise time τ = 1/f0 = 5 s.

only valid for constant depths, though it is computationally fast and accurate and
can be employed for sensitivity analysis, as well as to estimate the source geometry.
For large domains, the 3D model becomes computationally demanding, and thus a
validation of the 2D model against the analytical solution was carried out. Note that
the 2D model is in addition validated against the 3D model on a transect which
resembles an infinite fault. The 2D model enables relatively fast calculations for real
ocean floor geometries with partial ice coverage. It turns out that the dynamics of bed
deformation affect the leading mode, which is determined by Nmax given by (6.1).
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This work extends the capabilities of previous compressible models (Hendin &
Stiassnie 2013; Sammarco et al. 2013; Abdolali et al. 2015) to include the effect of
an elastic ice sheet on the sea surface, following the ideas in Kirby (1992). Indeed, by
expanding the capabilities of the model equation, the AGW field can be investigated
in an integrated system of either bounded or free-surface oceans.
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