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Global magnetohydrodynamic (MHD) instabilities are investigated in a computationally
tractable two-dimensional model of the solar tachocline. The model’s differential
rotation yields stability in the absence of a magnetic field, but if a magnetic field is
present, a joint instability is observed. We analyse the nonlinear development of the
instability via fully nonlinear direct numerical simulation, the generalized quasi-linear
approximation (GQL) and direct statistical simulation (DSS) based upon low-order
expansion in equal-time cumulants. As the magnetic diffusivity is decreased, the
nonlinear development of the instability becomes more complicated until eventually a
set of parameters is identified that produces a previously unidentified long-term cycle
in which energy is transformed from kinetic energy to magnetic energy and back.
We find that the periodic transitions, which mimic some aspects of solar variability
– for example, the quasiperiodic seasonal exchange of energy between toroidal field
and waves or eddies – are unable to be reproduced when eddy-scattering processes
are excluded from the model.
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1. Introduction
It is well known in the field of plasma physics – both laboratory and astrophysical

– that many magnetic configurations are susceptible to instability. Indeed, ideal
instabilities driven by current or pressure gradients may provide an operational limit
for the magnetic configurations in plasma devices. Challenges in fusion research
include both identifying stable plasma configurations and controlling the nonlinear
development of instabilities.

In an astrophysical context, magnetic fields may also become dynamically unstable.
One example is the loss of stability of magnetic fields in stellar atmospheres that
may lead to huge releases of energy (and indeed flaring behaviour) (see e.g. Cowley
et al. 2003). The description of the loss of stability in the astrophysical context
draws heavily on the pioneering theory from fusion plasmas such as Furth, Killeen
& Rosenbluth (1963), Taylor (1968), Taylor & Newton (2015).
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A second example is the instability of magnetic configurations in stellar radiative
zones (Tayler 1973) that potentially leads to the generation of turbulence there and
even dynamo action (Dikpati & Gilman 2001). These instabilities are related to the
current-driven instabilities of Tayler (1973, 1980), Pitts & Tayler (1985). These authors
examined the stability of toroidal magnetic fields to non-axisymmetric perturbations,
both in cylindrical and spherical geometries (see also the extensive discussion in Spruit
1999). Current-driven instabilities use the magnetic field as their energy source, with
a strong magnetic field required for the instability to proceed; the role of rotation is
simply to mediate the rate at which energy can be extracted.

A related set of instabilities, which are most relevant to this report, have magnetic
configurations that are stable in isolation but can be destabilized by the presence of
a differential rotation (see e.g. Gilman & Fox 1997; Gilman & Dikpati 2002; Cally,
Dikpati & Gilman 2003, 2008; Hollerbach & Cally 2009). These joint instabilities
occur for relatively weak magnetic fields provided that the differential rotation is
sufficiently strong. Here, the axisymmetric differential rotation and magnetic field,
which in isolation are linearly stable, are together jointly unstable. The toroidal
magnetic field therefore acts as a conduit to allow the extraction of energy from the
differential rotation, though some energy may also be extracted from the current. In
recent years, significant attention has focused on these instabilities, as it is believed
that they may be important in the solar tachocline (Tobias 2005).

The tachocline is the thin layer of radial and latitudinal shear in the Sun at the
base of the solar convection zone (Spiegel & Zahn 1992; Tobias 2005). Estimates
place the tachocline at 0.693± 0.002 solar radii with a width of 0.039± 0.013 solar
radii (Charbonneau et al. 1999). Global magnetohydrodynamic (MHD) instabilities in
this layer have been invoked in models to drive turbulence below the base of the
convection zone and have also been used to provide an electromotive force that may
contribute to the solar dynamo (Dikpati & Gilman 2001).

Investigations into these instabilities began following Watson’s linear study on
purely hydrodynamic instabilities in two-dimensional shells with differential rotation,
as is found in the tachocline layer. With a simple quadratic angular frequency, a
two-dimensional shell was found to be hydrodynamically stable at parameter values
appropriate to the tachocline (Watson 1980). In a landmark paper, Gilman & Fox
(1997) extended Watson’s analysis by adding a toroidal field profile, stable in the
absence of rotation, to the model. Their analysis determined that the MHD shell may
be unstable to a non-axisymmetric joint instability if a large enough magnetic field is
present. For plausible magnetic field configurations, even the differential rotation of
the tachocline may provide a conduit to instability. It is also reasonable to expect that
such instabilities arise in other solar-type stars with radiative interiors and convective
outer envelopes. This instability can be found both for ideal MHD configurations as
well as in models with diffusion, though in the latter case some forcing is required
to maintain the basic state.

We comment here on the physics of the non-axisymmetric joint instability. The
presence of the magnetic field allows the instability to proceed, and enables the
subsequent extraction of energy from the differential rotation. This is clearly
reminiscent of the physics of the magnetorotational instability (MRI) (Velikhov
1959; Chandrasekhar 1960; Balbus & Hawley 1991), where coupling induced by
even a weak magnetic field can trigger an instability in a hydrodynamically stable
configuration. However, the instability we consider here is more akin to the MRI
with a toroidal magnetic field as studied by Ogilvie & Pringle (1996); in that case a
non-axisymmetric instability arises that allows the system to access a turbulent lower
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energy state. As for that case, it is conjectured that, for the non-dissipative system,
the joint instability acts for arbitrarily weak magnetic fields.

More recently, computational advances have made thorough nonlinear studies of
MHD instabilities possible. Notably, Cally (2001) examined a variety of magnetic
field profiles, identifying a clamshell instability in a two-dimensional model with a
broad toroidal field. Using a three-dimensional thin-shell model with an additional
poloidal field, Miesch (2007) was able to reach a statistical steady state in which the
clamshell instability could operate in a sustained manner. In this state, he observed
quasiperiodic solutions in which energy was exchanged between magnetic, kinetic
and potential energies in the nonlinear regime. Similarly, a ‘seasonal’ quasiperiodic
exchange of energies resulting from the joint instability has recently been linked to
solar observations by Dikpati et al. (2017).

In this paper, we describe striking and, to the best of our knowledge, novel
behaviour of the joint instability in a two-dimensional nonlinear model without an
imposed poloidal field. We explore the emergence of a multidecadal cycle in which
energy is transformed from kinetic energy to magnetic potential energy, with sharp
transitions between two distinct modes.

We also use this joint instability as a paradigm problem to investigate the
effectiveness of a range of methods in describing the statistics of the nonlinear
saturation in a turbulent state. In addition to linear stability analysis and fully
nonlinear direct numerical simulation, a number of other methods for understanding
the behaviour of a system of partial differential equations exist. In this paper, we
will also apply generalized quasi-linear approximations, as well as a class of methods
known as direct statistical simulation (DSS). DSS can be complementary to direct
numerical simulation, as it solves for the evolution of the statistics of the system,
rather than integrating the equations of motion themselves forward in time. This
provides a number of advantages, both in terms of computational efficiency and
physical insight. Tobias, Dagon & Marston (2011) and Constantinou & Parker (2018)
fruitfully used DSS to study idealized, stochastically driven, astrophysical flows,
calling for a more thorough characterization of DSS methods in these systems.

In the next section, we introduce the model of the two-dimensional instability. We
proceed in § 3 to describe the range of tools we employ to investigate the nonlinear
development of the instability. We describe the transitions that occur and how well
these are captured in § 4, before drawing conclusions in § 5.

2. Description of the model

We consider the simplest possible model of the joint instability of differential
rotation and magnetic fields. The evolution of the system, in the absence of forcing,
is described by the MHD equations

∂u
∂t
+ (u · ∇)u+ 2Ω × u=−∇p+ j×B+ ν∇2u, (2.1)

∂B
∂t
=∇× (u×B)+ η∇2B, (2.2)

where u is the velocity in the frame of the rotating shell, Ω is the angular rate of
rotation of the shell, ν is viscosity, η is magnetic diffusivity, B is the magnetic field
and j=∇ × B is the current density. Here the density has been set to unity without
loss of generality.
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We consider evolution on a two-dimensional spherical surface so that the
momentum and induction equation can be described by the evolution of two scalar
equations, one for the absolute vorticity q(θ, φ, t) (with θ being co-latitude and
φ longitude), and one for the scalar magnetic potential A(θ, φ, t). A background
rotation profile and toroidal magnetic field are imposed for all times and we study
the behaviour of the fields relative to these prescribed profiles.

The background differential rotation profile can be decomposed into a solid body
rotation at frequency Ω , and a latitudinal shear profile. Thus, in an absolute coordinate
system, absolute vorticity q is the sum of the generated vorticity, ζ ′, the contribution
from the shear profile, ζ0, and the Coriolis parameter, f = 2Ω cos θ .

q= ζ ′ + ζ0 + 2Ω cos θ. (2.3)

The total magnetic potential, A, can be similarly decomposed into generated magnetic
potential, a, and the background, A0

A= a+ A0. (2.4)

The relative vorticity is defined as

ζ = ζ ′ + ζ0 =∇
2ψ, (2.5)

which can also be represented in terms of the streamfunction ψ .
The evolution equations for q and A can then be written as

∂q
∂t
= J[q, ψ] + J[A,∇2A] − κζ ′ − ν4∇

6(∇2
+ 2)ζ ,

∂A
∂t
= J[A, ψ] + η∇2a,

 (2.6)

where J[A, B] gives the Jacobian on the unit sphere:

J[A, B] ≡
1

sin θ

(
∂A
∂φ

∂B
∂θ
−
∂A
∂θ

∂B
∂φ

)
. (2.7)

Note that, in contrast to previous work such as Tobias et al. (2011), the Lorentz
force term in the momentum equation includes the prescribed field. This modification
is necessary given the form of background field used. Friction in the tachocline is
parameterized with a frictional coefficient κ . To remove enstrophy as it cascades to
small scales, hyperviscosity ν4∇

6(∇2
+ 2)ζ is included in the linear operator of (2.6).

The appearance of the operator (∇2
+ 2) ensures that the hyperviscosity does not

change the total angular momentum. The use of hyperviscosity in place of ordinary
viscosity has been used to model dynamics in the low magnetic Prandtl number
limit appropriate to stellar interiors (and for liquid metals) (Seshasayanan, Dallas &
Alexakis 2017). Note however that we employ a regular diffusivity in the induction
equation to maintain the balance between advection and diffusion there (Miesch et al.
2015).

We work on the unit sphere and in units of time such that Ω = 2π. A ‘day’ is
therefore a unit interval of time. The background vorticity field is chosen to have the
form ζ0(θ, φ)= ζ̃0 Y0

3 (cos θ) and thus shears the flow symmetrically about the equator.
The imposed background toroidal potential is taken to be A0(θ, φ) = Ã0 Y0

2 (cos θ).
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In all the simulations reported here (except for the linear stability analysis of § 3.2)
we set ζ̃0 = −3 and Ã0 = 1/2, in the joint instability regime where neither shear
nor the background field by themselves suffice to trigger the instability. We set the
friction coefficient to be κ = 0.05, equivalent to an e-folding time of 20 days. The
hyperviscosity coefficient ν4 is chosen such that the most rapidly dissipating mode
decays at a rate of 1.

3. Methods
In this section we give a brief description of the methods we utilize in the

paper to analyse the behaviour of the model, both in terms of the dynamics and
statistics. These range from conservation laws, linear stability analysis, fully nonlinear
simulation (DNS) in both spectral and real space, partially nonlinear simulation (both
quasi-linear and generalized quasi-linear) and statistical simulation.

Our aim is to examine how well various approximations and statistical representations
capture changes in the behaviour of the model – both in a dynamical and statistical
sense.

3.1. Conservation laws
In the absence of damping and driving forces, the equations of motion (EOM)
for the vorticity and magnetic potential conserve a number of linear and quadratic
quantities. In the pure hydrodynamic case (A0 = 0), kinetic energy, enstrophy and
angular momentum are conserved. Higher-order Casimirs are also conserved in the
continuum limit, but not in the finite-resolution numerical simulations that we employ.
For A0 6= 0 the conserved quantities are angular momentum, total energy, mean square
potential and cross-helicity, the latter given by the average over the sphere of the
product of the absolute vorticity and the scalar magnetic potential,

1
4π

∫
d2ΩqA. (3.1)

These invariants are respected by the quasi-linear and generalized quasi-linear
approximations (Marston, Chini & Tobias 2016), as well as by the second-order
cumulant expansion (Marston, Qi & Tobias 2019) that we shall utilize, and serve the
practical purpose of validating code.

3.2. Linear stability analysis
The joint instability in a two-dimensional incompressible tachocline without viscous
or ohmic dissipation was first described using a linear stability analysis (Gilman &
Fox 1997). As described above, in our nonlinear equation solver, GCM, ζ0 and A0

are set to be proportional to the spherical harmonics Y0
3 and Y0

2 respectively, for the
sake of simplicity. Thus, ζ0 in GCM differs slightly from that used by Cally and
others (Gilman & Fox 1997; Cally 2001). This is an acceptable substitution for our
model, which is highly simplified and not physically precise. We have not been able to
detect any qualitative difference in the simulations due to this modification. However,
in order to confirm agreement between our work and earlier models, in this subsection
we modify GCM to agree with the Gilman & Fox (1997) rotation profiles to check
that we can reproduce the linear stability analysis.

The equations of motion described in § 2 are rewritten in terms of equilibrium state
streamfunctions in an absolute coordinate system. We first address the ideal case,
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in which friction, magnetic diffusivity and hyperviscosity are set to zero. We group
together the Coriolis parameter, f , and the forcing function, ζ0, and represent them
using a single streamfunction ψ0.

q= ζ ′ + (ζ0 + f )=∇2ψ ′ +∇2ψ0. (3.2)

We define µ= cos θ , and, assuming our prescribed fields are zonally symmetric, define
a rotational angular frequency and Alfvén frequency for the prescribed fields. We set
the frequencies to be the profiles given in Gilman & Fox (1997).

ω0 =
∂ψ0

∂µ
=Ω − ζ̃0µ

2 (3.3)

α0 =
∂A0

∂µ
= Ã0µ. (3.4)

The equations are linearized in the perturbations ψ ′ and a, with each field expanded
in terms of associated Legendre polynomials as ψ ′=

∑
∞

`=m Ψ
m
` Pm

` (µ)e
i(mφ−ωt) and a=∑

∞

`=m Am
l Pm

` (µ)e
i(mφ−ωt) where ω is the complex-valued angular frequency eigenvalue.

The substitutions yield the equations:

(mω0 −ω)

∞∑
`=m

Am
` Pm

` =mα0

∞∑
`=m

Ψ m
` Pm

` (µ), (3.5)

and

−(mω0 −ω)

∞∑
`=m

`(`+ 1)Ψ m
` Pm

` −m
d2

dµ2
[(1−µ2)ω0]

∞∑
`=m

Ψ m
` Pm

`

+mα0

∞∑
`=m

`(`+ 1)Am
` Pm

` +m
d2

dµ2
[(1−µ2)α0]

∞∑
`=m

Am
` Pm

` = 0. (3.6)

Since the selected profiles for rotation and magnetic field are symmetric and
antisymmetric about the equator respectively, either ψ ′ is symmetric and a anti-
symmetric, or a is symmetric and ψ ′ antisymmetric. By truncating ` at a finite
number Lmax, two 2Lmax× 2Lmax matrices, one for the symmetric case and one for the
antisymmetric case, can then be diagonalized numerically to find the growth rates of
the instabilities.

Using this method, the existence of the joint instability is confirmed in the
dissipationless regime. The system continues to exhibit an instability if dissipation
is added to our analysis (non-zero friction and/or magnetic diffusivity), provided the
dissipation is not too strong. As expected, increasing dissipation decreases the growth
rate of the instability (Dikpati, Cally & Gilman 2004). For all values of parameters
examined, m=1 is the most unstable mode, as found previously (Gilman & Fox 1997;
Cally 2001). Additionally, GCM with appropriately modified profiles is found via time
stepping to reproduce the linear analysis both when nonlinear terms are turned off,
and in the limit of small amplitude waves with nonlinear terms included (figure 1).

3.3. Direct numerical simulation in real and spectral space
Fully nonlinear (NL) spectral DNS with truncation 0 6 ` 6 L and |m| 6 min{`, M}
is performed. We set spectral cutoffs L= 60 and M = 15 and verify, by comparison
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(a) (b)

FIGURE 1. Comparison between GCM and linear analysis for joint instability parameters
with no dissipation. (a) Power in ` = 4, m = 1 spherical harmonic over time in GCM
code using prescribed field profiles from Gilman & Fox (1997) without nonlinear terms.
An exponential fit with a growth rate of 0.027 is shown, as predicted by linear analysis.
Inset shows same data on a semilog plot. (b) Power in `= 4, m= 1 mode over time in
GCM, including nonlinear terms. Bolded black points show exponential fit with a growth
rate of 0.027 for times before 100 days.

with high-resolution simulations carried out in real space, that these cutoffs suffice.
The pure spectral version of (2.6) is integrated forward in time using a fourth-order
accurate Runge–Kutta algorithm with an adaptive time step 1t. Each time step
requires O(L3M2) floating point computations that at high resolutions would be
prohibitively expensive compared to a pseudo-spectral algorithm but is feasible here
for the moderate resolutions that we study. The computation is made faster by
skipping over triads that vanish due to symmetry.

To verify that the full spectral simulation has sufficient resolution, finer-scale DNS
of the fluid is also performed in real space on a spherical geodesic grid (Dritschel,
Qi & Marston 2015) of D= 163 842 cells; the lattice operators conserve energy and
enstrophy. The vorticity evolves forward in time by a second-order accurate leapfrog
algorithm, with a Robert–Asselin–Williams filter of 0.001 and α = 0.53 (Williams
2009). The time step is fixed at 1t= 0.003.

3.4. Quasi-linear and generalized quasi-linear numerical simulation
The quasi-linear (QL) approximation has its historical origins in the work of Malkus
(1954) and Herring (1963), with perhaps the clearest earliest exposition given in the
plasma context by Vedenov, Velikhov & Sagdeev (1962). The approximation is a
self-consistent mean-field theory that in this context retains the scattering of eddies
(defined as perturbations with respect to the zonal mean) off the mean zonal flow, and
processes in which two eddies of equal and opposite zonal wavenumber combine to
influence the mean flow. The two retained triadic interactions are depicted in figure 2.
Note that the general eddy + eddy → eddy scattering is dropped.

A generalization of QL called the generalized quasi-linear approximation (GQL)
(Marston et al. 2016) systematically improves upon the QL approximation by
including, self-consistently, fully nonlinear interactions among large-scale modes.
The zonal mean of the QL approximation is generalized to include modes with low
zonal wavenumber at or below a cutoff |m| 6 Λ; see figure 3. Λ = 0 is QL, while
the limit Λ = M recovers the full nonlinear EOMs; thus GQL interpolates between

https://doi.org/10.1017/S0022377819000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000060


8 A. Plummer, J. B. Marston and S. M. Tobias

(a) (b)

FIGURE 2. Triadic interactions retained in the QL approximation. The zonal wavenumber
of the eddies is labelled by m; the zonal mean flow has m= 0 and is depicted by the solid
line. (a) An eddy scatters off the zonal mean flow. (b) Two eddies of equal but opposite
zonal wavenumber combine to modify the zonal mean flow.

(a) (b) (c) (d) (e) (f)

FIGURE 3. Triadic interactions retained and omitted in the GQL approximation. Modes
with low zonal wavenumbers |m| 6 Λ interact fully nonlinearly (b). The interactions
of the low modes with the high wavenumber modes, (a,c), generalizes the quasi-linear
interactions shown in figure 2.

QL and NL. Marston et al. (2016) examined GQL in the context of two-dimensional
barotropic turbulence on a spherical surface and on a β-plane and showed it to
be more effective than the QL approximation in reproducing both the dynamics
and statistics of these flows away from equilibrium. Remarkably, this remained
true even if only a single extra mode was retained in the large scales. Subsequent
work demonstrated the effectiveness of the GQL approximation for the case of
axisymmetric (two-dimensional) helical magnetorotational instability (HMRI) at low
magnetic Reynolds number (Child et al. 2016), and in three-dimensional rotating
plane Couette flow (Tobias & Marston 2016).

3.5. Direct statistical simulations: CE2
3.5.1. CE2 simulations

In order to understand better the physical mechanism behind the dynamics and
statistical properties of the model, a direct statistical simulation (DSS) technique
based upon expansion of the equations of motion for the equal-time cumulants
is also used. We retain only the first and second cumulants (CE2); for a review,
see Marston et al. (2019). In the CE2 approximation, the contribution of the third
cumulant to the tendency of the second cumulant is neglected, an approximation
that is mathematically equivalent to the QL approximation of eliminating the triadic
interaction between two eddies that results in a third eddy. The CE2 equations are an
exact closure within the QL approximation. DSS is best suited to describing systems
with large-scale inhomogeneous and anisotropic flows. The approach was applied to
a different, stochastically forced, tachocline model in Tobias et al. (2011). Here we
apply it to the deterministic Cally model.
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FIGURE 4. Bifurcation diagram showing the nature of the solutions obtained by the
various methods as a function of magnetic Reynolds number Rm. Note the kinetic energy
axis has been inverted so that solutions with the kinetic energy of the basic state appear
at the bottom of the diagram. The data have been shifted slightly in Rm for clarity.

A program that implements spectral DNS, real-space DNS, QL, GQL and DSS, and
also includes all the graphical tools needed to visualize statistics, is freely available.1
The Objective-C++ and Swift programming languages are employed. C blocks and
Grand Central Dispatch enable the efficient use of multiple CPU cores.

4. Results
We consider the evolution of the instability and determine how the dynamics

changes as the magnetic Reynolds number is increased, for fixed profiles of
differential rotation and magnetic field and fixed relaxation time. The magnetic
Reynolds number is defined as

Rm =
UR
η
, (4.1)

where U is the zonal velocity of the basic state at the equator, R is the radius and η
is the magnetic diffusivity. The results are summarized in the bifurcation diagram of
figure 4, where we use the kinetic energy as a fiducial measure of the amplitude of
the solution. We note that this diagram has been flipped such that solutions with the
kinetic energy of the basic differential rotation appear at the bottom, so that the figure
resembles a traditional bifurcation diagram. We begin by describing the transitions in
behaviour as Rm is increased as determined by the fully nonlinear simulations. We
will then go on to determine how well these transitions are captured by the various
approximations (CE2, GQL Λ= 1 and GQL Λ= 3) subsequently.

4.1. Fully nonlinear dynamics
For low Rm (<90), the basic state is stable, as described by the linear theory above.
For Rm > 90, NL solutions (denoted in purple) are initially located on a primary

1The application ‘GCM’ is available for macOS on the Apple Mac App Store at URL http://appstore.com/
mac/gcm.
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(a)

(b)

(c)

FIGURE 5. (a) Power spectrum for Rm = 90 – energy is largely restricted to the m = 1
mode. Here l is the spherical wavenumber and m is the zonal wavenumber. (b) Snapshot
of the relative vorticity and (c) power spectrum for Rm∼ 300. For this value of Rm, more
azimuthal structure is observed.

branch, where the energy in the perturbation is weak and contained almost completely
in the m=1 mode, as shown by the power spectrum in figure 5(a). As Rm is increased,
the solution remains on this primary branch, with the solution having a characteristic
m = 1 dependence on longitude and a banded dependence on latitude (as shown in
figure 5b); this solution does have power in higher azimuthal wavenumbers, though
these are limited to m . 3 as shown in figure 5(c).

At Rm ∼ 700, our NL simulation is able to find two different types of solution
depending on initial conditions and bistability is present. Figure 6 shows the timelines
of the zonally averaged relative vorticity for two different initial conditions. It can be
seen clearly that there are two different states, one of which, shown in figure 6(a),
has a high relative vorticity (as for those at lower Rm) and one (shown in figure 6b)
yields a state with much lower vorticity.
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(a)

(b)

FIGURE 6. Hysteresis in the fully nonlinear simulations at an intermediate value of the
magnetic Reynolds number. Timelines of the zonally averaged relative vorticity for Rm ∼

700 show (a) the high vorticity solution and (b) the low vorticity solution.

For the highest value of Rm considered (Rm= 2800), interesting relaxation dynamics
is found, as shown in figures 7, 8 and 9. From these figures it is clear that the
relaxation occurs as an oscillation between the high and low vorticity states described
in the hysteretic scenario above. Both of these states are now unstable at this high Rm

(presumably having undergone Hopf bifurcations) and the large amplitude relaxation
oscillation takes the form of a near-heteroclinic solution oscillating between the two
unstable states. The transitions between these two states occur rapidly, on a time scale
of approximately 300 days, with a cycle period of approximately 9000 days. Relative
vorticity in the high vorticity state is approximately zonally symmetric and power is
distributed among a broad range of spherical harmonics. In the low vorticity state,
the relative vorticity snapshot shows fine structure and very little power in relative
vorticity spherical harmonics (see figure 9).

We note that this behaviour is robust. It appears in both spectral and geodesic
simulations. The transitions do not change qualitatively as resolution in real space is
increased, and, as seen in figure 10, the transitions are reproducible using both a fully
spectral simulation in a basis of spherical harmonics with Lmax = 60 and Mmax = 15,
as well as a real space simulation using six (pictured) and seven geodesics. The
transitions are consistent and regular even in our longest, highest resolution runs. The
addition of small stochastic forcing of the vorticity also does not alter the behaviour,
demonstrating that the transitions are not triggered by noise.

Perhaps it is most informative to describe this relaxation oscillation in the ‘potential
energy–kinetic energy’ phase plane. In figure 11, the abrupt transitions appear as a
near-elliptical path. The low vorticity state occurs along the y-axis, and the high
vorticity state occurs along the rest of the path. In one period of the relaxation
oscillation, the system moves slowly down the y-axis and then much more quickly
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FIGURE 7. Abrupt transitions in relative vorticity (ζ ) for a spectral simulation with
Lmax = 60, Mmax = 15 and Rm = 2800. (a) Fraction of total energy in the form of kinetic
energy versus time. (b) Zonally averaged relative vorticity for the same time period. The
kinetic energy share tracks the transitions between the two distinct states and highlights
the rapidity of the switch.

FIGURE 8. Abrupt transitions in generated magnetic potential, a, for a spectral simulation
with Lmax = 60, Mmax = 15 and Rm = 2800. (a) Fraction of total energy in the form of
magnetic potential energy versus time. (b) Zonally averaged generated magnetic potential
for the same time period.
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FIGURE 9. Snapshots of both high and low vorticity states for Rm = 2800. In the top
timeline, the double bars at 18 000–19 000 and 24 000–25 000 days show the period
over which time averaging is performed for figure 14. The two columns of figures are
representative snapshots taken within these two windows respectively (not time averaged).
(a,d) Power spectra of vorticity modes. (b,e) Relative vorticity on a cylindrical projection.
(c, f ) Second vorticity cumulant on a cylindrical projection.

along the rest of the ellipse, such that the time spent in both states is comparable, as
we see in figure 7.

The physics of this relaxation oscillation can be elucidated by performing additional
numerical simulations for varying applied magnetic field strengths B (at fixed Rm).
Figure 12 shows both the birth and death of the relaxation oscillation as B is varied.
For small B= 0.5 or 0.9, the solution takes the form of a high vorticity state (with
large kinetic energy and small kinetic energy), whilst for high B= 2 it takes the form
of a low vorticity state. For intermediate values of B the solutions has the character
of a relaxation oscillation. These additional simulations also show that the period of
the oscillation is controlled by the near-heteroclinic nature of the solution – as B
is increased the period increases as the solution spends increasing amount of time
near the invariant low vorticity state. This behaviour is reminiscent of other ‘limit
cycle oscillations’ (or LCOs) in plasma such as edge harmonic oscillation (EHO) that
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FIGURE 10. A real space simulation using the same parameters as the spectral space
simulation of relative vorticity in figure 7 (Rm = 2800). The behaviour is qualitatively
similar.

FIGURE 11. Abrupt transitions in kinetic energy–potential energy space for Rm = 2800.
(a) Real space simulations. (b) Spectral space simulations. Arrows show the direction of
time. Both simulations reach a steady cycle after a brief initialization period.

is present owing to the action of an instability (the kink-peeling instability) in the
presence of a sheared rotation (in this case the E × B rotation), see, for example,
Wilks et al. (2018).

4.2. CE2 and GQL
We now turn to how well the DSS method at CE2 and the DNS methods utilizing
the GQL approximations with various severe truncations (Λ= 1, 3) perform. Figure 4
gives the average kinetic energy of the solutions found by these methods as a function
of Rm. We note that the DSS and GQL runs were performed at the same Rm as
the corresponding NL solution though the results have been shifted slightly in the
bifurcation diagram for ease of viewing.

We begin by examining the efficacy of the most severe quasi-linear approximation
CE2. Figure 4 shows that CE2 captures the linear instability (as it must) and the
amplitude of the primary branch, with the orange circles tracking the purple circles
for Rm < 200. This is encouraging for quasi-linear theory. However by Rm ∼ 300
discrepancies occur between CE2 and NL. Here CE2 finds an oscillatory low vorticity
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(a)

(b)

FIGURE 12. Abrupt transitions in kinetic energy–potential energy space for Rm = 2800
and varying applied field B. (a) Kinetic energy versus time. (b) Potential energy versus
time.

state (whereas NL found a steady high vorticity state as described above). Interestingly,
subsequent increase of Rm to ∼700 increases the accuracy of CE2. It is remarkable
that it is able to reproduce the hysteresis found by NL (though it finds an oscillatory
rather than a steady low vorticity state). However, perhaps unsurprisingly, for the
highest Rm considered CE2 is unable to reproduce the relaxation oscillations shown
by NL (figure 13). When initialized with sufficient magnetic potential energy, CE2
passes close to a state with very low vorticity and then makes a rapid transition to
an periodic solution that is statistically similar to the high vorticity mode seen in NL
trials (figure 13a). After this first transition, the system remains in this state. When
only the vorticity field is perturbed during initialization, CE2 immediately reaches the
approximate fixed point (figure 13b). Interestingly, this transition breaks north–south
symmetry imposed at initialization when it reaches the high vorticity mode.

Time averaging is performed in both the low vorticity transient state and for the
final oscillatory state. The zonally averaged fields are compared with time averaged
results from spectral NL for high and low vorticity states, as shown in figure 14. The
NL low vorticity state and the CE2 low vorticity state have statistically similar field
profiles, while the NL high vorticity state and the CE2 high vorticity fixed point also
have statistically similar field profiles. Thus, CE2 is capable of accessing both of the
states that the NL simulation transits between, but is incapable of reproducing the
periodic transitions between them.

This interpretation agrees well with the time series viewed in energy space. In
contrast to figure 11, a cycle does not form. In figure 15(a), the system seems to
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(a)

(b)

FIGURE 13. Zonally averaged relative vorticity versus time for CE2 simulations at Rm =

2800. (a) CE2 initialized with perturbations in magnetic potential. (b) CE2 initialized with
perturbations in vorticity. Time averaging is performed for the 1000 day period between
the double bars in both figures for figure 14.

reach the same low vorticity state as the nonlinear simulation during its transient,
but then becomes stuck in a small region of energy space that has a higher potential
energy than any of the points in the nonlinear elliptical cycle. In figure 15(b), the
system immediately finds itself stuck in this same region of high potential and kinetic
energy, and performs a small cycle there.

The inability to transition back to the high magnetic potential state in CE2 shows
that these transitions are dependent on processes that cannot be captured by a
quasi-linear approximation. It may be that they owe their origin to eddy–eddy →
eddy interactions, since these interactions are forbidden in CE2. The single transition
that occurs may be the result of lingering initialization energy, likely aided by the
fact that the high vorticity mode’s power is concentrated in low zonal modes, while
the low vorticity mode’s power is more spread out, making a transition to the
high vorticity mode possible without eddy–eddy interactions. We may hope that the
problem is remedied by employing a GQL approximation.

The bifurcation diagram in figure 4 shows that GQL with Λ= 1 or Λ= 3 indeed
performs better than CE2 in reproducing the NL results for all Rm. Figures 16
and 17 show the relative vorticity timelines and the corresponding phase plane
analysis for both of these thresholds Λ at Rm = 2800. These timelines illustrate that
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(a) (b)

(c) (d)

FIGURE 14. Comparison between time averaged field profiles for Rm= 2800. Thick lines
correspond to fully nonlinear spectral DNS, and thin lines correspond to CE2. The thick
solid line is the first time averaged period (high vorticity) in figure 9, and the thick dashed
line is the second period (low vorticity) in figure 9. The thin dashed line is the time
averaged portion of figure 13(a), and the thin solid line is the time averaged portion of
figure 13(b). Each panel compares these four time averaged and zonally averaged fields,
with (a) comparing relative vorticity, (b) comparing zonal velocity (not including solid
body rotation), (c) comparing generated magnetic fields and (d) comparing toroidal fields.
Fields are plotted as a function of latitude.

FIGURE 15. CE2 simulations in kinetic energy–potential energy space for Rm = 2800.
Arrows show the direction of time, and the insets show the long-time behaviour. (a) CE2
initialized with perturbations in magnetic potential, as in figure 13(a). (b) CE2 initialized
with perturbations in vorticity, as in figure 13(b).
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(a)

(b)

FIGURE 16. GQL simulations at Rm = 2800. (a) GQL simulation with Λ= 1. (b) GQL
simulation with Λ= 3. Resolution remains Lmax = 60 and Mmax = 15.

FIGURE 17. GQL simulations in kinetic energy versus potential energy space for Rm =

2800. (a) GQL simulation with Λ= 1, corresponding to figure 16(a). (b) GQL simulation
with Λ= 3, corresponding to figure 16(b).

GQL with Λ = 1 performs similarly to CE2 at this choice of parameter, yielding a
weakly oscillatory state. However, increasing the threshold to Λ= 3 allows the GQL
approximation to reproduce the relaxation oscillation. Remarkably, GQL reproduces
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both the amplitude and period of the oscillation at this threshold, which is a testament
to the effectiveness of this approximation.

5. Conclusions
We have shown that a simple, two-dimensional tachocline model can reproduce

periodic transitions qualitatively similar to the seasonal exchange between toroidal
field and wave-like dynamics observed in the solar record. The model undergoes
complicated nonlinear transitions as the magnetic Reynolds number, Rm, is increased,
with both hysteresis and relaxation oscillations emerging naturally. This near-
heteroclinic behaviour has, to the authors’ knowledge, not yet been seen in
joint instability simulations, though oscillations have also been seen in sustained
magnetoshear instabilities (Miesch 2007) and quasiperiodic energy exchange between
toroidal field and magnetic Rossby waves have also recently been observed (Dikpati
et al. 2017) both in models and in solar observations. Our simple model is less
expensive than three-dimensional thin-shell models or shallow water models that are
often studied (Gilman & Dikpati 2002; Miesch 2007), which allows us to examine
long time scale behaviour at the cost of restricting instabilities to two dimensions.

We have also assessed the efficacy of the quasi-linear (QL) and generalized
quasi-linear (GQL) approximations in reproducing this dynamics and that of direct
statistical simulation (DSS at CE2) in reproducing the statistics. We find that CE2
is capable of reproducing many of the nonlinear states (and indeed the hysteresis
between states), but for the most complicated relaxation oscillation states, CE2 cannot
reproduce the transitions between states. This is another example of the limitation
of quasi-linear models, that may become less relevant as the system moves away
from statistical equilibrium (Tobias & Marston 2013). We speculate that the addition
of noise to DSS might enable this statistical formalism to reproduce the transitions.
On the other hand, GQL appears to contain enough nonlinearity to represent the
complicated nonlinear relaxation oscillation. This result is encouraging for a program
of direct statistical simulation based on GQL or upon DSS formulations predicated
on more sophisticated averaging procedures than simple zonal averaging (Bakas &
Ioannou 2013, 2014; Allawala, Tobias & Marston 2017).
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