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CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS

LAURENT BIENVENU, ROD DOWNEY, NOAMGREENBERG, ANDRÉ NIES, AND DAN TURETSKY

Abstract. We show the existence of noncomputable oracles which are low for Demuth randomness,
answering a question in [15] (also Problem 5.5.19 in [34]). We fully characterize lowness for Demuth
randomness using an appropriate notion of traceability. Central to this characterization is a partial rela-
tivization of Demuth randomness, which may be more natural than the fully relativized version. We also
show that an oracle is low for weak Demuth randomness if and only if it is computable.

§1. Introduction. Tools from computability theory are used to answer the ques-
tion “when is an infinite binary string random?”.By using effective betting strategies,
effectively presented null sets, or effective descriptions of initial segments, defini-
tions such asMartin-Löf ’s, Schnorr’s, and others’ give rise to a hierarchy of notions
of randomness. The rich field of algorithmic randomness classifies the levels of this
hierarchy and, among other pursuits, attempts to understand the behavior of the
Turing degrees of random sets. Prominent examples are the theorem, independently
proved by Kučera [26] and Gács [19], that every set is Turing-reducible to a ran-
dom set and, in contrast, Stephan’s result [37], showing that random sets with high
information content are atypical.
The interaction between computability and randomness, though, is bidirectional:
it is used not only to understand randomness, but also to understand computability
itself. StartingwithKučera’s seminal work [26], in which he used randomness to give
an injury-free solution to Post’s problem, the study of randomness has been used
to directly answer questions about Turing degrees and computability in general.
Furthermore, it has yielded new notions, such as traceability, which turned out to
be essential ingredients in our understanding of the Turing degrees. For example,
the notion of strong jump traceability, which arose from algorithmic randomness,
was used in [12] to answer a long-standing question regarding the inversion of
pseudojump operators to c.e. degrees. Another example is Ishmukhametov’s use of
traceability [23] to classify the c.e. degrees which have strong minimal covers.
Central to this interaction is the notion of lowness for a randomness notion C.
An oracle A is said to be low for C if every C-random set is also C-random relative
to A. This is a notion of computational weakness: it says that the oracle A cannot
detect regularities in any C-random set. The study of lowness for C gives, on the one
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hand, an understanding of the notion of randomness C and its relativization to an
oracle; and on the other hand, gives us insight about what it means to have little
power as an oracle. When there are noncomputable oracles which are low for C,
these can be viewed as ‘closed to computable’ and are usually very far from the
halting problem ∅′. When there are none, then the coincidence of computability and
lowness for C captures computability itself, using analytic means.
Given the potential benefits of the study of lowness, it is not surprising that a lot

of work has gone into characterizing lowness for randomness notions. The most
useful notion of randomness remains that given byMartin-Löf. Dually, lowness for
Martin-Löf randomness turned out to give a fascinating class of oracles, also known
as theK-trivials. The similarities between constructions of Kučera and Terwijn [27]
and of Mučnik’s (unpublished, see [14, Theorem 11.2.5]) led to Nies’s characteriza-
tion [33] of lowness for randomness in terms of K-triviality; the robustness of this
class was further exhibited by its coincidence with lowness for weak 2-randomness
(Downey, Nies, Weber and Yu [16]). In contrast, Nies [33] showed that the only
oracles that are low for computable randomness are the computable sets.
An important distinction, given a notion of randomness C, is between lowness

for C and lowness for C-tests. Most randomness notions studied in the literature are
defined by specifying that a C-random set is one which avoids a countable class of
null sets, the effectively-presented (in the sense of C) null sets. Usually, each such
null set is presented as the limit of a C-test, which is a sequence 〈Un〉 of open sets,
whose measure quickly tends to 0.1 The corresponding null set is the collection of
reals which belong to infinitely many sets Un. Such reals are said to be captured by
the test. Often, the sets Un are nested, in which case the corresponding null set is
simply the intersection

⋂
n Un .

We say that an oracle A is low for C-tests if every C-null set relative to A is
contained (or covered) by a C-null set. In other words, for every C-test 〈UAn 〉 relative
to A, there is a C-test 〈Vn〉 which covers

〈UAn 〉, in the sense that every real is an
element of infinitely many sets UAn is also an element of infinitely many sets Vn. The
point is that usually, the extra computational power of the oracles allows it to design
tests which capture more reals; an oracle is low for tests if the tests relative to A do
not in fact produce larger null sets than the ones which are specified without access
to an oracle.
Certainly, every oracle that is low for C-tests is also low for C. Equivalence of

these two notions is immediate if there is a universal C-test, that is, the greatest
C-null set, which captures precisely the non C-random sets. Thus, for example, it
is immediate that lowness for Martin-Löf randomness is the same as lowness for
Martin-Löf tests. However, most notions of randomness (such as Schnorr, Kurtz
or computable randomness, as well as weak 2-randomness) do not admit universal
tests.Nonetheless, for every notion of randomness C studied so far, lowness for C and
lowness for C-tests coincide.2 This intriguing phenomenon is observed empirically;
1There are some exceptions to this principle, for example for the notion of weak-2-randomness.
2Diamondstone and Franklin [18] recently gave an example of a randomness notion—difference

randomness—for which lowness for tests is strictly stronger than lowness for randomness. However, the
“tests” involved in difference randomness do not belong to the usual family of tests. A difference test is
indeed a sequence of sets 〈Un〉 whose measure tends to 0 quickly, but instead of being open, each Un is
the set-theoretic difference of two effectively open sets.
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we still do not have a deep unifying reason for all of these coincidences, even though
Bienvenu and Miller [6] gave such a unified view for a wide class of randomness
notions (including Martin-Löf randomness, computable randomness and Schnorr
randomness). This equivalence is usually not proved directly, but passes through
the third characterization of the two notions.
An exemplifying case is that of Schnorr randomness. First, Terwijn and Zam-
bella [39] characterized lowness for Schnorr tests by a property called computable
(or recursive) traceability. Only later, Kjos-Hanssen, Nies and Stephan [25] showed
that lowness for Schnorr randomness also coincides with computable traceabil-
ity, and so coincides with lowness for Schnorr tests. Unlike the case of K-triviality,
this characterization is purely computability-theoretic; the definition of computable
traceability does not involve notions fromrandomness.The sameapplies to the char-
acterization, by Greenberg and Miller ([20], using work of Stephan and Yu [38])
of lowness for Kurtz randomness and of lowness for Kurtz tests as the intersec-
tion of the hyperimmune-free (0-dominated) degrees with the degrees which do not
compute a function always avoiding the jump function e �→ Φe(e) (the nonDNR
oracles).
Demuth randomness was first introduced byDemuth [8,9]. It turned out to be too
strong for his original purpose bywork of [4,5].Nonetheless, it has been shown to be
a very fruitful notion in algorithmic randomness by recent work of Diamondstone,
Greenberg and Turetsky [10,21], and Kučera and Nies [28].
In this paper, we study the two lowness properties (for tests and for randomness)
associated toDemuth randomness. Most lowness properties for randomness can be
characterized by a combinatorial notion of traceability, and indeedwe shall give such
a characterization for lowness for Demuth randomness (and show that it coincides
with lowness for Demuth tests). The techniques we use go well beyond the state of
the art in the study of lowness. For example, the forcing construction of Section 3.4
needs a much finer measure-theoretic analysis (with the use of Chernoff bounds)
than the arguments of the same type that previously appeared in the literature. We
hope that these techniques will be useful for eventually giving a unifying explanation
for the coincidence of lowness for randomness and lowness for tests. We use the
characterization to show the existence of noncomputable oracles that are low for
Demuth randomness, answering a question in [15] (also Problem 5.5.19 in [34]).

Demuth randomness. Demuth was primarily interested in various kinds of effec-
tive null classes because of their role in constructive mathematical analysis. For
instance, he studied the differentiability of constructive functions defined on the
unit interval. (The functions he considered were constructive in the Russian sense;
in modern parlance they are referred to asMarkov-computable). His notion of ran-
domness was sufficiently strong to ensure that every constructive functionf satisfies
the Denjoy alternative at every Demuth-random point. See Kučera and Nies [29,
Definition 11] for a discussion of Demuth’s original definition, and [34, Section 3.6]
for more background.
Compared to Martin-Löf ’s, Demuth’s idea is to allow changing the whole nth

component Un of a test (this is an effectively open subset of Cantor space ofmeasure
at most 2−n) a computably bounded number of times. A real is then captured by
the test 〈Un〉 if it lies in infinitely many of the final versions of the sets Un.
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We give a formal definition. Recall that a functionf : � → � is computable from
the halting problem ∅′ if and only if it has a computable approximation, that is, a
uniformly computable sequence of functions 〈fs〉 which pointwise converges to f
(i.e., for all but finitely many s , we have fs(x) = f(x)). Of course, this means that
the number of mind-changes #{s : fs+1(x) �= fs(x)} is finite for every x. If we
further require that this number of mind-changes, as a function of x, be bounded by
some computable function, then we get the notion of �-computably approximable
functions (or �-c.a.); this is the class Δ−1� of the Ershov hierarchy.3

Definition 1.1. A Demuth test is an effective sequence 〈Un〉 of effectively open
(Σ01) subsets of Cantor space such that:

(1) for all n, the measure �(Un) of Un is bounded by 2−n; and
(2) there is an �-c.a. function mapping n to a Σ01 index for Un .

As mentioned above, the notion of test gives notions of null sets and of randomness. A
set (an element of Cantor space) X is captured by a Demuth test 〈Un〉 if X ∈ Un for
infinitely many n. A set is Demuth random if it is not captured by any Demuth test.

While Demuth randomness is now known to be strictly stronger than is neces-
sary for characterizing the Denjoy alternative (Bienvenu, Hölzl and Nies [4, 5]),
Demuth randomness turns out to be of interest on its own. Lying between weak
2-randomness and Martin-Löf randomness, it shares some pleasing properties of
1-genericity. UnlikeMartin-Löf random sets, Demuth random sets cannot compute
the halting problem; in fact, they are all generalized low. Unlike weakly 2-random
sets, Demuth random sets can be Δ02. This allows Demuth random sets to interact
with c.e. degrees, in the style of Kučera. For instance, the strongly jump-traceable
c.e. sets were characterized (in one direction byKučera andNies [28], in the other by
Greenberg andTuretsky [21]) as the c.e. sets computable fromaDemuth random set.

Traceability. Traces for functions from � to � were first introduced in set theory
by Bartoszyński (see [2]), where he called them slaloms. He used them for forcing
results related to cardinal characteristics of the continuum.
In computability, traceability is a measure of weakness of an oracle. An oracle A

will be called traceable if the values of any function� in some class of functions com-
puted by A can be captured in finite sets of small size. Formally, a trace for a partial
function � is a sequence 〈Tn〉 of finite sets such that for all n ∈ dom�, �(n) ∈ Tn.
The point is that the complexity of the trace 〈Tn〉 is smaller than the complexity of�;
whileweneedA to compute�, the trace canbe generated computably,with no access
to the oracle A. Traceability, then, would say that the oracle A is so weak so that it
cannot compute a function which escapes effective traces.
The different notions of traceability vary as we specify:

(1) the class of functions computed by A which are all traced;
(2) the complexity of the trace; and
(3) the rate of growth required of the size of the components of the trace.

The rate of growth is usually calibrated by Schnorr’s order functions. Recall that an
order function is a computable function from � to � \ {0} (so it only takes positive
3The popular but not quite standard term �-c.e. was reserved by Ershov to denote the class Σ−1� ,

which is the natural generalization of the classes of n-c.e. sets.
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values) which is nondecreasing and unbounded.A trace 〈Tn〉 is bounded by an order
function h if for all n, #Tn � h(n). We also say that 〈Tn〉 is an h-trace.
For example, Terwijn andZambella [39] called an oracleA computably traceable if
for some fixed order function h, each total function thatA computes has an h-trace
〈Tn〉 such that a strong index for Tn can be effectively computed from n (the strong
index not only gives us a way to computeTn , but also gives a bound on its elements).
In another example which was mentioned above, Figueira, Nies and Stephan [17]
defined an oracle A to be strongly jump traceable if for every order function h, every
A-partial computable function has a uniformly c.e. h-trace (so unlike computable
traceability, here from n we only have a method for enumerating the elements of
Tn , but not for computing the set Tn). For more background see [34, Sections 8.2
and 8.4].
We introduce a notion of tracing,Demuth traceability, which will be instrumental
in characterizing lowness for Demuth randomness. In an analogue to the move
from Martin-Löf randomness to Demuth randomness, Demuth traceability is a
modification of computable traceability which allows finitely many changes to both
the values of the functions being traced and the components of the trace, but the
number of changes in both needs to be computably bounded. To formalize this
notion, we recall a generalization of the notion of �-c.a. functions due to Cole and
Simpson [7].

Definition 1.2. Let A be an oracle (an element of Cantor space). A function
f : � → � is bounded limit-recursive in A, in short BLR〈A〉, if there is a uniformly
A-computable sequence 〈fs〉 of functions converging to f, such that the mind-change
function n �→ #{s : fs+1(n) �= fs(n)} is bounded by a computable function.
Equivalently, f is BLR〈A〉 if it is computable fromA′ ≡T A′ ⊕A, where the A′-use
is bounded by a computable function, but there is no such restriction on the A-use.

Note that a function is BLR〈∅〉 if and only if it is �-c.a.
Definition 1.3. An oracle A is Demuth traceable if there is an order function h,
such that every function f which is BLR〈A〉 has an h-trace 〈Tn〉 such that there is an
�-c.a. function taking n to a c.e. index for Tn .

In passing, we remark that Cole and Simpson characterized the oracles A such
that BLR〈A〉 = BLR〈∅〉 as those which are both superlow and jump traceable. The
equation BLR〈A〉 = BLR〈∅〉 is the same as saying that A is Demuth traceable, but
with the bound h not being an order function but the constant function 1. For more,
see Section 5.
Although there are uncountably many Demuth traceable sets (Theorem 1.5),
some of our results (see Section 4) indicate that the class of Demuth traceable sets
is small, especially if we intersect them with the hyperimmune-free (computably
dominated) sets, those sets which only compute functions which are bounded
by computable functions. This class in fact characterizes lowness for Demuth
randomness:

Theorem 1.4. The following are equivalent for an oracle A:

(1) A is low for Demuth tests.
(2) A is low for Demuth randomness.
(3) A is both Demuth traceable and computably dominated.
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The first step towardTheorem 1.4was taken byDowney andNg [15], who showed
that every oracle which is low for Demuth randomness is computably dominated.
As we shall shortly see, we make use of their result in the proof of Theorem 1.4.
Theorem 1.4, however, also helps to settle the question of the existence of noncom-
putable oracles which are low for Demuth randomness, a fact which has eluded
researchers up to now. To this end, we prove the following theorem:

Theorem 1.5. There is a Π01 class consisting of noncomputable oracles which are
all Demuth traceable.

A Π01 class with no computable elements is necessarily perfect, and so we get
2ℵ0 -many Demuth traceable sets. We get even more:

Corollary 1.6. There is a perfect set of noncomputable oracles, all of which are
low for Demuth randomness.

Proof of Corollary 1.6. (Assuming Theorem 1.5) Let P be a Π01 class with
no computable elements, consisting of sets which are all Demuth traceable. The
hyperimmune-free basis theorem of Miller and Martin [30], performed carefully so
as to preserve splittings, yields a perfect subclass Q ⊂ P consisting of computably
dominated oracles. Theorem 1.4 ensures thatQ is as required. �

Partial relativization. A key concept underlying much of this work is that of par-
tial relativization. As the name suggests, this is the result of relativizing to an oracle
only some aspect of a computable notion, while leaving other aspects unrelativized.
In effect, we study what happens under restricted access to the oracle. The idea
originated implicitly in [7], was further developed in [35], and studied in [1].
An example of a partial relativization was already given in the notion of bounded

limit-recursive functions, Definition 1.3. A full relativization to an oracle A of the
notion of �-c.a. functions would be similar to the definition of BLR〈A〉, except
that the number of mind-changes would be required only to be bounded by an
A-computable function, not by a computable function. Partial relativizations are
also used to define so-called weak reducibilities associated with lowness notions, a
prime example of which is the notion of LR-reducibility, the reducibility associated
with lowness for Martin-Löf randomness.
It turns out that partial relativization of randomness notions themselves is often

useful as well. While all reasonable relativizations of Martin-Löf randomness coin-
cide, this is not the case for other notions of randomness. For example,Miyabe [31],
following work of Downey, Griffiths and LaForte [13], examined a partial rela-
tivization of Schnorr randomness with only truth-table access to the oracle. Here,
we suggest a partial relativization of Demuth randomness.

Definition 1.7. Let A be an oracle. A DemuthBLR〈A〉-test, or a Demuth test
by4 A, is a sequence

〈UAn 〉 of Σ01(A) subsets of Cantor space such that for all n,
�
(UAn ) � 2−n, and there is a BLR〈A〉-function taking n to a Σ01(A)-index for UAn .
4While full relativization of a notion to an oracle A is indicated with the phrase “relative to A” or

“in A”, or simply prefixed by A, partial relativization is often indicated with the phrase “by A”. So for
example, the functions which are BLR〈A〉 are the functions which are �-c.a. by A.
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A set is DemuthBLR〈A〉-random if it is not captured by anyDemuthBLR〈A〉-test.5

So the difference between DemuthBLR〈A〉 tests and (fully relativized) DemuthA
tests is that in the former, the number of changes of a component UAn of the test is
bounded by a computable function, and in the latter by an A-computable function.
In both, though, the function which takes a pair (n, s) to the index for the version
of UAn at stage s , is A-computable. It is easy to see that every DemuthBLR〈A〉-test
is also a DemuthA-test, and so every set which is Demuth random relative to A
is also DemuthBLR〈A〉-random. If A is computably dominated, then bounding by
A-computable functions and bounding by computable functions are the same, and
so the notions coincide. In particular, the DemuthBLR〈∅〉-random sets are precisely
the Demuth random sets.
There are two ways to think about the different relativizations of a notion of
randomness. One is to accept that a randomness notion should specify its rela-
tivizations. That is, we extend our understanding of what a notion of randomness
is, from a mere class of random reals, to a binary relation between reals and oracles,
saying which reals are random relative to which oracle. Under this interpretation,
Demuth randomness and DemuthBLR randomness are two distinct notions of ran-
domness, which coincide on the computable oracles. It then makes sense to speak
of lowness for DemuthBLR and for DemuthBLR-tests. Namely, an oracleA is low for
DemuthBLR if every Demuth random set is DemuthBLR〈A〉-random, and low for
DemuthBLR tests if every DemuthBLR〈A〉-test can be covered by a Demuth test.
Another line of thinking still tries to choose, among the various possible relativiza-
tions of a notion of randomness, the most useful or natural one. Miyabe [31], for
example, showed that the truth-table version of Schnorr randomness,whichwemen-
tioned above, satisfies van Lambalgen’s theorem, while the theorem is known to fail
for the full relativization of Schnorr randomness. Miyabe suggested that satisfying
van Lambalgen’s theorem is a criterion for identifying the “correct” relativization
of a notion of randomness. In this context, recently Bienvenu, Diamondstone,
Greenberg and Turetsky [3] showed that van Lambalgen’s theorem holds for
DemuthBLR, while it fails for the full relativization of Demuth randomness. Fur-
ther evidence for the usefulness of DemuthBLR is the simpler characterization of
lowness:

Theorem 1.8. The following are equivalent for an oracle A:

(1) A is low for DemuthBLR tests.
(2) A is low for DemuthBLR randomness.
(3) A is Demuth traceable.

Indeed, Theorem 1.8 seems to be the fundamental one, and Theorem 1.4 is an
easy corollary of Theorem 1.8, using Downey and Ng’s result mentioned above:

Proof of Theorem 1.4. (Given Theorem 1.8) (1)→(2): As with every notion of
randomness, every oracle which is low for Demuth tests is also low for Demuth
randomness.

5We remind the reader that for the capturing/passing criterion we take Solovay’s, as we do not
assume that the sequence is nested. Weak passing—avoiding the intersection

⋂
n Un—gives rise to a

weaker notion of randomness, discussed later.
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(2)→(3): Suppose that A is low for Demuth randomness. Then A is also low for
DemuthBLR randomness, and so is Demuth traceable. By Downey and Ng’s [15],
A is also computably dominated.
(3)→(1): Suppose that A is both Demuth traceable and computably dominated.

Then A is low for DemuthBLR tests. Because A is computably dominated, every
Demuth test relative to A is actually a DemuthBLR〈A〉-test, and so is covered by a
Demuth test. Hence, A is low for Demuth tests. �
The following observation is due to Diamondstone and Nies. We say that an

oracleA is Demuth cuppable if there is a Demuth randomY such that ∅′ �T A⊕Y .
Corollary 1.9. SupposeA is Demuth traceable. Then A is not Demuth cuppable.

Proof. In [34, Theorem 3.6.26] it is shown that each Demuth random set Z is
generalized low, that is, Z′ �T Z ⊕ ∅′. Actually the proof yields an �-c.a. function
f dominating JZ , the jump of Z.
If Y is Demuth random, then Y is DemuthBLR〈A〉-random by Theorem 1.8. The

proof of [34, Theorem 3.6.26] builds a Demuth test with at most 2m changes to
the m-th version. Hence, we may “partially relativize” to A this proof in order to
obtain a functionf in BLR〈A〉 dominating JA⊕Y . SinceA is Demuth traceable, this
function has a Δ02 upper bound. SoA⊕Y ��T ∅′. (In fact, this argument shows that
A⊕ Y is generalized low.) �
The BLR transform. The main concepts in this paper are obtained by applying

what we call a BLR-transform to a computability theoretic concept. We replace cer-
tain computable functions (but not size bounds) by �-c.a. functions. For instance,
the BLR-transform of computable traceability is BLR traceability. We replace the
condition f �T X in its definition by the condition f ∈ BLR〈X 〉, which by the
nature of BLR yields a partial relativization. With a slight adjustment of defini-
tions, the BLR-transform of Schnorr randomness is Demuth randomness. This
may explain that a lot of our results on BLR traceability and Demuth randomness
are parallel to the investigations of computable traceability and Schnorr random-
ness [25,39] we discussed above. Themethods are also parallel but get more complex
because we are dealing with more involved concepts.

1.1. The content of the paper. We start, in Subsection 1.2, with reviewing the
notation and simplifying the tests weworkwith. In Section 2, we prove Theorem 1.5.
In Section 3, we prove Theorem 1.8. One of the main tools we use is forcing

with Demuth closed sets. This is analogous to the characterization by Kautz of
weak 2-randomness in terms of generic filters for forcing with Π02 closed sets of
positive measure (see [14, Theorem 7.2.28]), and gives further evidence for the ease
of working with Demuth randomness.
In Section 4, we give evidence for the thesis that the class of Demuth traceable

oracles is small. In particular, we discuss the relationship between jump traceability
and Demuth traceability. We show that the latter is strictly stronger; indeed we
separate Demuth traceability from jump traceability in both the �-c.a. degrees,
and in the computably dominated degrees. This shows that in some sense, the
computably dominated Demuth traceable sets are an analogue of the strongly jump
traceable sets, outside the Δ02 degrees. Note that in turn, the computably dominated
jump traceable sets are contained in the computably traceable sets (see [25]), and
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the containment is strict, because the jump traceable sets are always generalized low,
while computably traceable sets need not be generalized low; see [34, after Corollary
8.4.7].
An argument of Terwijn and Zambella easily holds for Demuth traceability,
showing that for the uniform bound h in the definition of Demuth traceability we
may choose any bound we like. However, unlike all other traceability notions, we
can strengthen Demuth traceability by requiring that the bound h be constant. In
Section 5, we show that we get a strict hierarchy as the constant bound changes;
as mentioned above, the first level of this hierarchy, the sets which are traceable
with bound 1, are the superlow and jump traceable sets investigated by Cole and
Simpson.
Finally, in Section 6, we consider a weakening of Demuth randomness, called
weakDemuth randomness. Lowness in this context is starkly different from lowness
for Demuth randomness: we show that the only oracles that are low for weak
Demuth randomness are the computable ones.

1.2. Clopen tests. We fix some notation. Recall that a set of binary stringsW ⊆
2<� defines an open subset of Cantor space

[W ]≺ = {Z ∈ 2� : ∃n (Z �n∈W )}.
Let (WX

e )e∈� be an effective listing of sets of strings that are c.e. in an oracle X . For
each index e and oracle X , we letWX

e = [W
X
e ]

≺ be the eth Σ01(X ) subset of Cantor
space. Thus, for an oracle A, a DemuthA test is a sequence

〈UAn 〉n<� = 〈WA
g(n)〉n<� ,

where �(WA
g(n)) � 2−n and g is a function which is �-c.a. relative toA; while such a

sequence is a DemuthBLR〈A〉-test (a Demuth test by A) if g is a BLR〈A〉 function.
If 〈gs 〉 is an A-computable approximation to the function g which witnesses that g
is �-c.a. in A, or BLR〈A〉, then for any t and n, we let UAn [t] = WA

gt(n)
, the version

of UAn at stage t.6
Unlike Schnorr orMartin-Löf randomness, the fact thatwe are allowed to change
the components of a test allows us to simplify the structure of these components.
Namely, we may assume that they are all clopen subsets of Cantor space, and
moreover, that we have a strong index for these clopen sets. We fix an effective list
〈Cn〉 of finite subsets of 2<�, given by strong indices; we then let Cn = [Cn]≺. So
〈Cn〉n<� is an effective list of all clopen subsets of Cantor space.
Definition 1.10. A clopenDemuth test is a sequence

〈Cg(n)〉n<� , where �(Cg(n)) �
2−n and g is an �-c.a. function.
Hölzl, Kräling, Stephan and Wu noticed that by passing excess measure to later
test components, and (computably) increasing the number of changes allowed,
clopen Demuth tests are sufficient to determine Demuth randomness.

Proposition 1.11 (Theorem 11, (a)↔(b), of [22]). Every Demuth test is covered
by some clopen Demuth test.
For a more detailed argument see [21].

In fact, the argument for Proposition 1.11 relativizes in both ways. For an oracle
A, a clopen DemuthA test is a test

〈Cg(n)〉 as above, with g being �-c.a. in A; and a
6We do not require this to be clopen: we do not meanWA

gt(n),t
.
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clopen DemuthBLR〈A〉 test is one with g being BLR〈A〉. Then every DemuthA test
is covered by a clopen DemuthA test and every DemuthBLR〈A〉 test is covered by a
clopen DemuthBLR〈A〉 test. Note that in passing from clopen Demuth tests to either
form of clopenA-tests, the only ingredient which is changed is the complexity of the
index function g. Contrast this with passing from Demuth tests to A-tests, where
we also allow to increase the complexity of the test components, from Σ01 open sets
to Σ01(A) open sets; covering by clopen sets shows that this increase in complexity
is not fundamental, and that the real extra power given by an oracle resides wholly
in the complexity of the function giving the indices of the components of the
test.

Similarly, we observe that we may use strong indices, rather than c.e. indices, in
the definition of Demuth traceability. For brevity, call a trace 〈Tn〉 an �-c.a. trace if
Tn =Wg(n) for some �-c.a. function g. So an oracle A is Demuth traceable if there
is an order function h such that every function which is BLR〈A〉 has an h-bounded
�-c.a. trace.
Let 〈Dn〉 be an effective sequence of all finite subsets of�, given by strong indices.

A strong �-c.a. trace is a trace of the form
〈
Df(n)

〉
for some �-c.a. function A. For

any order function h, every function which has an h-bounded �-c.a. trace also
has a strong h-bounded �-c.a. trace; we simply allow more changes to the trace
components Tn, and each time a new element is enumerated into Tn we declare a
new strong index forTn[s]. The number of extra changes is bounded by the product
of h and the original bound on the number of changes in the indices of Tn . In short,
the notion of Demuth traceability can be defined using strong �-c.a. traces.
We will make use of a fact, mentioned above, which is proved by the same

argument given by Terwijn and Zambella’s [39]—that in the definition of Demuth
traceability, the choice of order function does not matter. That is, if A is Demuth
traceable, then for every order function h, everyBLR〈A〉 function has an h-bounded
�-c.a. trace.

§2. A perfect class of Demuth traceable sets. In this section, we prove Theorem
1.5: we show that the class of noncomputable Demuth traceable sets contains a
nonempty Π01 class. As we shall see later (Section 4), this strengthens a theorem of
Nies (see [34, Theorem 8.4.4 and Exercise 8.4.6]) stating that the jump traceable
sets contain a perfect Π01 class. As noted above, any Π

0
1 class with no computable

elements (also called a special Π01 class) is perfect.

Proof of Theorem 1.5. We will build a class P . To ensure that every X ∈ P is
Demuth traceable, we will build a trace for every f ∈ BLR〈X 〉. To do this, we will
need an enumeration of all such functions f, which we obtain by enumerating the
functionals which generate them from the oracles X .
Specifically, we fix a computable enumeration of pairs {(Γe , ge)}e∈� such that for

each e,

• ge is a partial computable function;
• Γe is a functional and ΓXe is total for every oracle X ∈ 2� ;
• #{t | ΓXe (n, t) �= ΓXe (n, t + 1)} < ge(n) for every n such that ge(n)↓ and every
oracle X .
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We letfXe (n) = limt Γ
X
e (n, t).Wearrange this enumeration such that iff ∈ BLR〈X 〉

for some X , then f = fXe for some e.
We will build �-c.a. traces {〈Ten 〉n∈�}e∈� . For all i , we need to meet the
requirement:

Ri : φi is not a computable description of a set in P .
For every pair (e, n) with e < n, we need to meet the requirement:

Qe,n: If ge(n)↓, then fXe (n) ∈ Ten for all sets X ∈ P .
These requirements will suffice to prove the theorem.

The basic idea: To trace fXe with a sequence 〈Ten 〉n∈� we use restraint. When we
see a �0 ∈ 2<� such that Γ�0e (n, t0) = c0 converges for some t0 and c0, we require
that all elements of P extend �0 by removing all elements which do not, and we
put Ten = {c0}. When we later see a �1 extending �0 which makes Γ�1e (n, t1) = c1
converge for some t1 > t0 and some c1 �= c0, we then require that all elements of P
extend �1. We make Ten = {c1}, changing its index. In this fashion, we will not
change Ten more than ge(n) times, so it will be an �-c.a. trace, as required.
Of course, following this strategy for every e and n will make P contain only a
single element, which would then be computable. So at some point we must relax
the construction a little to allow multiple elements. Note also that the basic strategy
above would ensure that Tn is a singleton, which is far stronger than we require. So
instead of having only a single string �, which all elements of P must extend, our
strategy will keep some finite number of strings �0, . . . , �m−1, and all elements of P
must extend one of them. Whenever we see an extension � of one of these �i that
causes a new value of Γ�e(n, t), we restrict to extensions of �, just as in the basic
strategy, but we only do so above �i .
In this way, the set Ten will have size at mostm, and will change at mostm · ge(n)
times (in the full construction the number of changes will be higher, because of the
interaction of strategies, but it will still be computable). We will arrange to keep
m � 2n, and so this will be an �-c.a. 2n-trace. The strategies that contribute to
the growth of m are the noncomputability strategies; each will potentially double
the value of m. So, we will need to arrange the priorities of the strategies such
that there are at most n noncomputability strategies with higher priority than the
Qe,n-strategy.
However, as mentioned above, the actual number of changes to Ten will depend
on the interaction of strategies. Specifically, it will depend not just on ge(n), but
also on the ge′(n′) of higher priority strategies. To ensure there is a computable
bound on the number of changes, it is essential that these ge′ (n′) all converge. So
we assign priorities to these strategies as the construction runs; initially, the Qe,n-
strategy will not have a priority and will not be attended to by the construction.
When ge(n) converges, the Qe,n-strategy is assigned a priority lower than every
previously assigned priority. In this way, we can calculate the bound on the number
of changes to Ten as soon as the Qe,n-strategy is assigned a priority.
Now, however, we must revisit our earlier commitment to have at most n
noncomputability strategies with higher priority than the Qe,n-strategy. Since the
Qe,n-strategy could be assigned an arbitrarily late priority, to meet this commit-
ment we must be prepared to drop the priority of noncomputability strategies when
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the Qe,n-strategy is assigned a priority. It will be the case, however, that every
noncomputability strategy eventually stops dropping in priority.
Formalizing the above: Each strategy will receive from the previous strategy some

finite collection of strings {αj}, all of the same length, and it will create some finite
extensions {	k} (all of the same length) such that for every j there is at least one k
with αj ⊆ 	k , and all sets in

⋃
k[	k ] meet the strategy’s requirement.

Ri -strategies will initially define exactly two 	k for every αj , but may later remove
one.
Qe,n-strategieswill define exactly one	k for everyαj. Theymayneed to redefine	k

some finite number of times, but each new definition will be an extension of the
previous.
At the end of every stage s , we let {	̂k} be the outputs of the last strategy to act

at stage s , and define the tree Ps to be all strings comparable with one of the 	̂k .
P will be⋂s [Ps ].
Description of Ri -strategy: This is the standard noncomputability requirement

on a tree.

(1) Let {αj}j<m be the output of the previous strategy. For every j < m, let
	j,0 = αj ˆ0 and 	j,1 = αj ˆ1.

(2) Wait for φi(|α0|) to converge; while waiting, let the outputs be {	j,0, 	j,1}j<m.
(3) When φi(|α0|) converges. . .

• . . . if φi(|α0|) = 0, let the outputs be {	j,1}j<m.
• . . . if φi(|α0|) �= 0, let the outputs be {	j,0}j<m.

Description of Qe,n-strategy: Until ge(n) converges, this strategy takes no action.
We ignore for the moment the computable bound on the number of times the index
of Tne changes.
Let {αj}j<m be the output of the previous strategy. We will keep several values to

assist the strategy: 
s will be the number of times the output has been redefined by
stage s ; cs(j) will be the current guess for fe(n) on an extension of αj . We initially
have 
s = 0 and cs(j) = −1 for all j. Unless otherwise defined, 
s+1 = 
s and
cs+1(j) = cs(j).
For every j, let 	0j = αj .We initially let the outputs be {	0j}j∈� and defineTen = ∅.

We run the following strategy, where s is the current stage:

(1) Wait for a string � ∈ Ps with � extending one of the 	
sj and Γ�e(n, s) �= cs(j).
(2) When such a string is found for 	
sj :

(a) Define 	
s+1j = � and cs+1(j) = Γ
�
e(n, s).

(b) For every k < m with k �= j, choose 	
s+1k ∈ Ps extending 	
sk of the
same length as 	
s+1j .

(c) Redefine Ten = {cs+1(k) | k < m}.
(d) Define 
s+1 = 
s + 1.

(3) Return to Step 1.

Full construction: We make the assumption that for every s , there is precisely one
pair (e, n) with e < n and ge,s+1(n)↓ but ge,s(n)↑. We give theQe,n-strategies priority
based on the order in which the ge(n) converge: if ge(n) converges before ge′(n′),

https://doi.org/10.1017/jsl.2013.21 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2013.21


538 LAURENT BIENVENU ET AL.

then the Qe,n-strategy has stronger priority than the Qe′ ,n′ -strategy. If ge(n) never
converges, then Qe,n never has a priority, but this is fine because it never acts.
We prioritize the Ri -strategies based on the priorities of the Qe,n-strategies: Ri
has weaker priority than Ri′ for any i ′ < i , and also weaker priority than any
Qe,n-strategy with n � i . It is given the strongest priority consistent with these
restrictions.
Since we only consider n > e � 0, the R0-strategy will always have the strongest
priority. It receives α0 = 〈〉 as the “output of the previous strategy”.
At stage s , let (e, n) be the pair such that ge(n) has newly converged. We initial-
ize Rn and all strategies which had weaker priority than Rn . The priorities of the
various Ri are then redetermined. We then let all Q-strategies with priorities and
all Ri -strategies with i < s act, in order of priority.
Whenever a strategy redefines its output, all weaker priority strategies are
initialized.

Verification: We proceed as a sequence of claims.

Claim 2.1. For each i , the priority of the Ri -strategy changes at most i(i + 1)/2
many times.

Proof. Thepriority of theRi -strategy is only changedwhen somege(n) converges
with e < n � i . There are at most i(i + 1)/2 many such pairs (e, n). �
Claim 2.2. Let {αj}j<m be the strings which the Ri -strategy receives from the
previous strategy. Then m is at most 2i .

Proof. Induction on i . For i = 0, the only received string is the empty string.
For i + 1, we observe that the Q-strategies output the same number of strings as
they receive, and so the number of strings received by the Ri+1-strategy is the same
as the number of strings in the output of the Ri -strategy. But the Ri -strategy either
outputs the same number of strings as it receives or twice as many, depending on
whether it reached Step (3) or not. �
Claim 2.3. Suppose ge(n)↓, and let {αj}j<m be the strings which theQe,n-strategy
receives from the previous strategy. Then m is at most 2n.

Proof. The Qe,n-strategy has stronger priority than the Rn-strategy, and by con-
struction the number of strings received can only increase for weaker priority
strategies. �
Claim 2.4. Fix e, n, s0, and s1 such that ge,s0 (n)↓, s0 < s1, and the Qe,n-strategy
was never initialized at a stage between s0 and s1. Then the strategy redefines its output
at most (ge(n))2

n

many times between stages s0 and s1.

Proof. Suppose not. Since one of the c(j) changes each time the output is
redefined, by the pigeon-hole principle, there must be stages s0 < t0 < · · · <
tge (n) < s1 and a j < m with ctk (j) �= ctk+1(j) for every k � ge(n). Then
for any set X ∈ [	
tge (n)j ], |{t | ΓXe (n, t) �= ΓXe (n, t + 1)}| � ge(n), contrary to
assumption. �
Claim 2.5. Suppose ge(n) converges at stage s0. Let {(ek, nk)}k<s0 be those pairs
such that the Qek,nk -strategy has stronger priority than the Qe,n-strategy. Then the
Qe,n-strategy can be initialized at most 3n

∏
k(1 + gek (nk))

2nk many times.
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Proof. There are at most n many Ri -strategies of stronger priority. Each Ri -
strategy can cause initialization twice without being initialized itself: once by
changing its output, and once when its priority weakens. Note that if the prior-
ity of an Ri -strategy weakens after stage s0, the new priority is necessarily weaker
than that of the Qe,n-strategy.
Each Qek,nk -strategy can cause initialization (gek (nk))

2nk many times without
being initialized itself. The result follows. �
Claim 2.6. At every stage, #Ten � 2n.
Proof. By construction, Ten contains at most m many elements. By a previous

claim, m is at most 2n. �
Claim 2.7. If ge is total, {Ten }n∈� is an �-c.a. trace.
Proof. Let s0 be the stage at which ge(n) converges, and let {(ek,mk)}k<s0 be

those pairs such that theQek,mk -strategy has stronger priority than theQe,n-strategy.
By construction, Ten only changes when the Qe,n-strategy redefines its output. By
previous claims, this happens at most

(ge(n))2
n · 3n

∏
k<s0

(1 + gek (mk))
2mk

many times. Note that this value is uniformly computable in n. �
Claim 2.8. The Ri -strategy is only initialized finitely many times.

Proof. By induction. Wait for a stage such that the priority of the Ri -strategy
has finished changing, and all stronger priority strategies have will never again
be initialized or change their outcomes. Then the Ri -strategy will never again be
initialized. �
It is immediate from the construction that all strategies ensure their requirements.

This completes the proof of the theorem. �

§3. Lowness for DemuthBLR randomness. In this section, we prove Theorem 1.8,
the equivalence of:

(1) Lowness for DemuthBLR tests;
(2) Lowness for DemuthBLR randomness; and
(3) Demuth traceability.

Now two of the implications are easy, and we dispose of them swiftly. The
implication (1)→(2) holds for any notion of randomness.
We prove that (3)→(1): let A be a Demuth traceable set; we show that every

Demuth test byA (aDemuthBLR〈A〉 test) is covered by aDemuth test. By the discus-
sion following Proposition 1.11, it suffices to show that every clopen DemuthBLR〈A〉
test is covered by a Demuth test. Let

〈Cf(n)〉n∈� be a clopen DemuthBLR〈A〉 test,
so f is BLR〈A〉. By replacing Cf(n) with Cf(2n+1) ∪ Cf(2n+2), we may assume that
�(Cf(n)) � 4−n for each n.
Now, let 〈Tn〉n∈� be an �-c.a. trace for f, bounded by h(n) = 2n. There is an

�-c.a. function q such that Cq(n) =
⋃
i∈Tn Ci . Then

〈Cq(n)〉n∈� is a Demuth test
covering the given test

〈Cf(n)〉n∈� .
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For the rest of this section, we prove (2)→(3): that lowness for DemuthBLR ran-
domness implies Demuth traceability. Given a setAwhich is not Demuth traceable,
we need to construct a set Z which is Demuth random but not Demuth random by
A (not DemuthBLR〈A〉-random).
We will define a particular type of open sets, namely Demuth open sets, and their
complements, Demuth closed sets, that reflect the behavior of Demuth tests. The
forcing argument has two parts:

(a) First, we show that passing aDemuth test can be interpreted as being in some
appropriate Demuth closed set of positive measure. We will therefore use the
family of Demuth closed sets of positive measure (ordered by inclusion) as
our notion of forcing PDem. Once we have proved that a finite intersection of
Demuth closed sets is again Demuth closed, we will be able to argue that any
sufficiently generic filter G in PDem determines a set ZG ⊆ � that passes all
Demuth tests, i.e., a Demuth random set.

(b) Thereafter, we will use the hypothesis that A is not Demuth traceable in
order to show that any sufficiently generic filter G of PDem determines a
set Z ⊆ � that is not DemuthBLR〈A〉-random. To do so, for every function
f which is BLR〈A〉 we devise a clopen DemuthBLR〈A〉 test 〈Un〉 =

〈Bn,f(n)〉,
with the property that if up to null sets, almost all the components Un are
contained in some Demuth open set with measure smaller than 1, then f
has an �-c.a. trace with some fixed bound. This construction will require a
probability-theoretic argument involving Chernoff’s upper tail bound. Once
this is established, we see that if f witnesses that A is not Demuth trace-
able, then we can generically meet infinitely many components Un, and so
the Demuth random set we construct will not be DemuthBLR〈A〉 random,
witnessing that A is not low for Demuth randomness.

3.1. Demuth open sets and their basic properties.
Definition 3.1. An open set U ⊆ 2� isDemuth open if there is an�-c.a. function
� �→ D� such that for all rational � > 0, D� is a clopen subset of U such that

�(U \ D�) � �.
Lemma 3.2. Let 〈Cn〉n<� be a clopen Demuth test. Then for all m < �,⋃

n>m

Cn

is Demuth open.

As an immediate corollary we see that any clopen set is Demuth open.

Proof. Let U = ⋃n>m Cn.
Let � > 0 be rational. We can compute the least k < � such that 2−k � �. We
then let

D� =
⋃

n∈(m,k]
Cn.

Certainly D� is clopen, the map � �→ D� is �-c.a., and since
U \ D� ⊆

⋃
n>k

Cn,
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we have
�(U \ D�) �

∑
n>k

�(Cn) �
∑
n>k

2−n = 2−k � �.

�
Lemma 3.3. The union of finitely many Demuth open sets is Demuth open.

Proof. By induction, it suffices to verify that if U and V are both Demuth open,
then so is U ∪ V . Let � �→ D� and � �→ C� witness, respectively, that U and V are
Demuth open. Then the map � �→ D�/2 ∪ C�/2 is �-c.a., and for any rational � > 0,
we have

(U ∪ V) \ (D�/2 ∪ C�/2) ⊆ (U \ D�/2) ∪ (V \ C�/2),
so

�
(
(U ∪ V) \ (D�/2 ∪ C�/2)

)
� �.

�
3.2. Obtaining a trace from a Demuth open cover. We now show how Demuth

open sets relate to Demuth traceability. We code a given function f into a sequence
of sets such that any Demuth open set of measure < 1 covering almost all of these
sets yields an �-c.a. trace for f.
We fix an array of independent clopen sets which will be used to code functions.

For n < � and k < �, let

Bn,k =
{
X ∈ 2� : ∀x < n [X (n, k, x) = 0]}.

Since for distinct pairs (n, k) and (n′, k′), the sets Bn,k and Bn′,k′ mention distinct
locations, the collection of all sets Bn,k is independent. Of course it is important that
for all k, �(Bn,k) = 2−n.
For subsetsA andB ofCantor space,wewriteA ⊆∗ B to denote that �(A\B) = 0.
Lemma 3.4. Let U be a Demuth open set such that �(U) < 1. Let f : � → �, and

suppose that Bn,f(n) ⊆∗ U for almost all n. Then f has an �-c.a. trace, bounded by
h(n) = 24n+5.

Proof. Fix an �-c.a. function � �→ D� witnessing that U is Demuth open.
For n < �, let

Tn =
{
k < � : � (Bn,k \ D2−3n ) � 2−3n

}
.

Since � → D� is �-c.a., there is an �-c.a. function g such that Tn =Wg(n). We will
show that f(n) ∈ Tn and #Tn � 24n+5 for almost all n.
Let n < � such that Bn,f(n) ⊆∗ U . Let � = 2−3n. Since

� (U \ D�) � �,
and since

Bn,f(n) \ D� ⊆
(Bn,f(n) \ U) ∪ (U \ D�) ,

we must have
�
(Bn,f(n) \ D�) � �,

so f(n) ∈ Tn .
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To finish the proof of Lemma 3.4, it remains to show#Tn � 24n+5 for almost all n.
This follows from the next proposition which is true for any probability measure
� on a space X . In our application, the space will be Cantor space with the usual
product measure �.
For any measurable nonnull setR ⊆ X , we let �R be the conditional probability
� givenR holds: for all measurable E ,

�R(E) = �(R∩ E)
�(R) .

Informally, the proposition says that if �(R) � 1/2 and localizing to R increases
themeasure of every member of an independent collection of sets that havemeasure
2−n even slightly, then this collection is small.
Proposition 3.5. Let n > 0. LetB be a �-independent collection of subsets of X ,
each of which has �-measure 2−n. Let R ⊆ X such that �(R) � 1/2. Suppose that
for all B ∈ B, �R(B) � 2−n + 2−2n. Then #B � 24n+5.
The proof of Proposition 3.5 is somewhat technical and appeals to probability-
theoretic arguments. We postpone it until Subsection 3.5. Here we show how to
complete the proof of Lemma 3.4 assuming this proposition.
Suppose that n < �, and as before let � = 2−3n. Let B be the collection of sets

Bn,k where k ∈ Tn . For k ∈ Tn, because D� ⊆ U , we have
Bn,k \ U ⊆ Bn,k \ D� ,

and hence,
� (Bn,k \ U) � 2−3n.

Since �(U) < 1, if n is large enough we have �(U) < 1 − 2−n. Since U is open,
there is a clopen set C disjoint from U such that �C � 2−n. Hence, we can choose a
clopen set G ⊆ 2� \ C such that, whereR = U ∪ G, we have

1/2 � �(R) � 1− 2−n.
Now let B ∈ B, and let 
 = 2−n. By assumption, we have

�(R ∩ B) = �(B)− �(B \ R) � 
 − 
3.
Since �(R) � 1− 
, we have

�R(B) = �(R∩ B)
�(R) � 
 − 


3

1− 
 = 
(1 + 
).

Thus, for allB∈B,�R(B)� 2−n +2−2n. Since all the hypotheses of Proposition 3.5
are met, we may conclude that #Tn � 24n+5 for almost all n. �
3.3. Forcing with Demuth closed sets. We now introduce the notion of forcing
which naturally generates Demuth random sets. As described above, we will later
show that the Demuth random sets generated by the notion of forcing are not
DemuthBLR〈A〉-random for any oracle A which is not Demuth traceable.
For background on forcing with closed sets of positive measure, recall that a set is
weakly 2-random if and only if it is 2-generic for forcing with Π02 classes of positive
measure, which may be taken to be closed (Kautz [24], see [14, Theorem 7.2.28]).
This is an effective version of Solovay’s random real forcing, much like the notion of
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n-genericity is the effective version of Cohen forcing. The following section shows
that Demuth randomness resembles weak 2-randomness in this aspect as it has a
similar characterization.

Definition 3.6. A Demuth closed set is a complement of a Demuth open set.
Demuth forcing PDem is the notion of forcing consisting of Demuth closed sets of
positive measure, ordered by inclusion.
Lemma 3.7. If G ⊂ PDem is a sufficiently generic filter, then

⋂
G is a singleton.

Proof. Let G ⊂ PDem be a filter. Since G consists of compact subsets of 2� and
has the finite intersection property,

⋂
G is nonempty.

For n < �, consider the set

{F ∈ PDem : ∃� ∈ 2<� [|�| = n & F ⊆ [�]]} . (1)

It is easy to see that for all n, the set (1) is dense in PDem, and so if G is sufficiently
generic, for all n, there is some binary string � of length n such that for allX ∈ ⋂G ,
� ⊂ X . �
For a sufficiently generic filter G of PDem, let ZG be the unique element of

⋂
G .

The next lemma is key to our construction.

Lemma 3.8. IfG is a sufficiently generic filter of PDem, thenZG is Demuth random.
Proof. By Proposition 1.11, it suffices to show that if G is sufficiently generic,

then ZG passes every clopen Demuth test.
Let 〈Cn〉n<� be a clopen Demuth test. We show that the set{

F ∈ PDem : ∃m
[
F ∩

(⋃
n>m

Cn
)
= ∅
]}

(2)

is dense in PDem; the lemma then follows.
Let F ∈ PDem. Since �(F) > 0, there is some m < � such that

�

(⋃
n>m

Cn
)
< �(F),

so

�

(
F \

⋃
n>m

Cn
)
> 0.

By Lemmas 3.2 and 3.3, F \⋃n>m Cn is Demuth closed. And so F \⋃n>m Cn is an
extension of F in the set (2). �
This completes the first part of the argument: if G is sufficiently generic, then ZG

is Demuth random. It remains to show that ifA is not Demuth traceable, then for a
sufficiently generic G , ZG is not Demuth random by A (DemuthBLR〈A〉 random).
3.4. Forcing failure of lowness. Suppose that A is not Demuth traceable. As

mentioned in Subsection 1.2, for any order function h there is some function f
which is BLR〈A〉 but has no h-bounded �-c.a. trace. Obtain such a function f for
the order function h(n) = 24n+5.
Recall the sets Bn,k from above. The fact that f is BLR〈A〉, and that �(Bn,f(n)) =

2−n, means that
〈Bn,f(n)〉n∈� is a DemuthBLR〈A〉 test.
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Lemma 3.9. IfG is sufficientlyA-generic, then there are infinitely many n such that
ZG ∈ Bn,f(n).
And so ZG fails the test

〈Bn,f(n)〉, and so is not DemuthBLR〈A〉 random; this
completes the proof of Theorem 1.8.

Proof. For m < �, we show that the set{F ∈ PDem : ∃n > m
[F ⊆ Bn,f(n)

]}
(3)

is dense in PDem; the lemma would follow.
Fix m < �, and let F ∈ PDem. By the assumption that f does not have an h-
bounded �-c.a. trace, Proposition 3.4, applied to the Demuth open set U = 2� \ F
tells us that there is some n > m such that

�
(Bn,f(n) ∩ F) > 0.

As was noted above, every clopen set is Demuth closed, and so by Lemma 3.3,
Bn,f(n) ∩ F is Demuth closed. It follows that Bn,f(n) ∩ F is an extension of F in the
set (3). �
3.5. Independent sets andChernoffbounds. Wecomplete the proof ofTheorem1.8
by establishing Proposition 3.5 which we had postponed.

Proof of Proposition 3.5. Let 
 = 2−n and N = #B which we may assume to
be finite. For a set E ⊆ X , we let 1E be the characteristic function of E . Define a
function h : X → R by

h =
∑
B∈B

1B.

We let
K = {x ∈ X : h(x) > 
(1 + 
/2)N} .

By the assumption on the measure of the elements ofB in R, we have∫
h d�R =

∑
B∈B

∫
1B d�R =

∑
B∈B

�R(B) � 
(1 + 
)N.

On the other hand, of course,∫
h d�R =

∫
K
h d�R +

∫
X\K
h d�R.

For all x ∈ X \ K, we have h(x) � 
(1 + 
/2)N , so∫
X\K
h d�R � �R(X \ K)
(1 + 
/2)N.

For all x ∈ X , we have h(x) � N , so∫
K
h d�R � �R(K)N.

Let p = �R(K), so �R(X \ K) = 1− p. The inequalities established so far yield

(1 + 
)N � pN + (1− p)
(1 + 
/2)N,
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whence we obtain

p � 
2

2(1− 
 − 
2/2);

as 
 � 1/2 we have 1− 
 − 
2/2 ∈ (0, 1), so
p � 
2/2 = 2−(2n+1).

Chernoff’s upper tail bound [36] states that for any � ∈ (0, 1), letting a = ∫ h d�,
we have

�
({
x ∈ X : h(x) � (1 + �)a}) < e−�2a/4.

Applying the bound to � = 
/2, since∫
h d� =

∑
B∈B

�(B) = 
N,

we obtain
�(K) < e−
3N/16.

Of course,

�(K) � �(K ∩R) = �R(K) · �(R) = p · �(R),
so overall we obtain

p · �(R) < e−
3N/16.
Since �(R) � 1/2, we have p · �(R) � 2−(2n+2). Taking the natural logarithm

and then the negative, we obtain


3N < −16 ln 2−(2n+2) = −16 log2 2−(2n+2) ln 2 < 16(2n + 2) � 2n+5,
the last step recalling that n � 1. Hence,

N <
2n+5


3
= 2n+523n = 24n+5

as required. �

§4. Demuth tracebility and jump traceability. We have shown that the class of
computably dominated Demuth traceable sets coincides with lowness for Demuth
randomness.We now give a computability-theoretic analysis ofDemuth traceability
by relating it to the more familiar notion of jump traceability. We observe that
Demuth traceability implies jump traceability, but while the notions coincide on the
c.e. degrees, they differ on both the�-c.a. degrees and on the computably dominated
degrees. Thus, lowness for Demuth randomness properly implies being computably
dominated and jump traceable.

4.1. Jump traceability. An oracle A is jump traceable [32] if every A-partial com-
putable function � has a uniformly c.e. trace bounded by some order function. The
reason that we do not require a uniform bound h on the traces for all functions
which are A-partial computable is that there is a universal A-partial computable
function. Letting JA be such a function (e.g., JA(e) = ϕAe (e)), we see that an oracle
A is jump traceable if and only if JA has a uniformly c.e. trace bounded by an order
function. However, unlike c.e. traceability, computable traceability, and Demuth
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traceability, the fact that we need to trace partial functions means that the standard
Terwijn–Zambella for the irrelevance of the choice of the order function fails for
jump traceability. Indeed, the classes of h-jump-traceable sets vary significantly with
the growth-rate of the order function h; for sufficiently fast-growing functions h,
there is a perfect set of h-jump-traceable sets, while for sufficiently slow-growing h,
all h-jump-traceable sets are Δ02. In particular, jump traceability and strong jump
traceability, defined in the introduction, differ substantially.

Proposition 4.1. Every Demuth traceable set is jump traceable.
Proof. Suppose that A is Demuth traceable. Let f(n) = JA(n) if n ∈ domJA,
and otherwise let f(n) = 0. Then f is BLR〈A〉. Let (Tn)n∈� be an �-c.a. trace
for f, bounded by an order function h, and suppose that g is an order function
which witnesses that the index function for 〈Tn〉 is �-c.a. Let T ∗

n be the union of all
versions of Tn over stages. Then (T ∗

n )n∈� is a uniformly c.e. trace for f, and so for
JA, bounded by h · g. �
In the rest of this section, we will show that Demuth traceability strictly implies
jump traceability.However, they agree on the c.e. degrees. Indeed, on the c.e. degrees,
Demuth traceability is equivalent to a strong form of Demuth traceability, in which
the bound h can be taken to be the constant function 1.

Recall that a setA is superlow ifA′ �tt ∅′. Nies [32] showed that jump traceability
and superlowness coincide on the c.e. sets (see also [34, 8.4.23]), while neither class
includes the other within the �-c.a. sets.
Note that a set A is Demuth traceable with bound 1 if and only if every BLR〈A〉
function is �-c.a., in other words if BLR〈A〉 = BLR〈∅〉. Cole and Simpson [7,
Corollary 6.15] studied the class of oracles with the latter property, which they
dubbed the oracles low for BLR. They showed [7, Corollary 6.15] that this class
coincides with the intersection of jump traceability and superlowness. Thus:

Fact 4.2. A set is both jump traceable and superlow if and only if it is Demuth
traceable with bound 1.
Since each jump traceable c.e. set is superlow, we obtain:

Proposition 4.3. The following are equivalent for a c.e. set A:
(1) A is Demuth traceable.
(2) A is Demuth traceable with bound 1.
(3) A is jump traceable.

4.2. Separating jump traceability from Demuth traceability in the �-c.a. degrees.
We show that the class of Demuth traceable sets is strictly smaller than the class of
jump traceable sets. We first separate these classes within the �-c.a. sets.

Theorem 4.4. There is an �-c.a. set which is jump traceable but not Demuth
traceable.
Proof. We must build an �-c.a. set A and a BLR〈A〉 function which escapes all
�-c.a. traces. To diagonalize against all such traces, we will need an enumeration
of them, so let 〈(Ten )n∈�, ge〉e∈� be an enumeration of all partial �-c.a. traces with
bound h(n) = n, where ge(n) is the bound on the number of times the index for Ten
can change; the functions ge are partial computable. We construct an �-c.a. set A,
a Turing functional Γ and a c.e. trace 〈Vn〉n∈� meeting the following requirements:
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G : ΓA is an approximation of a total BLR〈A〉 function.
Re : lims ΓA(e, s) /∈ Tee .
Ni : #Vi � 2i

4
; if JA(i)↓, then JA(i) ∈ Vi .

Our basic strategy for meeting requirement Re is to choose many distinct strings as
possible initial segments of A, and define Γ(e) differently along each string. Since
|Tee | � e, by counting there will always be at least one of these strings � with
Γ�(e) �∈ Tee . We make that string our current initial segment of A. If at some later
stage Γ�(e) enters Tee , we change to a different initial segment.
Our basic strategy for meeting requirementNi is restraint, similar to the proof of

Theorem 1.5. Whenever we see a � which causes J�(i) to converge, we restrain A
to be an extension of that � and enumerate J�(i) into Vi . Of course, this restraint
will cause injury to later Re-strategies, and here is where we use the fact that
ΓA is merely an approximation to a BLR〈A〉 function; whenever a higher priority
Ni -strategy acts, we can restart the Re-strategy by simply redefining Γ(e), so long
as we have a computable bound on the number of times we do so.
Similarly, an Re-strategy changing between possible initial segments of A will

interfere with a later Ni -strategy’s attempts to restrain A, but here we use the fact
that Vi need not be a singleton. As long as higher priority strategies only change
between at most 2i

4
possible initial segments of A, the Ni -strategy can restrain to

a single � above each of these initial segments and enumerate all of these possible
J�(i) into Vi . Note that the number of strings the Re-strategy will change between
is dependent on |Tee |; for our calculations, it is important that the Re-strategy
diagonalizes at ΓA(e) instead of at some arbitrary ΓA(e′) with e′ > e . It is for this
reason that the Re-strategy redefines Γ(e) when injured instead of simply choosing
a larger e′ to work with.
The Re-strategy may need to change initial segments many times; potentially as

many as ge(e) ·e times. To ensure thatA is�-c.a., we cause all these initial segments
to agree for the first ge(e) bits, and only differ after that point. So theRe-strategy is
only causing changes to late bits, and so the number of changes to a bit can remain
computably bounded.
We order the requirements as R0 < N0 < R1 < N1 < . . . , and at every stage s

we run strategies for every requirement Re andNi with e, i < s in increasing order.
Every strategy receives from the previous strategy a finite collection of incomparable
strings Xs which are possible initial segments of A and a specified string �s ∈ Xs
which is the current initial segment of As . The strategy is responsible for creating
its own set X ′

s of incomparable strings and its own �
′
s ∈ X ′

s satisfying:

• For every � ∈ Xs , there is a �′ ∈ X ′
s with �

′ � �; and
• � ′s � �s .

The strategy for R0 always receives Xs = {〈〉} and �s = 〈〉.

Strategy for Re : First, we wait for ge(e) to converge. While we wait, we let
X ′
s = {�̂0 | � ∈ Xs}, � ′s = �ŝ0, and define Γ(e, s) = 0 with use 0.
Once ge(e) has converged, we let �0, . . . , �2e−1 be the strings of length e, ordered

lexicographically. We define X ′
s = {�̂ (0ge(e)) ̂�i | � ∈ Xs, i < 2e}. We define
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Γ�̂
(
0g
e (e)
)̂�i (e, s) = i for all � ∈ Xs and i < 2e . For every string � which is

incomparable with every string in X ′
s , we define Γ

�(e, s) = 0.
We let j be the least such that j �∈ Tee,s (since #Tee � e, we know j < 2e) and let
� ′s = �s ̂ (0ge(e)) ̂�j .
Strategy for Ni : Given Xs , we shall construct X ′

s to contain precisely one �
′ � �

for every � ∈ Xs .
Given � ∈ Xs , we search for a � � � with |�| < s such that J�s (i)↓. If there is
no such �, we define �′ = �̂0. Otherwise, we let t be the least such that there is a
� � � with |�| < t and J�t (i)↓, let �′ be the least such � under some ordering, and
enumerate J �

′
t (i) into Vi .

We defineX ′
s = {�′ | � ∈ Xs} and let � ′ be the unique element of X ′

s extending �.

Verification: First, observe that for a fixed Re-strategy, if s0 < s1 and Xs = Xs0
for every s0 < s � s1, then there can be at most one stage t with s0 < t < s1 and
X ′
t �= X ′

t+1 — the stage at which g
e(e) converges.

Similarly, for a fixed Ni -strategy, if s0 < s1 and Xs = Xs0 for every s0 < s � s1,
there can be at most #Xs many stages t at which X ′

t �= X ′
t+1. Further, #Xs is

bounded by 2i
2
.

Thus, by induction, for any Re- or Ni -strategy, Xs is eventually fixed.
We performa similar analysis for�s : for a fixedRe-strategy, if s0 < s1 and�s = �s0
for every s0 < s � s1, then there can be at most 1 + ge(e) · e many stages t with
s0 < t < s1 and � ′t �= � ′t+1—first when ge(e) converges, and then every such stage
after that indicates that a new element was enumerated into the current version
of Tee . If g

e(e) does not converge, then there can be no such stages.
For a fixedNi -strategy, if s0 < s1 and �s = �s0 for every s0 < s � s1, there can be
at most one stage t with s0 < t < s1 and � ′t �= � ′t+1—the stage at which a convergent
jump computation is found on an extension of �s0 .
Thus, by induction, for anyRe- or Ni -strategy, �s is eventually fixed. Further, by
construction, for any fixedRe-strategy, |�s | � e. Thus, if we let �e = lims �s for the
Re-strategy, A =

⋃
e �
e is a Δ02 set.

Claim 4.5. A is an �-c.a. set.
Proof. For any value n ∈ �, we approximate A(n) by considering the Rn+1-
strategy and the values of �s(n). As reasoned earlier, the number of times �s can
change is bounded by

2n ·
∏
e<n+1
ge(e)↓

2 + ge(e) · e.

But if e < n + 1 and ge(e)↓� n, then we can omit it from the above product when
considering �s(n): all the extensions that theRe-strategy is changing between begin
with ge(e) many 0s, and thus agree on n. So the number of times �s(n) can change
is bounded by

2n ·
∏
e<n+1
ge (e)↓<n

2 + ge(e) · e � 2n(2 + n2)n+1.

�
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Clearly ΓY (e, s) is defined for all e < s and oracles Y , and so in particular for
the oracle A. Also, if Γ�(e, s) �= Γ�(e, s + 1) for some string �, it indicates that
X ′
s �= X ′

s+1 for the Re-strategy. By the earlier reasoning, this can happen at most
2e+1 ·∏i<e 2i2 many times, which is a bound uniformly computable from e. Thus,
ΓA is an approximation to a total BLR〈A〉 function.
By construction, lims ΓA(e, s) �∈ Tee . As observed in Subsection 1.2, this means

that A is not Demuth traceable.
By construction, if JA(i)↓, then theNi -strategywill have acted to enumerate JA(i)

into Vi . Whenever an element is enumerated into Vi , it indicates thatX ′
s �= X ′

s+1 for

theNi -strategy.By the earlier reasoning, this can happen atmost 2i+1·
∏
j�i 2

j2 � 2i4

many times. So A is jump traceable. �

4.3. Separating jump traceability fromDemuth traceability in the computably dom-
inated degrees. We now separate Demuth traceability from jump traceability within
the computably dominated sets. In particular, this means that there is a set which is
low for Schnorr randomness but not for Demuth randomness.

Theorem 4.6. There is a set which is jump traceable and computably dominated,
but not Demuth traceable.

Proof. The proof is in some sense an elaboration on the proof of Theorem 4.4;
rather than a Δ02 set, we build a Δ

0
3 set using an approximation argument inside

a Π01 class. We build a Π
0
1-class P , a functional Γ and a computably dominated

set X ∈ P , with ΓX demonstrating that X is not Demuth traceable by being an
approximation for a BLR〈X 〉 function which has no �-c.a. trace.
Let T be the computable tree T := {� ∈ �<� | (∀n < |�|)[�(n) � n]}. We

will define a limit-computable embedding g : T → 2<� with P the image of [T ]
under g. For every s , we will define g(�, s) for all � ∈ T with |�| � s . Then
g(�) = lims g(�, s). An important property of g is the following: if |�| < s and
g(�, s) = g(�, s + 1), then g(�̂j, s) ⊆ g(�̂j, s + 1).
For every n � s , and every � ∈ T with |�| = n, we define Γg(�,s)(n, s) = �.

To show that ΓX is BLR〈X 〉 (that is, �-c.a. by X ), we will later demonstrate a
computable bound on the number of times g(�, s) changes.

Jump traceability strategy:We ensure jump traceability as follows: for every � ∈ T
with |�| = n, we wait until a stage s + 1 when we see a � ∈ T extending � with
|�| � s and Jg(�,s)s (n)↓. Then we define g(�, s + 1) = g(�, s), enumerate Jg(�,s)s (n)
into Vn and cease our action on behalf of � unless g(�−) changes.
The sequence (Vn)n∈� will trace the jump of every X ∈ P , and if g(�−) never

changed, then we would have |Vn| � (n+1)!. Instead we will have |Vn| � (n+ 1)! ·
h(n − 1), where h is a computable bound on the changes of g which we establish
later.

Basic nonDemuth-traceablestrategy:Given an�-c.a. trace (Tkn )n∈� with |Tkn |� n,
the idea for defeating this trace is the following: suppose� ∈ T with |�| � n−1.Then
by counting, �̂j �∈ Tkn for some j � n, and so g(�̂j) forces that lims ΓX (e, s) is
not traced by (Tkn )n∈� .
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Basic strategy for being computably dominated: This strategy is the most complex;
we use a modification of the full approximation argument found in [11]. Our version
is considerably simplified, however, since we are not attempting to make X have
rank 1 in P . For every functional Φi , if ΦXi is total for our set X , we must construct
a computable function fi which dominates ΦXi .
Suppose �0, . . . , �k are the elements of T of length n (for some n). We consider
the �j in order. As long as there is no �j extending �j with |�j | � s and Φg(�j ,s)i,s (0)↓,
then g(�j, s) forces the satisfaction of the requirement for Φi . When we see such
a �j , we set g(�j, s + 1) = g(�j , s) and move on to �j+1.

If we have found a �j for every �j , we define fi(0) = maxj�k{Φg(�j ,s)i,s (0)}. In this
case, 〈〉 forces that fi(0) � ΦXi (0).
Of course, once we have forced that ΦXi (0)↓� fi(0), we must move on to con-
sidering ΦXi (1). We repeat the same strategy as above, but we make an important
observation: the �j used for ΦXi (1) need not be the same as those used for Φ

X
i (0)

(that is, we need not use the same length n). It is important that we constantly
increase n, otherwise g(�) would not converge for |�| > n and P would consist of
only k + 1 elements.

Priority tree: Suppose that the strategy for ΦX0 is considering �j , searching for

a �j ⊇ �j with Φg(�j ,s)0,s (0)↓. If it never finds such a �j , then X must go through
g(�j). The strategy for avoiding the�-c.a. trace (T 0n )n∈� must act above �j . On the
other hand, if the strategy for ΦX0 always finds a �j for every �j considered, then
the requirement for ΦX0 is satisfied for any X ∈ P , and so the strategy for (T 0n )n∈�
is free to act at 〈〉.
Similarly, if g(�̂j) forces that (Tkn )n∈� does not trace ΓX , then the strategy
for ΦX1 cannot act on all of T , but must restrict itself to considering T above �̂j.
For this reason, we will make a priority tree of these strategies, with the strategies
at level 2i devoted to ΦXi and the strategies at level 2i + 1 devoted to (T

i
n)n∈� (the

jump-traceability strategies will not appear on the priority tree). Each strategyof the
first typewill have two outcomes: inf and fin. Each strategy of the second type will
have only a single outcome: outcome. Strategy α will inherit from its predecessor a
string �α ∈ T to work above; the root strategy will use � = 〈〉.

Full nonBLR-traceable strategy: Forαa (Tkn )n∈�-strategy, let tk(n) be the (partial)
computable boundon the number of timesTkn can change. The only actionα takes is
to define�α (and initialize strategies extendingα̂outcome).While wewait for tk(n)
to converge, we let �α̂outcome = �α . Once tk(n) has converged, at every stage s , let j
be the least such that g(�α̂j, s) �∈ Tkn,s . We let �αoutcome = �̂j. If this is different
from the last timeα was accessible, we initialize all strategies extendingα̂outcome.
Full strategy for being computably dominated: For α a ΦX0 -strategy, let sα be the
stage at which α was first visited after most recently being initialized. Its behavior
is as follows:
(1) Set m = 0.
(2) Let �0, . . . , �k be the elements of T above �α and of length sα +m.
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(3) Let j � k be the least with Φg(�j ,s)i,s (m)↑. If there is no such j, definefα(m) =
maxj�k{Φg(�j ,s)i,s (m)}, increment m and return to Step 4.3.

(4) Wait for a stage s when there is a �j ⊇ �j with |�j | � s and Φg(�j ,s)i,s (m)↓.
(5) Define g(�j, s + 1) = g(�j , s) and return to Step 4.3.

When α is initialized, �α̂inf is set to �α . While waiting at Step 4.3, α has out-
come fin and �α̂fin = �j . When α leaves Step 4.3, all strategies beneath α̂fin
are initialized. Whenever α returns to Step 4.3, it has outcome inf for one stage.

Construction: At stage s = 2t, we run the jump traceability strategy for JX (n) for
all n � s in increasing order, stopping if any of these strategies act.
At stage s = 2t + 1, we run all accessible nonDemuth-traceable and computable

domination strategies up to level s , in order of priority, stopping if any of these
strategies act.
After running the appropriate strategies, if some strategy defined g(�, s + 1) =

g(�, s) for some � and �, we choose appropriate values for g(�, s + 1) for all � ⊃ �
with |�| < s + 1, and we define g(�, s + 1) = g(�, s) for all � �⊇ �. If no strategy
acted, we define g(�, s + 1) = g(�, s) for all �. We also choose appropriate values
for g(�, s + 1) for all |�| = s + 1.
For every strategyα on the priority tree, if g(�α, s+1) �= g(�α, s), we initialize α.

Verification: We define the true path as usual.

Claim 4.7. There is a computable function h such that for each �, we have h(|�|) �
#{s | g(�, s) �= g(�, s + 1)}.
Proof. We construct h recursively.
The only strategies which can change g(�) without changing g(� ′) for any

|� ′| < |�| are the jump traceability strategy for JX (|�|) and computable domi-
nation strategies α with sα + m = |�|. The first can act at most (|�| + 1)! times
without g(� ′) changing for some |� ′| < |�|. There are at most |�|2 of the latter
(because at most s2 strategies have been visited by stage s), and without g(� ′)
changing for some |� ′| < |�|, each can act at most (|�|+ 1)! times before sα +m is
larger than |�|.
So

h(|�|) = h(|�| − 1) + (h(|�| − 1) + 1) · ((|�|+ 1)! + |�|2 · (|�|+ 1)!)
suffices. �
Note that this is a bound on the number of times ΓX (|�|, s) can change for

any X ∈ P. It follows by induction that every strategy along the true path is
initialized only finitely many times. Let X be the limit of �α for α along the true
path. It is now immediate from the construction that every strategy along the true
path and every jump-traceability strategy ensures its requirement is met. �

§5. Constant bounds on the traces. Weobserved above that unlike other traceabil-
ity notions, considering constant bounds in the definition of Demuth traceability
does not force the oracle to be computable. Indeed, we gave a characterization of
those oracles which areDemuth traceable with bound 1.When considering constant
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bounds, we show that every increase of a constant bound also enlarges the class of
Demuth traceable oracles with that bound.

Theorem 5.1. For every n, there is a Δ02-set A which is Demuth traceable with
bound n + 1 but not bound n.

Proof. Fix n. Let (T i , fi)i∈� be an enumeration of all partial �-c.a. traces with
bound n; here fi(m) is the bound on the number of times the index for T im can
change. Let (Γe , ge)e∈� be an enumeration of all BLR functionals; here ge(m) is
the bound on #{s | ΓXe (m, s) �= ΓXe (m, s + 1)} for any oracle X . We construct the
desiredA, a BLR〈A〉 function ΔA, and�-c.a. traces (V e)e∈� with bound n+1 using
strategies to meet the following requirements:

Re,m: If ge(m)↓, then lims ΓAe (m, s) ∈ V em.
Pi : There is a number j such that either fi(j)↑ or lims ΔA(j, s) �∈ T ij .

Meeting these requirements for every e,m, and i will suffice to prove the theorem.

Basic idea: The basic strategy for Re,m is restraint: when we see a string � ≺ As
with Γ�e (m, s) �= Γ�e (m, s+1), we restrainAs �|�| and setV em = {Γ�e (m, s+1)}. This
will happen at most ge(m) many times.
The basic strategy forPi is to choose a j and n+1 incomparable strings �0, . . . , �n ,
and define Δ�k (j, s) = k. Then by counting there is always a k � n with k �∈ T ij,s , so
at stage s we choose the least such k and define �k ≺ As . This will cause a change
in A at most fi(j) · n many times.
Of course, there is conflict between these two basic strategies, as one wishes to
restrain A and the other wishes to change A, and so we must resolve this. If ve(m)
(the bound on the number of times the index of V em can change) is defined after
fi(j) converges, then it can be defined large enough for Re,m to handle the finitely
many changes caused by Pi . If d (j) (the bound on #{s | ΔA(j, s) �= ΔA(j, s + 1)})
is defined after ge(m) converges, then it can be defined large enough to allow Pi to
switch to larger strings whenever the old ones are restrained by Re,m.
Since the trace V e need only exist if ge is total, we can assume that ve(m) is
defined at the same stage ge(m) converges. However, d must be total no matter
what, so if ge(m) converges after d (j) is defined but before fi(j) converges, neither
of the previous two cases hold. By appropriate managing of priority, we can ensure
that for each (e,m), there is at most one (i, j) for which this holds. This Pi will be
changing between n + 1 different versions of A, while V em can have size n + 1, so it
can contain one element for each of the versions. Of course, V em will need to change
versions whenever Γe(m, s) changes along one of these (n + 1) different versions
of A, but that is at most (n + 1) · ge(m) different versions of V em, and recall that n
is fixed in the construction. Thus, ve(m) can be made large enough to account for
this.

Organizing the construction: We must assign priorities dynamically. We prioritize
the Re,m-strategies based on the order the ge(m) converge—if ge(m) converges
beforege′(m′), then theRe,m-strategy has higher priority than theRe′,m′ -strategy.We
assume that exactly one of these converges at every stage. Strategies forwhich ge(m)↑
are never assigned a priority.
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At stage s , let i0 be the least such there is a j with i0 � j < s and fi0,s(j)↓, and
let j0 be the least such j for this i0. The Pi0 -strategy will work with j0 and has the
highest priority amongst the Pi -strategies at stage s . Every strategy Re,m such that
ge(m) converged by stage j0 has higher priority than Pi0 , while the rest have lower.
Let s0 be the stage at which fi0 (j0) converged. Let i1 > i0 be the least such that

there is a j with max(i1, s0, j0) � j < s and fi1,s(j)↓, and let j1 be the least for
this i1. Then i1 will work with j1 and has next the highest priority amongst the
Pi -strategies at stage s . EveryRe,m such that ge(m) converged by stage j1 has higher
priority than Pi1 , while the rest have lower.
We continue in this fashion, assigning priorities at stage s to as many Pi as

possible; those which remain will not have a priority at stage s . Note that by
construction, for every Re(m) there is at most one Pik , such that ge(m) converged
at stage s ′, fik (jk) converged at stage sk , and jk < s

′ < sk .
We then let every strategy which has a priority act in order of priority. Every

strategy will receive from the previous strategy a set of incomparable strings B
which are potential initial segments of A, with one of those strings distinguished as
the current initial segment. The highest priority strategy receives {〈〉} with 〈〉 dis-
tinguished. Each strategy is then responsible for constructing a set of incomparable
strings B ′ with every string in B ′ extending a string in B. One of the strings in B ′

must be distinguished, and it must extend the distinguished string in B.
If Pi is working with j at stage s , it will define ΔX (j, s) for every oracle X . For

every remaining j, we define ΔX (j, s) = 0 for all oracles X .

Strategy Pi : We fix some collection �0, . . . , �n of incomparable strings.
Let � be the distinguished string in the received set B (all other strings inB will be

ignored). We define Δ�̂�k (j, s) = k for every k � n, define Δ�(j, s) = 0 for every �
incomparable with all the �̂�k , and let

B ′ = {�̂�k | k � n}.
Let k be the least such that k �∈ T ij,s . We distinguish �̂�k as the current initial
segment of A.

Strategy for Re,m: Let B be the set received from the previous strategy. For
every � ∈ B, we shall search for a � � � that maximizes

#{s ′ | Γ�e (m, s ′) �= Γ�e (m, s ′ + 1)}.
Let �� be least such under some ordering. Then we define

B ′ = {�� | � ∈ B}
and

V em,s = {Γ��e (m, s) | � ∈ B}.
We distinguish in B ′ whichever �� extends the distinguished element of B.

Verification: By induction, every Pi -strategy for which fi is total will eventu-
ally settle on a j and cease changing priority. By induction again, every strategy
only redefines its B ′ or distinguished element finitely many times. Thus, we can
define �(
, s) to be the distinguished element of the strategy with priority 
 at
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stage s , and we know that �(
) = lims �(
, s) exists. Further, �(
, s) ⊂ �(
 + 1, s)
by construction, and so A =

⋃

 �(
) exists and is Δ

0
2.

Claim 5.2. The Re,m-strategy ensures its requirement.

Proof. Let 
 be the eventual priority of theRe,m-strategy, and let s be the last stage
at which this strategy acts. Then Γ�(
)e (m, s) ∈ V em by construction, and �(
) ≺ A.
If there is some � � �(
) and some stage t > s with Γ�(
)e (m, s) �= Γ�e (m, t), this
would contradict the action of Re,m. Thus, lims ΓAe (m, s) ∈ V em.
It remains only to show that there is a bound on the number of changes to V em
which is uniformly computable in m. Let s0 be the stage at which ge(m) converged.
There are only three ways in which the Re,m-strategy’s set B can be changed after
stage s0: a higher priority Re′ ,m′ can act; a Pi -strategy working with a j < s0 such
that fi(j) converged before stage s0 can act; and a Pi -strategy can begin working
with a j < s0. Note that by construction, at any given stage there can be at most
one Pi -strategy working with a j < s0 such that fi(j) converged after stage s0, and
the action of this strategy does not affect Re,m’s set B.
If Re′ ,m′ is of higher priority than Re,m, ge′(m′) converged before stage s0. Re′ ,m′

will act at most (n + 1) · ge′(m′) many times between stages when some higher
priority strategy acts.
If Pi is working with a j < s0, and fi(j) converged before s0, Pi will act at most
(n + 1) · fi(j) many times between stages when some higher priority strategy acts.
If Pi begins working with a j < s0 at some stage after s0, then necessarily
i < s0. Further, if later a different strategy Pi′ begins working with a j′ < s0, then
necessarily i ′ < i or i ′ = i and j′ < j. Thus, this can occur at most s20 many times
after stage s0.
Between stages when the Re,m-strategy’s B changes, the strategy will act at most
(n + 1) · ge(m) many times. Thus, an upper bound for the number of times V em
changes is[∏

(n + 1) · ge′(m′)
]
·
[∏
(n + 1) · fi(j)

]
· s20 · (n + 1) · ge(m),

where the first product ranges over those e′, m′ with ge′(m′) converged before
stage s0, and the second product ranges over those i, j with fi(j) converged before
stage s0. Thus, the above expression can be computed at stage s0. �
Claim 5.3. ΔA is a BLR〈A〉 function.
Proof. Fix j. By construction, there are only three situations in which ΔA(j, s) �=
ΔA(j, s + 1): j is claimed by some Pi at stage s but not at stage s1; j is claimed by
some Pi at stage s + 1 but not at stage s ; and j is claimed by some Pi at stages s
and s +1, and some higher priority strategy acts at stage s +1. Notably, ΔA(j, s) is
not affected by T ij,s .
By the manner in which we assign priorities, if Pi claims j, then i � j. If later Pi
stops claiming j, then Pi will never again claim j. If later some P′

i claims j, then
i ′ < i . So the first and second cases can only occur (j + 1) many times each.
If some Pi has claimed j at stage s + 1 and Re,m is higher priority than Pi ,
then ge(m) converged by stage j. If some Pi′ is higher priority and is working with
some j′, then j′ < j andfi′(j′) converged by stage j. By the sameargument asin the
previous claim, we can bound the number of times a higher priority strategy acts by

https://doi.org/10.1017/jsl.2013.21 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2013.21


CHARACTERIZINGLOWNESS FOR DEMUTHRANDOMNESS 555[∏
(n + 1) · ge(m)

]
·
[∏
(n + 1) · fi′(j′)

]
,

where the first product ranges over those e,m such that ge(m) converged by stage j,
and the second product ranges over those i ′, j′ such that fi′(j′) converged by
stage j. So

2 · (j + 1) +
[∏
(n + 1) · ge(m)

]
·
[∏
(n + 1) · fi′(j′)

]
serves as a bound for #{s | ΔA(j, s) �= ΔA(j, s + 1)}. �
Claim 5.4. The Pi -strategy ensures its requirement.

Proof. If fi is not total, this is trivial. Failing that, let j be the value that Pi
eventually works with. Then by counting, there is a k � n such that k �∈ T ij . By
construction, lims ΔA(j, s) is the least such k. �
This completes the proof. �

§6. Lowness for weak Demuth randomness. The Solovay condition for being cap-
tured by a test 〈Un〉, namely being in infinitely many components Un, is the natural
one to use when the tests are not nested. If the test is nested, then the captur-
ing condition is equivalent to being in all components. Nevertheless, strengthening
the notion of capturing even when the tests are not nested gives rise to a weaker
notion of randomness which turns out to be useful. This definition also goes back
to Demuth; see [29] for more background.

Definition 6.1. A set Z weakly passes a test 〈Un〉 if Z �∈ ⋂n Un (equivalently,
the test strongly captures the set Z if Z ∈ Un for all n). A set Z is weakly Demuth
random if it weakly passes every Demuth test.

Because the universalMartin-Löf test is nested, and is a Demuth test, we see that
weak Demuth randomness is an intermediate notion between Demuth randomness
and Martin-Löf randomness:

Demuth random→ weak Demuth random→ML-random.
In [28], it is shown that a weakly Demuth random set is never superhigh. On the

other hand, they build a high Δ02 set that is weaklyDemuth random (while aDemuth
random is always generalized low1). Here, we show that similar to the situation vis-
a-vis computable randomness, computability itself can be characterized as lowness
for weak Demuth randomess.

Theorem 6.2. A set is low for weak Demuth randomness if and only if it is
computable.

Proof. One direction is immediate. The interesting direction is showing that
lowness for weak Demuth randomness implies computability. The way we do this
is by showing that lowness for weak Demuth randomness implies both K-triviality
and being computably dominated. We then obtain the desired result by using the
facts that every K-trivial set is Δ02, and that the only computably dominated Δ

0
2 sets

are the computable sets. Thus, the theorem is proved once we obtain Propositions
6.3 and 6.4.

Proposition 6.3. Every set which is low for weak Demuth randomness isK-trivial.
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This follows immediately from a result ofDowney et al. [16, Theorem 4.2]: if every
weakly 2-random is ML-random in an oracle A, then A is K-trivial. Nonetheless,
we give a direct proof based on a different literature result [6], in order to adapt the
proposition to the case of partial relativization.

Proof. Bienvenu and Miller [6] introduced a partial relativization of Martin-
Löf randomness. For an oracle V , a ML〈V 〉 test is a sequence [Wg(n)]≺n∈� , where
g �T V , such that �[Wg(n)]≺ � 2−n. The difference from the full relativization of
Martin-Löf randomness is that the test components must be Σ01, not merely Σ

0
1(V ).

As the index function for this test is not necessarily computable, the union of a tail
of such a test may not be Σ01, and so weakly passing such tests is not equivalent to
Solovay passing them. Nonetheless, a set Z is ML〈V 〉-random if it weakly passes
every ML〈V 〉 test 〈Un〉, that is, if Z �∈ ⋂n[Wg(n)]≺ for each such test.
Bienvenu andMiller showed the following for any pair of oraclesV andA: if each
ML〈V 〉-random set is ML-random relative toA, thenA isK-trivial. Now letting A
be a set which is low for weak Demuth randomness, the proposition follows from
their result using V = ∅′, once we notice that every set which is ML〈∅′〉 is weakly
Demuth random (in fact a set is ML〈∅′〉 if and only it is weakly-2-random), and that
in turn every set which is weakly Demuth random relative to A is also Martin-Löf
random relative to A. The former follows from the fact that every �-c.a. function
is computable in ∅′, and the latter is a relativization to A of the fact, noticed above,
that every weakly Demuth random set is Martin-Löf random. �
We remark that the relativization of the implication from weak Demuth ran-
domness to Martin-Löf randomness also holds if we only partially relativize weak
Demuth randomness. In other words, the proof of Proposition 6.3 shows that if A
is low for weak DemuthBLR randomness, then A is K-trivial. Although we do not
include a proof, this implication reverses; if A is K-trivial, then A is low for weak
DemuthBLR randomness.

The next proposition, which completes the proof of the theorem, is an analog of a
result of Downey’s andNg’s [15], which wementioned and used above, that lowness
for Demuth randomness implies being computably dominated. This proposition
uses the power of the full relativization of weak Demuth randomness.

Proposition 6.4. Every set which is low for weak Demuth randomness is
computably dominated.

Proof. Let A be a set computing a function f which is not dominated by any
computable function. We construct a weakly Demuth random set Z which is not
weakly Demuth random relative to A.

We shall construct a Demuth test 〈Un〉n∈� relative to A and a weakly Demuth
random set Z such that Z ∈ ⋂n Un (so Z is not weakly Demuth random relative
to A). Let (

〈Vkn 〉n∈�, gk)k∈� be an enumeration of all partial computable Demuth
tests, where gk(n) is the bound on the number of times the version of Vkn can change.
We need to ensure the following requirements hold:

Nk : if gk is total, there is some n with Z �∈ Vkn .
Wedonot directly create a strategy for everyNk requirement. Instead,we associate
a strategy with every Un. If this strategy sees that gk(n + 2)↓< f(n), it will work
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to meet Nk . It does this by instructing all strategies associated with U
 for 
 > n to
construct their U
 avoiding Vkn+2.
To implement this, the strategy associated with Un defines a set Bn+1 which the

strategy associated with Un+1 must work to avoid. We cannot hope to build Un+1
so that it avoids Bn+1 in its entirety, so instead we settle for only having small
overlap with it. The strategy then passes the overlap to the next strategy as part
of Bn+2. In order to keep small overlap with Bn+1, Un+1 may need to change as
many as 4gk(n + 2) times. Thus we can use f(n) to compute an upper bound on
the number of changes.
If gk is total, we argue that Z weakly passes the Demuth test

〈〈
V kn
〉
n∈�, gk

〉
as follows. By assumption, there is some n satisfying gk(n + 2) < f(n), and thus
the strategy associated with Un will work to meet Nk . Our set Z will be a set in⋂
n Un\Bn. Thus, since Z �∈ Bn+1, Z weakly passes the Demuth test.

Strategy for Un: The strategy for Un only acts at stages s � n. It will keep a
value ks (n), which may be undefined.
At stage s , if s = n or Un−1,s �= Un−1,s−1, we define Un,s to be some clopen set

in Un−1,s disjoint from Bn,s and of size 2−n.
Otherwise, if �(Un,s ∩ Bn,s) � 2−(n+2), we define Un,s = Un,s−1. If �(Un,s ∩ Bn,s) >

2−(n+2), we define Un,s to be some clopen set in Un−1,s disjoint from Bn,s and of
size 2−n.
Note that since �(Un−1,s) = 2−(n−1) and �(Bn,s) � 2−n, there is always sufficient

measure to choose Un,s as described.
Finally, if there is some k < n such that gk(n + 2)↓< f(n), and for every m < n,

k �= ks(m), we choose the least such k and set ks (n) = k and Bn+1,s = Un,s ∩ (Bn,s ∪
Vkn+2). Otherwise, we leave ks(n) undefined and set Bn+1,s = Un,s ∩ Bn,s .
If ks(n) is undefined, clearly �(Bn+1,s) � 2−(n+1) by construction. Otherwise,

Bn+1,s ⊆ (Un−1,s ∩Bn−1,s )∪Vkn+2, and thus �(Bn+1,s) � 2−(n+2)+2−(n+2) = 2−(n+1).

Construction: At every stage s , we begin by setting B0,s = ∅. Then, for n � s in
increasing order, we run the strategy for Un.

Verification: We proceed with a sequence of claims.
Claim 6.5. The set {s | ks (n) �= ks+1(n)} has size at most 4n.
Proof. By construction, ks(n) �= ks+1(n) implies that either some gk(n + 2)↓ at

stage s + 1 with k < n or some ks(m) �= ks+1(m) with m < n. The former can
clearly happen at most n times, while by induction the latter can happen at most 4m

for each m < n. Thus, we have the bound

n +
∑
m<n

4m � 4n.

�
Claim 6.6. If gk is total, then there is some n such that lims ks (n) = k. Hence, the

requirement Nk is met.
Proof. Since the function n �→ gk(n + 2) is total computable, by assumption

there are infinitely many n such that gk(n + 2) < f(n). Let n0, . . . , nk be the first
k+1 such n. Let s0 be a stage such that gk(ni +2) has converged for every i � k. By
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construction, for every s � s0, ks (ni) = k for some i � k. By pigeon hole, there is
some i such that ks (ni) = k for infinitely many s . But by the previous claim, ks (ni)
can only change finitely many times. Thus, n = ni is as desired. �
Claim 6.7. There is a total A-computable function h such that #{s | Un,s �=

Un,s+1} � h(n).
Proof. We build this bound by recursion. Since B0,s = ∅ for all s , we can
take h(0) = 0.
For n > 0, Bn,s is a union of finitely many test elements Vkini ,s , with ki = ks(ni − 2)
and ni − 2 < n. Each Vkini can change versions at most gki (ni) many times, and by
construction gki (ni) < f(ni − 2). Further, each ks (ni − 2) can change at most 4ni−2
many times.
If none of the ks(m) with m < n have changed between stages s0 and s1,
and none of the Vkini have changed their versions between stages s0 and s1, andUn−1,s = Un−1,s+1 for all s0 � s < s1, then since �(Bn,s) � 2−n and Un is changed
whenever �(Un,s ∩ Bn,s) > 2−(n+2), Un will have to be changed at most 3 times
between stages s0 and s1. Thus, we can bound the number of changes by

4 · (h(n − 1) + 1) ·
∑
m<n

4mf(m).

This is clearly A-computable. �
Claim 6.8. The class Bn = lim sups Bn,s is a Σ01-class.
Proof. Let s0 be a stage such that all ks (m) have converged form < n by stage s0,
and for everym < n with k = ks0 (m) defined,Vkm+2 will never again change versions.
Then lim sups Bn,s is simply the finite union of the Σ01-classes Vkm+2. �
Claim 6.9. Let Un = lims Un,s . For m < n, (Um − Bm) ⊃ (Un − Bn).
Proof. By construction, Um ⊃ Un and Bm ∩ Un ⊆ Bn. �
By compactness,

⋂
n(Un − Bn) is nonempty. Let Z be a point in the intersection.

Clearly Z is not A-weakly Demuth random, since it fails the test 〈Un〉n∈�.
Claim 6.10. Z is weakly Demuth random.
Proof. For any weak Demuth test

〈Vkn 〉n∈� , let n be such that k = lims ks(n).
Then Vkn+2 ⊆ Bn+1 by construction, and so Z �∈ Vkn+2. Thus, Z weakly passes this
Demuth test. �
Thus, Z is the set we desire, completing the proof of the proposition and of the
theorem. �

�
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