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This paper investigates the origin of flow-induced instabilities and their sensitivities in a
flow over a rotationally flexible circular cylinder with a rigid splitter plate. A linear stability
and sensitivity problem is formulated in the Eulerian frame by considering the geometric
nonlinearity arising from the rotational motion of the cylinder which is not present in
the stationary or purely translating stability methodology. This nonlinearity needs careful
and consistent treatment in the linearised problem particularly when considering the
Eulerian frame or reference adopted in this study that is not so widely considered. Two
types of instabilities arising from the fluid–structure interaction are found. The first type
of instabilities is the stationary symmetry breaking mode, which was well reported in
previous studies. This instability exhibits a strong correlation with the length of the
recirculation zone. A detailed analysis of the instability mode and its sensitivity reveals the
importance of the flow near the tip region of the plate for the generation and control of this
instability mode. The second type is an oscillatory torsional flapping mode, which has not
been well reported. This instability typically emerges when the length of the splitter plate
is sufficiently long. Unlike the symmetry breaking mode, it is not so closely correlated
with the length of the recirculation zone. The sensitivity analysis however also reveals the
crucial role played by the flow near the tip region in this instability. Finally, it is found
that many physical features of this instability are reminiscent of those of the flapping (or
flutter instability) observed in a flow over a flexible plate or a flag, suggesting that these
instabilities share the same physical origin.
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1. Introduction

Fluid–structure interaction (FSI) problems are of paramount importance in many
engineering applications particularly when designing lighter and more robust structures. In
particular, the FSI problem in bluff body wakes has been one of the widely studied topics,
as it is crucial for the design of many engineering structures, such as bridges, buildings,
oil platforms and so on. The flow, which often involves vortex shedding in its wake,
causes significant vibration, noise and drag of the given structure through instabilities
in fluid and solid motions. Therefore, the understanding of the onset of such instabilities
and the resulting self-sustaining drifts/oscillations arising in the FSI problems provides
important physical insight into the development of simplified models and control strategies
to mitigate the undesirable motions.

Several FSI problems of interest have previously been studied by employing the
approaches developed in the context of hydrodynamic stability. Cossu & Morino (2000),
perhaps one of the earliest works in this field, performed a global linear stability analysis
for a spring-mounted circular cylinder allowing for cross-flow oscillations. A similar FSI
problem, including the in-line oscillation case, was studied by Meliga & Chomaz (2014)
by coupling the fluid and solid motions via a weakly nonlinear analysis. A linear stability
analysis and a nonlinear simulation were also recently performed in Dolci & Carmo
(2018) for a spring-mounted circular cylinder with transverse oscillation. More recently,
Negi, Hanifi & Henningson (2019) investigated a more general global stability analysis
framework for FSI problems by employing the arbitrary Lagrangian–Eulerian (ALE)
framework (Fernandez & Tallec 2002), while a more detailed and generalized application
of the ALE framework can be found in Pfister (2019) and Pfister & Marquet (2020) where
nonlinear numerical simulation and linear stability analysis were also performed for a flow
over a circular cylinder with a flexible appendage.

Of particular interest to the present study are flow-induced instabilities, which have
previously been observed in a circular cylinder with a rigid or flexible splitter plate
attached at the base (Assi, Bearman & Kitney 2009; Assi, Franco & Vestri 2014b). The
cylinder wake is one of the simplest model problems widely employed to study the onset
of vortex shedding, the related FSI problem and their control. It is also directly relevant to
industrial applications for the tall building design and the offshore energy harvesting (e.g.
drilling rig), to which the addition of a passive appendage may be useful to suppress the
vortex shedding. In the case of a rigid bluff body, many previous studies have demonstrated
that placing such a device suppresses vortex shedding in the wake of the bluff body
(Roshko 1954; Kwon & Choi 1996; Anderson & Szewczyk 1997; Ozono 1999; Choi, Jeon
& Kim 2008). When the appendage is allowed to rotate or deform by imposing a relevant
structural dynamics (e.g. coupling through a spring-mass-damper system, elastic motion of
the appendage, etc), the cylinder exhibits a flow-induced ‘static’ instability which breaks
the symmetry of the flow posed by the cylinder geometry (Cimbala & Garg 1991; Assi
et al. 2010; Bagheri, Mazzino & Bottaro 2012; Assi, Bearman & Tognarelli 2014a; Lacis
et al. 2014; Pfister & Marquet 2020). It has been proposed that this instability provides
an aiding mechanism for flight motion of insects and locomotion of swimming animals
(Park et al. 2010; Bagheri et al. 2012; Lacis et al. 2014). Further to this, in general, it is
also possible to have a FSI-induced ‘dynamic’ or ‘oscillatory’ instability of the body. In
relation to this, Pfister & Marquet (2020) recently reported that such an instability appears
in a flow over a cylinder attached with a ‘flexible’ plate.

The objective of the present study is to explore the physical origin and the sensitivity
of the instabilities discussed above. For this purpose, we consider a circular cylinder
with a rigid appendage, as is sketched in figure 1. The rigid body is only allowed to
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Figure 1. A schematic diagram of flow and structure configuration. Here, u∞(= (U∞, 0)) is the free-stream
velocity, θ the counter-clockwise rotation angle of the cylinder, kθ rotational stiffness and cθ rotational damping
coefficient.

rotate by coupling with a ‘torsional’ spring-mass-damper system in the x–y plane, and
any three-dimensional rigid body motion and/or deformation are not considered (e.g.
streamwise/wall-normal rotation of the cylinder). A global linear instability analysis
(Huerre & Monkewitz 1990; Chomaz 2005; Theofilis 2011) is first formulated with
introduction of a small perturbation, which allows us to utilise the framework of a
stationary cylinder (i.e. the Eulerian framework), while being carefully validated with
full nonlinear simulation (Serson, Meneghini & Sherwin 2016). Three different types of
instabilities (i.e. vortex shedding mode, stationary symmetry breaking mode, oscillatory
FSI mode) are found in the context of the global linear instability, and the physical
mechanisms on their origin are analysed in detail. In particular, our analysis reveals that
the oscillatory FSI instability shares the same origin with the ‘flapping’ mode previously
observed in flags and/or flexible plates (Shelley & Zhang 2011). The adjoint sensitivity
analysis (Giannetti & Luchini 2007; Luchini & Bottaro 2014) is also performed for the
first time for the FSI instabilities. Importantly, it is found that the flow around the tip of the
appendage plays a crucial role in the generation of the stationary symmetry breaking and
the dynamic flapping instabilities, opening a possibility of controlling them with simple
redesign of the tip shape.

This paper is organised as follows. In § 2 the global stability and sensitivity analyses
are formulated, and the numerical methods are introduced. The formulated analyses are
subsequently applied to the flow-induced instabilities, and the discussion on the role of the
flow is given in § 3. This paper concludes in § 4 with some remarks.

2. Problem formulation

We consider a two-dimensional flow over a circular cylinder with a rigid splitter plate,
as sketched in figure 1. The free-stream velocity in the streamwise direction is given by
u∞(= (U∞, 0)), and the density and the kinematic viscosity of the fluid are by ρ and ν,
respectively. The diameter of the cylinder is set to be D, and the length of the splitter plate
from the base is given by L with the thickness l. The downstream edge of the splitter plate
is also set to be rounded with the radius of l/2. The cylinder is allowed to rotate about
its centre, and the rotational motion is coupled through a torsional spring-mass-damper
system. The rotational stiffness, the damping coefficient and the moment of inertia are
given by k∗

θ , c∗
θ and I∗

θ , respectively.

2.1. Equations of motion
The equations of motion and all the related variables (including k∗

θ , c∗
θ and I∗

θ ) are
made dimensionless with U∞ and D. The dimensionless spatial location is denoted by
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x = (x, y), where x and y are the streamwise and transverse coordinates, and the velocity
is given by u = (u, v) with its streamwise and transverse components u and v. The fluid
domain is denoted by Ω , the inner boundary of which is given by the cylinder surface. The
centre of the cylinder is set to be located at (x, y) = (0, 0). When the cylinder is set not to
rotate (i.e. reference position), the surface location of the cylinder forms a set defined by

∂Ωs = {(x, y) | (x, y) = (r(s) cos(s), r(s) sin(s)) where s ∈ [0, 2π)} , (2.1)

where s is the parameter of the curve ∂Ωs, physically equivalent to the azimuthal angle,
and r(s) is the radial location of the cylinder surface. If r0(s) is set to be a point on the
cylinder surface (i.e. r0(s) ∈ ∂Ωs), it is written as

r(θ; s) = R(θ)r0(s) (2.2a)

for a non-zero rotation angle θ , where R(θ) is the rotation matrix

R(θ) =
[

cos θ − sin θ

sin θ cos θ

]
. (2.2b)

The equations for fluid motion are given by the following momentum and mass
conservation laws:

∂u
∂t

+ (u · ∇) u = −∇p + 1
Re

∇2u, (2.3a)

∇ · u = 0. (2.3b)

Here p is the dimensionless pressure and Re = U∞D/ν is the Reynolds number. The
boundary condition at the cylinder surface is given by

u(r(θ; s)) = dr(θ; s)
dt

. (2.3c)

For the rotational motion of the cylinder, the following equation is based on a linear
spring-mass-damper system:

θ̈ + 4πζθ

UR
θ̇ +

(
2π

UR

)2

θ = 4mz(u, p)

πIθ,r
. (2.4a)

Here ˙(·) indicates d/dt, and Iθ,r, ζθ and UR are the dimensionless reduced moment of
inertia, damping ratio and reduced velocity, i.e.

Iθ,r = 4Iθ
π

, ζθ = cθ

2
√

kθ Iθ
and UR = 2π

ωn
(2.4b)

with the dimensionless natural frequency ωn(≡
√

kθ /Iθ ), and the dimensionless moment
of inertia, damping coefficient and rotational stiffness (or spring constant), Iθ , cθ and kθ ,
respectively. Lastly, mz is the moment applied to the cylinder by fluid force per unit span,

mz(u, p)k =
∮

∂Ωs

{r × (σ · n)}dl, (2.4c)

where k is the unit vector along the z direction orthogonal to the x–y plane, n is the outward
unit normal vector on ∂Ωs with n(θ; s) = R(θ)n0(s) with n0(s) = n(0; s), and

σ = −pI + Re−1 [∇u + (∇u)T]
, (2.4d)

where I is the identity operator in R
2×2.
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2.2. Linear stability
We first consider the steady basic state of (2.3) and (2.4). It is evident that the base
flow u0 (i.e. basic state for fluid motion) is steady and symmetric about y = 0, and is
obtained by the steady solution to (2.3) with the boundary condition u0(r0(s)) = 0. The
symmetric base flow also yields mz(u0, p0) = 0, resulting in the stationary basic state
for solid motion given by θ0 = 0. The linear stability of the basic state is subsequently
examined by introducing a small perturbation to both fluid and solid motions with ε1 � 1,
i.e.

u = u0 + ε1u′, p = p0 + ε1p′, θ = θ0 + ε1θ
′, r = r0 + ε1r′, n = n0 + ε1n′.

(2.5a–e)
The linearised equations of fluid motion at O(ε1) are given by

∂u′

∂t
+ (u′ · ∇)u0 + (u0 · ∇)u′ = −∇p′ + Re−1∇2u′, (2.6a)

∇ · u′ = 0. (2.6b)

Using (2.2), (2.3c) and (2.5a–e), the boundary condition for u′ is obtained such that

u′(r0(s)) = r1(s)θ̇ ′ − (∇u0 · r1(s))θ ′, (2.6c)

where r1(s) = r′(s)/θ ′ and

r1(s) = dR(θ)

dθ

∣∣∣∣
θ=θ0︸ ︷︷ ︸

≡R1

r0(s) with R1 =
[

0 −1
1 0

]
. (2.6d)

The linearised equations of solid motion are given by

θ̈ ′ + 4πζθ

UR
θ̇ ′ +

(
2π

UR

)2

θ ′ = 4m′
z

πIθ,r
, (2.7a)

where

m′
z =

∮
∂Ωs

[
r′ × (σ 0 · n0) + r0 × (

(σ ′ + σ b) · n0
) + r0 × (

σ 0 · n′)]dl

=
∮

∂Ωs

[
r0 × (

(σ ′ + σ b + σ g) · n0
)]

dl, (2.7b)

with the contribution from the first-order quantities

σ ′ = −p′I + Re−1
[
∇u′ + (∇u′)T

]
, (2.7c)

the stress contribution of base flow to the changed geometry

σ b =
[∇σ 0,xx · r1(s) ∇σ 0,xy · r1(s)
∇σ 0,yx · r1(s) ∇σ 0,yy · r1(s)

]
θ ′, (2.7d)

and the one of the geometrical change (i.e. r′ and n′)

σ g = [
RT

1 σ 0 + σ 0R1
]
θ ′, (2.7e)

where σg is obtained using (2.6d) and n′(s) = [R1n0(s)]θ ′. We note that σb and σg
represent the effective stiffness originating from the base flow stress and the geometrical
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change by the rotation of the cylinder. It has recently been shown that their contribution
is analytically zero only for rigid body motions (Negi et al. 2019), and we have made the
same observation numerically in the present study. Therefore, we shall not consider the
contribution of these terms (i.e. σb and σg) to m′

z.
Now, we consider a normal-mode solution to the system of (2.6) and (2.7),

u′(x, y, t) = û(x, y) eλt, p′(x, y, t) = p̂(x, y) eλt, θ ′(t) = θ̂ eλt, φ′(t) = φ̂ eλt,
(2.8a–d)

where φ′ = θ̇ ′ and λ is a complex eigenvalue to be obtained. By defining a state variable
q = [û p̂ θ̂ φ̂]T, the following eigenvalue problem for global linear stability is obtained:

λMq = Lq. (2.9a)

Here

M =

⎡
⎢⎣

I 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ , L =

⎡
⎢⎣

N −∇ 0 0
∇· 0 0 0
0 0 0 1

m′
z,ν m′

z,p −(2π/UR)2 −4πζθ/UR

⎤
⎥⎦ ,

(2.9b)
and

Nû = −(û · ∇)u0 − (u0 · ∇)û + Re−1∇2û, (2.9c)

with the boundary condition

û(r0(s)) = r1(s)φ̂ − (∇u0 · r1(s))θ̂, (2.9d)

and

m′
z,ν û = 1

Re

∮
∂Ωs

[
r0 ×

([
∇û + (∇û

)T
]

· n0

)]
· kdl, (2.9e)

m′
z,pp̂ = −

∮
∂Ωs

[
r0 × (

p̂I · n0
)] · kdl. (2.9f )

Here, we note that (2.9) is a two-way coupled system between fluid and structural motions:
the effect of fluid motion to structural dynamics is coupled with the m′

z,ν and m′
z,p in L,

while that of structural motion to fluid flow is depicted by the boundary condition (2.9d).

2.3. Adjoint sensitivity analysis
Let us consider a small perturbation given to the linear operator of the eigenvalue problem
in (2.9), i.e. L → L + ε2δL with ε2 � 1. This then yields small changes in the eigenvalue
and the eigenfunction, such that

λ→ λ+ ε2δλ+ O(ε2
2), q → q + ε2δq + O(ε2

2). (2.10a,b)

Using the standard method (e.g. Chomaz 2005; Giannetti & Luchini 2007), the
sensitivity of the eigenvalue is obtained as

δλ = 〈δLq, q†〉
〈q, q†〉 . (2.11)

Here, 〈·, ·〉 is an inner product defined in Appendix A, and is introduced such
that ‖q‖2(≡ 〈q, q〉) physically represents the total energy of the given system.

928 A24-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.830


Instabilities and sensitivities in a flow over a rotationally flexible cylinder

Also, q† = [û† p̂† θ̂† φ̂†]T is the adjoint state variable, and the corresponding equations
are given by

λ†Mq†=L†q† (2.12a)

with

L†=

⎡
⎢⎢⎣

N† ∇ 0 0
∇· 0 0 0

m†
z,ν m†

z,p 0 −1
I−1
θ m′

z,ν I−1
θ m′

z,p (2π/UR)2 −4πζθ/UR

⎤
⎥⎥⎦ , (2.12b)

where

N†û†=(u0 · ∇)û†+û† · (∇u0)
T + Re−1∇2û†, (2.12c)

with the boundary condition

û†(r0(s)) = −r1(s)φ̂†, (2.12d)

and

m†
z,ν û†=− 1

kθRe

∮
∂Ωs

[
(∇u0 · r1) ·

([
∇û†+

(
∇û†

)T
]

· n0

)]
dl, (2.12e)

m†
z,pp̂†=− 1

kθ

∮
∂Ωs

[
(∇u0 · r1) ·

(
p̂†I · n0

)]
dl. (2.12f )

We note that λ† is the adjoint eigenvalue given by λ† = λ̄, where the overbar (·̄) indicates
the complex conjugate. Also, the adjoint Navier–Stokes operator in (2.12c) is coupled
with the structural adjoint operator through a non-trivial boundary condition (2.12d). In
the absence of this boundary condition, (2.12c) is only able to describe the sensitivity of
fluid motion to a perturbation in flow field, implying that the boundary condition provides
a way for (2.12c) to describe the sensitivity of fluid motion to a perturbation in structural
motion. The detailed derivation of the adjoint equations and the boundary conditions are
provided in Appendix A.

The sensitivity of the eigenvalue can now be studied with (2.11) by considering
various types of the perturbation δL depending on the control mechanism of interest, e.g.
secondary cylinder (Strykowski & Sreenivasan 1990; Marquet, Sipp & Jacquin 2008).
Instead of focusing on a particular perturbation mechanism, here we shall consider a
perturbation of a general form given by

δL = Mq. (2.13)

Here, the perturbation for fluid variables is in the form of a spatially localised feedback
identical to that in Giannetti & Luchini (2007), while that for structural variables lies in
the stiffness kθ and Iθ which directly affect the total energy of the fluid–structure system
here. In particular, application of the Cauchy–Schwarz inequality to (2.11) for δL in (2.13)
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gives the following bound for δλ:

|δλ| ≤
∥∥û

∥∥
F

∥∥û†
∥∥

F + |θ̂ ||θ̂†| + |φ̂||φ̂†|∣∣〈q, q†
〉∣∣ . (2.14)

Here ‖ · ‖2
F = ∫

Ω
(·)2 dx. Using (2.14), one may define a sensitivity field given in the fluid

domain Ω , such that

ΘF (x, y) =
∥∥û

∥∥
F

∥∥û†
∥∥

F∣∣〈q, q†
〉∣∣ , (2.15a)

which characterises the spatial location where the given eigenvalue responds sensitively
to the fluid part of the perturbation in (2.13). Similarly, a scalar quantity characterising the
sensitivity to the solid part of the perturbation can be defined, such that

ΘS = |θ̂ ||θ̂†| + |φ̂||φ̂†|∣∣〈q, q†
〉∣∣ . (2.15b)

Comparison of the values of ΘF with those of ΘS will then allow us to characterise
the relative importance of one to the other. Finally, we note that the sensitivity in (2.15)
measures the effect of a perturbation in the form of (2.13) in terms of the total energy of
the system. Therefore, the coupling effect for the instabilities originating from FSI should
be reflected in (2.15). Having pointed this out, the form of (2.13) does not directly add a
perturbation to the coupling terms in (2.3c) and (2.4a). However, adding a perturbation to
(2.3c) is equivalent to considering a different boundary condition that is not the no-slip
condition (e.g. a slip boundary condition), and, similarly, having a physically feasible
perturbation to (2.4a) is equivalent to changing Iθ,r, which will be examined through a
parametric study in § 3.

2.4. Numerical methods
The base flow state as well as the direct and adjoint problems, are solved numerically
through a Spectral/hp approach (Cantwell et al. 2015) available through the open
source framework Nektar++, and the domain Ω is discretised and locally refined
using Nekmesh, the built-in mesh generator of Nektar++ which generates curvilinear
boundary conforming meshes. Quadrilateral elements are adopted in the boundary layer’s
region close to the structure’s interface organised in structured layers and triangular
elements are used in the other regions of the domain, resulting in an unstructured mesh.
A representative mesh is shown in figure 2 consisting of 1754 elements and 28 104 degrees
of freedom.

The fluid equations are solved using a high-order splitting/velocity-correction projection
method. This scheme (see Karniadakis, Israeli & Orszag 1991; Guermond & Shen
2003) consists in first obtaining the pressure field by solving the pressure Poisson
equation using boundary conditions derived from the governing equation that enforce the
incompressibility condition. Subsequently the velocity field is obtained through a series of
Helmholtz equations, arising from the viscous operator in the governing equations, which
also enforces the velocity boundary conditions.

The computational domain Ω is symmetric in both the in-flow and cross-flow directions
and is chosen such that the origin (x, y) = (0, 0) is located at the centre of the cylinder for
all simulations presented in this study. For the stationary case, different domain sizes have
been used to ensure acceptable agreement between forward and adjoint problems while
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(b)(a)

Figure 2. Example of size distribution of elements (a) used in the mesh for the splitter plate of length
L/D = 1. The close-up in (b) shows the quadrature points for P = 7.

limiting the computational costs (see § B.1), whereas for the rotating cylinder simulations
§ 3.1, the upstream/downstream dimensions are chosen as −40 < x/D < 40 and the
cross-flow dimensions as −30 < y/D < 30 as it shows excellent agreement comparing
direct to adjoint eigenvalues (see § B.2). For all simulations, a polynomial projection basis
of order P = 7 and a dimensionless time step of t = 10−3 were adopted. The eigenvalues
are then subsequently computed by employing the standard Arnoldi iteration, i.e. the
eigenvalue computation approach in the Krylov subspace constructed by the temporal
snapshots of the linearised and the adjoint systems. The base flow generation is undertaken
by solving (2.3) and (2.4) in the fixed reference position of the cylinder (i.e. θ = 0), along
with a ‘no slip’ boundary condition at the fluid/solid boundary interface. When vortex
shedding is not present, the steady base flow is obtained directly through time marching
to a steady state. In the regime where vortex shedding is supposed to appear, the base
flow can be obtained with the selective frequency damping (SFD) originally proposed by
Akervik et al. (2006). In the present study, the SFD proposed by Jordi, Cotter & Sherwin
(2014) was used.

The stability and sensitivity analyses are carried out by computing leading eigenvalues
of the linearised Navier–Stokes and associated adjoint equations with the Arnoldi iteration,
as discussed in Barkley, Blackburn & Sherwin (2008). As formulated in § 2, the cylinder
is set to be in the reference position (i.e. θ0 = 0), and its rotational effect is implemented
with the blowing/suction boundary conditions in (2.6c) and in (2.12d) at the solid interface.
At each time step, the fluid equations are advanced using the velocity-correction scheme
described above, and the resulting velocity and pressure fields are used to compute
the aerodynamic moments in (2.7) and (2.9). The structural equations are then solved
numerically using second-order linear multistep methods, namely the Adams–Bashforth
(for the angular velocities) and Adams–Moulton (for the angular positions) schemes. The
resulting structural position and velocity are then updated for the boundary conditions at
the solid interface. This loosely coupled approach is known to have numerical instabilities
at low added mass ratios (Gerbeau, Nobile & Causin 2005). To address this issue, we
have implemented a fictitious inertia to the structural scheme as described in Baek &
Karniadakis (2012). The linear stability calculation has been verified by comparing with
fully nonlinear simulations of the rotating cases. For the fully nonlinear simulations, a
coordinate transformation technique proposed by Luo & Bewley (2004) is adopted. The
details of its application to the velocity-correction scheme approach and the subsequent
verification can be found in Serson et al. (2016).
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3. Results and discussions

We primarily consider a fixed reduced velocity UR = 3937 (corresponding to Iθ = 50,
cθ = 0 and kθ = 10−4). The value of such a reduced velocity is chosen as it displays the
three instabilities of interest well (i.e. the vortex shedding, the symmetry breaking and the
torsional flapping) with reasonable variations of the other parameters. We shall focus on
following three questions related to two-dimensional flow past a cylinder with a splitter
plate of different lengths.

(i) How does the rotational motion of the cylinder modify the instability of fluid motion
(i.e. vortex shedding)?

(ii) What are the instabilities caused by fluid–structure interaction and how do they
compare to that arising in the flow past the fixed body case as the length of the
splitter plate varies?

(iii) How does the structure of the sensitivity field of these instability modes change with
the length of the splitter plate?

To address questions (i) and (ii) above, we first consider the neutral stability curves of
the various instability modes. Three types of instability modes were found in the presence
of FSI, and their eigenvalues are denoted by λSB (symmetry breaking mode denoted by
SB), λTF (torsional flapping denoted by TF) and λVS (vortex shedding mode denoted by
VS), respectively. Figure 3(a) summarises the critical Reynolds numbers for the onset of
two leading FSI instability modes in the flow past the rotating cylinder as a function of the
splitter plate length. As a reference, the onset of the vortex shedding mode in the absence
of any fluid structural interaction is also plotted, and its eigenvalue is denoted by λVS,F (the
black dotted line with open square symbols). As the Reynolds number increases, the first
instability mode arises for L/D < 3.5 and it is found to be stationary with λi = 0 (λSB;
the blue line in figure 3a). This mode corresponds to the symmetry breaking structural
mode previously observed (Cimbala & Garg 1991; Assi et al. 2010; Bagheri et al. 2012;
Assi et al. 2014a; Lacis et al. 2014; Pfister & Marquet 2020). This instability arises at
notably lower Reynolds numbers than the instability of the vortex shedding (λVS; the green
line in figure 3a). For the longer splitter plate (L/D > 3), a new type of ‘dynamic’ (or
‘oscillatory’) instability mode (λi /= 0) appears (λTF; the red line in figure 3a). We shall
refer to this mode as ‘torsional flapping’, as described in more detail in § 3.2. Finally, it
is worth mentioning that the vortex shedding mode in the absence of FSI (λVS,F) is found
to coincide with that in the presence of FSI (λVS) at least in this case. Also, as is well
known, the vortex shedding mode is stabilised on increasing the length of the splitter plate
L (Roshko 1954; Kwon & Choi 1996; Anderson & Szewczyk 1997; Ozono 1999; Choi
et al. 2008).

In figure 3(b) a linear empirical fit from Giannetti & Luchini (2007) (dotted–dashed grey
line), which depicts the length of the recirculation zone measured from the rear stagnation
point on a fixed circular cylinder to the location of u = 0 in the absence of a splitter plate,
is plotted as a function of the Reynolds number,

Lb

D
� 0.0657Re − 0.3410. (3.1)

The length of the recirculation zone Lb with the splitter plate for L/D = 1, 2, 3 is also
plotted. The length of the recirculation zone closely follows the neutral stability curve of
the symmetry breaking mode (i.e. λSB

r = 0) when it is smaller than L/D, indicating that the
emergence of this mode is closely linked to the flow structure related to the zone (Lacis
et al. 2014). When the size of the zone becomes greater than the given L/D, it deviates
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Figure 3. The stability diagram (a) of the instabilities obtained from symmetry breaking (λSB), vortex
shedding (λVS) and torsional flapping (λTF) modes in the free-to-rotate cylinder wake, as a function of Re and
L/D at UR = 3937 (corresponding to Iθ = 50, cθ = 0 and kθ = 10−4). For comparison, the neutral stability
curve of the vortex shedding mode is plotted for a fixed cylinder with a splitter plate (λVS,F). In (b) the empirical
formula for the length of the recirculation bubble in (3.1) (dotted–dashed grey line) is given and compared with
its counterpart Lb for three different plate lengths. The two figures in the inset of (a) are the u velocity fields
of the symmetry breaking mode (L/D = 3, Re = 83) and the torsional flapping modes (L/D = 3, Re = 112),
respectively.

from λSB
r = 0 considerably and the slope of its growth with respect to Re becomes similar

to that of (3.1) given for the case without the splitter plate.

3.1. Symmetry breaking mode
We first study the stability and the sensitivity of the symmetry breaking mode. Apart from
the strong correlation of the emergence of this mode with the length of the recirculation
zone, it has consistently been found that this mode is most unstable for L/D � 1 (see
figure 6). Therefore, in this section we will focus on the case of L/D = 1, while discussing
the other L/D if necessary.

3.1.1. Linear stability
Figure 4 presents the variation of the two leading eigenvalues (symmetry breaking mode
and vortex shedding mode) in a range of Reynolds number from Re = 20 to Re = 100 for
a fixed splitter length of L/D = 1. In figure 4(a) we observe that the symmetry breaking
mode is the instability emerging at the lowest Reynolds numbers, as was also highlighted
in figure 3. We note that, for Re > 70, the vortex shedding mode is also unstable, if the
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Figure 4. The linear (a) growth rate and (b) frequency of symmetry breaking mode (λSB) and vortex shedding
mode (λVS) as a function of the Reynolds number (L/D = 1, Iθ = 50, UR = 3937). Note that the frequency of
the symmetry breaking mode is not drawn in (b), since λSB

i = 0.

cylinder is held fixed. However, if it is not initially fixed, the symmetry breaking mode
would have been initiated. Therefore, in this case, a competition between the two modes
will emerge in transition to a nonlinear state which will depend on how the two modes are
nonlinearly coupled and are initiated.

In figure 5 we consider the behaviour of the symmetry breaking mode with respect to
the changes in the structural parameters Iθ and UR (or, equivalently, the torsional spring
stiffness) for a fixed splitter plate length of L/D = 1 at Re = 30. Figure 5(a) shows that
the linear growth rate of the symmetry breaking mode remains always positive for all
Iθ considered, while it tends to decrease on increasing Iθ . This observation is consistent
with (2.4a), where Iθ appears to effectively control the strength of the coupling between
fluid and structural motions: the higher Iθ is, the weaker the coupling is. This observation
also suggests that the symmetry breaking mode is indeed a consequence of FSI. We
expect that the symmetry breaking mode will eventually be stabilised in the limit of
infinitely large Iθ , because the fully rigid cylinder will not allow for any structural motion.
Figure 5(b) shows that the growth of the symmetry breaking mode changes very little
above a reduced velocity UR � 4000. As UR is reduced from this value, the growth rate
quickly decreases and eventually becomes stable (negative) at UR � 520. This is a simple
physical consequence of the fact that the rotational motion of the body is prevented by a
very stiff torsional spring – note that the rigid case is given in the limit of UR → 0.

Figure 6 shows the variation of the growth rate of the symmetry breaking mode as a
function of the splitter plate length L/D at two different Reynolds numbers. In figures
6(a) and 6(b) we observe that, for L/D < 1, the symmetry breaking mode is stabilised
as the splitter plate length L/D decreases. This would physically be anticipated since the
body shape becomes a circular cylinder as L/D → 0. In figure 6(b) we observe that the
vortex shedding mode grows faster than the symmetry breaking mode for L/D < 0.75.
This implies that the flow is most likely to transition through the fluid instability mode
before the structural mode, if the angle of the cylinder is initially placed to be θ = 0
at the given Reynolds number, Re = 80. This is not immediately clear from the neutral
stability curve in figure 3. However, one must recall that if the flow at a Reynolds number
of Re = 80 is realised by increasing the flow speed, the flow regime would change along a
horizontal line in figure 3 for a fixed L/D. In this case, the flow would first experience the
symmetry breaking mode at a lower Reynolds number. This implies two possibly different
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Figure 5. The linear growth rate of symmetry breaking mode (λSB) at Re = 30 and L/D = 1, as a function of
(a) inertia for UR = 3937 and (b) reduced velocity for Iθ = 50.
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Figure 6. The linear growth rate of symmetry breaking mode (λSB) and vortex shedding mode (λVS) as a
function of the plate length L/D (Iθ = 50): (a) Re = 40; (b) Re = 80.

routes of the transition to the final fully nonlinear state at Re = 80. Understanding of the
detailed transition dynamics needs a further nonlinear analysis, which is beyond the scope
of the present study. Lastly, figure 6 also indicates that there exists a specific splitter plate
length, at which the growth rate of the symmetry breaking mode becomes maximum. This
length appears to be around L/D � 1 for the two Reynolds numbers Re = 40 and Re = 80.

3.1.2. Physical mechanism of instability
To understand how the symmetry breaking mode is initiated, the structural part of (2.9) is
now rearranged to examine what physical quantities drive the instability. In particular, as
presented in more detail in Appendix C, the eigenvalue λ is decomposed into the structural
and fluid components λS and λF, respectively, such that

λ = −qH
S W SLSqS

qH
S W SqS︸ ︷︷ ︸
λS

+ qH
S W SM z

qH
S W SqS︸ ︷︷ ︸
λF

, (3.2)

928 A24-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.830


R.L.G. Basso, Y. Hwang, G.R.S. Assi and S.J. Sherwin

where qS = [θ̂ φ̂]T is the vector containing the structure variables, LS the structural part
of the operator L defined in (2.9), M z = [0 m̂z]T with m̂z = [m̂z,p m̂z,ν]T the moment
matrix defined in (2.9) as part of the global operator L, and W S is the weight matrix
defined in (A1a). Without the presence of the structural damping parameter (i.e. ζθ = 0),
the growth rate structural contribution λS is identically 0 and we obtain

λ = λF = λp + λν, (3.3)

where λp and λν indicate the contributions from pressure and viscous stress, respectively
(see (2.4c) and (2.4d)).

In figure 7 we report how the torque from pressure and viscous stress contributes to
the symmetry breaking mode as Re changes, i.e. the contributions of λp,r and λν,r to λr.
We first consider relatively short plates (L/D = 0.1, 0.5 in figure 7a,b). When Re is lower
than that for the onset of the symmetry breaking instability, the pressure stabilises the
flow while the viscous stress plays a destabilising role at low Reynolds numbers. As Re is
increased, this balance reverses near the onset of the instability. In this case, the pressure
drives the instability and the viscous stress plays a stabilising role, and this remains the
dominant behaviour forming the symmetry breaking instability with a further increase
of Re. The predominance in the destabilising role of pressure is also seen for longer
plates (L/D = 1, 2; figure 7c,d), when Re is sufficiently larger than that for the onset of
the instability. However, in this case, there is also a range of Re, in which the pressure
stabilises the mode, while the viscous stress destabilises it, for example, Re � 30 for
L/D = 1 (figure 7c) and 55 � Re � 65 for L/D = 2 (figure 7d). The observations made
here suggest that the balance between the pressure and viscous stress plays a crucial role in
the symmetry breaking mode. We note that the change of the pressure and stress balance
with Re is likely to be associated with the recirculation zone in the near-wake region, given
that the length of the recirculation zone is approximately linearly proportional to Re (see
(3.1)).

To understand how the symmetry breaking mode is associated with the recirculation
zone, in figure 8, we further examine the symmetry breaking mode in relation to the flow
structure of the recirculation zone for L/D = 1. Figure 8 shows the pressure p and vorticity
ωz distributions of the eigenmode presented for an instability with a counter-clockwise
rotation of the cylinder at Re = 30, 32 and 34. From figure 7(c) we observe this is just
after the onset on the symmetry breaking instability and covers the range where the roles
of pressure and viscous stress are interchanged. In these plots the streamline of base flow
is also indicated to visualise the recirculation bubble. For all Re considered, we observe
that the flow features are relatively similar although slightly changing in magnitude. The
data are normalised so that the maximum value of the pressure and velocity magnitude
are set to one. First considering the pressure distribution where we note the moment is
generated by normal forces acting on the splitter plate, since the centre of rotation is at the
centre of the cylinder so that no contribution is provided to the moment from the cylinder
surface. There is a stabilising clockwise moment being generated by the pressure force on
the inner part of the splitter plate from the root of the plate to approximately its midpoint.
Analogously there is then a destabilising counter-clockwise pressure force acting from
approximately the middle of the plate to the tip. As shown in figure 7, at Re = 30 the
contribution to the clockwise moment is larger but this swaps over to a counter-clockwise
pressure contribution at Re = 32 and 34. This change in sign is rather subtle and is not
associated with any significant change in the structure of the pressure distribution but
rather a change in the magnitude of each contribution (figure 8a–c).
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Figure 7. Componentwise contributions to the instability growth rate (see (3.3)): λp,r , pressure; λν,r viscous
stress; λr the growth rate as a function of the Reynolds number. Here, (a) L/D = 0.1; (b) L/D = 0.5; (c)
L/D = 1; (d) L/D = 2.

(b)(a) (c)

(e)(d ) ( f )

Figure 8. (a–c) Pressure and (d–f ) spanwise vorticity of the eigenmode of symmetry breaking instability for
L/D = 1 at (a,d) Re = 30, (b,e) Re = 32 and (c, f ) Re = 34. Here, the red and blue colours denote positive and
negative values, respectively, and their brightness indicates the magnitude. The continuous lines are associated
to the base flow streamlines for the corresponding Reynolds numbers and the dotted contours represent the
0-isocontour of the perturbed fields.
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A similar observation can be made from the vorticity plots and the contribution towards
the viscous moment component (figure 8d–f ). We have chosen to plot vorticity since the
vorticity is the negative of the strain tensor at the surface of the body and so the tangential
direction of the shear stress force can be inferred as the negative of the dynamics viscosity
multiplied by the vorticity. On the upper surface of the splitter plate where we observe
negative vorticity the viscous shear stress is therefore acting in the positive x-direction
and analogously the negative vorticity on the lower surface of the splitter plate (where
the surface normal is now negated) is associated with a shear stress in the negative
x-direction. These shear components act over a large portion of the splitter plate surface
and together generate a clockwise moment on the body. However, the magnitude of this
moment is associated with a moment arm that is only half the thickness of the splitter
plate. Correspondingly, the positive vorticity on the cylinder surface and at the tip of the
splitter plate are associated with a surface shear stress that generates a counter-clockwise
contribution to the moment where the moment arm around the cylinder is equal to the
radius and the moment arm at the tip is obviously equal to the splitter plate length plus
the radius. Once again there is a subtle balance between these two contribution where
at Re = 30 the counter-clockwise contribution from the cylinder and tip dominate but at
Re = 32, 34 the clockwise contribution from the plate is larger but relatively balanced. As
with the pressure distribution there is no significant change in structure with the change in
Reynolds number.

Interestingly, as the symmetry breaking mode becomes unstable with increasing Re,
the original recirculation bubble appears to develop a stronger secondary daughter bubble
near the tip with its increased size (see the inset of figure 8a–c). This further suggests the
importance of the structure of the base flow at the tip of the plate, as we shall also see in
the sensitivity analysis. This observation is also in agreement with the early experimental
study (see Toebes & Eagleson 1961), where vortex-induced vibrations of thin flat plates
were studied as a function of the trailing edge geometry and the motion’s responses were
reported to be largely sensitive to this parameter.

3.1.3. Adjoint sensitivity
We next consider the sensitivity of the symmetry breaking mode. The adjoint perturbation
velocity field û†(x, y) represents the sensitivity to an open-loop body forcing in a weakly
nonlinear regime, whereas ΘF(x, y) indicates the sensitivity to a small forcing in the
form of a localised feedback (Chomaz 2005; Giannetti & Luchini 2007). In particular, the
sensitive region characterised by ΘF(x, y) has often been referred to as the ‘wavemaker’
region for the vortex shedding mode.

Figure 9 shows the amplitude of the adjoint mode ‖û†(x, y)‖2. The shape of the adjoint
mode changes notably as a function of the plate length. For shorter splitter plate lengths
(L/D < 1.5), the peak of the adjoint mode amplitude is most energetic around the cylinder
and splitter plate boundary, whereas for longer plates (L/D > 1.5), it becomes detached
and appears slightly downstream of the tip of the splitter plate. It should be mentioned that
the localisation of the adjoint mode amplitude near the tip of the splitter plate in figure 9
cannot be a consequence of increasing Reynolds number. Indeed, while the role of the
advection increases with Re, it should be noted that the adjoint operator has advection
towards upstream. Therefore, the consistent localisation of the adjoint mode around the tip
is presumably a consequence of the increasing length of the splitter plate, because exerting
a force at the tip would lead to the largest torque to the cylinder.

Analogous to figure 9 in 10, we plot isocontours of the sensitivity to a spatially localised
feedback ΘF along the instability threshold for different splitter plate lengths. In this
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Figure 9. Isocontours of the amplitude of the adjoint eigenmode of the symmetry breaking mode near the point
of instability: (a) L/D = 0.1 at Re = 9, (b) L/D = 0.5 at Re = 18, (c) L/D = 1.0 at Re = 30, (d) L = 2.0 at
Re = 55, (e) L/D = 3.0 at Re = 83, ( f ) L/D = 4.0 at Re = 112, (g) colour bar. Here, the contour levels are
normalised by the peak adjoint mode amplitude.

figure, as we increase L/D, the spatial location of the most sensitive region is also shifted
downstream due to the adjoint mode shown in figure 9. For L/D < 1, the sensitive region is
located mostly along the splitter plate, whereas for L/D > 1, the highest sensitivity region
is found to emerge at the end of the splitter plate. For L/D = 1, we observe that both of
the regions are equally energetic.

Finally, we compare the direct mode, adjoint mode and sensitivity to localised feedback
ΘF for three different splitter plate lengths L/D = 1, 1.5, 2 at Re = 40, and this is shown
in figure 11. The three plate lengths correspond to unstable (L/D = 1.0), marginally stable
(L/D = 1.5) and stable (L/D = 2.0) conditions, respectively. The first row of plots (i.e.
figure 11a–c) shows the perturbed velocity field amplitude ‖û‖2, the second row of plots
(i.e. figure 11d–f ) presents the adjoint velocity field amplitude ‖û†‖2, and the last row of
plots (i.e. figure 11g–i) show the corresponding sensitivity to localised feedback ΘF(x, y).
In all the cases, the region of large ‖û‖ is located mostly around the splitter plate. For the
longest plate L/D = 2, it also shows large intensity localised around the tip. The adjoint
velocity field ‖̂u†‖ consistently exhibits the peak near the tip in all the cases (figure 9d–f ).
As L/D is increased, the peak region also consistently shifts downstream along with the
tip location. The sensitivity field ΘF(x, y), which is a combination of the previous two
fields, has a peak amplitude around the plate midpoint at L/D = 1. As L/D is increased,
ΘF(x, y) around the tip gradually becomes large. When L/D = 2, it exhibits its peak only
around the splitter plate tip. It is interesting to note that when ΘF(x, y) appears to be
distributed around the entire splitter plate for L/D = 1 and L/D = 1.5. In this case, the
symmetry breaking mode is highly unstable (L/D � 1.0; see also figure 6). In any case,
the importance of the flow around the tip is clearly well visible in the sensitivity analysis
in this section, and this is consistent with the discussion in § 3.1.2. Finally, the sensitivity
to the structural parameters ΘS are compared with the maximum value of θF in table 1. In
all the cases investigated, the symmetry breaking mode has been found to be much more
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(e)

(b)(a) (c)

(d ) ( f )

0 0.004 0.006 0.008 0.010 0.012 0.014 0.016 1.9×10–2 0 0.02 0.04 0.06 0.08 0.10 1.3×10–1 0 0.04 0.06 0.08 0.10 0.12 0.14 1.6×10–1

0 0.02 0.04 0.06 0.08 0.10 0.12 1.4×10–1 0 0.04 0.06 0.08 0.10 0.12 0.14 1.7×10–1 0 0.05 0.10 0.15 0.20 0.25 3.0×10–1

Figure 10. The sensitivity to spatially localised feedback ΘF of the symmetry breaking mode near the onset
of the instability: (a) L/D = 0.1 at Re = 9, (b) L/D = 0.5 at Re = 18, (c) L/D = 1.0 at Re = 30, (d) L = 2.0
at Re = 55, (e) L/D = 3.0 at Re = 83, ( f ) L/D = 4.0 at Re = 112.

sensitive to the structural parameters, indicating that the symmetry breaking mode can
easily be controlled by the structural damping and stiffness.

3.2. Torsional flapping
For longer splitter plate lengths (L/D > 3), the leading instability is no longer the
symmetry breaking mode, as shown in figure 3. Unlike the stationary symmetry breaking
mode which has a purely real eigenvalue, the eigenvalue of this mode has a non-zero
imaginary part, indicating that it is an oscillatory/dynamic instability. Furthermore, the
neutral stability curve of this mode in figure 3 does not seem to be correlated with the
length of the recirculation zone, indicating that its origin is not necessarily related to
the separation of the flow. As will be discussed later, this mode appears to share many
similarities to the flapping instability of flag (see the review by Shelley & Zhang 2011).
We shall therefore refer to this mode as torsional flapping.

3.2.1. Linear stability
We first explore the linear stability characteristics of the torsional flapping mode. Figure 12
plots the linear frequency of the instability mode as a function of Reynolds number for
different splitter plate lengths, and compares it to that of the vortex shedding mode with
or without FSI. Here, the frequencies are obtained when the modes are close to neutral
stability (i.e. λr � 0). Regardless of the coupling with structural motion, the frequency
of the vortex shedding mode always stays around λVS

i � 0.7–0.8 for all the values of
L/D considered. As mentioned previously, the torsional flapping mode only appears for
sufficiently long plates (L/D ≥ 3 in this study). The frequency of the flapping mode
(λTF

i � 0.3–0.4) is found to be lower than that of the vortex shedding mode (λVS
i �

0.7–0.8), although they both are in the same order of magnitude. Finally, the frequency
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(h)

(b)(a) (c)

(g) (i)

(e)(d ) ( f )

0 0.02 0.04 0.06 0.08 0.10 1.2×10–1 0 0.040.02 0.080.06 0.10 1.2×10–1 0 0.02 0.04 0.06 0.08 0.10 1.2×10–1

Figure 11. Comparison of the magnitude of (a–c) the direct mode ‖û‖, (e–f ) the magnitude of the adjoint
mode ‖û†‖ and (g–i) the sensitivity to localised forcing ΘF for different plate lengths at Re = 40. Here, (a,d,g)
L/D = 1, (b,e,h) L/D = 1.5, (c, f,i) L/D = 2.

L/D Re ΘF,max ΘS

0.1 9 0.019 4.636 × 103

0.5 18 0.127 7.109 × 103

1.0 30 0.163 9.508 × 103

2.0 55 0.142 9.508 × 103

3.0 83 0.168 8.564 × 103

4.0 112 0.303 6.727 × 103

Table 1. Values of ΘF,max(≡ maxx|ΘF|) and ΘS along the threshold of stability as a function of the splitter
plate length. The cases here correspond to those in figure 10.

of the flapping mode is found to change little with variation of the Reynolds number
(equivalently the length of the recirculation zone), as shown in figure 13.

The change of the eigenvalue of the torsional flapping mode with the inertia Iθ is also
reported with that of the symmetry breaking mode in figure 14. We observe that the growth
rate of the torsional flapping mode is reduced on increasing Iθ from a very low value
(Iθ = 1) and that the mode is completely stabilised at Iθ � 300 (figure 14a). We note that
the stabilisation of the flapping mode with increasing Iθ is more rapid than that of the
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Figure 12. The linear frequency of torsional flapping mode and vortex shedding mode as a function of the
Reynolds number (Iθ = 50, L/D = 0.1 to 4, UR = 3937). Here, λr � 0.
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Re

(b)(a)

λTF

Figure 13. Linear (a) growth rate and (b) frequency of the torsional flapping mode as a function of the
Reynolds number (Iθ = 50, L/D = 4, UR = 3937).

symmetry breaking mode. Therefore, it remains more stable than the symmetry breaking
mode when Iθ is sufficiently great (Iθ � 1300 in this case). Finally, we also observe that
the frequency of the flapping mode decreases as Iθ is increased.

In figure 15 we show the variation of the linear growth rate and frequency of the torsional
flapping mode, λTF, at Re = 94 (the critical Reynolds number is Re � 93.5 in this case)
for a plate length L/D = 4, with regards to the change in reduced velocity UR. In the
same figure 15(a) we also present the growth rate of the symmetry breaking mode for
comparison. Both of the instabilities appear to be insensitive, both in terms of growth
rates and frequency, to the change in reduced velocity around the reference value studied in
this work (i.e. UR = 3937). For low values of UR, the growth rate of the torsional flapping
mode displays a small increase up to a local maximum value around UR � 8 before sharply
decreasing as UR → 0 (i.e. a rigid body configuration). This behaviour differs from that
of the symmetry breaking mode which is monotonically stabilised as UR → 0.

3.2.2. Physical mechanism of instability
Now, we explore the underlying physical mechanism of this oscillatory instability.
Similarly to the symmetry breaking mode analysis in § 3.1.2, we consider the pressure
and viscous stress contributions to the torsional flapping mode λTF and this is shown in
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Figure 14. Variation of linear (a) growth rate and (b) frequency of the torsional flapping (λTF) and the
symmetry breaking mode (λSB) with the dimensionless inertia Iθ (L/D = 4, UR = 3937, Re = 100).
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Figure 15. Variation of linear (a) growth rate and (b) frequency of the torsional flapping (λTF) and the
symmetry breaking mode (λSB) with the reduced velocity UR (L/D = 4, Iθ = 50, Re = 94).

figure 16 for L/D = 4. It is evident that the flapping mode is predominantly driven by
pressure, while the viscous stress plays a stabilising role in this oscillatory instability.

Pressure and spanwise vorticity fields of the torsional flapping mode are visualised at
three different Reynolds numbers (Re = 92, 94, 96; note the critical Reynolds number for
the onset of the instability is Rec � 93.5) in figure 17, where the phase of the eigenmode
is set for a time instance of counter-clockwise rotation of the cylinder. First, given
that the pressure generates the moment acting in the surface normal direction, only the
pressure distribution around the plate can cause the rotation of the cylinder (see also the
discussion in § 3.1.2 for the symmetry breaking mode). In all three cases, it is seen that
the pressure distribution from the root of the plate to approximately the midpoint creates
a moment in the clockwise direction, indicating its stabilising role in the rotation of the
cylinder caused by the instability (figure 17a–c). In contrast, the tip pressure distribution
generates a moment in the counter-clockwise direction, thereby being the key mechanism
of the instability. Indeed, as Re is increased, the region with the destabilising pressure
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(b)(a)

Re Re

Figure 16. Componentwise contributions to the instability (a) growth rate and (b) frequency as a function of
the Reynolds number for L/D = 4 (see (3.3)): λp,r , λp,i pressure; λν,r, λν,i viscous stress; λr, λi the growth rate
and frequency. Here, the critical Reynolds number for the onset of the instability is Rec � 93.5.

distribution in the near tip becomes wider with more elevated intensity. Second, the
eigenmode of the flapping mode shows a symmetric distribution of the spanwise vorticity
about y = 0 (figure 17d–f ). This indicates that the moments generated by most of the
viscous shear stress in the upper and the lower part of the plate would be cancelled out
by each other. Therefore, the main contribution of the viscous shear stress to the moment
would arise from the front stagnation point of the cylinder and from the tip of the plate.
The visualisation of the eigenmode reveals that the vorticity at the front stagnation point
is much smaller than that at the tip. Also, the tip has a much longer moment arm than the
front stagnation point, indicating the importance of the tip vorticity distribution. For the
cylinder rotating in the counter-clockwise direction due to the flapping mode instability,
the positive spanwise vorticity near the tip indicates the stabilising role of the viscous
shear stress, consistent with figure 16. Furthermore, the downstream vorticity right next
to the region of the positive vorticity near the tip is negative (i.e. clockwise direction),
indicating the emergence of a vortical structure rotating in the counter-clockwise direction
in accordance with the Kelvin’s circulation theorem.

Let us now summarise the key features of the oscillatory instability discussed so far.
First, the instability appears when the length of the splitter plate is sufficiently long.
Importantly, the neutral stability does not show any correlation with the length of the
recirculation zone (figure 3), indicating that the origin of this instability is not necessarily
related to the recirculation zone in the near wake. Second, the instability mode frequency
increases, as the mass of the plate is gradually reduced from a large value (figure 14).
Third, the mode is stabilised by increasing the stiffness (figure 15). Finally, the mode is
destabilised primarily due to pressure acting on the tip of the plate, while the viscous stress
merely stabilises the mode (figure 16).

These features can be compared with those observed in a simple model for the flapping
(or flutter instability) for the flag and elastic plate immersed in an inviscid uniform flow
(see the analysis on page 455 in Shelley & Zhang 2011). The dispersion relation of their
model is given by

(ω + k)2 = 1
2(−R1|k|2ω2 + R2|k|5), (3.4)

where k is the spatial streamwise wavenumber of the flag (or plate) and ω the complex
frequency for the instability frequency and growth rate, R1 the dimensionless inertia of
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(b)(a) (c)

(e)(d ) ( f )

Figure 17. (a–c) Pressure and (d–f ) spanwise vorticity of the eigenmode of the symmetry breaking instability
for L/D = 4 at (a,d) Re = 92, (b,e) Re = 94 and (c, f ) Re = 96. Here, the red and blue colours denote positive
and negative values, respectively, and their brightness indicates the magnitude. The white contour lines indicate
p̂ = 0 and ω̂z = 0.

the flag (or plate) and R2 its dimensionless stiffness (or rigidity). When (3.4) exhibits an
instability, its real frequency (denoted by ωr) is given by

ωr = − 2k
2 + R1|k| (3.5a)

and the growth rate for instability is proportional to

dk = −R1(R2|k|3 − 2) − 2R2|k|2. (3.5b)

For a comparison of this instability with the torsional flapping mode, the wavenumber
k here may be set to be a fixed value (say k ∼ O(1/(L + D/2))) because the cylinder
with the splitter plate considered in the present study only admits rotation around the
centre. From (3.5b), the instability given by (3.4) arises when L is sufficiently large
(i.e. when k is sufficiently small). The instability frequency in (3.5a) increases on
decreasing dimensionless inertia R1. The growth rate in (3.5b) also becomes smaller as
the dimensionless stiffness R2 increases. Lastly, given that the model is based on the
inviscid fluid assumption, the fluid force considered in (3.4) is only from pressure (see
also Shelley & Zhang 2011). It is evident that all these features from this simple model
are consistent with those of the torsional flapping instability in the present study (see the
paragraph above). It appears that a similar low-frequency instability was also observed in
the recent work by Pfister & Marquet (2020), where a flow over a fixed circular cylinder
with a flexible plate is studied. However, a direct comparison of this instability mode with
that of the model in Shelley & Zhang (2011) is made here for the first time, and it clarifies
the origin of this type of instability.

928 A24-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.830


R.L.G. Basso, Y. Hwang, G.R.S. Assi and S.J. Sherwin

(e)

(b)(a) (c)

(d ) ( f )

0 0.01 0.02 0.03 0.04 5.6×10–2

0 0.1 0.2 0.3 0.4 0.5 5.9×10–1

Figure 18. (a,d) Direct mode ‖û‖, (b,e) adjoint mode ‖û†‖ and (c, f ) sensitivity to localised forcing ΘF for
L/D = 4: (a–c) the torsional flapping instability at Re = 94, (d–f ) the vortex shedding instability at Re = 151.
Here, white solid lines indicate streamlines of the corresponding base flow.

3.2.3. Adjoint sensitivity
Finally, we consider the adjoint sensitivity of the flapping instability mode. Here, we
only show the result for L/D = 4, as this case is found to be quite similar to that for
L/D = 3. Figure 18 shows the magnitude of the direct ‖û‖ and adjoint ‖û†‖ modes and the
sensitivity to localised forcing ΘF for L/D = 4. Here, in each case, the Reynolds number
is chosen so as for the corresponding mode to be slightly unstable. Figure 18(a) shows
that the velocity perturbation magnitude of the torsional flapping mode is distributed
symmetrically about y = 0. The mode exhibits a non-negligibly large perturbation velocity
throughout the separating shear layer and it develops the peak value downstream of the
plate. This is in contrast to the vortex shedding mode in figure 18(d), which exhibits
its perturbation velocity only donwstream of the plate. It is presumable that the large
perturbation velocity developed from the separation point is due to the fact that the flapping
mode directly involves the motion of the plate, whereas the vortex shedding mode does not
require the motion of the plate at least near the onset.

An interesting feature of the flapping instability is that the adjoint mode exhibits large
values both in the separating shear layer around the plate and near the tip of the plate, as
shown in figure 18(b). This feature is distinguished from the adjoint mode of the vortex
shedding instability shown in figure 18(e) and the symmetry breaking instability shown in
figure 9( f ), which have large values only either in the separating shear layer (figure 18e)
or near the tip of the plate (figure 9 f ). While the tip behaviour of the adjoint mode of
the flapping instability is consistent with the discussion in § 3.2.2, its behaviour in the
separating shear layers rather resembles that of the vortex shedding mode. This suggests
that the structure of the adjoint flapping mode in the separating shear layers might be due
to the oscillating nature of the instability like the vortex shedding mode. The sensitivity to
localised feedback forcing ΘF(≡ ‖û‖ ‖û†‖) of the flapping mode is shown in figure 18(c).
In this case, ΘF are large both in the separating shear layer and near the tip, although the
tip region now has the maximum magnitude due to the spatial structure of the direct mode
‖û‖ (figure 18a). The overall spatial structure of ΘF of the flapping mode is similar to that
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L/D Re ΘF,max ΘS

3.0 112 2.541 × 10−1 4.636 × 103

4.0 94 5.584 × 10−2 1.174 × 102

Table 2. Values of ΘF,max(≡ maxx|ΘF|) and ΘS along the threshold of stability as a function of the splitter
plate length. Here, λTF

r � 0.

of the vortex shedding mode, although the tip sensitivity region of the vortex shedding
mode is developed further downstream compared with that of the flapping mode. Finally,
similarly to the symmetry breaking mode, the flapping mode also shows large sensitivity
to the change in the structural parameters, as shown in table 2.

4. Conclusions

We have studied instabilities and their sensitivity in a flow over a rotationally
flexible circular cylinder with a rigid splitter plate. The cylinder is coupled with a
spring-mass-damper system at its centre, such that it can rotate in response to the torque
applied by the surrounding fluid flow. The theoretical linear stability and sensitivity
methodology is derived for a non-rotationally symmetric problem which is observed to be
more intricate than the rigid body stability methodology due to the boundary condition
coupling of the base flow in the linearised problem. Three types of instabilities have
been found: the vortex shedding mode, the symmetry breaking mode and the torsional
flapping mode. A particular focus of this study has been given to the understanding of the
symmetry breaking and torsional flapping modes which originate from FSI. It was found
that the emergence of the symmetry breaking instability mode is strongly correlated with
the length of the recirculation zone and the related flow structure near the tip region of the
plate. The distribution of the pressure and viscous stress balance of the mode near the root
and tip regions of the splitter plate was also found to play a crucial role for the symmetry
breaking mode. In particular, as the Reynolds number is increased, the distribution near
the tip gradually becomes more important, resulting in destabilistion of the symmetry
breaking mode. The importance of the tip region was further identified by the subsequent
adjoint sensitivity analysis. An oscillatory instability, which we referred to as ‘torsional
flapping’, was also found in this flow. This type of instability has not been widely reported
with the only other case we are aware of being in the recent work of Pfister & Marquet
(2020) who considered a flexible splitter plate. This instability emerges when the length of
the splitter plate is sufficiently large enough (L/D ≥ 3 in this study). Unlike the symmetry
breaking mode, this instability mode does not appear to be correlated to the length of the
recirculation zone. However, the distribution of the pressure and viscous stress balance
revealed that flow near the tip region of the plate is also crucial for this mode, and this was
also confirmed by the sensitivity analysis. Lastly, all the observed physical features of the
oscillatory instability mode were very similar to those of the flapping (or flutter) instability
observed in a flag or a flexible plate, indicating that these two instabilities are of the same
type.

Perhaps, the most important finding of this work would be the identification of the
importance of the flow in the near tip region of the plate for both the symmetry breaking
and flapping instabilities. The strong sensitivity, presumably also related to the long
moment arm of the region, suggests that the two instabilities originating from FSI can
effectively be controlled by carefully modifying the flow in the tip region. This is also
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Figure 19. Comparison of the real part of the computed (a) direct and (b) adjoint eigenvalues for every splitter
plate length close to the onset of the instability. Here, L/D = 0.1 for Re = 47, L/D = 0.5 for Re = 55, L/D =
1.0 for Re = 72, L/D = 2.0 for Re = 95, L/D = 3.0 for Re = 114 and L/D = 4.0 for Re = 151.

consistent with the early experimental study (Toebes & Eagleson 1961) which showed
how different shapes of trailing edge of a thin plate can drastically modify the behaviour
of the vortex-induced vibration. Therefore, a sensitivity analysis used in this study or with
a more specific form of objective functionals (e.g. lift and drag) can further be formulated
to optimise the shape of the trailing edge. Finally, as the adjoint fields are now available
from this study, they can be used to formulate a weakly nonlinear analysis in a similar
manner to Meliga & Chomaz (2014). Such an analysis would also be useful to identify
the competition dynamics between the different instability modes as well as to interpret
the results of full nonlinear simulations incorporating the motion of the structure. These
are the directions one can pursue, and remain as future work.
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Appendix A. Inner product and adjoint operator

A.1. Inner product
The inner product in the present study is defined for two arbitrary state variables q and m,
such that

〈q, m〉 =
∫

Ω

(
qH

F W FmF

)
dx︸ ︷︷ ︸

〈qF,mF〉F

+ qH
S W SmS︸ ︷︷ ︸
〈qS,mS〉S

, (A1a)

where the superscript (·)H indicates the complex conjugate transpose, and the subscripts
F and S indicate the variables for fluid and structure, respectively, e.g. qF = [u p]T and
qS = [θ φ]T for q = [u p θ φ]T. The weight matrices are given by

W F =
[

I 0
0 0

]
, W S =

[
kθ 0
0 Iθ

]
, (A1b)

where I is the identity matrix in R
2×2. The choice of this inner product is made so that

the corresponding norm physically represents the total energy of the given fluid–structure
system, i.e.

‖q‖2 = 〈q, q〉 =
∫

Ω

(
qH

F W FqF

)
dx + qH

S W SqS

=
∫

Ω

(ū · u) dx︸ ︷︷ ︸
Ek,F

+ Iθ |φ|2︸ ︷︷ ︸
Ek,S

+ kθ |θ |2︸ ︷︷ ︸
Ep,S

, (A2)

where Ek,F, Ek,S and Ep,S are the dimensionless fluid kinetic energy, structural kinetic
energy and structural spring-potential energy, respectively.

A.2. Derivation of the adjoint problem
The adjoint operator L† is defined from

〈Lq, q†〉 = 〈q, L†q†〉 + B(q, q†), (A3)

and its boundary condition is obtained by enforcing the bilinear concomitant to be zero,
i.e.

B(q, q†) = 0, (A4)

with q† = [û† p̂† θ̂† φ̂†]T being the adjoint state variable. Expansion of (A3) using
(A1a), i.e.

〈Lq, q†〉 = 〈FqF, q†
F〉F + 〈AqF, q†

S〉S + 〈SqS, q†
S〉S

= 〈qF, F †q†
F〉F + BF(qF, q†

F) + 〈AqF, q†
S〉S + 〈qS, S†q†

S〉S, (A5)

with

L =
[

F 0
A S

]
≡

⎡
⎢⎣

N −∇ 0 0
∇· 0 0 0
0 0 0 1

m′
z,ν m′

z,p −(2π/UR)2 −4πζθ/UR

⎤
⎥⎦ , (A6)
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leads to the expressions of

(i) the fluid only adjoint operator

F †=
[

N† −∇
∇· 0

]
with N†û†=(u0 · ∇)û†− (u0∇)T · û†+Re−1∇2û†; (A7)

(ii) the bilinear concomitant from the fluid adjoint operator

BF

(
qF, q†

F

)
=

∮
∂ΩS

û† · (
σ ′ · n0

)︸ ︷︷ ︸
gives B.C.

− û ·
(
σ † · n0

)
︸ ︷︷ ︸

gives A†

dl, (A8)

with σ † = −p̂†I + Re−1[∇û† + (∇û†)T];
(iii) the adjoint structural operator

S†=
[

0 −1
(2π/UR)2 −4πζθ/UR

]
. (A9)

The boundary condition at the cylinder interface of the adjoint problem is obtained from
the first term on the right-hand side of (A8),∮

∂ΩS

û† · (
σ ′ · n0

)
dl = −〈AqF, q†

S〉S

= −
(∮

∂ΩS

r1 · (
σ ′ · n0

)
dl

)
φ̂†, (A10)

resulting in identification of

û†(r0(s)) = −r1(s)φ̂† (A11)

along the cylinder interface. Finally, the operator A† is then obtained by writing the second
term on the right-hand side of (A8) as∮

∂ΩS

[
−û ·

(
σ † · n0

)]
dl = 〈qS, A†q†

F〉S

⇔ −qS · W S

∮
∂ΩS

W −1
S

[
B ·

(
σ † · n0

)]
dl = qS · W SA†q†

F, (A12)

where we recall û = BqS on ∂ΩS. This then defines the structural adjoint equation

A†q†
F = −

∮
∂ΩS

W −1
S

[
B ·

(
σ † · n0

)]
dl. (A13)

Appendix B. Validation

B.1. Adjoint mode sensitivity to domain dimensions
Although not being the primary subject of this study, the vortex shedding mode developing
in the wake of the fixed cylinder plus splitter plate is taken as the validation test case for the
minimum domain size required ensuring accuracy of the results for the different splitter
plates lengths.

Figures 19 presents the computed numerical values of the real part of the direct and
adjoint of the vortex shedding mode eigenvalues as a function of the domain size in the

928 A24-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.830


Instabilities and sensitivities in a flow over a rotationally flexible cylinder

30 40 50

2

4

6

2

0

4

6

(×10–2)

Re

λr
SB

50 100

(×10–3)

Re

(b)(a)

λN

λ

λ†

λ

λ†

Figure 20. Comparison of the real part of the eigenvalue of the symmetry breaking mode from the
direct/adjoint mode computations and from full nonlinear simulations: (a) L/D = 1.0 for 30 ≤ Re ≤ 50; (b)
L/D = 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 at the Reynolds number near the onset of instability (note that the growth rate
is of the order of 10−3). Here, λN indicates the eigenvalue obtained from full nonlinear simulations, and the
domain size is given by |y| ≤ 20 and |x| ≤ 40.

same vertical axis scale. Here, simulations are performed at a Reynolds number close
to neutral stability for every plate length, leading to different Reynolds numbers for the
different plate lengths. It is noted that the minimum domain dimension required to obtain
acceptable agreement between direct and adjoint simulations varies with the splitter plate
length, which is presumably a consequence of the effect of the splitter plate length on the
structure of the vortex shedding mode. In practice, as the splitter plate length increases,
the peak magnitude of the vortex shedding mode is pushed farther downstream, and,
hence, a larger domain is required to capture the instability. For numerical efficiency, we
carefully chose a different domain size for each splitter plate length to ensure a sufficiently
small error between the eigenvalues of direct and adjoint modes: 200D in the downstream
direction for L/D ≤ 2, 300D for L/D = 3 and 500D for L/D = 4, respectively.

B.2. Symmetry breaking mode
Figure 20 presents the real part of the eigenvalue of the symmetry breaking mode from
direct/adjoint analysis and full nonlinear simulation (Serson et al. 2016), denoted by λ,
λ† and λN , respectively, while varying the Reynolds number. We note that growth rate
from the nonlinear simulation is obtained by fitting the early stage evolution of a small
perturbation to an exponential curve. Good agreement is obtained in the range of the
Reynolds numbers investigated approximately up to the order of 10−3. We note that a much
smaller domain is required to obtain such a good agreement in the case of the symmetry
breaking mode: for the results presented in figure 20, the computational domain is given
by |y| ≤ 20 and |x| ≤ 40. This is probably due to the fact that in the current formulation
and numerical implementation, the nature of the instability starts from the solid itself
(i.e. its boundary). Indeed, the peak in the perturbed velocity field is located directly
on the boundary (see § 3.1), hence, a smaller domain is enough to capture accurately
the mechanism as long as the near-wake base flow is well established. This observation
remains true in the case of the torsional flapping mode, as presented below. Having verified
the result with the domain of |y| ≤ 20 and |x| ≤ 40, a bigger computational domain
(|y| ≤ 30 and |x| ≤ 40) is used for the result in the present study.
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Figure 21. Comparison of the (a) real and (b) imaginary parts of the eigenvalue of the torsional flapping
mode from direct/adjoint mode calculations and full nonlinear simulations. Here, λN indicates the eigenvalue
obtained from full nonlinear simulations, and the domain size is given by |y| ≤ 30 and |x| ≤ 40.

B.3. Torsional flapping mode
Analogously to Appendix B.2, we present the numerical validation for the torsional
flapping mode λTF by comparing the results from direct/adjoint analysis with those from a
full nonlinear simulation. Figure 21 presents the real and imaginary part of the eigenvalues
obtained for L/D = 4, while varying the Reynolds number in the range 94 ≤ Re ≤ 100.
Good agreement between all the cases are obtained for the parameters investigated. We
note that the small difference was found to be primarily due to the computational domain
size (not shown).

Appendix C. Eigenvalue decomposition

Once the eigenvalue λ and the corresponding eigenvectors are computed, they exactly
satisfy the governing linearised equations (2.9). Using this feature, the eigenvalue λ may
be decomposed into the contributions from structural and fluid components, λS and λF,
respectively. The structural part of (2.9) is given by

λIqS + LSqS − M z = 0, (C1)

where

LS =
[

0 1
−(2π/UR)2 −4πζθ/UR

]
, (C2)

qS = [θ̂ φ̂]T is the vector containing the structure variables, M z = [0 m̂z]T with m̂z =
[m̂z,p m̂z,ν]T the moment matrix defined in (2.9) as part of the global operator L, and
W S the weight matrix defined in (A1a). After a left multiplication of (C1) by qH

S W S, the
eigenvalue λ is written as

λ = −qH
S W SLSqS

qH
S W SqS︸ ︷︷ ︸
λS

+ qH
S W SM z

qH
S W SqS︸ ︷︷ ︸
λF

. (C3)
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Without the presence of the structural damping parameter (i.e. ζθ = 0), the growth rate
structural contribution λS is identically 0, as λS reads as

λS = −qH
S W SLSqS

qH
S W SqS

= −−kθ θ̂ φ̂ + φ̂Iθ (kθ θ̂ I−1
θ + ζθ φ̂)

kθ θ̂2 + φ̂2Iθ
. (C4)

Furthermore, the moment matrix M z in (C3) may be decomposed into the contributions
from pressure and from viscous stress, such that

M z =
[

0 0
m̂z,p 0

]
︸ ︷︷ ︸

Mz,p

+
[

0 0
0 m̂z,ν

]
︸ ︷︷ ︸

Mz,ν

. (C5)

This then leads to a further decomposition of λF into

λF = qH
S W SM z,p

qH
S W SqS︸ ︷︷ ︸
λp

+ qH
S W SM z,ν

qH
S W SqS︸ ︷︷ ︸
λν

, (C6)

where λp and λν indicate the contributions from pressure and viscous stress, respectively.

REFERENCES

AKERVIK, E., BRANDT, L., HENNINGSON, D.S., HOEPFFNER, J., MARXEN, O. & SCHLATTER, P. 2006
Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18 (6),
068102.

ANDERSON, E.A. & SZEWCZYK, A.A. 1997 Effects of a splitter plate on the near wake of a circular cylinder
in 2 and 3-dimensional flow configurations. Exp. Fluids 23 (2), 161–174.

ASSI, G.R.S., BEARMAN, P.W. & KITNEY, N. 2009 Low drag solutions for suppressing vortex-induced
vibration of circular cylinders. J. Fluids Struct. 25 (4), 666–675.

ASSI, G.R.S., BEARMAN, P.W., KITNEY, N. & TOGNARELLI, M.A. 2010 Suppression of wake-induced
vibration of tandem cylinders with free-to-rotate control plates. J. Fluids Struct. 26, 1045–1057.

ASSI, G.R.S., BEARMAN, P.W. & TOGNARELLI, M.A. 2014a On the stability of a free-to-rotate short-tail
fairing and a splitter plate as suppressors of vortex-induced vibration. Ocean Engng 92, 234–244.

ASSI, G.R.S., FRANCO, G.S. & VESTRI, M.S. 2014b Investigation on the stability of parallel and oblique
plates as suppressors of vortex-induced vibration of a circular cylinder. J. Offshore Mech. Arctic Engng
136 (3), 031802.

BAEK, H. & KARNIADAKIS, G. 2012 A convergence study of a new partitioned fluid-structure interaction
algorithm based on fictitious mass and damping. J. Comput. Phys. 231, 629–652.

BAGHERI, S., MAZZINO, A. & BOTTARO, A. 2012 Spontaneous symmetry breaking of a hinged flapping
filament generates lift. Phys. Rev. Lett. 109, 154502.

BARKLEY, D., BLACKBURN, H.M. & SHERWIN, S.J. 2008 Direct optimal growth analysis for timesteppers.
Intl J. Numer. Meth. Fluids 57 (9), 1435–1458.

CANTWELL, C.D., et al. 2015 Nektar++: an open-source spectral/hp element framework. Comput. Phys.
Commun. 192, 205–219.

CHOI, H., JEON, W.-P. & KIM, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40 (1),
113–139.

CHOMAZ, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu.
Rev. Fluid Mech. 37 (1), 357–392.

CIMBALA, J.M. & GARG, S. 1991 Flow in the wake of a freely rotatable cylinder with splitter plate. AIAA J.
29 (6), 1001–1003.

COSSU, C. & MORINO, L. 2000 On the instability of a spring-mounted circular cylinder in a viscous flow at
low Reynolds numbers. J. Fluids Struct. 14, 183–196.

DOLCI, D. & CARMO, B. 2018 Sensitivity analysis applied for a flow around spring-mounted cylinder. In
Proceedings of 9th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions,
Flow-Induced Vibration & Noise, Toronto, Ontario, Canada, July 8–11.

928 A24-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.830


R.L.G. Basso, Y. Hwang, G.R.S. Assi and S.J. Sherwin

FERNANDEZ, M.A. & TALLEC, P.L. 2002 Linear stability analysis in fluid-structure interaction with
transpiration. Part I: formulation and mathematical analysis. Research Rep. INRIA.

GERBEAU, J.F., NOBILE, F. & CAUSIN, P. 2005 Added-mass effect in the design of partitioned algorithms
for fluid-structure problems. Comput. Meth. Appl. Mech. Engng 194 (42–44), 4506–4527.

GIANNETTI, F. & LUCHINI, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid
Mech. 581, 167–197.

GUERMOND, J.L. & SHEN, J. 2003 Velocity-correction projection methods for incompressible flows. SIAM
J. Numer. Anal. 41, 112–134.

HUERRE, P. & MONKEWITZ, P.A. 1990 Local and global instabilities in spatially developing flows. Annu.
Rev. Fluid Mech. 22 (1), 473–537.

JORDI, B.E., COTTER, C.J. & SHERWIN, S.J. 2014 Encapsulated formulation of the selective frequency
damping method. Phys. Fluids 26, 034101.

KARNIADAKIS, G.E., ISRAELI, M. & ORSZAG, S.A. 1991 High-order splitting methods for the
incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414–443.

KWON, K. & CHOI, H. 1996 Control of laminar vortex shedding behind a circular cylinder using splitter
plates. Phys. Fluids 8 (2), 479–486.

LACIS, U., BROSSE, N., INGREMEAU, F., MAZZINO, A., LUNDELL, F., KELLAY, H. & BAGHERI, S. 2014
Passive appendages generate drift through symmetry breaking. Nat. Commun. 5, 5310.

LUCHINI, P. & BOTTARO, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46 (1),
493–517.

LUO, H. & BEWLEY, T.R. 2004 On the contravariant form of the Navier–Stokes equations in time-dependent
curvilinear coordinate system. J. Comput. Phys. 199, 355–375.

MARQUET, O., SIPP, D. & JACQUIN, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid
Mech. 615, 221–252.

MELIGA, P. & CHOMAZ, J.M. 2014 An asymptotic expansion for the vortex-induced vibrations of a circular
cylinder. HAL archives-ouvertes HAL-00994505.

NEGI, P.S., HANIFI, A. & HENNINGSON, D.S. 2019 Global stability of rigid-body-motion fluid-structure-
interaction problems. arXiv:1910.09605.

OZONO, S. 1999 Flow control of vortex shedding by a short splitter plate asymmetrically arranged downstream
of a cylinder. Phys. Fluids 11 (10), 2928–2934.

PARK, H., BAE, K., LEE, B., JEON, W.P. & CHOI, H. 2010 Aerodynamic performance of a gliding
swallowtail butterfly wing model. Exp. Mech. 50 (9), 1313–1321.

PFISTER, J.-L. 2019 Instabilities and optimization of elastic structures interacting with laminar flows. PhD
thesis, Thèse de doctorat de l’Université Paris-Saclay préparée à l’École polytechnique et à l’Office National
d’Études et de Recherches Aérospatiales.

PFISTER, J.-L. & MARQUET, O. 2020 Fluid structure stability analyses and nonlinear dynamics of flexible
splitter plates interacting with a circular cylinder flow. J. Fluid Mech. 896, A24.

ROSHKO, A. 1954 On the drag and shedding frequency of two-dimensional bluff bodies. NACA Tech. Note
3169. National Advisory Committee for Aeronautics.

SERSON, D., MENEGHINI, J.R. & SHERWIN, S.J. 2016 Velocity-correction schemes for the incompressible
Navier–Stokes equations in general coordinate systems. J. Comput. Phys. 316, 243–254.

SHELLEY, M.J. & ZHANG, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid
Mech. 43 (1), 449–465.

STRYKOWSKI, P. & SREENIVASAN, K. 1990 On the formation and suppression of vortex at low Reynolds
numbers. J. Fluid Mech. 218, 71–107.

THEOFILIS, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43 (1), 319–352.
TOEBES, G.H. & EAGLESON, P.S. 1961 Hydroelastic vibrations of flat plates related to trailing edge geometry.

Trans. ASME J. Basic Engng 83, 671–678.

928 A24-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/1910.09605
https://doi.org/10.1017/jfm.2021.830

	1 Introduction
	2 Problem formulation
	2.1 Equations of motion
	2.2 Linear stability
	2.3 Adjoint sensitivity analysis
	2.4 Numerical methods

	3 Results and discussions
	3.1 Symmetry breaking mode
	3.1.1 Linear stability
	3.1.2 Physical mechanism of instability
	3.1.3 Adjoint sensitivity

	3.2 Torsional flapping
	3.2.1 Linear stability
	3.2.2 Physical mechanism of instability
	3.2.3 Adjoint sensitivity


	4 Conclusions
	Appendix A. Inner product and adjoint operator
	A.1 Inner product
	A.2 Derivation of the adjoint problem

	Appendix B. Validation
	B.1 Adjoint mode sensitivity to domain dimensions
	B.2 Symmetry breaking mode
	B.3 Torsional flapping mode

	Appendix C. Eigenvalue decomposition
	References

