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The hydrodynamic start-up problem is one of the most crucial issues in laser-
driven symmetrical implosion. The target-surface roughness and initial imprint
by nonuniform laser irradiation result in Rayleigh–Taylor instability in the
acceleration and deceleration phase. To estimate the tolerance of the target-
surface roughness, the temporal behaviour of corrugated ablation surface and
rippled shock-wave propagation are investigated using a perturbation analysis
of the fluid equation, which is solved under the boundary model of a fire-
polished ablation surface. The results show good agreement with two-
dimensional hydrodynamic simulation and experimental results [T. Endo et al.,
Phys. Rev. Lett. 74, 3608 (1995)].

1. Introduction

In laser-driven symmetrical implosion, the target-surface roughness and
nonuniform laser irradiation cause hydrodynamic instabilities : Richtmyer–
Meshkov instability (Richtmyer 1960; Meshkov 1969), Rayleigh–Taylor (RT)
instability (Chandrasekhar 1961), and so forth. These instabilities degrade the
symmetrical performance of the imploding shell. Namely, RT instability in the
acceleration phase and the following feedthrough result in RT in the
deceleration phase, which implies that fuel-pusher mixing causes a significant
reduction in the spark temperature. Therefore it is necessary to estimate the
tolerance of the roughness of the target surface and the nonuniformity of the
irradiating laser beam. When a laser beam illuminates a corrugated target
surface uniformly, a rippled strong shock wave, whose front shape is the same
as the initial corrugated target surface, is launched immediately, and the strong
shock-wave front oscillates and propagates, passing through the target. The
oscillation period is approximately the perturbation wavelength. Although the
propagation of a corrugated shock wave and the following RM instabilities
appear in many aspects of laser-driven implosion, little work has been done so
far to study the behaviour of the nonuniformly compressed fluid.

The first analysis of corrugated shock-wave propagation was performed by
Richtmyer (1960). Briscoe and Kovitz (1968) explained that the shock-wave
shape is described by Bessel functions. Munro (1989) investigated rippled-
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shock propagation analytically, and the analytical solutions serve as useful test
problems for the complex hydrodynamic code for inertial fusion. Ishizaki et al.
(1996) studied the instability of a contact surface driven by a rippled shock
wave. Rutkevich et al. (1996) found that the spontaneous emission of sound
waves from strong shocks in metals results in corrugation of a planar shock
front. Recently, analytical models have been obtained for the RM instability in
the linear regime (Wouchuk and Nishihara 1996, 1997) and the propagation of
the rippled shock wave driven by nonuniform laser ablation (Ishizaki and
Nishihara 1997). Experimental results on the growth of the rippled shock and
the areal mass density perturbation have been presented by Endo et al. (1995).

In this paper, the Euler equation of an ideal fluid is solved by linear analysis
with given boundary conditions at the ablation front, where we take account of
the fire-polishing effects due to lateral heat conduction. The results are
compared with the numerical-simulation results. We have used the two-
dimensional fluid particle-in-cell (PIC) simulation code (IZANAMI) (Nishiguchi
and Yabe 1983), which includes the various physical processes: hot electron
transport, radiation and radiative transfer, laser absorption, and so on.

This paper is organized as follows. In Sec. 2 the basic equations are described,
and boundary conditions on both the ablation front and the shock front are
specified. Note that this linear analysis is characterized by the boundary
condition on the ablation front. Analytical results are given in Sec. 3. The
dependences of the rippled shock-front oscillation on a free parameter α and the
specific-heat ratio γ are discussed. The physical meaning of the parameter α will
be introduced later. The behaviour of the ablation front is also presented.
Section 4 is devoted to a comparison between the analytical results and the
simulation results using the IZANAMI code. As an extension of this work, the
analytical results are also compared with the experimental results. Finally, Sec.
5 contains concluding remarks.

2. Linear theoretical analysis

Let us consider the case when a rippled shock is driven by a nonuniform piston
and propagates in a uniform solid target. As shown in Fig. 1, the piston and the
initial shock front have a sinusoidal distortion of wavelength λ. The
perturbation amplitude is assumed to be small, so that the fluid equations can
be linearized (Munro 1989). For the boundary conditions on the nonuniform
piston, namely the ablation front, we assume that the pressure perturbation has
the opposite phase to the perturbation amplitude on the ablation front. Other
boundary conditions at the shock front are given by the jump conditions across
the shock front. Using the fourth-order Runge–Kutta method, we have solved
the linearized fluid equations with the above-mentioned boundary conditions in
the moving frame of the ablation front.

2.1. Basic equations

We begin with the Euler equation of an ideal fluid. By Fourier-decomposing for
the lateral component of the fluid perturbation, for example P(x, y, t)¯p(x, t)
exp(iky) and eliminating the velocity and density fluctuations in the linearized
Euler equation, we arrive straightforwardly at the sound-wave equation
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Figure 1. Schematic view of the whole analytical and simulation system. Note that the
physical meaning of the free parameter α is that it represents the phenomenological fire-
polishing effects on that ablation front (see text).

propagating along the x direction in the form of the Klein–Gordon equation as
follows:

¦#p(x, t)

¦t#
¯ c#

¦#p(x, t)

¦x#

®κ#c#p(x, t), (1)

where κ¯ 2π}λ is the wavenumber in the y direction, p(x, t) is the pressure
perturbation and c is the sound speed. The shock front propagates along the x
direction. This equation is solved in the shock-compression region under the
boundary conditions given below.

2.2. Boundary conditions on the ablation front

The condition that there is no mass ablation of first order on the ablation front
yields da}dt¯u, where a(t)3 ξ(0, t) is the perturbed amplitude of the ablation
front x¯ 0, and u is the perturbed velocity of the fluid on the ablation front.
The pressure perturbation at the ablation front, p

a
(t)3p(0, t), and the

ablation-front ripple amplitude a are related by p
a
}p

!
¯®α(a}λ), where p

!
is

the unperturbed pressure and α" 0 is a free parameter. This relation means
that the phase of the pressure perturbation is opposite to that of the ablation-
front ripple. The physical mechanism of this relation can be explained as
follows. As shown in Fig. 1, the cut-off surface where the laser deposits the
energy is approximately flat even if the ablation front is rippled, since thermal
conduction and hydrodynamic motion smooth out the nonuniformity of the
ablation plasma. As can be expected from Fig. 1, the tops of the ripples are
closer to the cut-off surface than the bottoms of the ripples. This means that the
heat flux at the tops of the ripples is higher than that at the bottoms. Therefore
the pressure at the tops of the spikes on the ablation front is higher than that
at the bottoms of the bubbles. This will suppress the growth of perturbations
on the ablation front. Using the above relations, the equation of motion can be
written in the form

¦#p
a

¦t#
¯

αp
!

ρ
"
λ 9

¦p

¦x:
x=!

, (2)
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where ρ
"

is the compressed fluid density behind the shock front. Equation (2)
is consistently used as the boundary condition for the ablation front. Note here
that the ablation pressure in the stationary ablation is proportional to q#/$ for
the heat flux q at the ablation front and the fluctuation in q, δq, due to the
surface ripple is proportional to a}d. Therefore we assume that the pressure
perturbation is given by αa}λ.

2.3. Boundary conditions on the shock front

From the shock Hugoniot relation of the first order, the amplitude of the
ripple of the shock front a

s
(t)¯ ξ(v

s
t, t) is given by

da
s
(t)

dt
¯

1

2

1

ρ
"
®ρ

!

01v
s

®
v
s

c#1p(v
s
t, t), (3)

where ρ
!
is the fluid density ahead of the shock front and v

s
is the shock velocity

in the flame moving with the ablation front. In addition to (3), we assume that
there is no perturbation ahead of the shock front and that the tangential
velocity on both sides of the shock is continuous, to obtain

1

203v
s


c#

v
s

1 dp(v
s
t, t)

dt
¯ (v#

s
®c#) 9¦p

¦x:
x=vst

κ#c#u
!
ρ
"
v
s
a
s
(t), (4)

where u
!
is the velocity of the ablation front in the laboratory frame. Note that

(3) and (4) are identical to those for the isentropic case, (36) and (42)
respectively in Richtmyer (1960). Now we can solve (1) by using the boundary
conditions (2)–(4).

3. Analytical results

The results obtained by solving (1) are shown in Figs 2 and 3. Henceforth unless
otherwise indicated, the parameters α¯ 2, γ¯ &

$
and md ¯ 1.7¬10& g cm# s−",

ad (t¯ 0)¯®1.6¬10& cm s−" are fixed, unless where γ is the specific-heat ratio
and md is the zeroth-order mass ablation rate per unit area and unit time. Note
that mass-ablation effects could be considered by replacing the ablation-front
velocity u

!
by u

!
¯u

!
md }ρ

"
. The ablation effects on ripple-shock propagation

are insignificant, since the condition u
!
(md }ρ

"
, is satisfied for typical target

parameters and laser conditions. The analytical results show that the oscillation
period of the shock front is only a few percent shorter than that obtained in the
case of no mass ablation, because the bounce-back distance of a sound wave in
the compressed region becomes slightly shorter. The initial amplitude of the
rippled shock, a

!
¯ ξ(0, 0), is 5.0 µm. The wavelength of the corrugated target

surface λ¯ 100 µm. Figures 2(a) and (b) indicate the dependences of the
rippled shock growth on α and γ respectively. As mentioned above, the
decaying oscillation of the shock-front ripple is shown in Fig. 2. The parameter
α defines the ratio of the perturbed pressure to the ablation-front ripple
amplitude, and is assumed to be constant in time. If we assume that α¯ 2 then
p
a
}p

!
becomes 0.1 when a}λ¯ 0.5. The physical meaning will be clear if we

define the boundary condition on the ablation front as p
a
}p

!
¯®α«a}d by

introducing the distance d between the ablation front and the cut-off front
(stand-off distance). For steady-state ablation, the heat-flux perturbation at
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Figure 2. Amplitude of the shock-front ripple normalized by the initial amplitude versus the
shock-wave propagation distance x. The temporal behaviour of the shock-front ripple
depends on (a) the smoothing parameter α and (b) the specific-heat ratio γ.

the front, δq}q
!
E®(

&
a}d

!
when the stand-off distance d is normalized by a.

Since the ablation pressure is proportional to q#/$, p
a
}p

!
¯®"%

"&
a}d

!
. That is, the

parameter α« will be of order unity in general, and α is given by α«λ}d. Usually,
d is time-dependent in the simulation, and varies from 50 µm to 200 µm. In
the steady-state theory, d is roughly scaled by dE 360(λ

L
}0.53 µm)"%/$

(I
L
}10"% W cm#)%/$ in µm, where λ

L
and I

L
are the laser wavelength and intensity

respectively (Manheimer et al. 1982). The stand-off distance d, whose scaling law
is derived from simple modelling of convective fluid and electron transport,
tends to be short in the full hydrodynamic simulations. The parameter α«,
which includes all the other effects apart from the time–space scale universality
of the Euler fluid (e.g. thermal smoothing due to coronal clouds, nonlocal
transport of electron and radiation, and so on), should be determined by
subsequent use of this analytical model.

As shown in Fig. 2(a), increasing the parameter α increases the value of p
a
}p

!
,

so the oscillation period of the rippled shock becomes shorter and the maximum
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Figure 3. The α dependence of the amplitude of the ablation-front ripple normalized by
the initial amplitude. The horizontal axis is the same as in Fig. 2.

amplitude of the shock-front ripple becomes larger, and the perturbation
amplitude tends towards overshoot. The γ dependences are shown in Fig. 2(b).
Larger γ implies a more-rigid material, and so makes the sound speed higher,
and the oscillation period of the rippled shock becomes shorter. It should be
noted that the polytropic index could also include a deviation from adiabatic
compression. Figure 3 shows the α dependence of the temporal behaviour of the
ablation-front ripple. It is found that the ablation-front ripple amplitude is
almost constant in time. As expected, larger α suppresses the growth of the
ablation front ripple more effectively.

4. Comparison of analytical results with simulation results

The rippled shock-wave problem has also been simulated using the two-
dimensional hydrodynamic PIC code (IZANAMI). We have performed the
simulation on the propagation of a rippled shock launched by uniform laser
irradiation of a corrugated target surface. The initial target parameters and
laser conditions for numerical simulations are as follows: the peak laser
intensity is 10"% W cm−#, with a rise time of 150 ps; the laser wavelength is
0.53 µm; the initial amplitude of the ablation-front ripple a

!
¯ 5.0 or 3.0 µm;

the wavelength of the corrugated shockwave surface λ¯ 100 or 50 µm; the
target thickness is about 110 µm. We choose γ¯ &

$
in this simulation. Note that

d changes from 50 µm to 200 µm in the simulation; that is, α changes from 2 to
0.5 for α«¯ 1 and λ¯ 100 µm. We compare the simulation results with those of
the linear analysis in the case of α¯ 2. Figures 4(a) and (b) show the temporal
behaviours of the amplitudes of the shock-front and ablation-front ripples
respectively. The behaviour of the rippled shock in the simulation is very
similar to that of the linear analysis, as shown in Fig. 4(a). The period and the
maximum amplitude of the ripple are almost the same in both cases. The fact
that there is a possibility of a short period for a large polytrope index γ as shown
in Fig. 2(b) might lead one to think that the difference between the analytical
and simulation results in Fig. 4(a) could be attributed to the incorrect
prediction of dissipative effects. Meanwhile, Fig. 4(b) shows that the simulation
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Figure 4. The perturbed amplitudes of the shock front (a) and the ablation front (b). The
circles (a}λ¯ 0.05) and squares (a}λ¯ 0.06) show the simulation results ; the curve shows
the vertical result. The horizontal and vertical axes are the same as in Fig. 2.
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Figure 5. Experimental (circles) and theoretical (curve) results for the perturbed areal
mass density. The horizontal and vertical axes are the same as in Fig. 2.
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result for the ablation-front ripple agrees well with that of the linear analysis.
The restoring-like motion of the ablation front should be noted. Finally, we give
a comparison of analytical results with experimental results (Endo et al. 1995)
related to the temporal evolution of the perturbed areal mass density, which is
done by using the relation ∆(ρl)(t)¯∆ρ

"
(t) v

s
tρ

"
∆l(t). It can be seen from Fig.

5 that the analytical curve agrees well with the experimental data points.

5. Concluding remarks

We have investigated the decaying oscillations of the shock-front ripple and
the ripple dynamics on the ablation front by linear analysis and simulations.
In the linear analysis, the behaviour of the rippled shock is very sensitive
to the specific-heat ratio and to the ablation-pressure perturbation on the
ablation-front ripple. In the case of α¯ 2 and γ¯ &

$
for λ¯ 100 µm, the

analytical results agree very well with the simulation results. In particular,
we have found that growth of the ablation-front ripple does not occur in either
the linear analysis or the simulation. This is because the ripple amplitude on
the ablation front is suppressed by the fire-polishing effect of the ablation
surface. The results have been compared with those of recent experiments
(Endo et al. 1995). Qualitatively, our analysis explains well the experimental
results, as shown in Fig. 5. To sum up, the simple boundary model (2) for
the ablation surface can reproduce well the simulation and experimental results
for the ablation-front ripple.

Future work will be devoted to taking account of fluid viscosity and also to
the analysis of a radiation fluid coupled with equation-of-state effects.
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