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Gravity-induced collisions of two spherical drops covered with an insoluble surfactant
at low Reynolds numbers are considered. Unlike in previous collision studies, the
present work accounts for nonlinear coupling between the surfactant distribution and
drop hydrodynamics by solving the full unsteady convective–diffusion equation for
the surfactant transport. Our method includes high-order three-dimensional multipole
expansions for hydrodynamics and a Galerkin-type approach for the surfactant
transport with implicit marching. The efficiency of the algorithm allows for calculating
thousands of trajectories to very close contact and determining the collision efficiency
(related to the critical initial horizontal offset) by trial and error. The solution is valid
for arbitrary surface Péclet (Pes) and Marangoni (Ma) numbers and sets limitations on
approximations used in prior work for collision-efficiency calculations. Two limiting
cases are observed: at small Pes or large Ma, the variation in surfactant coverage is
small, and the results for the incompressible surfactant model are recovered, while for
large Pes and small Ma, the collision efficiency approaches the clean-interface value.
For moderate drop-size ratios (radius ratio k � 0.5), the results generally fall between
these limits. At larger size ratios, however, the collision efficiency may even exceed
the geometrical Smoluchowski limit for both drops and bubbles. Moreover, with
even moderate redistribution of the surfactant, equal-sized drops can move relative
to one another and collide. These novel effects do not exist for clean drops or drops
covered with an incompressible surfactant, and they are due to the nonlinear coupling
between surfactant dynamics and flow. This surfactant-enhanced coalescence takes
place, for example, in a physical system of air bubbles in water if the surfactant
surface concentration is dilute (Γ ≈ 1 × 10−9 mol m−2, much smaller than the typical
maximum-packing value of 10−5–10−6 mol m−2).

Key words: breakup/coalescence, drops and bubbles, emulsions

1. Introduction
Surfactants continue to be employed in newer and more sophisticated capacities,

and their use can only be expected to increase in the upcoming decades (Porter 1990;
Karsa 2000). More recent applications include microfluidics (Nguyen & Werely 2002;

† Email addresses for correspondence: alexander.zinchenko@colorado.edu, mrother@d.umn.edu,
robert.davis@colorado.edu
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Stone, Stroock & Ajdari 2004), where a drop can serve as a mixing or metering device
(Cristini & Tan 2004) through coalescence and breakup. On a larger scale, the proper
understanding of the effect of surfactants on the behaviour of emulsions, a problem of
enormous everyday significance, requires fundamental investigation into their role in
droplet interactions. In this work, we consider the gravitational motion of two spherical
drops with negligible inertia in the presence of a bulk-insoluble, non-ionic surfactant.
The goal of the analysis is to determine collision efficiencies under conditions when
significant redistribution of the surfactant on the drop interfaces may occur.

We employ a linear relationship (‘ideal gas’) between interfacial tension and
surfactant concentration. Nonlinear models (Chen & Stebe 1996) are most appropriate
for high surfactant concentrations, but they would increase the number of parameters
and are not considered herein. The ideal-gas equation of state is valid at low
surfactant surface concentrations, but this regime is important because even small
amounts of surfactant are sufficient to immobilize the drop interfaces (Chesters &
Bazhlekov 2000). Moreover, with small amounts of adsorbed surfactant, it is possible
to avoid the complications of surface viscosity (Pozrikidis 1994; Li 1996; Valkovska,
Danov & Ivanov 1999, 2000). The linear model may also hold for non-dilute systems
with small variations in the surfactant concentration (B�lawzdziewicz, Wajnryb &
Loewenberg 1999b). The case of bulk-insoluble non-ionic surfactants obeying the
linear law has practical relevance for modelling the behaviour of compatibilizers and
of soluble surfactants, when the diffusive exchange between bulk and interface is slow
(Chesters & Bazhlekov 2000).

For a single spherical drop or bubble in the presence of surfactants, early theoretical
work was done primarily for buoyancy-driven motion (Frumkin & Levich 1947;
Levich 1962). These and subsequent studies have revealed several limiting cases:
a non-retarded fluid velocity profile (Wasserman & Slattery 1969; Saville 1973;
Agrawal & Wasan 1979; Harper 1988, 2007), a uniformly retarded fluid velocity
profile (Levich 1962; Holbrook & LeVan 1983a,b), a stagnant cap (Griffith 1962;
Sadhal & Johnson 1983; Cuenot, Magnaudet & Spennato 1997; Li & Mao 2001;
Alves, Orvalho & Vasconcelos 2005) and a completely stagnant interface (Griffith
1962; Takemura 2005). Considerable attention has been given to experiments on
a single drop or bubble in buoyancy to determine the effect of surfactants on the
settling velocity or mass-transfer rate (Garner & Skelland 1955; Elzinga & Banchero
1961; Griffith 1962; Horton, Fritsch & Kintner 1965; Beitel & Heidegger 1971;
Edge & Grant 1972; Yamaota & Ishii 1987; He, Maldarelli & Dagan 1991; Fdhila &
Duineveld 1996; Zhang & Finch 2001).

In the limit of an incompressible surfactant film (Frumkin & Levich 1947; Levich
1962), two surfactant-covered drops interacting in a variety of flows have also
been studied. Surfactant coverage is called ‘incompressible’ based on analogy with
incompressible flow, where an infinitesimal change in density corresponds to a large
pressure variation. In this case, finite differences in interfacial tension occur as a result
of very small changes in surfactant concentration. Thus, the limit of incompressible
surfactant is the same as the limit of nearly uniform surfactant surface coverage.
As shown by the scaling arguments of B�lawzdziewicz et al. (1999b), incompressible
surfactants have physical importance, especially for small drops. The advantages of
studying nearly uniform surfactant coverage include reduction of the parameter space
by one, since the Marangoni and the surface Péclet numbers are combined into a single
retardation parameter, and a relative ease of analysis, since the problem remains linear.

Zinchenko (1983) calculated the collision efficiency for two clean spherical drops
with arbitrary drop-to-medium viscosity ratio in gravity-induced motion. Bispherical
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Gravity-induced collisions of spherical drops 371

coordinates and twin multipole expansions were employed for calculating drop
mobilities along and normal to the line of centres, respectively. B�lawzdziewicz
et al. (1999b) considered collisions of two contaminated bubbles with incompressible
surfactant in Brownian motion and linear flows. Rother & Davis (2004) studied
gravitational interactions and collisions of two drops with incompressible surfactant
for arbitrary viscosity ratio. Rother (2009) performed a similar analysis for spherical
drops undergoing thermocapillary motion in the presence of surfactant. The
experimental work of Hudson, Jamieson & Burkhart (2003) on two contaminated
drops in shear flow confirmed the usefulness of the theoretical results of B�lawzdziewicz
et al. (1999b), probed the limits of the incompressible model, and made modifications
for the more general surfactant-coverage case.

Also, some research has been done concerning spherical drops with compressible
surfactant. B�lawzdziewicz, Vlahovska & Loewenberg (2000) considered a rheological
response of a single drop in a dilute emulsion in linear flows when redistribution
of surfactant was possible but surface diffusion was neglected, and Vlahovska,
B�lawzdziewicz & Loewenberg (2002) extended the analysis to time-dependent flows.
Cristini, B�lawzdziewicz & Loewenberg (1998) performed local lubrication analysis
for near-contact motion of two spherical drops with non-diffusing surfactant. Two-
time-scales behaviour for film thinning was predicted, depending on the parameters.
It should also be noted that important work has been done on film drainage between
two slightly deformable drops with surfactants (Chesters & Bazhlekov 2000; Yeo
et al. 2001; Danov, Valkovska & Ivanov 1999). In general, such work is restricted to
axisymmetric, near-contact motion.

Relevant experiments have been conducted on the surfactant-like effect of
compatibilizer on two polymer drops in linear flow under conditions when the flow
is Newtonian (Hu, Pine & Leal 2000; Park, Baldessari & Leal 2003; Hudson et al.
2003). In experiments on dilute emulsions in shear flow in the presence of surfactants
(Mousa & van de Ven 1991; Nandi, Mehra & Khakhar 1999; Hudson et al. 2003),
results for the drop-size distribution were used to determine the collision efficiency
via population dynamics.

Herein, we study, for the first time, the collision efficiency of two spherical drops
covered with compressible surfactant in three-dimensional gravitational motion. The
main motivation was to identify parameter ranges, where the droplet behaviour can
be effectively characterized by treating the interfaces as having small variations from
uniform surfactant coverage, or as being free of surfactant altogether. Thus, the
present solution, valid at arbitrary surface Péclet and Marangoni numbers, clarifies
the range of validity of prior solutions (Zinchenko 1982; Rother & Davis 2004)
based on clean-surface and incompressible-surfactant models, respectively. Even
more important, nonlinear coupling between surfactant and hydrodynamics, due
to surfactant compressibility, leads to a new qualitative effect of enhanced collisions
(coalescence). A curious analogy with the phenomenon of deformation-enhanced
coalescence (Manga & Stone 1993, 1995) is observed, although the two mechanisms
are very different. The assumptions behind the model, problem formulation and
method of solution are the subject of §§ 2 and 3, respectively. Results and discussion
are found in § 4 and concluding remarks in § 5.

2. Formulation of the problem
Consider the gravity-induced motion of two drops in an immiscible and unbounded

fluid at low Reynolds numbers. The drops have the same density ρ int , viscosity µint ,
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different radii a1 and a2 (with a1 <a2) and sediment in the matrix fluid of density
ρe and viscosity µe. Without a loss of generality, ρ int >ρe is assumed, so the drops
move downward, the larger drop settling faster. The surface tension, σ , is assumed to
be large enough to neglect drop deformation. The fluids inside and outside the drops
are Newtonian, so that quasi-steady Stokes equations apply

µ∇2u = ∇ p, ∇ · u = 0, (2.1)

for the fluid velocity u and dynamic pressure p inside and outside the drops. The fluid
is quiescent at infinity (u → 0). Usual boundary conditions are the velocity continuity
and no-flux on the drop surfaces S1 and S2

ue = uint , (ue − V γ ) · n = 0, xεSγ , γ = 1, 2, (2.2)

where V γ is the velocity of the drop centre and n is the outward normal to Sγ ; indices
e and int mark the quantities related to the exterior and interior phases, respectively.
The drops are covered with an insoluble surfactant with surface concentration, Γ ,
governed by the convective–diffusion equation

∂Γ

∂t
+ ∇S · (Γ u∗ − Ds∇Γ ) = 0. (2.3)

Here, Ds is the surface diffusion coefficient (the same for both drops), ∂Γ/∂t is
the Euler derivative in a reference frame moving with the drop centre Oγ , u∗ is
the fluid velocity relative to this frame (u∗ �= u − V γ , see § 3) and ∇S is the surface
nabla operator. The hydrodynamical and surfactant problems are coupled through
the transport equation (2.3) and the interfacial stress balance

Πe
τ − Π int

τ = −∇S σ, xεSγ , (2.4)

where Πτ is the tangential stress. The surface viscosity is neglected. Among possible
relations σ (Γ ) between the surface tension, σ , and surfactant concentration, we choose
the simplest linear law σ = σo − RT Γ , where σo is the clean-surface value, R is the
universal gas constant and T is the absolute temperature (assumed constant). This
form of σ (Γ ) is appropriate for non-ionic surfactants at low surface coverage in the
absence of long-range interactions (Levich 1962). Colloidal interactions between the
drops are neglected, and the hydrodynamical forces F1, F2 acting on the drops are
constrained by the force balances

Fγ + 4
3
πa3

γ �ρg = 0, �ρ = ρ int − ρe. (2.5)

The average surfactant concentration for each drop (preserved through the transport
equation (2.3)) is Γeq . The drops are initially placed far away from each other, with
the horizontal d∞(∼ aγ ) and vertical h∞(	 aγ ) centre-to-centre offsets. To close the
problem formulation, an initial condition for Γ at t = 0 is required, which we take
in the simplest form Γ = Γeq ; all results are found to be independent of h∞, and
alternative forms of the initial condition would not be advantageous.

The main quantity of interest from the solution is the critical offset d∗
∞ demarcating

relative trajectories leading to collision and separation; the related collision efficiency
is defined as E = [d∗

∞/(a1 + a2)]
2. Knowing E (and velocities of isolated drops) allows

one to predict coalescence rates (assuming that each collision leads to coalescence)
and the evolution of the drop-size distribution in dilute sedimenting emulsions. Unlike
for solid spheres, the interfacial mobility of drop surfaces makes collisions possible
even without singular attractive van der Waals forces, owing to weaker hydrodynamic
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Gravity-induced collisions of spherical drops 373

resistance to mutual approach (Zinchenko 1978, 1982; Davis, Schonberg & Rallison
1989).

In what follows, the problem and all the quantities are made non-dimensional by
choosing a2, U = �ρga2

2/µ
e, a2/U , µeU/a2 and Γeq as the scales for length, velocity,

time, stress and surfactant concentration, respectively. In the non-dimensional form,
the stress balance (2.4) takes the form (Πe

τ − Π int
τ ) = Ma∇ sΓ , while the transport

equation (2.3) acquires a factor of Pe−1
s instead of Ds , where

Ma =
RT Γeq

�ρga2
2

, Pes =
�ρga3

2

µeDs

, (2.6)

are the Marangoni and the surface Péclet numbers, respectively. The non-dimensional
critical offset, d∗

∞/a2, found by trial and error, is a function of four non-dimensional
parameters: Ma, Pes , size ratio k = a1/a2 and viscosity ratio µ̂ = µint/µe.

Two limiting cases have been studied in prior work. Zinchenko (1982) calculated
the collision efficiency for clean drops as a function of k and µ̂. In the other, more
general limit of the so-called ‘incompressible surfactant,’ when Ma → ∞, Pes → 0 and
A = MaPes = O(1), deviations of the surfactant concentration from its average value
Γeq are small, which allows one to replace (2.3) and (2.4) by

∇S ·
(
Πe

τ − Π int
τ − Au∗) = 0, ∇S ×

(
Πe

τ − Π int
τ

)
= 0. (2.7)

The clean-surface limit is recovered with A = 0. For the incompressible surfactant
model, the collision efficiency of two drops in gravity-induced motion was calculated
by Rother & Davis (2004); analogous collision efficiency calculations for bubble–
bubble interactions in flow-induced motion (B�lawzdziewicz et al. 1999b) were also
based on the approximation (2.7). Note that, for the model (2.7), the solution of the
transport equation (2.3) is bypassed, the whole problem is linear, instantaneous drop
motion can be decomposed into translations along and normal to the line of centres,
and the critical offset d∗

∞ is found simply by integrating a combination of mobility
functions for normal and transverse relative motion (Zinchenko 1982; Rother &
Davis 2004) over all interparticle distances.

The incompressible surfactant approximation (2.7), though, is restrictive. In
particular, it is clearly inadequate for low surfactant concentrations with Ma 
 1
at large Pes . Since Marangoni and Péclet numbers can vary significantly, it would be
of great theoretical and practical interest to determine instead the collision efficiencies
from the solution of the full problem (2.1)–(2.5) at arbitrary Ma and Pes , with
nonlinear coupling between surfactant and hydrodynamics through the transport
equation (2.3). Such a solution, obtained for the first time in the present work,
is far more complex than those in Zinchenko (1982) and Rother & Davis (2004).
Namely, decomposition into normal and transverse motion can no longer be made
in a practical fashion; determining critical offsets by trial and error and parametric
analysis require thousands of trajectories to very close contact. A suitable algorithm
is described in § 3.

3. Method of solution
Our method consists, at each time step, of (i) solving the hydrodynamical

problem for two drops given the instantaneous surfactant distribution, (ii) updating
the surfactant concentration through the transport equation and (iii) economical
truncation of multipole expansions involved in (i) and (ii). These steps are detailed
below.
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Figure 1. Schematic for two spherical drops settling under gravity (not to scale).

3.1. Solution of the hydrodynamical problem

It is convenient, and computationally most efficient, to work in two, moving and
rotating coordinate systems (x1, y1, z1), (x2, y2, z2) centred at the drop centres O1, O2

and the z1-, z2-axes along the line of centres from sphere S2 to S1 (figure 1); these
coordinate systems differ only by the translation. By definition, the x-axis lie in the
plane span on the gravity vector and the line of centres. Along with (xγ , yγ , zγ ),
spherical coordinates (rγ , θγ , ϕγ ) (index γ labels drops 1 and 2, and related quantities)
are used for an observation point M (figure 1)

xγ = rγ sin θγ cos ϕ, yγ = rγ sin θγ sin ϕ, zγ = rγ cos θγ , (3.1)

where ϕ = ϕ1 = ϕ2 is the common angle of positive rotation about the z-axes.
The velocity field ue outside the two spheres is sought as

ue = u1
− + u2

−, (3.2)

where uγ
− is a Stokes flow (to be found) regular everywhere outside the sphere with

surface Sγ and represented by Lamb’s (Happel & Brenner 1973) singular series:

uγ
− =

∞∑
ν=1

[
∇ ×

(
rγ χ

γ

−(ν+1)

)
+ ∇Φ

γ

−(ν+1) −
(ν − 2)r2

γ ∇p
γ

−(ν+1)

2ν(2ν − 1)
+

(ν + 1)p−(ν+1)rγ

ν(2ν − 1)

]
.

(3.3)

The differential operations in (3.3) are with respect to rγ = M − Oγ , the negative-order
solid harmonics are

p
γ

−(ν+1)(rγ ) =

ν∑
m=−ν

A
γ

−(ν+1),m

(
aγ

rγ

)ν+1

Yν,m(rγ ),

Φ
γ

−(ν+1)(rγ ) =

ν∑
m=−ν

B
γ

−(ν+1),m

(
aγ

rγ

)ν+1

Yν,m(rγ ),

χ
γ

−(ν+1)(rγ ) =

γ∑
m=−ν

C
γ

−(ν+1),m

(
aγ

rγ

)ν+1

Yν,m(rγ ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.4)
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where Yν,m(r) is the standard normalized spherical harmonic

Yν,m(r) =

[
(2ν + 1)(ν − m)!

4π(ν + m)!

]1/2

P m
ν (cos θ)eimϕ, (m � 0)

Yν,m(r) = (−1)mY ν,−m(r),

⎫⎪⎬⎪⎭ (3.5)

P m
ν (x) = (1 − x2)m/2dmPν(x)/dxm is the associated Legendre function (in the definition

of Korn & Korn 1968) and the overbar stands for complex conjugation; a1 = k and
a2 = 1 are the non-dimensional drop radii here and in the rest of the paper (unless
otherwise stated). Complex coefficients in (3.4) obey

A
γ

−(ν+1),m = (−1)mA
γ

−(ν+1),−m, etc. (3.6)

to make (3.4) real valued. For the gravity-induced motion shown in figure 1, there
is obvious symmetry of the solution about the y = 0 plane (with constraints on the
coefficients in (3.4)), which is not assumed, though, in the method description below
to make it general and suitable for other problems (e.g. flow-induced motion, without
such symmetry).

The surface tension, σ , on the drop surfaces is assumed given by its expansions in
spherical harmonics, equivalent to

Ma Γ

∣∣∣
Sγ

=

∞∑
n=0

σγ
n , σ γ

n =

n∑
m=−n

σ γ
n,mYn,m(rγ ), (3.7)

with complex coefficients satisfying (3.6) for σγ
n,m; the n = 0 term is insignificant here.

To proceed with applying the boundary conditions, the velocity field uγ
− outside

sphere Sγ is first expanded in the vicinity of the other sphere Sγ +1 (here and henceforth
the index γ + 1 is reduced by module 2, when γ = 2) as Lamb’s regular series

uγ +1
+ =

∞∑
n=1

[
∇ ×

(
rγ +1χ

γ +1
n

)
+ ∇Φγ +1

n +
(n + 3)r2

γ +1∇pγ +1
n

2(n + 1)(2n + 3)
− npγ +1

n rγ +1

(n + 1)(2n + 3)

]
,

(3.8)

with positive-order solid harmonics

pγ +1
n =

n∑
m=−n

Aγ +1
n,m

(
rγ +1

aγ +1

)n

Yn,m(rγ +1),

Φγ +1
n =

n∑
m=−n

Bγ +1
n,m

(
rγ +1

aγ +1

)n

Yn,m(rγ +1),

χγ +1
n =

n∑
m=−n

Cγ +1
n,m

(
rγ +1

aγ +1

)n

Yn,m(rγ +1),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.9)

again with A
γ +1
n,−m = (−1)mĀγ +1

n,m , etc. The general re-expansion formulae from A
γ

−(ν+1),m,

etc to Aγ +1
n,m , etc exist (Mo & Sangani 1994), but they are very cumbersome and, when

used in an arbitrary coordinate system, would have the O(N4) cost of operations
(assuming a truncation bound N = max(ν, n) and all azimuthal numbers m used).
A crucial advantage of the ‘axial coordinates’ (with the polar z-axis along the
re-expansion vector O2 O1) is that the re-expansion relations greatly simplify, with
splitting in the azimuthal number m, and the cost of this operation reducing to O(N3).
The corresponding formulae in the axial coordinates for m = 0 may be taken from
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Happel & Brenner (1973), while for m = 1 and 2, they were derived by Zinchenko
(1982). General relations for arbitrary m used herein follow from (3.61), (3.64) and
(3.66) of Zinchenko & Davis (2000)

Aγ +1
n,m =

∞∑
ν=|m|

J m,γ
ν,n A

γ

−(ν+1),m,

Bγ +1
n,m = (−1)γ

im

n
R12

∞∑
ν=|m|

J m,γ
ν,n C

γ

−(ν+1),m +

∞∑
ν=|m|

J m,γ
ν,n B

γ

−(ν+1),m

− R2
12

∞∑
ν=|m|

(ν − 2)

2ν(2ν − 1)
J m,γ

ν,n A
γ

−(ν+1),m +
(−1)γ −1R12aγ +1

n

[
(n − m)(n + m)

(2n − 1)(2n + 1)

]1/2

×
∞∑

ν=|m|

[
(n − 1)(ν − 2) − (ν + 1)

]
ν(2ν − 1)

J
m,γ

ν,n−1A
γ

−(ν+1),m,

Cγ +1
n,m = (−1)γ

imR12

n(n + 1)

∞∑
ν=|m|

1

ν
J m,γ

ν,n A
γ

−(ν+1),m − 1

(n + 1)

∞∑
ν=|m|

νJ m,γ
ν,n C

γ

−(ν+1),m,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.10)

(omitting terms with 1/ν for ν = 0). Here, R12 is the centre-to-centre distance, and

J m,ν
ν,n =(−1)n(γ −1)+νγ +m

[
(2ν + 1)(n + ν)!(n + ν)!

(2n+1)(ν−m)!(ν+m)!(n−m)!(n+m)!

]1/2(
aγ +1

R12

)n(
aγ

R12

)ν+1

.

(3.11)

Somewhat obscurely, through recurrent relations for J -coefficients, only four
independent sums over ν (instead of seven) need to be calculated for each n and
m in (3.10) (cf. Zinchenko & Davis 2008 for regular-to-regular re-expansions).

The exterior field uγ
− + uγ

+, now represented as Lamb’s general series near Sγ through
(3.10), must match the interior field uint inside Sγ via the boundary conditions, which
gives, upon exclusion of uint , relations between the sets of harmonics (pγ

−(ν+1), Φ
γ

−(ν+1),

χ
γ

−(ν+1)) and (pγ
ν , Φγ

ν , χγ
ν ) on the drop surface Sγ . Such relations have long been

known for clean drops (Hetsroni & Haber 1978), including thermocapillary effects
(Rother & Davis 1999) and for the limit of incompressible surfactant (Rother & Davis
2004); other authors (Cichocki, Felderhof & Schmitz 1988; Jones & Schmitz 1988;
B�lawzdziewicz et al. 1999b) preferred a different set of basis functions (other than
Lamb’s representation) to reach a similar goal of expressing uγ

− via uγ
+. In a general

case for surfactant considered herein, the surface-tension gradient generates simple
additional terms (Rother & Davis 1999) to those in Hetsroni & Haber (1978), yielding

A
γ

−(ν+1),m = − ν(2ν − 1)

(ν + 1)(1 + µ̂)

{
µ̂

2
Aγ

ν,m +[2 + µ̂(2ν + 1)]
B̃γ

ν,m

a2
γ

}
− ν(2ν − 1)

(2ν + 1)(1 + µ̂)

σγ
ν,m

aγ

,

B
γ

−(ν+1),m =
ν

2(ν + 1)(1 + µ̂)

{
[2 − µ̂(2ν + 1)]a2

γ

2(2ν + 3)
Aγ

ν,m − µ̂(2ν − 1)B̃γ
ν,m

}
− νaγ

2(2ν + 1)

σγ
ν,m

(1 + µ̂)
,

C
γ

−(ν+1),m = − (ν − 1)(µ̂ − 1)

(ν + 2) + µ̂(ν − 1)
Cγ

ν,m.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.12)
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The last of the equations (3.12) is unaffected by surfactant. These relations are
conveniently derived in the reference frame moving with the centre of the drop Sγ

(to take advantage of zero normal fluid velocity). Accordingly, B̃γ
ν,m = Bγ

ν,m except for
ν = 1, when

B̃
γ

1,0 = B
γ

1,0 −
(

4π

3

)1/2

aγ V
γ

3 , B̃
γ

1,1 = B
γ

1,1 −
(

2π

3

)1/2

aγ

(
V

γ

1 − iV γ

2

)
, (3.13)

where (V γ

1 , V
γ

2 , V
γ

3 ) is a (yet unknown) drop velocity in coordinates (xγ , yγ , zγ ).
Coefficients A

γ

−2,m are prescribed by the hydrodynamic forces acting on the drops

(Happel & Brenner 1973): Fγ = −4π∇(r3
γ p

γ

−2).
Expansion of the solution in inverse powers of the centre-to-centre distance and

computing a large number of coefficients has been a popular method for two-drop
(Zinchenko 1982; Jones & Schmitz 1988; B�lawzdziewicz et al. 1999b) and two-particle
problems. The benefit of this approach is the analytical dependence of the mobility
(resistance) functions on the surface separation, making subsequent trajectory analysis
very efficient. In the present problem, though, such semi-algebraic techniques must
be abandoned because of arbitrary surfactant distribution (3.7) and the need for
calculating the fluid velocity u to use in the transport equation (2.3). Thus, the system
(3.10), (3.12) should instead be solved numerically at each instantaneous configuration.

Upon exclusion of B̃
γ

1,m, successive substitutions into the right-hand side of (3.10) and
(3.12) always provide convergent iterations for this mobility problem. This simple
iterative scheme was found sufficient in the present calculations, with only a few
iterations per time step even in near contact, since the solution at the preceding time
step provides a good initial approximation.

In the present problem of gravity-induced collisions, the solution symmetry about
the yγ = 0 plane is additionally exploited to speed up simulations by avoiding complex
arithmetics in the computations. Namely, the azimuthal expansions for p- and Φ-
harmonics in (3.4), (3.9) are in cos mϕ, and for χ-harmonics in sin mϕ. Accordingly,
C-coefficients are purely imaginary, while other coefficients are real. The force balances
(2.5) take the form

A
γ

−2,0 = 2

(
π

27

)1/2

aγ cos β, A
γ

−2,1 = −
(

2π

27

)1/2

aγ sin β, (3.14)

where β is the angle between the centre-to-centre vector O2 O1 and the gravity vector.
Upon convergence of iterations, the drop velocities V γ are found from (3.13).

3.2. Solution of the surfactant transport equation

It is most natural, and computationally convenient, to solve the surfactant transport
equation (2.3) on each sphere Sγ in the reference frame coincident with the axial
coordinate system (xγ , yγ , zγ ) of figure 1. This reference frame translates with the
drop centre velocity, V γ , and rotates with the angular velocity, (V 1

1 − V 2
1 )/R12, (about

the yγ -axis) both known from the solution of the hydrodynamical problem. The fluid
velocity, u∗, on Sγ relative to this frame is obtained from (3.2)–(3.4), (3.8)–(3.9) and
the boundary conditions (3.12)

u∗(x) = a2∇SΠ + a∇SΨ × r, Π =

∞∑
n=1

n∑
m=0

bn,mDm
n (η) cos mϕ,

Ψ =

∞∑
n=1

n∑
m=1

cn,mDm
n (η) sin mϕ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.15)
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where the real coefficients are

bn,m =
(2 − δm,0)

(1 + µ̂)

[
(2n − 1)

(n + 1)a2
B̃n,m +

1

2(n + 1)
An,m − σn,m

(2n + 1)a

]
,

cn,m = − 2(2n + 1)

a[n + 2 + µ̂(n − 1)]
Im(Cn,m) −

(
8π

3

)1/2
(
V 1

1 − V 2
1

)
R12

δn,1δm,1,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.16)

and δ (with indices) is the Kronecker delta. In (3.15) and (3.16) and the rest of this
section, index γ labelling quantities related to drop Sγ (rγ = x − Oγ , drop radius aγ ,

B̃γ
n,m, etc.) is omitted, for brevity; η = cos θ , and Dm

ν (η) is the prefactor before exp(imϕ)
in (3.5).

An expansion for the surfactant concentration on Sγ is

Γ =

∞∑
m=0

Γm(t, η) cos mϕ, Γm =

∞∑
n=m

Γn,m(t)Dm
n (η), (3.17)

with a simple relation σn,m = MaΓn,m/(2 − δm,0) to the coefficients in (3.7). To advance
Γn,m from the convective–diffusion equation (2.3), the expansion

∇S · (Γ u∗) =

∞∑
n=0

n∑
m=0

dn,mDm
n (η) cos mϕ, (3.18)

is also required. A similar nonlinear operation was encountered in the three-
dimensional solution for a solitary surfactant-covered spherical drop in an unbounded
linear flow (B�lawzdziewicz et al. 2000; Vlahovska et al. 2002). The technique chosen
therein was to substitute the expansions for Γ and u∗ and then expand ∇S · (Γ u∗)
using 3-j symbols from quantum mechanics. This elegant semi-analytical approach is
suitable and convenient for single-drop calculations, with the order n of harmonics
not exceeding eight (Vlahovska et al. 2002). In the present problem, though, an
alternative, substantially more economical method for computing dn,m is required to
avoid prohibitive cost, since the necessary order n of harmonics may reach several
hundred for drops in very close approach.

In addition to Γm, let

bm(η) =

∞∑
n=m

bn,mDm
n (η), cm(η) =

∞∑
n=m

cn,mDm
n (η),

fm(η) =

∞∑
n=m

n(n + 1)bn,mDm
n (η),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.19)

(time dependence is assumed). Substituting (3.15) and (3.17) into (3.18), and
performing differential operations in spherical coordinates, the convective term
∇S · (Γ u∗) can be expressed as{∑

j

Γ ′
j (η) cos jϕ

}{∑
k

[(1 − η2)b′
k(η) − kck(η)] cos kϕ

}
+

{∑
j

jΓj (η) sin jϕ

}

×
{∑

k

[
kbk(η)

1 − η2
− c′

k(η)

]
sin kϕ

}
−

{∑
j

Γj (η) cos jϕ

} {∑
k

fk(η) cos kϕ

}
, (3.20)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

44
89

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004489


Gravity-induced collisions of spherical drops 379

and transformed to ∑
m

Λm(η) cos mϕ, (3.21)

by straightforward series multiplication. Using orthogonality of spherical harmonics,
the expansion coefficients dn,m take the form

dn,m = 2π

∫ 1

−1

Λm(η)Dm
n (η)dη, (3.22)

and are evaluated by Gaussian quadrature, which requires the values of Γj (η), Γ ′
j (η),

bk(η), b′
k(η), ck(η), c′

k(η), fk(η) and Dm
n (η) at the zeros of a Legendre polynomial. If the

order n of harmonics in (3.15)–(3.17), (3.22) is truncated by n � N , then the integrand
in (3.22) may be shown to be a polynomial of degree � 3N , making the method exact
with 3N quadrature points (in practice, half as many points sufficed). Coefficients dn,m

are calculated at an O(N3) cost, which is reduced to O(N2M) if additional truncation
m � M 
 N (see § 3.3) is made; for comparison, direct expansion (3.18) would be
O(N5), and O(N3M2) intensive, respectively. Our method for handling the nonlinear
term ∇S · (Γ u∗) is closer to solutions of full Navier–Stokes equations by Galerkin
methods than to the approach of Vlahovska et al. (2002).

The surfactant concentration coefficients, Γn,m, are updated by a fully implicit
scheme

Γn,m(tk+1) − Γn,m(tk)

�t
+ dn,m +

n(n + 1)

Pesa2
Γn,m(tk+1) = 0, (3.23)

with Γ = Γ (tk+1) and u∗ = u∗(tk) in the convective-term expansion (3.18). The initial
condition is Γn,m = (4π)1/2δn,0δm,0. Equation (3.23) is successfully solved for Γn,m(tk+1)
to very small surface separations (∼ 10−4a) by simple iterations, with typically one
to two iterations only per time step using Γn,m(tk) as an initial approximation. For
comparison, a semi-implicit scheme, with Γ = Γ (tk) in (3.18), was observed to crash
when the surface clearance reaches from one to a few per cent of the drop radii,
which is not small enough for collision efficiency calculations.

The need for fully implicit solutions of the transport equation to improve stability is
widely recognized in boundary-integral simulations for a single deformable surfactant-
covered drop (e.g. Stone & Leal 1990; Li & Pozrikidis 1997; Eggleton, Tsai & Stebe
2001), although the methods used therein (tri-diagonal solvers for axisymmetric, and
Zeidel iterations for three-dimensional problems discretized by surface meshing) do
not apply to the present simulations. The non-dimensional time step �t for (3.23)
and for updating the drop positions (by a first-order Euler scheme) was chosen as

�t = c�t

(
δ

2δ + 1

)1/2

, (3.24)

where c�t = constant and δ (without indices) is the non-dimensional surface clearance.
The form (3.24) dictates a nearly constant time step at large separations, with
refinement in close contact. A value of c�t = 0.04 provided negligible time-integration
error for all calculations.

3.3. Economical truncation of the expansions

Except for very large Péclet numbers with the stagnant-cap type of behaviour, the rates
of convergence of the expansions for the fluid velocity and surfactant concentration
are mostly affected by hydrodynamical interactions, and the necessary order n of
harmonics increases without bound as the drops come to contact. For systematic
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collision-efficiency analysis, when thousands of trajectories need to be calculated, it is
essential to have automatic and (nearly) optimal truncation strategy at every mutual
configuration S1, S2. Instead of A

γ

−(n+1),m,. . . etc., Euclidean norms are considered

A
γ

−(n+1) =

[
n∑

m=−n

∣∣Aγ

−(n+1),m

∣∣2

]1/2

, etc. (3.25)

Unlike A
γ

−(n+1),m, etc, the coefficients A
γ

−(n+1), etc are rotationally invariant.
Generalizing the analysis of Zinchenko (1994) for the present case of different radii a1

and a2, all the hydrodynamical coefficients in (3.4) and (3.9) can be shown to behave
like

A
γ

−(n+1), Aγ
n , etc ∼ (qγ )n, n → ∞, (3.26)

to within algebraic factors of O(nα). Although the hydrodynamical problem is solved
here by twin spherical expansions, the progression exponents qγ are curiously related
to the geometry of the bipolar (bispherical) coordinate system for S1, S2 (see Appendix)
and have explicit expressions:

q1 =
R2

12 + a2
1 − a2

2 −
{[

R2
12 − (a1 + a2)

2
][

R2
12 − (a1 − a2)

2
]}1/2

2R12a1

,

q2 =
R2

12 + a2
2 − a2

1 −
{[

R2
12 − (a1 + a2)

2
][

R2
12 − (a1 − a2)

2
]}1/2

2R12a2

.

⎫⎪⎪⎬⎪⎪⎭ (3.27)

The result (3.27) is quite universal and describes the decay of multipole coefficients
for any boundary-value problem in the two-sphere geometry, with Laplace or Stokes
equations solved by twin spherical expansions. In contrast, the algebraic prefactors
O(nα) in (3.26) and related numerical coefficients are individual for each problem and
difficult to derive. For simplicity, we accept the form (3.26) without prefactors, and
the order of harmonics to retain on each drop Sγ is found as

n � Nγ , Nγ ≈ | ln ε|/| ln qγ |, (3.28)

where ε 
 1 is a free parameter controlling the truncations (typically, ε = 0.005 in the
present calculations). An additional limitation n � nmin (with nmin ∼ 5–10 for typical
collision calculations at moderate Pes , but much larger, nmin ∼ 102, in high-resolution
examples of § 4 at very high Pes) is used to provide accuracy for well-separated drops.
For drops of disparate radii, the bounds N1 and N2 are quite different; convergence
is faster on the smaller drop. As the surface clearance δ tends to zero, the progression
exponents behave like qγ = 1 − O(δ1/2), so mutual approach to very small separations
δ ∼ 10−4 is handled with the order of multipoles reaching several hundred. For
consistency, the order n of harmonics in the surfactant expansions (3.17) is truncated
in the same way as for hydrodynamics (3.28). An alternative of using low-order
surfactant expansions was found too crude in collision-efficiency calculations, nor
does it expedite the overall numerical solution.

For clean drops (Zinchenko 1982) or drops with incompressible surfactant
(Rother & Davis 2004) in gravity, instantaneous drop motion can be decomposed
into translations along and normal to the line of centres, each problem requiring,
respectively, m = 0 and m = ±1 only. In the present, more general case, due to
nonlinear coupling between hydrodynamics and the surfactant transport through
the convective term (3.18) and the three-dimensional character of the trajectories,
one could expect all azimuthal numbers |m| � n to be necessary. In contrast, and
surprisingly, all our calculations in a wide range of parameters (§ 4) reveal that an
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additional truncation |m| � M with rather small M has a negligible effect on the
trajectories and collision efficiency, even when the results differ considerably from
the two limiting cases mentioned above. For large Pes ∼ 103 and small Marangoni
numbers, M up to 5 was necessary, while even M = 3 sufficed for moderate Pes .
Accurate calculation of the surfactant distribution required larger values of M , but
still not exceeding 7–9. In one example, with very high Pes = 105, values of M ∼ 20
had to be used. This additional truncation |m| � M (which obviously could not be
made, had we chosen general coordinate systems with the z-axis not aligned with the
line of centres) greatly expedites calculations. The success of the azimuthal truncation
|m| � M may be explained as follows. In principle, at any instantaneous configuration,
the hydrodynamical problem can be decomposed into (i) interaction of two fixed
drops under Marangoni stresses and (ii) motion of two clean drops with velocities V 1

and V 2. Presumably, problem (i) does not require very high-order multipoles, while
problem (ii) requires m = 0 and m = 1 only. However, neither surfactant distribution
in (i) nor drop velocities in (ii) is known a priori, and so we did not try to implement
such a decomposition in the present algorithm.

3.4. Performance of the algorithm

Two examples with Pes = 1000, Ma = 0.1, M = 5, c�t = 0.04 and ε = 0.005 illustrate the
performance of the code. The first case is for size ratio k = 0.5, viscosity ratio of µ̂ = 2,
and initial non-dimensional horizontal d∞ = 0.35 and vertical h∞ = 10 centre-to-centre
offsets. The near-critical relative trajectory reaches minimum surface separation of
δ = 7.6 × 10−4 before going back to infinity. The simulation took about 25 000 time
steps (to the moment when δ is back at 3) and 6 min on a single processor of
AMD PC with 2.8 GHz CPU. In the second example with k = 0.9, µ̂ = 0.5, d∞ = 2
and h∞ = 10, the drops collide. Simulation to separations δ = 3 × 10−4 took about
20 000 time steps and 3.5 min of CPU time (only 12 s to reach δ = 0.01). Solving the
transport equation takes only 6 % of the overall cost, owing to the fast method for
the convective term (3.18). The results with M � 2 are incorrect, even qualitatively,
while M = 5 provides high accuracy. In the last example, the collision angle β = 1.8305
between the centreline and vertical is accurate to ∼ 0.01 %. Simulations to such small
separations δ ∼ 10−4 are not redundant. For clean drops with µ̂ = O(1), the resistance
coefficient to mutual approach is known to behave like δ−1/2 (Zinchenko 1978, 1982;
Davis et al. 1989), with O(δ1/2) contribution of separations smaller than δ to the
collision efficiency. Van der Waals attractions, which can weaken the effect of the
near-contact region for very small drops, are neglected in our analysis. Obviously, in
the present formulation, it makes sense to perform simulations for only small and
moderate viscosity ratios µ̂, or else the near-contact contribution to the collision
efficiency would be even larger.

4. Results
Several checks were performed on the present code. In figure 2, surfactant surface

concentration profiles for bubbles (µ̂ = 0) with centre-to-centre separations of 1000a2

are compared with results for isolated bubbles (Holbrook & LeVan 1983b). These
authors investigated the limit of bulk-insoluble surfactant as part of a more general
study on surfactant-induced retardation of the motion of a single drop. Their Eötvös
number, Eö, and surface Péclet number, PeHL

s , are related to the corresponding
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Figure 2. Comparison of the dimensionless surfactant profiles between the current work
(dashed lines) and that of Holbrook & LeVan (1983b) (solid lines) for an isolated bubble in
gravity. In (a) the surface Péclet number PeHL

s , as defined in Holbrook & LeVan (1983b), is
varied between 1 and 1000 at a fixed Eötvös number of Eö = 30, while in (b) curves are shown
for Eö between 1 and 1000 with PeHL

s = 100.

parameters, Ma and Pes , of the current work by

MaEö = 4, Pes =
9

4

(µ̂ + 2/3)

(µ̂ + 1)
PeHL

s . (4.1)

Excellent agreement in the dimensionless surfactant surface concentration, Γ , along
the bubble surface is obtained over a wide range of surface Péclet (figure 2a) and
Marangoni (figure 2b) numbers, where the angle θ is measured from the front
stagnation point. In addition, our isolated bubble velocities (not shown) are nearly
indistinguishable from those in Holbrook & LeVan 1983b over similar parameter
ranges.

A second comparison was made for drop trajectories and surfactant profiles with our
previous work (Rother et al. 2006) on surfactant effects on gravitational interactions
of two deformable drops. The effect of deformation is shown in figure 3 in a series
of images from relative trajectories at gravitational Bond numbers of Bo = 0, 1 and
2, from left to right, respectively, where

Bo =
�ρga2

2

σ0

. (4.2)
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(b)

 t � 60  t � 60  t � 60

 t � 140 t � 140 t � 140

 t � 100  t � 100 t � 100

z
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2.65
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2.21
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1.77
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1.33
1.11
0.89
0.67
0.45
0.23

Figure 3. Images from relative trajectories of two surfactant-covered drops with
k = 0.5, µ̂ = 1, Pes = 100, Ma = 0.1, and an initial separation of d∞ = 0.5 and h∞ = 10 at times
of t = 60, 100 and 140, where the smaller drop is shown only at t = 100. From left to right,
the Bond numbers are Bo = 0 (current work), 1, and 2, where the trajectories for deformable
drops were determined from the algorithm of Rother, Zinchenko & Davis (2006). The images
in the lower half of the figure are close-ups of the gap at t = 100. The colour contours indicate
iso-concentration lines. The coordinates (x, z) (not to confuse with the intrinsic coordinates
(xγ , yγ , zγ ) of § 3) are centred at the smaller drop with the vertical z-axis.

The results for Bo = 0 were determined with the present code, while those for
Bo = 1 and 2 were calculated using the boundary-integral algorithm from Rother
et al. (2006). As the Bond number increases, the gap at t = 100 becomes larger,
together with the amount of deformation, because of the greater resistance to film
drainage. Moreover, the lubrication flow in the region of close approach becomes
weaker. As a result, while there are patches of increased and decreased surfactant
concentration on the smaller drop near the gap for Bo = 0 at t = 100 due to the
interplay of the external and lubrication flows, these regions are smaller for Bo = 1
and have disappeared altogether at Bo = 2, at least to the sensitivity of the surfactant
concentration contours shown.
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Figure 4. Relative trajectories with k = 0.5, µ̂ = 1 and initial separation of d∞ = 0.5 and
h∞ = 10, shown as the gap versus the angle β between the drops’ line of centres and vertical
(β ≈ 0 at the start). The upper solid curve (1) is for incompressible surfactant (Rother &
Davis 2004) with retardation parameter A = 104, while the lower solid line (6) is a near-critical
trajectory for clean drops (Zinchenko 1982) reaching separation δ = 1.1 × 10−4. The four dashed
lines are for compressible surfactant with 2: Pes = Ma = 100 (nearly coincident with curve 1);
3: Pes = 104,Ma = 1; 4: Pes = 4 × 104,Ma = 0.25 and 5: Pes = 105,Ma = 0.1.

A final check on the present code is a comparison with the model for incompressible
surfactant (Rother & Davis 2004). A surfactant film is incompressible in the limit of
nearly uniform coverage. Scaling arguments (B�lawzdziewicz et al. 1999b) show that
there is small variation in surfactant surface coverage at small Pes or large Ma. In
figure 4, relative trajectories are presented for values of the Marangoni and surface
Péclet numbers, such that their product A = MaPes = 10 000. The upper solid curve
was determined from the incompressible surfactant model (Rother & Davis 2004),
while the dashed curves mark trajectories from the present solution for compressible
surfactant, where β is the angle between vertical and the drops’ line of centres (β ≈ 0 at
the start). At Pes = Ma = 100, the trajectories for the two models coincide. Moreover,
the images in figure 5(a) from the same interaction with Pes = Ma = 100 indicate
that the coverage is indeed nearly uniform and that the Marangoni number is large
enough for the surfactant film to be considered incompressible.

As the surface Péclet number increases and Marangoni number decreases, there
is increasing divergence between the trajectories for the present solution and
incompressible surfactant approximation in figure 4. The images from the interaction
for Pes = 4 × 104 and Ma = 0.25 in figure 5(b) show that there is significant variation
in the surfactant concentration over the drop interfaces and that the incompressible
model is no longer valid. For Ma = 0.1 and Pes = 105 (curve 5 of figure 4), the
trajectory is even farther from the incompressible model limit and is practically
coincident with that for clean drops until close approach. Even though the surfactant
concentrations are highly non-uniform in this case, the Marangoni stresses are limited
on most of the surfaces due to smallness of Ma. In near contact, though, details of
surfactant distribution become important, and there is considerable deviation from
the surfactant-free case, making the subsequent trajectory highly asymmetric about
β = 90◦. Additional calculations for Ma = 0.1 (not shown in figure 4) reveal that as
Pes is reduced, the range of agreement with the clean-surface limit is extended to
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Figure 5. Images from relative trajectories of two surfactant-covered spherical drops with
k = 0.5, µ̂ = 1, and an initial separation of d∞ = 0.5 and h∞ = 10 for (a) Pes = Ma = 100 at
times of t = 74, 114 and 154 and (b) Pes = 4 × 104 and Ma = 0.25 at t = 66, 116 and 166, where
the smaller drop is shown only at the intermediate time. The contours indicate iso-concentration
lines.

smaller gaps, and at Pes � 0.1 the whole curve δ(β) is practically indistinguishable
from that for clean drops from figure 4.

As discussed later, for very high Péclet numbers Pes � O(104) and Ma � O(0.1), it is
hard to resolve surfactant concentrations (and avoid non-physical, negative values of
Γ ) in areas almost depleted of surfactant. Global drop dynamics, however, is much less
sensitive to these details, owing to the Galerkin type of the present algorithm. For the
curve 5 of figure 4, with Pes = 105 and Ma = 0.1, refining truncation parameters (§ 3.3)
nmin = M = 20, ε = 0.005 to nmin = M = 70, ε = 0.001 did not produce any detectable
changes. However, nmin = M = 10 was unreliable (depending on ε) and nmin = M = 5
could never avoid divergence of iterations for the transport equation (2.3) in close
approach. Due to these limitations and associated computational expenses, we could
not focus on systematic three-dimensional collision-efficiency calculations (requiring
many trials) at very high Pes . For Pes = ∞, our algorithm is not applicable (or, at least,
would require a prohibitively large order of harmonics to work). A contemporary view
(Eggleton, Pawar & Stebe 1999) is that the surface diffusion is typically very small
and may be neglected, which is likely true for larger drops with finite deformations,
but does not necessarily hold for small spherical drops considered herein, since the
Péclet number (2.6) is proportional to the cube of the drop radius.

In figures 6–9, an investigation is made into the parameter space governing the
dimensionless critical horizontal offset d∗

∞ demarcating trajectories which lead to
coalescence and separation of the drops. In all calculations, the initial vertical
separation was h∞ = 1000, and the drops were considered to have come into contact
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Figure 6. The critical horizontal offset from the present solution (solid lines) versus Péclet
number at fixed values of A = PesMa; 1: A = 10, µ̂ = 0; 2: A = 10, µ̂ = 1; 3: A = 100, µ̂ = 1;
4: A = 100, µ̂ = 5. Size ratio k = 0.5. Short-dashed lines on the right are for clean drops
(Zinchenko 1982) at viscosity ratios (top to bottom) µ̂ = 0, 1 and 5. Long-dashed lines
represent the limit of incompressible surfactant (from Rother & Davis 2004) with Pes → 0,
Ma → ∞ at the same values of A and µ̂ as on the curves.

if the dimensionless gap δ reached 0.0001. We note that the collision efficiency, E12, is
related to the critical horizontal offset by

E12 =

(
d∗

∞
1 + k

)2

. (4.3)

In addition, in this study, coalescence is considered equivalent to collision.
Several approaches were taken to study surfactant effects on coalescence. In figure 6,

the critical horizontal offset d∗
∞ from the present solution is shown as a function

of the surface Péclet number, Pes , at fixed values of A = MaPes (solid lines). For
a moderate size ratio of k = 0.5, d∗

∞ varies between the result for incompressible
surfactant (Rother & Davis 2004) at Pes → 0, Ma → ∞, and that for clean drops
(Zinchenko 1982) at large Pes , where Ma is small and Marangoni stresses should
disappear. Agreement with the two limiting cases is excellent for bubbles (µ̂ = 0) and
good for drops with µ̂ = 1. For a larger drop-to-medium viscosity ratio of µ̂ = 5,
some difference from the limiting cases is observed. This small discrepancy occurs
because the collision criterion of δ = 0.0001 in the present work is still too large to
be accurate for drops with partially immobile interfaces at greater µ̂ without van der
Waals attractions. Note that the critical offset, and, hence, collision efficiency decrease
with increasing µ̂ and that these collisions (to δ = 0) will not occur for solid spheres
(µ̂ → ∞) in the absence of van der Waals or other molecular attractions, due to the
singular, non-integrable hydrodynamic resistance in this case.

In figures 7 and 8, the effect of the Marangoni number, surface Péclet number
and size ratio on coalescence is considered, with the critical horizontal offset graphed
versus the retardation parameter A. In figure 7, curves for compressible surfactant are
shown at fixed values of Ma, while in figure 8 results at fixed Pes are presented. For
a smaller size ratio of k = 0.5 and moderate viscosity ratio µ̂ = 1, curves with Ma = 1
(figure 7a) and Pes = 1 (figure 8a) almost coincide with those for nearly uniform
coverage, and it is possible to define parameter ranges for which the incompressible-
surfactant approximation is valid. From figure 7(a), the critical offset for Ma = 0.01
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Figure 7. The critical horizontal offset versus the product A = PesMa at µ̂ = 1 for size ratios
(a) k = 0.5 and (b) k = 0.9. In both (a) and (b), the upper short-dashed horizontal line is for
clean drops, while the lower long-dashed curve marks results for incompressible surfactant.
Results for compressible surfactant from the present solution (solid lines) are shown at various
values of the Marangoni number Ma.

matches that for clean drops, while from figure 8(a) the curves for Pes = 100 and 1000
begin to differ from that for clean drops at Ma = O(0.01). Thus, some measure of
applicability of the clean-drop approximation is also provided.

A maximum deviation between the two bounding limits occurs at Ma = O(0.1).
From figure 8(a) for Pes = 100 and 1000, d∗

∞ approaches the values for the
incompressible surfactant model as Ma → 1. The inset in figure 8(a) indicates that the
present results for compressible surfactant actually dip below those for nearly uniform
coverage before approaching them as A → 1000. For the smallest Péclet number shown
in figure 8, Pes = 1, incompressible surfactant is an excellent approximation in the
whole range of Marangoni numbers.

The behaviour of drops at larger size ratios is much different than that observed
for smaller k, as displayed in figures 7(b) and 8(b) for k = 0.9. The incompressible
surfactant approximation is valid at Ma = 10 (figure 7b) and Pes = 1 (figure 8b). The
results at Ma → 0 still approach those for clean drops. However, even for Ma = 0.01
in figure 7(b), there is significant impact of surfactant compressibility on the critical
offset. Most interestingly, as demonstrated in the curves for Ma = 0.1 (figure 7b)
and Pes = 100 and 1000 (figure 8b), it is possible for the dimensionless critical
offset to exceed the Smoluchowski limit of d∗

∞ = 1 + k for straight trajectories. This
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Figure 8. The critical horizontal offset versus the product A = PesMa at µ̂ = 1 for size ratios
(a) k = 0.5 and (b) k = 0.9. In both (a) and (b), the upper short-dashed horizontal line is for
clean drops, while the lower long-dashed curve marks results for incompressible surfactant.
Results for compressible surfactant (solid lines) are shown at various values of the surface
Péclet number Pes . The inset in (a) is a continuation of the curve at Pes = 1000 in comparison
with the incompressible surfactant model.

surfactant-enhanced coalescence observed at large size ratios is reminiscent of the
deformation-induced coating and capture phenomena discovered by Manga &
Stone (1993, 1995) for nearly equal-sized drops and studied later in detail by
Zinchenko, Rother & Davis (1999). In the present problem, nonlinear coupling
between surfactant and hydrodynamics, not captured by the incompressible surfactant
model, is responsible for this behaviour.

One difference between the results for clean deformable drops at large Bond
numbers and those for contaminated spherical drops is the effect of the viscosity
ratio. Deformation-induced coating and capture are most prominent for bubbles.
As the viscosity ratio increases, the effect of deformation on coalescence becomes
weaker and is eventually masked by breakup and passthrough (Zinchenko et al. 1999;
Kushner, Rother & Davis 2001) as µ̂ → O(1). However, for spherical drops in the
presence of surfactant, results for the critical offset as a function of the size ratio
are comparable for µ̂ = 0 and 1, as shown in figure 9. In fact, as k → 1, d∗

∞ for
drops (µ̂ = 1) becomes larger than that for bubbles (µ̂ = 0). For drops/bubbles with
compressible surfactant at Pes = 100 and Ma = 0.1, the critical offset exceeds that for
clean surfaces when k > 0.7 (figure 9) and appears to approach infinity as the size
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Figure 9. The critical horizontal offset versus the size ratio k at Pes = 100 and Ma = 0.1 for
(a) bubbles (µ̂ = 0) and (b) drops (µ̂ = 1) with compressible surfactant (solid lines). In both
(a) and (b), the upper short-dashed horizontal line is for clean drops (A = 0), while the lower
long-dashed curve marks results for incompressible surfactant (A = 10).

ratio goes to unity. It should be noted, though, that two-drop mutual approach slows
down as k → 1, so in practice other weak mechanisms (e.g. collective interactions)
may interfere with the collision process, unless the system is very dilute.

In figure 10, further study of surfactant-enhanced coalescence is made by
considering the critical angle, βcr , between vertical and the drops’ line of centres
at which the drops come into contact in the limiting trajectory (with d∞ = d∗

∞ far
upstream). When the equations of motion remain linear, βcr = 90◦, as in the case
of clean spherical drops or spherical drops covered with incompressible surfactant.
However, for compressible surfactant, the problem is nonlinear, requiring solution of
the full convective–diffusion equation, so the symmetry of non-colliding trajectories
about β = 90◦ is broken even in the absence of van der Waals forces, and significant
deviation from βcr = 90◦ may occur. For drops (µ̂ = 1) at Pes = 100 and Ma = 0.1 in
figure 10, the critical angle is slightly less than 90◦ for size ratios up to k = 0.6. When
the drops are closer in size, the critical angle increases and reaches 180◦ at k → 1.
There are some minor errors in βcr , especially as k → 1, since this angle was found to
be quite sensitive to the simulation parameters, and the tolerance in determining the
critical horizontal offset was between 0.001 and 0.0001.

The phenomenon of enhanced coalescence is closely related to the behaviour of two
equal-sized contaminated spherical drops in gravity. For clean surfaces or surfaces
with incompressible surfactant, such a pair of drops would sediment as an aggregate

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

44
89

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004489


390 A. Z. Zinchenko, M. A. Rother and R. H. Davis

k

β
cr

 (d
eg

.)

1.00.80.60.40.2
60

90

120

150

180

Figure 10. The critical angle, βcr , demarcating trajectories which lead to separation and
coalescence of the drops as a function of the size ratio k for Pes = 100, Ma = 0.1 and µ̂ = 1.
The insets show two critical relative trajectories (with β = βcr at contact), for k = 0.3 (when
βcr < 90◦) and k = 0.85 (with βcr > 90◦).

at constant interparticle distance without rotation, regardless of the initial separation.
Without the incompressibility approximation, though, nonlinear coupling between the
surfactant and hydrodynamics leads to a qualitatively different behaviour. In figure 11,
motion of two equal drops is shown with the centreline (a) normal to and (b) along
the gravity vector for Ma = 0.1 at different surface Péclet numbers; the inset in
figure 11(a) indicates the surfactant concentration profiles in close approach for
Pes = 100. As long as there is some variation in the surfactant concentration, the
drops move towards one another and eventually collide, although for Pes = 1 the gap
changes very slowly. For comparison, we note that in figure 11(b) two equal-sized
drops with an initial gap of three drop radii reach a gap of 0.0001 at time t ≈ 1800
for Pes = 100 and Ma = 0.1. However, if the size ratio is reduced to k = 0.8 for the
same parameters and initial separation, the drops require only 90 dimensionless time
units to reach the same final gap.

For the asymmetric motion from figure 11(a), a close-up (figure 12a) shows that
the mutual approach does slow down, as the spheres come into contact, due to
lubrication. The approach velocity |V 2 − V 1| along the line of centres, though,
displays an intriguing behaviour. In figure 12(b), |V 2 − V 1|/δ1/2 is shown versus gap
δ for the near-contact stage. For clean drops under external forcing, this quantity
would be O(1) as δ → 0 (Zinchenko 1978, 1982; Davis et al. 1989). For contaminated
drops from figure 11(a), |V 2 − V 1|/δ1/2 is almost constant in a wide range of small
separations, but sharply increases as the spheres touch; |V 2 − V 1|/δ1/2 = O(1) at
δ → 0 is still expected. A complex behaviour in figure 12(b) (with excellent numerical
convergence and insensitive to initial conditions) indicates that the asymptotic analysis
of ‘surfactant-enhanced coalescence’ must be difficult, requiring global solution.

Cristini et al. (1998) and B�lawzdziewicz et al. (1999a) developed local near-contact
lubrication analysis for two spherical drops with compressible non-diffusing surfactant
pressed together by an external driving force. They assumed the interfacial velocity
on drop surfaces (in an appropriate reference frame) and surfactant distribution to
be axisymmetric in the gap region, both varying on the usual lubrication scale aiδ

1/2

along the gap. Two modes of mutual approach were predicted and quantified, ‘rapid
coalescence’ (for a sufficiently strong driving force) on a time scale commensurate with
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Figure 11. Evolution of the gap � between two equal-sized surfactant-covered spherical drops
with µ̂ = 1 and Ma = 0.1 for sedimentation (a) normal to and (b) along the line of centres
at different surface Péclet numbers: 1, Pes = 1; 2, Pes = 10; 3, Pes = 100; 4, Pes = 500; 5,
Pes = 5000. Initial gap is three drop radii. The inset in (a) is the drops’ image for Pes = 100 at
the gap of 0.0001, which occurs at t = 577. The contours indicate iso-concentration lines.

that for clean drops, and long-time approach (for a subcritical driving force) when the
film drainage may be even slower than for rigid spheres. Since |V 2 − V 1| ∼ δ1/2 in our
simulations for figure 12, this case appears to be characteristic of ‘rapid coalescence’.
Besides small, but finite diffusion, though, the present asymmetric case has additional
complications. Figure 13 (solid lines) presents the distribution of surfactant along the
gap for drop 1 in the plane y1 = y2 = 0, as a function of a stretched variable x1δ

−1/2

for the near-contact stage of simulation in figures 11(a) and 12 at Pes = 100; the
axis x1 is defined in figure 1 and is (for the given case) antiparallel to the direction
of the doublet motion. For comparison, dashed lines show an analogous simulation
with less diffusion (Pes = 500). All curves were calculated for azimuthal truncation
M = 8 (§ 3.3) and found to be graphically indistinguishable from those for M = 4;
variation of ε-parameter (controlling the order of harmonics retained, § 3.3) confirms
excellent numerical convergence of the results in figure 13. The range |x1δ

−1/2| � 8
essentially limits the data to near-contact region, both for δ = 0.001 and 3 × 10−5.
Axial symmetry of surfactant distribution in the gap would imply the symmetry of
the curves in figure 13 about x1δ

−1/2 = 0, which is not observed, even approximately.
Despite this unexpected conclusion, indicating substantial difficulty of asymptotic
analysis for the present case, the results in figure 13 help to explain the behaviour of
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Figure 12. Near-contact behaviour for the two-drop sedimentation normal to the line of
centres from figure 11(a) at Pes = 100 (solid lines). In (b), the relative velocity |V 2 − V 1| along
the line of centres is scaled with the square root of the gap; the dashed line is for an analogous
simulation at a different Péclet number, Pes = 500.

the relative velocity in figure 12(b). Namely, as collision is approached, Γ becomes an
increasingly smooth function of x1δ

−1/2 (and y1δ
−1/2), the role of Marangoni stresses in

the gap hampering mutual approach is reduced, and |V 2 − V 1|δ−1/2 increases sharply.
For Pes = 500, due to larger Marangoni stresses in the gap, the near-contact approach
velocity |V 2 − V 1| is roughly half of that for Pes = 100 (figure 12b). On the contrary,
at the initial stage δ � 0.03, larger Marangoni stresses on the entire drop surfaces for
Pe = 500 produce a larger driving force and faster mutual approach, compared to the
case Pes = 100. The overall collision time t = 478 for Pes = 500 is only slightly shorter
than t = 577 for Pes = 100. Although an analytical theory of surfactant-enhanced
coalescence is still lacking, we have been able to verify the direction of relative
motion for the simulation in figure 12(a) using the boundary-integral algorithm of
Rother et al. (2006) at µ̂ = 1, Pes = 100 and finite, but small deformation.

Enhanced coalescence phenomenon for two equal drops sedimenting along the line
of centres (figure 11b) at high Péclet numbers presents an interesting case, where
a nearly stagnant cap of surfactant and a clean spot include the lubrication area.
Referring to figure 1, where drop 1 is assumed to be strictly below drop 2 (and both
sediment downwards), figure 14 presents the axisymmetrical distribution of surfactant
versus θ1 (or θ2) angle on both surfaces at δ = 3 × 10−5 and Pes = 100, 500 and 20 000.
The Pes = 5000 result is almost indistinguishable from that for Pes = 20 000 and is
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Figure 13. Distribution of surfactant along the gap for the sedimentation of two equal drops
normal to the line of centres from figures 11(a) and 12. Solid lines, Pes = 100; dashed lines,
Pes = 500. Curves 1 and 3 are for surface separation δ = 0.001; curves 2 and 4 are for
δ = 3 × 10−5.
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Figure 14. Distribution of surfactant on the surfaces of (a) the leading and (b) the trailing
drop of equal radii in their sedimentation along the line of centres in near contact (δ = 3 × 10−5).
Curves: 1, Pes = 100; 2, Pes = 500; 3, Pes = 20 000; other parameters and initial conditions
are the same as in figure 11(b).
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Figure 15. Relative velocity, scaled with δ1/2, for two equal drops sedimenting along the line
of centres at µ̂ = 1, Ma = 0.1 and different Péclet numbers: 1, Pes = 100; 2, Pes = 500; 3,
Pes = 5000; 4, Pes = 20 000.

not shown. Although the process is not quite steady state, nearly stagnant caps of
surfactant are formed as Pes → ∞, on the leading and trailing drops, with cap angles
θc

1 ≈ 98◦ and θc
2 ≈ 106◦, respectively; the rest of each drop is free from surfactant. In this

limit, the surfactant distributions are still continuous, with infinite derivatives dΓ/dθi

at the transition points to clean spots. Due to interaction, surfactant distributions
are quite different for the leading and trailing drops; squeezing flow results in sharp
variation and non-monotonic behaviour of Γ on drop 1 in the near-contact area
(figure 14). The calculations proceed much faster than for a general three-dimensional
case, since the azimuthal truncation M = 0 suffices due to axial symmetry. For the
purposes of high accuracy, the order n of harmonics was limited from below by 20,
40, 100 and 300 for Pes = 100, 500, 5000 and 20 000, respectively. This is essential
at the initial stage of simulation, until the interaction-based truncation scheme of
§ 3.3 with ε = 0.001 comes into play, eventually making n reach several hundred.
Halving these bounds and coarsening ε to 0.002 produced the results graphically
indistinguishable from those in figure 14. High order of harmonics is essential at
Pes 	 1 to avoid grossly negative Γ in the ‘clean-spot’ area, but reasonably small
negative Γ have no appreciable effect on global drop dynamics (and surfactant
distribution in the caps) and can be tolerated; generally, it makes no sense to resolve
extremely small concentrations in the clean-spot area. High-accuracy calculations in
figure 14, though, have avoided negative Γ altogether (with Γ ∼ 10−6–10−7 in the
clean spots at Pes = 20 000).

For these simulations at the near-collision stage, the relative drop velocity scaled
with δ1/2 is shown in figure 15. At Pes = ∞, the near-contact interaction would
resemble that between a perfectly rigid sphere and a clean drop, with a |V 2 − V 1| ∼ δ

behaviour. It follows from figure 15, however, that this limit can be achieved only at
extremely large Péclet numbers. For Pes � 5000, with small but appreciable tangential
velocity on the capped portion of the leading drop, the behaviour of the relative
velocity is still closer to that for two clean drops (|V 1 − V 2| ∼ δ1/2); for Pes = 20 000,
the |V 2 − V 1| ∼ δ behaviour is roughly observed for δ � 10−3 only. It may be possible
to apply the local lubrication analysis of Cristini et al. (1998) and B�lawzdziewicz
et al. (1999a) to this axisymmetric case for a semi-analytical description, but an
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Figure 16. Evolution of surfactant concentration in the cap on the smaller (leading) drop, as
collision is approached between two unequal drops sedimenting along the line of centres at
k = 0.5, µ̂ = 1, Ma = 0.025 and Pes = 20 000. Curves: 1, δ = 2; 2, δ = 0.1; 3, δ = 3 × 10−5.

extension must be made for a diffusive surfactant; it follows from figure 15 that
the role of surface diffusion increases as collision is approached. Using their method
would require a numerical solution of a stiff nonlinear partial differential equation for
surfactant concentration in the lubrication area, with initial conditions provided by the
present global solution at some small clearance δ, which is not a straightforward task.
The necessary ‘outer solution’ would also require a modification of the present method,
with a different iterative scheme, to allow the drop motion in near-contact with the
same velocities V 1 = V 2, until a steady state is reached. Due to these complications,
a near-contact asymptotic analysis goes beyond the scope of the present paper, but
may be a subject of future research.

The following example demonstrates a typical scenario for two unequal drops
settling along the line of centres and covered with a low-diffusing surfactant at a
small Marangoni number (k = 0.5, µ̂ = 1, Ma = 0.025, Pes = 20 000). As the drops
approach contact from large distances (δ = 50 initially), the surfactant distribution on
the larger, trailing drop with a nearly-stagnant cap (θc

2 ≈ 134◦) does not show any
noticeable changes. The cap angle θc

1 = 92◦–96◦ on the smaller, leading drop varies
only slightly, but the surfactant distribution in the cap is significantly altered by the
squeezing flow (much stronger than for two equal drops under similar conditions)
and, at collision, the lubrication area becomes entirely devoid of surfactant (figure 16).
Due to clean spots on both sides of the gap, the approach velocity roughly follows
the scaling |V 2 − V 1| ∼ δ1/2 for all small separations.

Returning to general three-dimensional motion of unequal drops, a physical
example of contaminated air bubbles rising through water is studied in
figure 17. Physical properties for this system are ρe = 1000 kg m−3, ρd = 1204 kg m−3,
µe = 0.001 kg (m s)−1, σ0 = 0.0728 N m−1, ideal gas constant R = 8.3145 J (mol K)−1,
gravitational acceleration g = 9.8 m s−2 and absolute temperature T = 293 K. The
surface diffusivity was taken equal to the bulk diffusivity and given a value of
Ds = 1 × 10−9 m2 s−1 (Shen et al. 2002; Hudson et al. 2003), where the bulk surfactant
diffusivity is O(10−10) to O(10−9) m2 s−1 (Shen et al. 2002). Because maximum
deviation from the incompressible limit is expected at low surface concentrations, we
choose Γeq = 1 × 10−9 mol m−2 (Subramanian & Balasubramaniam 2001); this value is
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a2 (µm) Re Ca Pes Ma A

5 0.0012 3.4 × 10−6 1.2 10 12
10 0.0098 1.3 × 10−5 9.8 2.5 24
20 0.078 5.4 × 10−5 78 0.62 49
30 0.26 1.2 × 10−4 260 0.28 73
40 0.63 2.2 × 10−4 630 0.16 97
50 1.2 3.4 × 10−4 1200 0.10 120

Table 1. Dimensionless groups for air bubbles in water.

much smaller than a typical maximum-packing concentration of 10−5–10−6 mol m−2

(Shen et al. 2002), so an ‘ideal-gas’ model for surfactant is valid. The velocity for
scaling U and definitions for the Reynolds number, Re, and capillary number, Ca, in
terms of dimensional variables are

U =
�ρga2

2

µe

, Re =
ρeUa2

µe

, Ca =
µeU

σ ∗ , (4.4)

where σ ∗ = σ0 − RT Γeq is the interfacial tension reduced by the initially uniform
surfactant surface concentration.

Table 1 provides information on the range of several dimensionless parameters for
larger bubble radii a2 between 5 and 50 µm. Restrictions on the current model include
negligible inertia and deformation, i.e. small Re and Ca. The isolated sedimentation
velocity of the larger drop velocity is less than U by a factor of 2/9 to 1/3, so
that more appropriate Re and Ca would be smaller than the values in table 1. An
additional limitation is that Brownian motion be negligible, which is met by bubbles
greater than a few micrometres in diameter (Zhang & Davis 1991).

In figure 17, at smaller bubble radii, where the surface Péclet number is small, and
the Marangoni number is large, the critical non-dimensional horizontal offset d∗

∞ is
close to the value determined for the incompressible surfactant limit. At larger a2, Pes

increases and Ma decreases (see table 1), so that d∗
∞ is closer to the results for clean

bubbles. At large enough bubble sizes, critical offsets from the current model nearly
coincide with those for uncontaminated interfaces (beyond the results shown). In the
intermediate bubble sizes, the most interesting behaviour is observed. In particular,
for k = 0.9 in figure 17(b), d∗

∞ is greater than the Smoluchowski value of 1.9 for a2

greater than 25 µm, and the system exhibits the same surfactant-enhanced coalescence
seen in the dimensionless parameter space. Calculations performed at a higher initial
surfactant surface concentration of Γeq = 1 × 10−7 mol m−2 for k = 0.5 show that d∗

∞
closely follows the incompressible surfactant limit (results not shown).

The neglect of drop deformation in the present calculations merits additional
discussion. Although spherical drops with mobile surfaces collide under the action of
finite forces (such as gravity), even a small amount of deformation would prohibit
physical contact in a finite time, due to slow drainage of the film between the surfaces
(Yiantsios & Davis 1990, 1991). Singular van der Waals attraction, however, makes
collisions possible even with deformation, so coalescence of two slightly deformable
drops is a subtle interplay between the two, small-scale factors acting in opposite
directions. For glancing collisions of clean drops at 0 <Ca 
 1, Rother, Zinchenko &
Davis (1997) developed an asymptotic approach by matching the axisymmetrical
local thin-film solution in the gap with the outer solution for two spherical drops
in a three-dimensional motion; this approach, although sometimes questioned in
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Figure 17. The dimensionless critical horizontal offset versus the larger drop radius a2 in
microns for a physical system of air bubbles in water (µ̂ = 0) for (a) k = 0.5 and (b) k = 0.9.
In both (a) and (b), the upper, short-dashed horizontal line is for clean drops (A = 0), while
the lower, long-dashed curve marks results for incompressible surfactant. The solid lines
are from the present, more general solution for compressible surfactant. The calculations for
contaminated drops assume an equilibrium surfactant concentration of Γeq = 1 × 10−9 mol m−2.

the literature, was completely justified by accurate full three-dimensional boundary-
integral calculations at small Ca (Zinchenko & Davis 2005). Calculations of Rother
et al. (1997, figure 16 therein) for typical Hamaker constant and surface tension show
a negligible effect of deformation on collision efficiency for drops less than a few
hundred micron. Even with surfactant, it is safe to neglect deformation for much
smaller drops, as in our figure 17.

5. Concluding remarks
An algorithm has been developed to treat the gravity-induced three-dimensional

collisions of two spherical drops covered with insoluble surfactant at low Reynolds
numbers. Unlike in previous collision studies, our solution accounts for nonlinear
coupling between the surfactant transport and drop hydrodynamics by solving the
full convective–diffusion equation for the surfactant transport and is applicable at
arbitrary Marangoni (Ma) and surface Péclet (Pes) numbers. The method includes
twin multipole expansions with economical truncation for hydrodynamics and a
Galerkin-type approach for surfactant transport. Our solution is capable of accurately
calculating thousands of trajectories from large separation to very close contact
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(δ ∼ 10−4) and is used to determine collision efficiencies by trial and error in a
wide range of parameters, including the case of small, but finite, surface diffusion
(Pes ∼ 103–104). Selected examples show how stagnant-cap surfactant distributions,
observed for Ma 
 1 and Pes 	 1, are affected by hydrodynamical interactions and the
squeezing flow. For finite drop-to-medium viscosity ratios, as collision is approached,
the relative velocity scaling is typically the same as for two clean drops, which
enables contact in a finite time without van der Waals forces not included in the
present analysis. For moderate size ratios, drop behaviour is generally bounded by
that of clean drops and that of drops with nearly uniform surfactant coverage. At
larger size ratios, nonlinear coupling between surfactant dynamics and flow leads to
collision efficiencies that even exceed the geometrical Smoluchowski value. Related,
this nonlinear coupling causes equal-sized drops to migrate towards each other
and collide. These novel effects do not exist for clean spherical drops or in the
incompressible surfactant approximation.

These results are surprising in that surfactants are often used to stabilize emulsions,
while we observe that coalescence can also be enhanced by surfactants for drops
with size ratio close to unity. Future studies must address the overall effect of this
coalescence enhancement on the drop-size evolution through population-dynamics
simulations. The surfactant-enhanced coalescence is observed only at low surface
concentrations, as our calculations for a model system of contaminated air bubbles
in water demonstrate. In addition, bulk solubility of the surfactant would likely lead
to smaller gradients in the surfactant concentration (Pawar & Stebe 1996; Eggleton
et al. 2001) and a weakening of the effect. That is, longer times might be required for
coalescence to occur. The implications of these findings for flow-induced collisions are
unclear at present. The external flow might mask the phenomenon, as in the case of
deformation-enhanced coalescence of clean deformable drops (Manga & Stone 1993,
1995), which is observed in buoyancy flow but not shear. Further investigation into
the interactions and collisions of two contaminated spherical drops in linear flows,
such as shear, with compressible surfactant should be made. This computationally
demanding problem may require an even more efficient algorithm, by combining the
present techniques with high-order near-contact lubrication analysis.

The work of M.A.R. was supported by the Office of the Vice President for Research
at the University of Minnesota. M.A.R. would like to thank the VDIL at UMD and
the Minnesota Supercomputing Institute for use of computing resources.

Appendix. Rate of convergence of multipole expansions
To demonstrate the correctness of the progression exponents (3.27), consider the

simplest classical problem, which can be solved both by twin spherical expansions
and by the method of images, namely, steady heat transfer between two spheres S1

and S2 with prescribed temperatures T1 and T2. Using the latter, well-known method,
two infinite systems A1 = {P1

1, P1
2, . . .} and A2 = {P2

1, P2
2, . . .} of image points inside

S1 and S2, respectively, are constructed, so that Pγ

1 = Oγ and Pγ +1
k+1 is the inversion of

Pγ
k with respect to Sγ +1 (figure 18); indices γ and γ + 1 are reduced by module 2.
By construction ∣∣Pγ +1

k+1 − Oγ +1

∣∣ ·
∣∣Pγ

k − Oγ +1

∣∣ = a2
γ +1, (A 1)

so ∣∣x − Pγ +1
k+1

∣∣ ·
∣∣Oγ +1 − Pγ

k

∣∣ = aγ +1

∣∣x − Pγ
k

∣∣, (A 2)
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Figure 18. The image system for two interacting spheres. All the image points Pγ
k inside Sγ

approach the limiting spheres |P − Oγ | = aγ qγ (dashed lines), as k → ∞.

for all xεSγ +1. The solution for the temperature outside the spheres is

T e(x) =

2∑
γ =1

∞∑
k=1

Q
γ
k∣∣x − Pγ

k

∣∣ , (A 3)

with Q
γ

1 = aγ Tγ and other coefficients found recurrently to satisfy the boundary
conditions. Each term in (A 3) can be re-expanded in the standard way into multipoles
centred at Oγ . Then comparing the result with a twin spherical expansion (cf. (3.2)–
(3.4)),

T e(x) = T 1
− + T 2

− =

2∑
γ =1

∞∑
n=0

A
γ

−(n+1),0

(
aγ

rγ

)n+1

Yn,0(rγ ), (A 4)

gives the coefficients

A
γ

−(n+1),0 =
(−1)nγ

aγ

(
4π

2n + 1

)1/2 ∞∑
k=1

Q
γ
k

(∣∣Pγ
k − Oγ

∣∣
aγ

)n

. (A 5)

As k → ∞, the image points Pγ
k approach limiting positions P1

∞ and P2
∞ for γ = 1 and

2, respectively (which are nothing but the poles of the bispherical coordinate system
for S1 and S2), and the progression exponent qγ for the decay of A

γ

−(n+1),0, as n → ∞,
is obviously |Pγ

∞ − Oγ |/aγ . Simple algebra yields the explicit expressions (3.27) for q1

and q2.
Using the more complex asymptotic technique (Zinchenko 1994, Appendix B), it can

be shown that the progression exponents (3.27) are quite universal. They describe the
decay of multipole coefficients (to within an algebraic factor nα) in non-axisymmetrical
problems as well, for Laplace and Stokes equations in a two-sphere geometry.
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