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We apply a nonlinear mean-field dynamo model which includes a budget equation
for the dynamics of Wolf numbers to predict solar activity. This dynamo model takes
into account the algebraic and dynamic nonlinearities of the α effect, where the
equation for the dynamic nonlinearity is derived from the conservation law for the
magnetic helicity. The budget equation for the evolution of the Wolf number is based
on a formation mechanism of sunspots related to the negative effective magnetic
pressure instability. This instability redistributes the magnetic flux produced by the
mean-field dynamo. To predict solar activity on the time scale of one month we use a
method based on a combination of the numerical solution of the nonlinear mean-field
dynamo equations and the artificial neural network. A comparison of the results of
the prediction of the solar activity with the observed Wolf numbers demonstrates a
good agreement between the forecast and observations.
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1. Introduction

Since formulation of the mean-field dynamo approach in a seminal paper by
Steenbeck, Krause and Rädler in 1966 (Steenbeck, Krause & Rädler 1966; Roberts
& Stix 1971; Krause & Rädler 1980), the theories of solar magnetic fields have been
actively developing during last 50 years (Moffatt 1978; Parker 1979; Krause & Rädler
1980; Zeldovich, Ruzmaikin & Sokoloff 1983; Ossendrijver 2003; Brandenburg &
Subramanian 2005; Rüdiger, Kitchatinov & Hollerbach 2013). A well-known point of
view on origin of the large-scale solar magnetic field is that the field is generated in
the solar convective zone by a combine action of helical convective turbulent motions
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and large-scale non-uniform rotation (so called αΩ or α2Ω mean-field dynamo). This
large-scale magnetic field causes the 11-year solar cyclic activity.

However, the observed solar activity is associated with strongly concentrated
magnetic fields such as sunspots with the characteristic spatial scale of the order of
solar super-granulation (approximately 104 km). On the other hand, the mean-field
dynamo generates smooth large-scale magnetic fields with the characteristic scale
of the order of the solar radius (approximately 106 km). Thus it was not clear
for many years how the mean-field dynamo relates to with the sunspots. One of
the suggested mechanisms of magnetic spot formation is the magnetic buoyancy
instability investigated by Parker in 1966 (Parker 1966, 1979; Priest 1982). This
instability is excited when the characteristic scale of original magnetic field variation
is smaller than the density stratification height. Therefore, in a strongly density
stratified convective zone where the density varies in radial direction by 7 orders of
magnitude, this instability is only excited when the initial magnetic field is already
strongly non-uniform.

Another mechanism of magnetic spot formation is related to the negative effective
magnetic pressure instability (NEMPI), which can be excited even for uniform initial
large-scale magnetic field (Kleeorin, Rogachevskii & Ruzmaikin 1989, 1990). The
mechanism of this instability is based on the suppression of total (hydrodynamic
and magnetic) turbulent pressure by a large-scale magnetic field. This effect can be
understood as a negative contribution of turbulence to the effective mean magnetic
pressure (the sum of non-turbulent and turbulent contributions). At large fluid
and magnetic Reynolds numbers this turbulent contribution becomes large and a
large-scale instability can be excited, redistributing the magnetic flux produced by
the mean-field dynamo. NEMPI has been studied analytically using the mean-field
approach (Kleeorin, Mond & Rogachevskii 1993, 1996; Kleeorin & Rogachevskii
1994; Rogachevskii & Kleeorin 2007) and numerically using mean-field simulations
(Brandenburg, Kleeorin & Rogachevskii 2010; Kemel et al. 2012, 2013; Brandenburg
et al. 2014; Brandenburg, Rogachevskii & Kleeorin 2016), large-eddy simulations
(Käpylä et al. 2012, 2016) and direct numerical simulations (Brandenburg et al. 2011,
2012; Brandenburg, Kleeorin & Rogachevskii 2013; Warnecke et al. 2013, 2016;
Mitra et al. 2014; Jabbari et al. 2016).

Predictions of solar activity is a subject of active investigation where various
methods, including the mean-field dynamo models, have been used (Dikpati, De
Toma & Gilman 2006; Bushby & Tobias 2007; Choudhuri, Chatterjee & Jiang 2007;
Kane 2007; Obridko & Shelting 2008; De Jager & Duhau 2009; Tlatov 2009, 2015;
Kitiashvili & Kosovichev 2011; Pesnell 2012; Usoskin 2017). However, the improving
of the solar activity forecast is still a subject of numerous discussions.

In the present study we apply a nonlinear mean-field dynamo model and a budget
equation for the dynamics of Wolf numbers (Kleeorin et al. 2016) to predict solar
activity. This budget equation is related to a mechanism of formation of sunspots
based on NEMPI. The dynamo model includes the algebraic and dynamic quenching
of the α effect. To predict solar activity on the time scale of one month we use a
method based on a combination of the numerical solution of the nonlinear mean-field
dynamo equations (Kleeorin et al. 2016) and the artificial neural network approach
(Fessant, Pierret & Lantos 1996; Conway 1998; Hagan, Demuth & Beale 2016).

2. Nonlinear dynamo model
To study nonlinear evolution of the large-scale magnetic field, we use the induction

equation in spherical coordinates (r, θ, φ) for an axisymmetric mean magnetic field,
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B = Bφeφ + ∇ × (Aeφ). We investigate the dynamo action in a thin convective shell.
To take into account strong variation of the plasma density in the radial direction, we
average the equations for the mean toroidal field Bφ and the magnetic potential A of
the mean poloidal field over the depth of the convective shell, so that all quantities are
functions of colatitude θ . We neglect the curvature of the convective shell and replace
it by a flat slab. These simplifications yield the non-dimensional mean-field dynamo
equations (Kleeorin et al. 2003):

∂Bφ
∂t
=GD sin θ

∂A

∂θ
+
∂2Bφ
∂θ 2
−µ2Bφ, (2.1)

∂A

∂t
= αBφ +

∂2A

∂θ 2
−µ2A, (2.2)

where the terms, −µ2Bφ and −µ2A, in (2.1) and (2.2) describe turbulent diffusion of
the mean magnetic field in the radial direction, the parameter G= ∂Ω/∂r determines
the differential rotation and D is the dynamo number defined below. The parameter µ
is determined by the equation:∫ 1

2/3

∂2Bφ
∂r2

dr=−
µ2Bφ

3
. (2.3)

In (2.1)–(2.3) the length is measured in units of radius R�, time is measured in
units of the turbulent magnetic diffusion time R2

�
/ηT , the differential rotation δΩ

is measured in units of the maximal value of the angular velocity Ω , and α is
measured in units of the maximum value α0 of the kinetic part of the α-effect. The
toroidal mean magnetic field, Bφ is measured in the units of the equipartition field
Beq = u0

√
4πρ∗, and the vector potential of the mean poloidal field A is measured

in units of RαR�Beq. The density ρ is normalized by its value ρ∗ at the bottom of
the convective zone, and the integral scale of the turbulent motions `0 and turbulent
velocity u0 at the scale `0 are measured in units of their maximum values through
the convective region. The magnetic Reynolds number Rm= `0u0/η is defined using
these maximal values, and the turbulent magnetic diffusivity is ηT = `0u0/3. Here η
is the magnetic diffusion coefficient due to electrical conductivity of the plasma. The
dynamo number is defined as D= RαRω, where Rα = α0R�/ηT and Rω = (δΩ)R2

�
/ηT .

Equations (2.1) and (2.2) describe the dynamo waves propagating from the central
latitudes towards the equator when the dynamo number is negative. The radius r
varies from 2/3 to 1 inside the convective shell, so that the value µ= 3 corresponds
to a convective zone with a thickness of approximately 1/3 of the radius.

The total α effect is defined as the sum of the kinetic, αv =χ vφv(B), and magnetic,
αm
= χ cφm(B), parts:

α(r, θ)= χ vφv(B)+ χ cφm(B), (2.4)

where χ v =−(τ0/3)u · (∇× u), χ c
= (τ0/12πρ) b · (∇× b), τ0 is the correlation time

of the turbulent velocity field, u and b are the velocity and magnetic fluctuations,
respectively. We adopt the standard profile of the kinetic part of the α effect:
α(θ) = α0 sin3 θ cos θ . The magnetic part of the α effect (Pouquet, Frisch &
Léorat 1976) and density of the magnetic helicity are related to the density of the
current helicity b · (∇× b) in the approximation of weakly inhomogeneous turbulent
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convection (Kleeorin & Rogachevskii 1999). The quenching functions φv(B) and
φm(B) in (2.4) are given by:

φv(B)= (1/7)[4φm(B)+ 3L(B)], (2.5)

φm(B)=
3

8B2 [1− arctan(
√

8B)/
√

8B], (2.6)

(Rogachevskii & Kleeorin 2000, 2001), where L(B) = 1 − 16B2
+ 128B4 ln(1 +

1/(8B2
)). The quenching functions have the following asymptotics: φv(B) =

1 − (48/5)B2 and φm(B) = 1 − (24/5)B2 for a weak magnetic field, B � 1, while
φv(B)= 1/(4B2

) and φm(B)= 3/(8B2
) for a strong magnetic field, B� 1, where χ v

and χ c are measured in units of the maximal value of the α effect. The function φv
describes the algebraic quenching of the kinetic part of the α effect that is caused
by the effects of the mean magnetic field on the electromotive force (Rogachevskii
& Kleeorin 2000, 2001, 2004).

We average (2.4) over the depth of the convective zone, so that the first term in
the averaged equation is determined by the values taken at the middle part of the
convective zone, while in the second term there is a phenomenological parameter σ :

α(θ)= χ vφv(B)+ σχ cφm(B), σ =

∫ (
ρ(r)
ρ∗

)−1

dr, (2.7a,b)

(Zhang et al. 2012; Kleeorin et al. 2016), where the densities of the helicities and
quenching functions are associated with a middle part of the convective zone. The
parameter σ > 1 is a free parameter.

The magnetic part αm of the α effect is based on two nonlinearities: the algebraic
quenching, given by the function φm(B) (Field, Blackman & Chou 1999; Rogachevskii
& Kleeorin 2000, 2001) and the dynamic nonlinearity. The function χ c(B) is
determined by a dynamical equation that is derived using the conservation law
for magnetic helicity (Kleeorin & Ruzmaikin 1982; Gruzinov & Diamond 1994;
Kleeorin, Rogachevskii & Ruzmaikin 1995):

∂χ c

∂t
+∇ ·Φ +

χ c

T
=−

1
9πηTρ∗

(E ·B), (2.8)

where Φ = −κT∇χ
c is the turbulent diffusion flux of the density of the magnetic

helicity (Kleeorin & Rogachevskii 1999; Blackman & Field 2000; Kleeorin et al.
2000, 2003; Brandenburg & Subramanian 2005), κT is the coefficient of the turbulent
diffusion, T = `2

0/η is the relaxation time of magnetic helicity and E is the mean
electromotive force. Since the total magnetic helicity is conserved, the increase of
the density of the large-scale magnetic helicity due to the dynamo action, should
be compensated by the decrease of the density of the small-scale magnetic helicity.
The compensation mechanisms include the dissipation and transport of the density
of the magnetic helicity. The dynamical equation (2.8) for the function χ c(B) in
non-dimensional form reads

∂χ c

∂t
+ (T−1

+ κTµ
2)χ c
= 2

(
∂A

∂θ

∂Bφ
∂θ
+µ2A Bφ

)
−
α

ξ
B2
−
∂

∂θ

(
Bφ
∂A

∂θ
− κT

∂χ c

∂θ

)
,

(2.9)
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(Zhang et al. 2012; Kleeorin et al. 2016), where

B2
= ξ

{
B2
φ + R2

α

[
µ2A

2
+

(
∂A

∂θ

)2
]}

, (2.10)

and ξ = 2(`0/R�)2. In derivation of (2.9)–(2.10), we average (2.8) over the depth of
the convective zone, so that the average value of T−1 is

T−1
=H−1

∫
T−1(r) dr∼

Λ`R2
�
η

H`2
0ηT

, (2.11)

where H is the depth of the convective zone, Λ` is the characteristic scale of variations
`0 and T(r)= (ηT/R2

�
)(`2

0/η) is the non-dimensional relaxation time of the density of
the magnetic helicity. The values Λ`, η, `0 in (2.11) are associated with the upper
part of the convective zone.

In view of observations, an important parameter of the solar activity is the Wolf
number (Gibson 1973; Stix 2012), W = 10g + f , where g is the number of sunspot
groups and f is the total number of sunspots on the visible part of the Sun. This
parameter has been measured over three centuries. Based on the idea of NEMPI, we
derive a budget equation for the surface density of the Wolf number (Kleeorin et al.
2016):

∂W̃
∂t
= I(t, θ)−

W̃
τs(B)

. (2.12)

Equation (2.12) includes the rate of production of the surface density of the Wolf
number, W̃(t, θ), caused by the formation of sunspots:

I(t, θ)=
|γinst||B− Bcr|

Φs
Θ(B− Bcr), (2.13)

and the rate of decay of sunspots, W̃/τs(B), where the decay time, τs(B), of sunspots
is discussed below and Θ(x) is the Θ function, defined as Θ(x) = 1 for x > 0, and
Θ(x)= 0 for x 6 0.

The growth rate of NEMPI, γinst, is given by (Rogachevskii & Kleeorin 2007;
Losada et al. 2012; Brandenburg et al. 2016):

γinst ≈

(
2v2

Ak2
x

H2
ρk2

∣∣∣∣dPeff

dβ2

∣∣∣∣− 4(Ω · k)2

k2

)1/2

− ηT

(
k2
+

1
(2Hρ)2

)
, (2.14)

where vA = B/
√

4πρ is the mean Alfvén speed, k is the wavevector, kx is the
component of the wavevector in the direction perpendicular to the mean magnetic
field and the gravity acceleration, Ω is the angular velocity, Hρ is the density
stratification height, Peff = [1 − qp(β)]β

2/2 is the effective magnetic pressure, the
nonlinear function qp(β) is the turbulence contribution to the mean magnetic pressure
and β = B/Beq. As follows from (2.14), NEMPI is excited in the upper part of
the convective zone, where the Coriolis number Co = 2Ωτ0 is small. To determine
the source function I(t, θ) given by (2.13), we take into account that NEMPI has
a threshold, i.e. the instability is excited (γinst > 0), only when the mean magnetic
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field is larger than a critical value, B > Bcr. This implies that the source I(t, θ) is
proportional to the Θ function. The critical value Bcr of the mean magnetic field is
given by

Bcr

Beq
=

`0

50Hρ

1+

(
10CoH2

ρ

`2
0

)2
1/2

, (2.15)

where we use (2.14). For upper part of the convective zone, this field Bcr > Beq/50 is
small enough.

The function I(t, θ) determines the Wolf number variation rate. The characteristic
time of the Wolf number variations is assumed to be identified with the characteristic
time for excitation of the instability, γ −1

inst . When γinst<0, the rate of production, I(t, θ),
vanishes. This implies that the function I(t, θ)∝|γinst|Θ(B−Bcr). The production term,
I(t, θ), is also proportional to the maximum number of sunspots per unit area, that can
be estimated as ∼ |B−Bcr|/Φs, where |B−Bcr| is the magnetic flux per unit area that
contributes to the sunspot formation and Φs is the magnetic flux inside a magnetic
spot.

The decay of sunspots during the nonlinear stage of NEMPI, is described by the
relaxation term, −W̃/τs(B). The decay time τs(B) varies from several weeks to a
couple of month, while the solar cycle period is approximately 11 years. Therefore, to
determine the surface density of the Wolf number, we can use the steady-state solution
of (2.12): W̃ = τs(B)I(t, θ). The Wolf number is defined as a surface integral:

W = R2
�

∫
W̃(t, θ) sin θ dθ dφ = 2πR2

�

∫
τs(B)I(t, θ) sin θ dθ. (2.16)

To determine the function τs(B) we take into account that when the solar activity
increases (decreases), the lifetime of sunspots increases (decreases), so that τs(B) is

τs(B)= τ∗ exp(Cs∂B/∂t), (2.17)

with Cs = 1.8 × 10−3 and τ∗γinst ∼ 10. Here the non-dimensional rate of the mean
magnetic field, ∂B/∂t, is measured in the units ξBeq/ttd, and ttd is the turbulent
magnetic diffusion time. A particular form of the function τs(B) weakly affects the
dynamics of the Wolf numbers.

To obtain a realistic behaviour of solar activity, it is necessary to include both
algebraic and dynamical quenching. The reason is that the magnetic part of the α

effect which is proportional to 1/ρ, is located at the upper part of the convective zone.
The dynamical nonlinear equation for the magnetic part of the α effect can give rich
(chaotic) behaviour. For example, a minimum three nonlinear coupling equations allow
for the appearance of chaos in the dynamical system. Additional algebraic quenching
of both, kinetic and magnetic parts of the α effect allows easily saturate growth of
the large-scale magnetic field (Kleeorin et al. 2003, 2016; Zhang et al. 2006). This
quenching describes the feedback reaction of the strong magnetic field on the fluid
motions and should be taken into account in the nonlinear dynamo model.
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FIGURE 1. Comparison of the results using the dynamo model and observations; (a)
butterfly diagram of the Wolf number variation rate 2π sin θ I(t, θ), the dynamo model
(colour) and the real monthly observational data (black); (b) the evolution of the Wolf
numbers, the dynamo model (black), real observational data (red), and observational data
averaged over 13 months (blue).

3. Results
We solve numerically (2.1), (2.2), (2.9) and (2.12). The parameters of the numerical

simulation are as follows: D = −8450, G = 1, σ = 3, µ = 3, ξ = 0.1, κT = 0.1,
Rα = 2, T = 6.3, S1 = 0.051, S2 = 0.95. We use the following initial conditions:
Bφ(t = 0, θ) = S1 sin θ + S2 sin(2θ) and A(t = 0, θ) = 0. Comparison of the results
using the dynamo model and observations are shown in figure 1. In figure 1(a)
we show the butterfly diagram of the Wolf number variation rate 2π sin θ I(t, θ),
obtained from the numerical solution of equations of the dynamo model described in
§ 2. We also compare these results with those obtained from observations. We use the
observed Wolf numbers time series (the real monthly observational data known as the
monthly mean total sunspot number, red line). The data are available in open access
from the World Data Center SILSO, Royal Observatory of Belgium, Brussels. We
also show these observational data using a 13 month sliding (or window) averaging
of the observed Wolf numbers time series (blue line). In figure 1(b) we show the
time evolution of the Wolf numbers based on the dynamo model and observations.
The dynamo model reproduces some of the observed features such as the latitude
distribution of the active regions.

The long-term evolution of these characteristics is shown in figure 2. In particular,
the considered dynamo model is able to produce very rich behaviour which includes
a decrease of the solar activity during the next half-century up to the minimum
(similar to the Dalton minimum), followed by a strong increase of solar activity and
the Maunder minimum. The long-term behaviour of the dynamo model (see figure 2
which shows an example of the behaviour of the dynamo model) is not yet a forecast
of solar activity, because no observational data have been assimilated into the model
here. Note that the simulation discussed here includes 150 years (14 cycles) of
transient period. The solutions in figures 1 and 2 are shown at later simulated time,
so any transient is not seen in these figures.

The poleward propagation of the Wolf numbers is observed in figure 2(a) starting
from t= 2075 up to t= 2125. In the framework of the used simplified dynamo model
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FIGURE 2. The long-term evolution of large-scale magnetic field and the Wolf number
time series; (a) butterfly diagram of the Wolf number variation rate 2π sin θ I(t, θ), the
dynamo model (colour) and the real monthly observational data (black); (b) the Wolf
numbers, the dynamo model (black), real observational data (red), and observational data
averaged over 13 months (blue).

there is either equatorward propagation of the sunspot belt or poleward propagation of
the sunspot belt depending on the level of the magnetic part of the α effect. However,
there are no simultaneously coexisting two branches of the dynamo waves. To obtain
simultaneously coexisting two branches of the dynamo waves, a two-layer dynamo
model with different signs of the differential rotation can be considered in the dynamo
model (Belvedere, Kuzanyan & Sokoloff 2000).

Note that sequences of several cycles with equally high correlation to the solar
activity between 1965 and the present day can be found with various different sets
of system parameters or even different time spans within one particular simulation.
To reach the high correlation between simulated and observed data, we compared
different characteristics in simulated and observed sunspot cycles (see figures 9–11 in
Kleeorin et al. (2016)).

In figure 3 we show the latitude distribution of the toroidal magnetic field Bφ(ϕ)
at different stages of the magnetic field evolution obtained in the framework of the
dynamo model described in § 2. This evolution includes lower solar activity without
sunspots, the beginning of the new solar cycle and the maximum of solar activity.
The different panels correspond to different epochs, e.g. the modern epoch of solar
activity; the future epoch with high level of the solar activity; the possible Maunder
minimum epoch; and the epoch after the Maunder minimum. The new cycle in the
modern epoch starts in high latitudes and the dynamo waves propagates to the equator.
On the other hand, in the case of very high level of the solar activity, its maximum
reaches very fast at lower latitudes and the dynamo wave propagates to the higher
latitudes. During the possible Maunder minimum epoch, a strong asymmetry between
the north and the south hemispheres is observed.

After entering into the Maunder minimum the model again comes back on suddenly
(see figure 2). Let us discuss what causes the Sun to be kicked into and out of
the Maunder minimum. In the considered dynamo model, that includes the equations
for the poloidal and toroidal mean magnetic fields, the dynamical equation for the
magnetic part of the α effect and the budget equation for the surface density of the
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FIGURE 3. The latitude distribution of the toroidal magnetic field Bφ(ϕ) at different stages
of magnetic field evolution obtained in the dynamo model: no sunspots (dotted line);
beginning of the solar cycle (dashed line) and the maximum of solar activity (solid line).
The different panels correspond to different epochs: (a) the modern epoch; (b) the future
epoch with high solar activity; (c) the possible Maunder-minimum-like epoch; (d) the
epoch after the possible Maunder minimum. The magnetic field is measured in the units
of the threshold of the sunspot formation.

Wolf number, can produce rich behaviour including the Maunder minimum. The first
three nonlinear equations describe the chaotic behaviour of the large-scale magnetic
field. The last equation mimics the sunspots formation which takes into account the
threshold for excitation of NEMPI in the large-scale magnetic field. The latter provides
switch on and switch off of the sunspot formation (see below).

In figure 2(a) the propagation direction of the dynamo wave changes after which
the cycles disappear for almost a century. The physics for the disappearance
of the sunspots before starting the Maunder minimum is as follows. When the
mean magnetic field decreases below the threshold for the large-scale instability
(i.e. NEMPI), the sunspots cannot be formed anymore (see figure 3c). Before this
happened, the level of magnetic activity was high (see figure 2b), and polar branch
of activity dominated (see figure 2a). The latter is because the total α effect (that
determines the direction of the dynamo wave propagation) changes sign. The reason
is that when the mean magnetic field becomes strong, the magnetic part of the α

effect can be larger than the kinetic part of the α effect, so that the total α changes
sign. We note that the magnetic and kinetic parts of the α effect have opposite signs.

We performed a parameter scan using approximately 103 runs with different sets of
parameters to find an optimal set of parameters to reach a high level of correlation
between the dynamo model results and observations of the Wolf numbers. Let us
discuss how the variations of the parameters affect the results. In our previous study
(Kleeorin et al. 2016) we found that there are two crucial parameters which strongly
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affect the dynamics of the nonlinear dynamo system: the dynamo number D and
the initial field Bdip

init for the dipole mode, determined by the parameter S2. A proper
choice of the initial field Bdip

init allows us to avoid very long transient regimes to reach
the strange attractor. Comparing the results of the dynamo model with observations,
we determine the correlation between the numerical simulation data for the Wolf
number and the observational data. To find the maximum correlation between the
dynamo model results and the observed Wolf numbers, the following parameter scan
has been performed: −88006D6−8200 and 0.856 S2 6 0.95 (see, e.g. figure 12 in
Kleeorin et al. (2016)). The maximum correlation is obtained when the parameters
are D = −8450 and S2 = 0.95. The function D(σ ) determines the region of chaotic
behaviour, and for small σ the dynamo system cannot remain inside the region of
the chaotic behaviour. To find the region of the chaotic behaviour, the following
parameter scan has been performed: −104 6 D 6 −3 × 103 and 0.3 6 σ 6 9 (see,
e.g. figure 1 in Kleeorin et al. (2016)). The parameter µ determines the critical
dynamo number, |Dcr|, for the excitation of the large-scale dynamo instability. The
flux of the magnetic helicity (see (2.8) and (2.9)), characterized by the parameter
κT , cannot be very small to avoid the catastrophic quenching of the α effect. The
optimal value for this parameter is κT ≈ 0.1. The variations of the other parameters
only weakly affect the obtained results (Kleeorin et al. 2016).

4. Forecast of solar activity

Any mean-field dynamo model works on a time scale that is larger than 1 year.
Indeed, according to the model of solar convective zone by Spruit (1974), at the
bottom of the convective zone, say at depth h∗∼ 2× 1010 cm, the magnetic Reynolds
number Rm∼ 2× 109, the turbulent velocity u0 ∼ 2× 103 cm s−1, the turbulent scale
`0 ∼ 8 × 109 cm, so the turn over time of turbulent eddies `0/u0 ∼ 4 × 106 s (that
is 0.13 years). This implies that the mean-field time (the characteristic time of the
mean-field variations) should be at least one order of magnitude larger than the turn
over time, i.e. approximately 1 year. This refers to a sufficient separation of temporal
scales in which case memory effects can be neglected. This implies that a mean-field
dynamo model cannot provide the forecast of the solar activity on a time scale of
several months. To predict the solar activity on a short time scale, additional methods
should be used for the forecast of the solar activity.

To predict solar activity on the time scale of one month we use a method based on
a combination of the numerical solution of the nonlinear mean-field dynamo equations
and the artificial neural network approach (Fessant et al. 1996; Conway 1998; Hagan
et al. 2016). A simplified version of the artificial neural networks method to forecast
the solar activity has been used before (Fessant et al. 1996; Conway 1998). However,
this method has not been combined with the advanced mean-field approach based
on the nonlinear dynamo models, and the used network scheme has not been stable,
resulting in a systematic increase of errors. The recent developments in the field of
artificial neural networks and the increased computational capabilities of the computers
allow us to combine the simulations of the nonlinear mean-field dynamo model with
the artificial neural network forecast scheme.

To apply this approach, we use the initial simulations of the Wolf numbers Wmodel
i ,

based on the dynamo model described in § 2, as the basis for the forecast and as
the exogenous input in the neural network scheme. Another input are the data Wobs

i
obtained from observations. To perform the forecast W forecast

i for the next half a year
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FIGURE 4. Comparison of the results of the one month forecast of the solar activity (filled
circles) with the observed Wolf numbers (solid line).

or longer, we adopt an autoregressive scheme with unknown coefficients (determined
during the learning procedure):

W forecast
i = fout(Kw+ c), (4.1)

where fout(x) is a linear function of an outer layer of neurons, c is the bias vector; K
is the weight matrix of neurons; w is the inputs vector, containing observations Wobs

i
and model estimations Wmodel

i . To estimate the weight matrix K one needs to minimize
the error between the deviations of the forecast data W forecast

i from the observational
data Wobs

i .
Equation (4.1) describes a simple ‘one-layer artificial neural network’. However, for

our task it is required to use a more complex scheme, e.g. a ‘two-layer artificial neural
network’ type of a recurrent dynamic nonlinear autoregressive network, with feedback
connections enclosing two layers of the network, defined by the following equation:

W forecast
i = fout[K2fhidden(K1w+ c1)+ c2], (4.2)

where fhidden(x) = [1 + exp(−x)]−1 is a function of a hidden layer of neurons, K1 is
the weight matrix 24 × 8 of hidden layer neurons, K2 is the weight matrix 1 × 24
of outer layer neurons, c1 and c2 are the corresponding bias vectors, w is the input
vector 8 × 1 consisting of 4 prior observations Wobs

i−1, . . . , Wobs
i−4 and 4 corresponding

model estimations Wmodel
i−1 , . . . ,Wmodel

i−4 .
Equation (4.2) provides a more stable, complex, adaptable and adjustable forecast

than (4.1), e.g. in the presence of noise. The learning procedure by Bayesian
regularization back propagation has been based on the data of the Wolf numbers
from 19–20 cycles, while 21 cycle has been used for the validation process. The
input data of the Wolf numbers for the neural network consist of two parts: the prior
real observations (e.g. red line in figure 1) and the dynamo model estimations at
the same instant (e.g. solid line in figure 1). The output of this neural network is
the forecasted monthly Wolf number. Note that we do not use the artificial neural
network for any type of optimization or parameter estimation for the initial model.
We have already done this in our previous study (Kleeorin et al. 2016). During the
learning procedure in the artificial neural network, we minimize the error between
the forecast and actual observations not at every instant separately, but over the
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FIGURE 5. Comparison of the results of the one month forecast of the solar activity (filled
circles) with the observed Wolf numbers averaged over 13 month (solid line).

FIGURE 6. The confidence interval (dashed lines) of the one month forecast of the solar
activity compared with the observed Wolf numbers averaged over 13 month (solid line).

whole cycle. We stress that the model output yields an initial forecast, i.e. a basis for
the final forecast. The artificial neural network serves here as a forecast correction
scheme for the simulated sunspots. The correction is done by means of observational
data and the model outputs.

The obtained results for the forecast of the solar activity are presented below. In
figure 4 we show a comparison of the results of the one month forecast of the
solar activity based on the described method with the observed Wolf numbers, while
in figure 5 we show the same comparison but with the data of the observed Wolf
numbers averaged over 13 month. The sliding (or window) averaging of the observed
Wolf number time series has been used here. In figure 4 we use the observed Wolf
number time series with 1 month averaging time, while in figure 5 we use the
observed Wolf number time series with 13 month averaging time. Sampling time is
exactly one month in both cases. For the latter case we show in figure 6 also the
confidence interval for this forecast. Note that for the cycle with a higher activity the
thickness of the confidence interval is less. The decrease of the confidence interval
is also observed in the phase of increasing solar activity (see figure 6). These figures
demonstrate a good agreement between the forecast and observation of the solar
activity.
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We would like to stress that only the combination of the numerical solution of the
nonlinear mean-field dynamo equations and the neural network yields good agreement
between the forecast and observation. Using only the neural network without the mean-
field solution provides reasonable agreement just for 5 years because there is no a
long-term memory in the magnetic field evolution.

5. Conclusions

To predict the solar activity, we apply the nonlinear mean-field dynamo model
with algebraic and dynamic nonlinearities of the α effect and with a budget equation
for the dynamics of Wolf numbers. We use a simplified axisymmetric dynamo
model that allows us to obtain very long time series of Wolf number. This dynamo
model demonstrates very rich behaviour, reproducing the observed evolution of the
magnetic activity during past three centuries. We forecast the solar activity on the
time scale of one month adopting a method consisting of a combination of the
numerical solution of the nonlinear mean-field dynamo equations and the artificial
neural network. A comparison between the forecast of solar activity and the observed
Wolf numbers shows a good agreement, which is achieved due to the combined effect
of the nonlinear mean-field dynamo model and the artificial neural network technique.
Without the mean-field model it is impossible to obtain a reasonable agreement in a
long-term evolution.
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