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A classification of Shimura curves in Ag

Ben Moonen
Abstract. We give a precise classification, in terms of Shimura data, of all 1-dimensional Shimura
subvarieties of a moduli space of polarized abelian varieties.

1 Introduction

1.1

The goal of this note is to give a classification of the 1-dimensional Shimura subva-
rieties of Ag , the moduli space of g-dimensional (polarized) abelian varieties. My
motivation to write this up comes partly from the fact that at some places in the
literature there seem to be misconceptions about this. (See Remark 5.8 for an example.)

In terms of Shimura data, what we want to classify are triples (G , Y, ρ), where
(G , Y) is a Shimura datum such that Y is a 1-dimensional complex manifold, and
ρ∶ (G , Y) ↪ (GSp2g ,H±g ) is an embedding into a Siegel modular Shimura datum. The
adjoint Shimura datum (Gad , Y ad) is then easy to describe: Take a 4-dimensional
central simple algebra D over a totally real field F which splits at precisely one of the
real places of F, and let GD = PGL1,D . There is a unique GD(R)-conjugacy class YD of
homomorphisms S → GD ,R such that (GD , YD) is a Shimura datum (see Section 4.5),
and for every triple (G , Y, ρ) as above, (Gad , Y ad) is isomorphic to a datum of this
form (GD , YD).

The problem at hand can be reduced to the situation where the generic abelian
variety over the Shimura curve given by (G , Y) is simple. If the endomorphism
algebra is of Albert type I, II or III, which means that its centre is a totally real
field, knowing the adjoint Shimura datum essentially solves the whole problem, as
the connected centre of G then equals Gm and the representation ρ can only be the
so-called corestriction representation. Typical examples of what we obtain are the
1-dimensional Shimura subvarieties of A4 constructed by Mumford [8, Section 4];
what seems less well-known is that there is also a quaternionic version of Mumford’s
construction that gives rise to abelian varieties of Albert types II and III.

The most interesting part of the problem is the case where the generic abelian
variety is of Albert type IV, so that the centre of the endomorphism algebra is a CM
field. In this case, if we fix F and D as above such that (Gad , Y ad) ≅ (GD , YD), the
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2 B. Moonen

derived group of G is a finite cover of GD , and the possibilities for ρ∣Gder correspond
to the Gal(Q/Q)-orbits of nonempty subsets of the set Emb(F) = Hom(F ,Q). The
main point is that the representation of Gder needs to be combined with a nontrivial
representation of the centre of G in order to obtain a Shimura datum that embeds
into a Siegel modular datum. We carry out a precise analysis of the data involved. For
the final result we refer to Propositions 4.4 and 4.5, and then Theorem 5.1 states that
the description we have found covers all cases. An interesting feature is that we are
naturally led to introduce a notion of a “partial CM type”, and that our classification
involves a condition that generalizes the classical notion of primitivity of a CM type.
(The notion we consider is more specific than the one used in [10].)

1.2

In Sections 2 and 3, we review the results from representation theory that we need,
following Tits’s paper [15], and we discuss two examples of representations that play a
key role. In Section 4, we study simple complex abelian varieties X whose associated
Shimura datum is 1-dimensional. This is the main part of the paper. As mentioned, the
most interesting case to analyze is when X is of Albert type IV. In Section 5, we explain
how the analysis carried out in Section 4 gives a complete solution to the classification
problem in the case when the generic abelian variety is simple, and in Section 6, we
extend this to the general case.

1.3

There are several papers that discuss the classification of Shimura (sub)varieties, and
one may wonder to what extent the results in the present paper are already covered
in the literature. To my knowledge, the precise classification carried out here is new,
though I suspect, based on [5, Remarque 2.3.11], that the results have been long
known to Deligne. The work of Satake [12] and the subsequent work of Addington
[1] does discuss the representation theory involved but does not contain the results
that we obtain. (These papers focus on the representation theory of the semisimple
part of the Mumford–Tate group, whereas in our work it is the interplay between the
representation theory of the semisimple part and the centre that plays a main role. The
“chemistry terminology” of [1] is not commonly used; we use root data instead.)

1.4 Notation and conventions

(1) Throughout, Q is viewed as a subfield of C and we write ΓQ = Gal(Q/Q). If K is a
number field, we write Emb(K) = Hom(K ,Q), which is identified with the set of
complex embeddings of K or, in case K is totally real, the set of real embeddings
of K.

(2) If G is a reductive group, we denote by Gder its derived group, by Gad the adjoint
group, and by Gsc the simply connected cover of Gad.

(3) If X is an abelian variety, we denote by End0(X) = End(X) ⊗Q its endomor-
phism algebra.
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A classification of Shimura curves in Ag 3

2 Some results from representation theory

Throughout this section, k denotes a field of characteristic 0 with algebraic closure
k ⊂ k̄.

2.1 Basic notions

If G is an algebraic group over k then by a representation ρ of G we mean a
representation on a finite dimensional k-vector space. If we say that ρ is irreducible,
we mean it is irreducible over k. If k ⊂ L is a field extension, we denote by ρL the
representation of GL obtained by extension of scalars.

If D is a k-algebra and V is a right D-module of finite k-dimension, we denote
by GLD(V) the algebraic group over k of D-linear automorphisms of V, and by
restrD/k ∶GLD(V) → GLk(V) the canonical homomorphism. (Instead of GLk(V)
also the notation GL(k V) is used, where k V denotes the underlying k-vector space
of V.) If G → GLD(V) is a homomorphism, we refer to V as a D-G-module, and
we denote by EndD-G(V) the algebra of D-linear endomorphisms of V that are G-
equivariant.

For D a central simple k-algebra, we define GLn ,D = GLD(Dn), where Dn is
viewed as a right D-module. We write SL1,D ⊂ GL1,D for the kernel of the norm
homomorphism GL1,D → Gm,k and PGL1,D for the cokernel of Gm,k → GL1,D . Note
that if dimk(D) = d2, the groups SL1,D and PGL1,D are k-forms of SLd , resp. PGLd .

If k ⊂ L is a finite field extension and R∶GL → GL(V) is a representation of GL over
L, we denote by resL/k(R) the representation of G (over k) given by the composition

resL/k(R)∶G can

→ ResL/k(GL)
ResL/k(R)





→ ResL/k(GL(V))

restrL/k
↪



→ GLk(V).

2.2 Representations of tori

If T/k is a torus, let X∗(T) = Hom(Tk̄ ,Gm, k̄) be the character group of T and
X∗(T) = Hom(Gm, k̄ , Tk̄) the cocharacter group. These are free Z-modules of finite
rank equipped with a continuous action of Gal(k̄/k). We have a Galois-equivariant
perfect pairing X∗(T) × X∗(T) → Z. For ξ ∈ X∗(T), write k̄ξ for the vector space k̄
on which Tk̄ acts through the character ξ, and let 1ξ ∈ k̄ξ be the identity element.

The irreducible representations of T correspond to the Gal(k̄/k)-orbits in X∗(T).
If Ξ ⊂ X∗(T) is such an orbit, the corresponding representation ρΞ can be constructed
by considering the k̄-vector space VΞ, k̄ = ⊕ξ∈Ξ k̄ξ , on which Gal(k̄/k) acts by the rule

γ ⋅ ( ∑
ξ∈Ξ

cξ ⋅ 1ξ) = ∑
ξ∈Ξ

γ(cγ−1 ⋅ξ) ⋅ 1ξ (for γ ∈ Gal(k̄/k) and coefficients cξ ∈ k̄).

(In particular, γ sends c ⋅ 1ξ to γ(c) ⋅ 1γ⋅ξ .) The representation of Tk̄ on VΞ, k̄ descends
to a representation of T on the k-vector space VΞ = (VΞ, k̄)Gal(k̄/k), and this gives the
representation ρΞ . By construction, ρΞ, k̄ ≅ VΞ, k̄ as representations of Tk̄ .

For ξ ∈ Ξ, define k(ξ) = k̄Stab(ξ), where Stab(ξ) ⊂ Gal(k̄/k) is the stabilizer of ξ.
The choice of an element ξ0 ∈ Ξ gives an isomorphism k(ξ0)

∼
→ End(ρΞ). Concretely,
if y ∈ k(ξ0) and ξ ∈ Ξ, choose γ ∈ Gal(k̄/k) such that ξ = γ ⋅ ξ0 and let y act on k̄ξ as
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4 B. Moonen

multiplication by γ(y), which is independent of the choice of γ. Moreover, one readily
checks that the action of k(ξ0) on VΞ, k̄ thus obtained commutes with the action of
Gal(k̄/k) and is Tk̄-equivariant; hence it descends to a homomorphism of k-algebras
k(ξ0) → End(ρΞ). To see that this is an isomorphism, it suffices to note that both sides
have the same k-dimension because k(ξ0) ⊗k k̄ ≅ ∏ξ∈Ξ k̄ ≅ End(ρΞ, k̄).

2.3 Example

If E is a number field, let TE = ResE/Q Gm,E , which is a torus over Q of rank equal
to [E ∶ Q]. The character group is given by X∗(TE) = ⊕φ∈Emb(E) Z ⋅ eφ , where eφ

denotes the character induced by the embedding φ. The Galois group ΓQ = Gal(Q/Q)
acts on X∗(TE) through its action on Emb(E). The cocharacter group is X∗(TE) =
⊕φ∈Emb(E) Z ⋅ ěφ , where {ěφ}φ∈Emb(E) is the dual basis.

The set of elements {eφ}φ∈Emb(E) is a ΓQ-orbit in X∗(TE). We denote the corre-
sponding irreducible representation by StE , and we refer to it as the standard repre-
sentation of TE . It is given by the canonical homomorphism TE = ResE/Q GL1,E 
→
GL(QE), where QE denotes the Q-vector space underlying E. The endomorphism
algebra of StE is E.

2.4 Review of some results of Tits.

We briefly review some results by Tits [15]. (What we have discussed in 2.2 is a very
special case of this.)

Let G/k be a reductive group. This group gives rise, in a canonical way, to a based
root datum (X, Φ, Δ, X∨, Φ∨ , Δ∨) with an action of Gal(k̄/k); see for instance [2],
especially Remark 7.1.2. As in the case of a torus, X and X∨ are free Z-modules with
Gal(k̄/k)-action and we have a Galois-equivariant perfect pairing ⟨ , ⟩∶X × X∨ → Z.
The sub-lattices Z ⋅ Φ ⊂ X and Z ⋅ Φ∨ ⊂ X∨ are called the root lattice and the co-root
lattice. Define

X+ = {ξ ∈ X ∣ ⟨ξ, ϖ∨⟩ ≥ 0 for all ϖ∨ ∈ Δ∨} .

For ξ ∈ X+, let ρ k̄ ,ξ denote the irreducible representation of G k̄ with highest weight ξ.
Let X0 ⊂ X be the subgroup that is generated by Φ and by the elements that are

perpendicular to Φ∨. Following [15], define

C∗(G) = X/X0 ,

which is a finite group that only depends on Gder. It comes equipped with an action
of Gal(k̄/k).

If ξ ∈ X+ is invariant under Gal(k̄/k), there exists a division algebra D = Dξ with
centre k and a representation rξ ∶G → GLD(V), for some right D-module V of finite
type, such that:
• the representation ρξ = restrD/k ○ rξ ∶G → GL(V) is irreducible (notation as in 2.1);
• if d = deg(D) is the degree of D (i.e., dimk(D) = d2), the representation ρξ, k̄ is

isomorphic to the sum of d copies of ρ k̄ ,ξ .
(Note that ρξ, k̄ = (ρξ)k̄ is not the same as ρ k̄ ,ξ .) The division algebra Dξ is unique up
to isomorphism, and given Dξ the representation rξ is unique up to Dξ-equivalence.
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A classification of Shimura curves in Ag 5

(See [15, Théorème 3.3].) If the context requires it, we write ρk ,ξ to indicate the ground
field.

Let Br(k) be the Brauer group of k. There exists a homomorphism

βG ,k ∶C∗(G)Gal(k̄/k) → Br(k)

that only depends on Gder, with the property that for a Galois-invariant dominant
weight ξ ∈ (X+)Gal(k̄/k) as above, βG ,k(ξ mod X0) = [Dξ].

With this notation, the general description of the irreducible representations of G
is as follows. For ξ ∈ X+, let k(ξ) ⊂ k̄ be the field extension of k that corresponds to
the stabilizer of ξ in Gal(k̄/k). By what we have just explained, there exists a division
algebra D = Dξ with centre k(ξ) and a representation rk(ξ),ξ ∶Gk(ξ) → GLD(V) over
k(ξ) such that ρk(ξ),ξ = restrD/k(ξ) ○ rk(ξ),ξ ∶Gk(ξ) → GLk(ξ)(V) is an irreducible
representation of Gk(ξ) which after extension of scalars to k̄ becomes a sum of copies
of ρ k̄ ,ξ . Then

ρξ = resk(ξ)/k(ρk(ξ),ξ)∶G 
→ GLk(V)

(notation as in 2.1) is an irreducible representation of G. If necessary we write ρk ,ξ
instead of ρξ to indicate the ground field, and again we note that if k ⊂ L is a field
extension, ρL ,ξ is in general not the same as ρξ,L , the extension of scalars of ρξ to L.
The isomorphism class of the representation ρξ only depends on the Gal(k̄/k)-orbit
of ξ, and every irreducible representation of G is of the form ρξ for some ξ ∈ X+. If
d = deg(Dξ) and Gal(k̄/k) ⋅ ξ = {ξ1 , . . . , ξr} then

(ρξ)k̄ ≅ (ρ k̄ ,ξ1
)⊕d ⊕ ⋅ ⋅ ⋅ ⊕ (ρ k̄ ,ξr

)⊕d .

The endomorphism algebra of ρξ is isomorphic to Dop
ξ . (See the proof of Théorème

7.2 in [15].)

3 Examples

We discuss two examples that play an important role in the next sections. As before,
k is a field with char(k) = 0.

3.1 Example

Let L = L1 × . . . × Ls be a product of finite field extensions of k. Let D = D1 × . . . × Ds ,
where D j is a 4-dimensional central simple L j-algebra ( j = 1, . . . , s). With notation as
in 2.1, let G j = ResL j/k SL1,D j , and take G = ResL/k SL1,D = G1 × . . . × Gs . We have

Gk̄ ≅ ∏
σ∈Homk(L , k̄)

SL2, k̄ .(3.1)

The weight lattice of G is given by X = ⊕σ∈Homk(L , k̄) Z, on which Gal(k̄/k) acts
through its action on Homk(L, k̄). We normalize this in such a manner that a
weight ξ = (ξσ)σ∈Homk(L , k̄) is dominant if and only if ξσ ≥ 0 for all σ . Let ρcor be
the irreducible representation of G corresponding to the weight ξ with ξσ = 1 for all
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6 B. Moonen

σ ∈ Homk(L, k̄). We call ρcor the corestriction representation of G over k; it can be
described as follows.

For σ ∈ Homk(L, k̄), write Dσ = D ⊗L ,σ k̄, which is isomorphic to the matrix
algebra M2(k̄). On the ring ⊗σ∈Homk(L , k̄) Dσ (tensor product over k̄) we have a
natural action of Gal(k̄/k), which extends the action on k̄ (which is the centre). The
corestriction of D, notation CorL/k D, is defined as the k-algebra of Galois-invariants:

CorL/k D = ( ⊗
σ∈Homk(L , k̄)

Dσ)
Gal(k̄/k)

,

which is a central simple k-algebra. (See [15, Section 5.3] or [11]; for a more intrinsic
approach, see [6].) If q = dimk(L) = ∑s

j=1 [L j ∶ k] then CorL/k D has degree 2q over k.
The canonical homomorphism CorL/k D ⊗k k̄ → ⊗σ∈Homk(L , k̄) Dσ is an isomorphism
of k̄-algebras. On Brauer groups, the class [CorL/k D] ∈ Br(k) is the image of [D] ∈
Br(L) under the corestriction map in Galois cohomology.

Writing C = CorL/k D, we have a homomorphism α∶ResL/k GL1,D → GL1,C , which
on k̄-valued points is given by the natural homomorphism

∏
σ∈Homk(L , k̄)

D∗σ → ( ⊗
σ∈Homk(L , k̄)

Dσ)
∗

.

Let W be the unique (up to isomorphism) simple left C-module, viewed as a k-
vector space, so that we have a representation GL1,C → GL(W). Then the corestriction
representation is given by the composition

ρcor∶G ↪ ResL/k GL1,D
α
→ GL1,C → GL(W).

In more detail, let E = EndC(W) = End(ρcor) be the division algebra with centre k
that is Brauer equivalent to Cop. (For the identity E = End(ρcor), cf. the end of Section
2.4.) There are two cases.
• First case: E = k. Then C ≅ M2q(k); so we find that W = k2q

and GL1,C ≅ GL2q ,k ,
and ρcor∶G → GL(W) is given by the homomorphism α. In this case, ρcor, k̄ ≅
⊠σ∈Homk(L , k̄) Stσ , where by Stσ we mean the irreducible 2-dimensional represen-
tation of the factor SL2, k̄ in (3.1) indexed by σ .

• Second case: E is a quaternion algebra over k. In this case, C ≅ M2q−1(Eop). Fixing
such an isomorphism, we obtain W = (Eop)⊕2q−1 ≅ k2q+1

and GL1,C ≅ GL2q−1 ,Eop .
The representation ρcor is the composition

G
α
→ GL2q−1 ,Eop

restrEop/k




→ GL2q+1 ,k ,

and ρcor, k̄ is isomorphic to a sum of two copies of ⊠σ∈Homk(L , k̄) Stσ .

3.2 Example

Let F be a number field and D a 4-dimensional central simple algebra over F. Consider
the algebraic group G = ResF/Q SL1,D over Q, which is a simply connected semisimple
group. The weight lattice of G is given by X = ⊕σ∈Emb(F) Z, on which ΓQ = Gal(Q/Q)
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acts through its action on Emb(F). Again we normalise this such that a weight ξ =
(ξσ)σ∈Emb(F) is dominant if and only if ξσ ≥ 0 for all σ .

If I ⊂ Emb(F) is a subset, let ξI be the weight given by the rule that ξσ = 1 if σ ∈ I
and ξσ = 0 otherwise. Let ρI be the irreducible representation of G that corresponds
to the ΓQ-orbit of ξI . (In particular, ρI ≅ ργ(I) for γ ∈ ΓQ.) This representation can be
described as follows.

Let F̃ ⊂ Q be the normal closure of F. Writing Dσ = D ⊗F ,σ F̃, we have GF̃ ≅
∏σ∈Emb(F) SL1,Dσ , and hence G

Q
≅ ∏σ∈Emb(F) SL2,Q.

Let kI ⊂ F̃ be the subfield of elements that are invariant under Stab(I) = {γ ∈
Gal(F̃/Q) ∣ γ(I) = I}. (This field kI takes the role of what in 2.4 was called k(ξ).)
The kI-algebra F ⊗Q kI is a product of field extensions of kI . We have a natural
isomorphism

F ⊗Q kI = (F ⊗Q F̃)Stab(I) ≅ ( ∏
σ∈Emb(F)

F̃)
Stab(I)

= (∏
σ∈I

F̃ ×∏
σ∉I

F̃)
Stab(I)

.

Defining

LI = (∏
σ∈I

F̃)
Stab(I)

, L′I = (∏
σ∉I

F̃)
Stab(I)

we get a decomposition F ⊗Q kI = LI × L′I . Define DI = D ⊗F LI and D′I = D ⊗F L′I .
Then

GkI = (ResLI/kI SL1,DI) × (ResL′I/kI SL1,D′I).

Let ρcor∶ResLI/kI SL1,DI → GL(W) be the corestriction representation over kI as in
Example 3.1, applied with L = LI and D = DI . The representation ρI is then the
composition

G
can

→ ReskI/Q(GkI)

pr

→ ReskI/Q(ResLI/kI SL1,DI)
Res(ρcor)




→ ReskI/Q GL(W)

restrkI/Q




→ GL(QW).

(In other words, ρI = reskI/Q(ρcor), where we view ρcor as a representation of GkI .)
The endomorphism algebra EI = End(ρI) is a division algebra with centre kI which

is Brauer equivalent to CorLI/kI DI . Either EI = kI or EI is a quaternion algebra over
kI . The representation ρI ,Q is isomorphic to

⊕
J∈ΓQ⋅I

( ⊠
σ∈J

Stσ)
⊕ deg(EI)

,(3.2)

where Stσ denotes the 2-dimensional irreducible representation of G
Q

given by the
standard irreducible representation of the factor indexed by σ . For later use we note
that, because Gal(Q/F̃) acts trivially on X, the summands that appear here are already
defined over F̃; more precisely: ρI ,F̃ decomposes as a direct sum of representations
RF̃ , J , for J ∈ ΓQ ⋅ I, such that (RF̃ , J)Q is isomorphic to a sum of deg(EI) copies of
⊠σ∈J Stσ .
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3.3 Remark

In the above description of the representation ρI , we have broken the symmetry by
choosing a representative I for the Galois-orbit ΓQ ⋅ I. For what follows, it is important
to restore the symmetry. We shall use the symbol I for a ΓQ-orbit of nonempty
subsets of Emb(F), and we write ρI ∶G → GL(WI) for the corresponding irreducible
representation of G = ResF/Q SL1,D over Q (as in 3.2). Define EI = EndG(ρI), and let
kI be the centre of EI . Then Emb(kI) is in natural bijection withI , in such a way that if
I ∈ I corresponds to the embedding τ, the subfield τ(kI) ⊂ Q is the field kI of Example
3.2 and EI ⊗kI ,τ kI

∼
→ EI . The normal closure of kI is a subfield of F̃. We denote by
�(I) the cardinality of the sets I ∈ I , so that dimQ(WI) = [kI ∶ Q] ⋅ deg(EI) ⋅ 2�(I).

Lemma 3.1 Let F, D and G = ResF/Q SL1,D be as in Example 3.2. Let I be a ΓQ-
orbit of subsets of Emb(F), and let ρI ∶G → GL(WI) be the corresponding irreducible
representation of G over Q. (Notation as in the previous remark.) Assume the following
two conditions are satisfied:
(a) there is a unique embedding σ ∈ Emb(F) such that D ⊗F ,σ R is isomorphic to

M2(R);
(b) the sets I ∈ I are nonempty and I ≠ {Emb(F)}.
Then the endomorphism algebra EI of ρI is a quaternion algebra over its centre kI .

Proof As explained above, we have a bijection I
∼
→ Emb(kI), and if I ↦ τ then

τ(kI) is the field kI as in Example 3.2, which is a subfield of R. With notation as in
that example, the image in Br(R) of the class [EI] ∈ Br(kI) under τ is the class of

Cor(LI⊗kI R)/R
(DI ⊗kI R) = ⊗

σ∈I
Dσ ,

where Dσ = D ⊗F ,σ R. This class is the sum over the elements σ ∈ I of the classes
[Dσ] ∈ Br(R). Let σnc ∈ Emb(F) be the unique real embedding at which D splits.
Assumption (b) implies that we can find I1, I2 ∈ I such that σnc ∈ I1 and σnc ∉ I2. The
corresponding two classes in Br(R) are unequal, so the class [EI] ∈ Br(kI) cannot be
trivial. ∎

4 Abelian varieties whose associated Shimura datum is
1-dimensional

4.1 Notation related to Hodge structures

As usual in Hodge theory, we define S = ResC/R Gm. The character group of this
torus is given by X∗(S) = Z⊕Z, with complex conjugation acting by (p, q) ↦ (q, p).
The norm homomorphism Nm∶S → Gm,R (on R-points: z ↦ zz̄) corresponds to the
character (1, 1). Define w∶Gm,R → S (on R-points: the inclusion R∗ ↪ C∗) to be the
unique homomorphism such that Nm ○ w is z ↦ z2, and let i∶Gm,C ↪ SC be the
morphism given on C-valued points by z ↦ (z, 1); in terms of the natural pairing
between characters and cocharacters, i is described by its property that ⟨(1, 0), i⟩ = 1
and ⟨(0, 1), i⟩ = 0.
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A Q-Hodge structure of weight n is given by a finite dimensional Q-vector space
V together with a homomorphism h∶S → GL(V)R such that h ○ w∶Gm,R → GL(V)R
is given by z ↦ z−n ⋅ id. We follow the convention that an element (z, w) ∈ C∗ ×C∗ =
S(C) acts on the summand V p,q ⊂ VC in the Hodge decomposition of VC as multi-
plication by z−pw−q . Instead of giving the homomorphism h, we can also describe the
Hodge strucuture on V by giving the corresponding cocharacter μ = (hC ○ i)∶Gm,C →
GL(V)C that is given by the rule that z ∈ C∗ acts on V p,q as multiplication by z−p .

4.2

By a Shimura datum, we mean a pair (G , Y) where G is a connected reductive group
over Q and Y is a G(R)-conjugacy class of homomorphisms S → GR, such that the
conditions (2.1.1.1–3) of [5, Section 2.1] are satisfied. The weight of a Shimura datum
is the homomorphism h ○ w∶Gm,R → GR, which in fact takes values in the connected
centre of GR and is independent of h ∈ Y. In all cases of interest for us, this weight
cocharacter is defined over Q.

If (G1 , Y1) and (G2 , Y2) are Shimura data then by an embedding j∶ (G1 , Y1) ↪
(G2 , Y2)we mean an injective homomorphism j∶G1 ↪ G2 such that composition with
j gives a map Y1 → Y2.

4.3

Let X be a complex abelian variety. Write V = H1(X ,Q), and let h∶S → GL(V)R be
the homomorphism that gives the Hodge structure on V. By definition, the Mumford–
Tate group of X is the smallest algebraic subgroup H ⊂ GL(V) such that h factors
through HR.

Let G be the Mumford–Tate group of X. If Y is the G(R)-conjugacy class of the
homomorphism h∶S → GR, the pair (G , Y) is a Shimura datum whose weight is
defined overQ. We refer to it as the Shimura datum given by X. The goal of this section
is to study complex abelian varieties X with associated Shimura datum (G , Y) such
that dim(Y) = 1.

4.4

Let Z = Z(G)0 be the identity component of the centre of G, which is a torus over
Q. The natural homomorphism Z × Gsc → G is an isogeny. We view V as a repre-
sentation of Z × Gsc. The natural map End0(X) → End(V) induces an isomorphism
End0(X) ∼
→ EndZ×Gsc(V).

Let H1 , . . . , Hs be the simple factors of GC, so that GC = ZC ⋅ H1 . . . Hr . Every
irreducible GC-submodule of VC is isomorphic to a representation χ ⊠ r1 ⊠ . . . ⊠ rs ,
where χ is a character of ZC and r j is an irreducible representation of H j ( j = 1, . . . , s).
By a result of Deligne ([5, Section 1.3]) and Serre ([13, Section 3]), the highest weight of
every nontrivial representation r j that occurs is a minuscule weight. In particular, if H j
is of Lie type A1, we must have H j ≅ SL2, and if r j is nontrivial, it is the 2-dimensional
standard representation.
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10 B. Moonen

4.5

Let X be a complex abelian variety such that the associated Shimura datum (G , Y)
has the property that dim(Y) = 1, which is equivalent to the assumption that

Gad
R ≅ PGL2,R × compact factors.(4.1)

If this holds, there exists a totally real field F and a 4-dimensional central simple F-
algebra D (unique up to isomorphism) such that

D ⊗Q R ≅ M2(R) × a product of factors H ,

and such that Gsc ≅ ResF/Q SL1,D . Let σnc ∈ Emb(F) be the unique embedding with
the property that D ⊗F ,σnc R ≅ M2(R). Then

Gsc
R ≅ SL2,R × ∏

σ∈Emb(F)
σ≠σnc

SL1,H , Gad
R ≅ PGL2,R × ∏

σ∈Emb(F)
σ≠σnc

PGL1,H .(4.2)

(Here SL1,H = SU(2) is the compact real form of SL2.) In the adjoint Shimura datum
(Gad , Y ad), the space Y ad is the Gad(R)-conjugacy class of the homomorphism S →
Gad

R that on the first factor is given on R-valued points by

a + bi ↦ [ a −b
b a ](4.3)

and that is trivial on the compact factors.
Because the centre of Gsc is 2-torsion, so is the kernel of the isogeny Z × Gsc → G.

Hence, there exists a unique homomorphism h̃ = (h̃c , h̃s)∶S → ZR × Gsc
R such that the

diagram

(4.4)
S ZR × Gsc

R

S GR

z↦z2

h̃

h

is commutative. Define μ̃ = h̃C ○ i, and write it as μ̃ = (μ̃c , μ̃s)∶Gm,C → ZC × Gsc
C . (c =

centre, s = semisimple.)

4.6

In addition to the assumptions made in 4.5, assume that X is a simple abelian variety
of dimension g. The endomorphism algebra End0(X) is a division algebra of finite
dimension over Q. Let E be the centre of End0(X), which is either a totally real field
(Albert Types I, II and III) or a CM field (Albert Type IV). Then VC is a module over
E ⊗Q C = ∏φ∈Emb(E) C; correspondingly, we have a decomposition

VC = ⊕
φ∈Emb(E)

Vφ ,(4.5)
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with Vφ = V ⊗E ,φ C. With the notation V p,q
φ = V p,q ∩ Vφ (intersection taken inside

VC) we then have

Vφ = V−1,0
φ ⊕ V 0,−1

φ , V p,q = ⊕
φ∈Emb(E)

V p,q
φ (for (p, q) = (−1, 0) or (0, −1)) ,

and complex conjugation on VC interchanges the summands V−1,0
φ and V 0,−1

φ̄ . The
function

f∶Emb(E) → N given by f(φ) = dimC(V−1,0
φ )

satisfies f(φ) + f(φ̄) = dimE(V) = 2g
[E∶Q] for all φ ∈ Emb(E). In particular, if E is totally

real then [E ∶ Q] divides g and f is constant with value g
[E∶Q] . We refer to f as the

multiplication type of X.
The action of E on V gives a representation TE → GL(V), which is isomorphic to a

sum of dimE(V) copies of the standard representation StE (see Example 2.3). Viewing
TE as a subgroup of GL(V) via this homomorphism, the connected centre Z of the
Mumford–Tate group G is a subgroup of TE . With notation as in Example 2.3, the
character group X∗(Z) of Z is therefore a quotient of X∗(TE) = ⊕φ∈Emb(E) Z ⋅ eφ , and
the cocharacter group X∗(Z) is a primitive subgroup of X∗(TE) = ⊕φ∈Emb(E) Z ⋅ ěφ .

Proposition 4.1 Let the notation and assumptions be as above.
(1) The cocharacter μ̃c∶Gm,C → ZC ⊂ TE ,C corresponds to the element

∑
φ∈Emb(E)

2 ⋅ f(φ)
n

⋅ ěφ = ∑
φ∈Emb(E)

[E ∶ Q] ⋅ f(φ)
g

⋅ ěφ

of X∗(TE), where n = dimE(V) = 2g
[E∶Q] .

(2) With identifications as in (4.2), the homomorphism μ̃s∶Gm,C → Gsc
C is conjugate

under Gad(R) to the homomorphism given on C-valued points by

z ↦ ((
z2+1

2z i ⋅ z2−1
2z

−i ⋅ z2−1
2z

z2+1
2z

) , 1, . . . , 1) .(4.6)

(3) The representation Z → GL(V) is a direct sum of copies of (the restriction to Z ⊂ TE
of) the standard representation StE . (Notation as in Example 2.3.)

(4) There exists a ΓQ-orbit I of nonempty subsets of Emb(F) such that the representa-
tion Gsc → GL(V) is isotypical of type ρI . (Notation as in Example 3.2 and Remark
3.3, applied with G = Gsc.)

In (2), note that Gad acts by conjugacy on the space of cocharacters of Gsc.

Proof (1) We have G ⊂ GLE(V). Let detE ∶GLE(V) → TE be the E-linear determi-
nant. The composition

TE × Gsc → GE
detE


→ TE(4.7)

is given by (t, y) ↦ tn . Next consider the composition

f ∶Gm,C
μ̃
→ TE ,C × Gsc

C → GLE(V)C = ∏
φ∈Emb(E)

GL(Vφ).
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12 B. Moonen

By definition of the function f, the action of z ∈ C∗ on Vφ through this homomorphism
is conjugate to the homomorphism

z ↦ diag( z2 , . . . , z2

1222222222222222232222222222222224
f(φ) terms

, 1, . . . , 1).

(The z2 comes from the fact that μ̃ is a lift of the square of μ, cf. diagram (4.4).) In
particular, detE ○ f ∶Gm,C → TE ,C = ∏φ∈Emb(E) Gm,C is given on the factor indexed by
φ by z ↦ z2⋅f(φ). By our description of the map (4.7), if μ̃c corresponds to the element
∑φ∈Emb(E) aφ ⋅ ěφ ∈ X∗(TE), we find the relation n ⋅ aφ = 2 ⋅ f(φ).

(2) On C-valued points, the homomorphism S → PGL2,R of (4.3) is given by

(z, w) ↦ [ z+w i(z−w)
−i(z−w) z+w ]

and therefore the homomorphism ad ○ μ̃s∶Gm,C → Gad
C is conjugate to the cocharacter

that, under the identification (4.2), is given by

z ↦ ([ z2+1 i(z2−1)
−i(z2−1) z2+1 ], 1, . . . , 1) .

Because a cocharacter of Gad
C admits at most one lift to Gsc

C , it now suffices to remark
that (4.6) indeed lifts the latter homomorphism.

(3) This is obvious.
(4) This follows from what was explained in Section 4.4. ∎

Proposition 4.2 Let X be a g-dimensional simple complex abelian variety such that in
the associated Shimura datum (G , Y) we have dim(Y) = 1. Assume that X is of Albert
type I, II or III. Let notation be as in Sections 4.5 and 4.6.
(1) We have Z = Gm ⋅ idV .
(2) With Gsc = ResF/Q SL1,D as in 4.5, the representation Gsc → GL(V) is irreducible

and is the corestriction representation as in Example 3.1, with G = Gsc. (In other
words, it is the irreducible representation ρI of Example 3.2 with I = Emb(F).) The
centre of Gsc is the finite group scheme Z(Gsc) = ResF/Q μ2,F , on which we have a
norm character N ∶ Z(Gsc) → μ2,Q whose kernel is a group scheme of order 2[F∶Q]−1.
The derived subgroup Gder of the Mumford–Tate group is the image of Gsc in the
corestriction representation, which is isomorphic to Gsc/Ker(N).

(3) Let m = [F ∶ Q]. We are in one of the following three cases:
(I) m is odd, CorF/Q(D) ≅ M2m(Q) and End0(X) ≅ Q;

(II) m is odd, CorF/Q(D) /≅ M2m(Q) and End0(X) is a quaternion algebra over
Q that splits over R;

(III) m is even, CorF/Q(D) /≅ M2m(Q) and End0(X) is a quaternion algebra over
Q that does not split over R.

We have g = 2m−1 in case (I) and g = 2m in cases (II) and (III).

(In (3), the labels correspond to the Albert type of X.)

Proof (1) This is well-known; see for instance [14, Lemma 1.4]. We can also see
it directly: because E is totally real, the function f is constant, and it follows from
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Proposition 4.1(1) that the cocharacter μ̃c is defined over Q. Now use that Z is the
smallest subtorus of TE such that μ̃c factors through ZC.

(2) Because X is simple, V is irreducible as a representation of Z × Gsc, and then it
follows from (1) that it is irreducible as a representation of Gsc. By Proposition 4.1(4), V
is therefore a representation of the form ρI for some ΓQ-orbit I of nonempty subsets
of Emb(E). We need to show that only I = {Emb(E)} is possible. To see this, first
note (see Example 3.2, and use that F is totally real) that VR, as a representation of Gsc

R ,
decomposes as a sum of representations RR,I , for I ∈ I , such that (RR,I)C is a sum
of copies of ⊠σ∈I Stσ . If I ≠ {Emb(F)} then there exists some I ∈ I such that σnc ∉ I,
where we recall that σnc ∈ Emb(F) is the unique embedding such that D ⊗F ,σnc R ≅
M2(R). Because the homomorphism h∶S → GR that defines the Hodge structure on
V projects trivially onto the compact factors of Gad

R , it follows that the (real) Hodge
structure on the direct summand of VR that corresponds to the representation RR,I is
of Tate type. This is impossible, as VR is a real Hodge structure of type (−1, 0) + (0, −1).

For the last assertion of (2), we only have to remark that on the centre of Gsc, the
corestriction representation is given by the norm character.

(3) By (2), we are in the situation of Example 3.1 with k = Q and L = F. If E is the
division algebra with centre k = Q that represents the class of CorF/Q D (as in that
example), we have E = End(ρ) = End0(X). But we have seen that either E = Q or E is
a quaternion algebra over Q. On the other hand, by looking at the invariants of D at
the infinite places of F, we see that inv∞(E) = 0 ∈ Br(R) if m is odd and inv∞(E) =
1
2 ∈ Br(R) if m is even. It readily follows that the listed cases (I)–(III) are the only three
possibilities. Finally, the given recipe for g is just the calculation of the dimension of
the corestriction representation. ∎

4.7 Remark

If F = Q, we may have D = M2(Q), in which case X is an elliptic curve with End(X) =
Z. In all other cases, D is a quaternion algebra with centre F.

4.8

Returning to the setting of 4.5, we now assume that X/C is a simple abelian variety of
Albert Type IV, which means that E, the centre of End0(X), is a CM field. Let E0 ⊂ E
be the maximal totally real subfield. As before, we fix F and D and an identification of
Gsc with ResF/Q SL1,D .

It will be convenient to view V as a representation of TE × Gsc. Because E is the
centre of End0(X) and Z ⊂ TE , we have End0(X) = EndZ×Gsc(V) = EndTE×Gsc(V).

Let notation be as in Example 3.2 and Remark 3.3, with G = Gsc. By Proposition
4.1(4), there exists a ΓQ-orbit I of nonempty subsets of Emb(F) such that V is iso-
typical of type ρI as a Gsc-module. Realize this representation as ρI ∶Gsc → GL(WI)
for some Q-vector space WI . Recall (see Remark 3.3) that we write EI = EndGsc(WI),
and that the centre of EI is called kI . The field kI is totally real (it is a subfield of the
Galois closure of F), and either EI = kI or EI is a quaternion algebra over kI .
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14 B. Moonen

With this notation, WI has the structure of a left EI-module. This induces the
structure of a right EI-module on the space

H = HomGsc(WI , V).

The torus TE acts on H by EI-linear automorphisms, through its action on V. The
evaluation map gives a TE × Gsc-equivariant isomorphism H ⊗EI

WI
∼
→ V , where

Gsc acts on H ⊗EI
WI via idH ⊗ ρI and TE acts via its action on H. This gives us an

isomorphism

EndEI
(H) ∼
→ EndGsc(V).(4.8)

Note that EndEI
(H) is a central simple kI-algebra.

Lemma 4.3 Notation and assumptions as above.

(1) Identify End0(X) with theQ-subalgebra EndTE×Gsc(V) of EndGsc(V), and view the
latter as a kI -algebra via the isomorphism (4.8). Then kI ⊂ E0, and hence E0, E and
End0(X) are kI -subalgebras of EndGsc(V). Further, End0(X) is the centralizer of
E in EndGsc(V), and E is the centralizer of End0(X).

(2) The multiplication type f∶Emb(E) → N is not constant.

Proof (1) The action of TE on V commutes with the action of Gsc, and End0(X) ⊂
EndGsc(V) is the subalgebra of elements that commute with the action of TE . There-
fore, the centre of EndGsc(V), which is kI , is contained in the centre of End0(X),
which is E. Since kI is totally real, even kI ⊂ E0. Moreover, the centralizer of E is
contained in End0(X); but E is the centre of End0(X), so in fact the centralizer of
E equals End0(X). The last assertion then follows by the double centralizer theorem.

(2) Suppose f were constant. As in the proof of Proposition 4.2(1), this would give
Z = Gm, and hence End0(X) ≅ EndGsc(V). But the centre of EndGsc(V) is kI , which
is totally real and therefore cannot be equal to E; contradiction. ∎

4.9

Let notation and assumptions be as in 4.8. In addition to its right EI-module structure,
H has the structure of an E-vector space through the action of E on V. Clearly, the E-
action on H commutes with the EI-action. The embedding ι∶ kI ↪ E0 ⊂ E of Lemma
4.3(1) is such that f ○ a = ι(a) ○ f for every a ∈ kI and f ∈ H, so the EI-action and
the E-action induce the same structure of a kI-vector space on H. Hence, H has the
structure of a right E ⊗kI

EI-module. Note that E ⊗kI
EI is a central simple E-algebra;

if we write EEI ⊂ EndkI
(H) for the kI-subalgebra generated by E and EI , the natural

map E ⊗kI
EI ↠ EEI is therefore an isomorphism. Via the isomorphism (4.8), we

find that End0(X) ≅ EndEEI
(H), and because End0(X) is a division algebra, only

three cases are possible:

Case 0. EI = kI and dimE(H) = 1;
Case 1. EI is a quaternion algebra over kI and EEI ≅ M2(E), in which case
dimE(H) = 2;
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Case 2. EI is a quaternion algebra over kI and EEI is a quaternion algebra over E,
in which case H is free of rank 1 over EEI , and hence dimE(H) = 4.

(As we shall see below, Case 0 in fact does not occur.)
Write n = dimE(V) = 2g

[E∶Q] . Recall (see Remark 3.3) that Emb(kI) is in bijection
with I . The inclusions kI ⊂ E0 ⊂ E give rise to natural maps Emb(E) → Emb(E0) →
Emb(kI). For φ in Emb(E) or Emb(E0), we write φ∣kI

for its image in Emb(kI), and
we write Iφ ∈ I for the corresponding subset. Recall that �(I) denotes the cardinality
of the sets I ∈ I . We find the following:

Case 0. V ≅ StE ⊠kI
WI as representations of TE × Gsc;

End0(X) = E, with n = 2�(I) and g = [E ∶ Q] ⋅ 2�(I)−1.
Case 1. V⊕2 ≅ StE ⊠kI

WI as representations of TE × Gsc;
End0(X) = E, with n = 2�(I) and g = [E ∶ Q] ⋅ 2�(I)−1.

Case 2. V ≅ StE ⊠kI
WI as representations of TE × Gsc;

End0(X) = EEI , with n = 2�(I)+1 and g = [E ∶ Q] ⋅ 2�(I).
We have

(StE ⊠kI
WI) ⊗Q C = ⊕

I∈I
( ⊕

φ∈Emb(E)
Iφ=I

C) ⊗
C
( ⊠

σ∈I
Stσ)

⊕ deg(EI)

= ⊕
φ∈Emb(E)

( ⊠
σ∈Iφ

Stσ)
⊕ deg(EI)

.(4.9)

We consider the action of Gm,C on this space via the homomorphism μ̃∶Gm,C →
TE ,C × Gsc

C , which is described by Proposition 4.1. Note that the cocharacter (4.6) is
Gsc(C)-conjugate to the cocharacter given by

z ↦ (( z 0
0 z−1 ), 1, . . . , 1) .

It follows that in the decomposition (4.9), the Gm,C-action on the summand indexed
by φ ∈ Emb(E) has weights 2⋅f(φ)

n + 1 and 2⋅f(φ)
n − 1 if σnc ∈ Iφ , and has weight 2⋅f(φ)

n if
σnc ∉ Iφ . (Recall that σnc ∈ Emb(F) is the unique embedding for which D ⊗F ,σnc R ≅
M2(R).) Note that whether or not σnc is in Iφ only depends on φ∣kI

, and is therefore
invariant under complex conjugation.

Since we know that Gm,C acts on V with weights 0 and 2, we find that

{f(φ), f(φ̄)} = {0, n} if σnc ∉ Iφ , f(φ) = f(φ̄) = n
2 if σnc ∈ Iφ .(4.10)

It follows from Lemma 4.3(2) that I ≠ {Emb(F)}. By Lemma 3.1, Case 0 is therefore
excluded.

The following proposition summarizes what we have found.

Proposition 4.4 Let X be a g-dimensional simple complex abelian variety with associ-
ated Shimura datum (G , Y) such that dim(Y) = 1. Assume that X is of Albert type IV.
Let notation be as in Sections 4.5 and 4.6, and recall that we write n = 2g/[E ∶ Q]. There
exists a ΓQ-orbit I of nonempty proper subsets I ⊊ Emb(F) such that, with notation as
in 4.8–4.9, E0 is a field extension of kI , and such that we are in one of the following cases:
1. EI is a quaternion algebra over kI such that E ⊗kI

EI ≅ M2(E), in which case
End0(X) = E and g = [E ∶ Q] ⋅ 2�(I)−1;
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2. EI is a quaternion algebra over kI such that E ⊗kI
EI is a quaternion algebra over

E, in which case End0(X) ≅ E ⊗kI
EI and g = [E ∶ Q] ⋅ 2�(I).

Moreover, if Φ0 = {φ0 ∈ Emb(E0) ∣ σnc ∉ Iφ0}, there exists a subset Φ ⊂ Emb(E) with
the property that the restriction map End(E) ↠ Emb(E0) induces a bijection Φ ∼
→ Φ0,
and such that the multiplication type f∶Emb(E) → N is given by

f(φ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n if φ ∈ Φ;
0 if φ̄ ∈ Φ;
n
2 otherwise.

(4.11)

4.10 Remark

The following explanation may help to understand what is going on. We have the
decomposition VC = ⊕φ∈Emb(E) Vφ as in (4.5), with dimC(Vφ) = n, which is even. The
Hodge decomposition of VC is described by the action ofGm,C via the homomorphism
μ̃ = (μ̃c , μ̃s). Here μ̃c is a homomorphism Gm,C → TE ,C = ∏φ∈Emb(E) Gm,C, and we
see that the μ̃c-action of z ∈ C∗ on the summand Vφ ⊂ VC is multiplication by zm(φ)

for some integer m(φ). If φ is such that σnc ∉ Iφ , the action of Gm,C on Vφ via the
homomorphism μ̃s is trivial; hence, Vφ is entirely of Hodge type (−1, 0) or entirely of
type (0, −1). Since μ̃ is the square of the usual cocharacter μ, this means that m(φ) = 0
or m(φ) = 2, which by Proposition 4.1(1) is equivalent to: f(φ) = 0 or f(φ) = n. As we
shall discuss below, the set Φ in Proposition 4.4 may be thought of as a “partial CM
type”; it keeps track of whether, for embeddings φ with σnc ∉ Iφ , the type of Vφ is
(−1, 0) or (0, −1).

If σnc ∈ Iφ the situation is very different: in this case, the action of Gm,C on Vφ via
the homomorphism μ̃s is nontrivial and has weights 1 and −1, both with multiplicity
n
2 . (Informally speaking, the Hodge decomposition of Vφ comes from the semisimple
part of the Mumford–Tate group.) In this case, the μ̃c-action of Gm,C on Vφ only shifts
these weights, which means that m(φ) = m(φ̄) = 1 (equivalently: f(φ) = f(φ̄) = n

2 ),
and there is no further bookkeeping to be done.

4.11 Remark

The derived subgroup Gder of the Mumford–Tate group is the image of Gsc =
ResF/Q SL1,D under the representation ρI . (This is analogous to Proposition 4.2(2).)
The centre of Gsc is Z(Gsc) = ResF/Q μ2,F , so that

Z(Gsc)
Q

= ∏
φ∈Emb(F)

μ2 .

The kernel of the isogeny Gsc → Gder is the subgroup scheme of Z(Gsc) whose Q-
points are the tuples (εφ)φ∈Emb(F) such that ∏φ∈I εφ = 1 for every I ∈ I .

4.12 Example

Let g be an even positive integer. Let (X , λ) be a g-dimensional polarized complex
abelian variety such that End0(X) = E is a CM field of degree g over Q, with maximal
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totally real subfield E0. Let V = H1(X ,Q), which is a 2g-dimensional Q-vector space
on which E acts, and which can therefore also be viewed as a 2-dimensional E-vector
space.

There is a unique (−1)-hermitian form Ψ∶V × V → E such that the Riemann form
of λ equals TrE/Q ○ Ψ. Let ∗ be the involution of EndE(V) such that Ψ( f (x), y) =
Ψ(x , f ∗(y)) for all f ∈ EndE(V) and x, y ∈ V . Then

D = { f ∈ EndE(V) ∣ f ∗ = f }

is a quaternion algebra over E0. The natural homomorphism E ⊗E0 D → EndE(V)
is an isomorphism, and under this isomorphism ∗ corresponds to ι ⊗ †, where ι is
complex conjugation on E and † is the canonical involution of D. Define U(V , Ψ) =
ResE0/Q U(V/E , Ψ), where by U(V/E , Ψ) ⊂ GLE(V) we mean the unitary group of
Ψ, which is a form of GL2 over E0. Further define GU(V , Ψ) = Gm ⋅ U(V , Ψ), where
Gm = Gm,Q ⋅ idV ⊂ GL(V). The isomorphism E ⊗E0 D ∼
→ EndE(V) gives rise to an
isomorphism ResE0/Q GL1,D

∼
→ U(V , Ψ).
For σ ∈ Emb(E0), write Eσ = E ⊗E0 ,σ R, which is non-canonically isomorphic to

C. Let Ψσ be the Eσ -valued (−1)-hermitian form on Vσ = V ⊗E0 ,σ R that is obtained
from Ψ by extension of scalars via σ , and let Dσ = D ⊗E0 ,σ R. We then have

U(V , Ψ)R ≅ ∏
σ∈Emb(E0)

U(Vσ , Ψσ)

and isomorphisms of real algebraic groups GL1,Dσ

∼
→ U(Vσ , Ψσ).
We now assume that there is a unique σnc ∈ Emb(E0) such that Ψσ is indefinite for

σ = σnc and is definite otherwise. (Indefinite here means that U(Vσ , Ψσ) is noncom-
pact.) The Mumford–Tate group G is a subgroup of GU(V , Ψ), and the two groups
have the same adjoint group. If (G , Y) is the associated Shimura datum, dim(Y) = 1.
We are therefore in the situation studied above, with F = E0. The representation of
Gsc = ResE0/Q SL1,D on V is isotypical of type ρI , where I ⊂ P(Emb(E0)) is the set
of singletons, which gives kI ≅ E0 = F and EI = D. Because E ⊗E0 D ∼
→ EndE(V) (so:
E is a splitting field of D), we are in Case 1 of Proposition 4.4.

The subset Φ ⊂ Emb(E) is such that the restriction map Emb(E) → Emb(E0) gives
a bijection Φ → Emb(E0)/{σnc}. In other words, for each σ ≠ σnc in Emb(E0) there
is a unique embedding φ ∈ Emb(E) above σ with the property that V−1,0

φ ≠ 0, and Φ
is the collection of these φ.

From the description of the cocharacter μc given in Proposition 4.1(1), we can
deduce that Z ⊂ TE is the subtorus of elements y ∈ E∗ such that y ȳ ∈ Q∗, and it follows
that G = GU(V , Ψ).

4.13

In the situation described in Proposition 4.4, the subset Φ ⊂ Emb(E) determines
the multiplication type f, which by Proposition 4.1(1) determines the cocharac-
ter μ̃c∶Gm,C → TE ,C. Because Z ⊂ TE (the identity component of the centre of the
Mumford–Tate group) is the smallest subtorus such that μ̃c factors through ZC, we
conclude that Φ determines Z. This centre cannot be too small; for instance, we have
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seen that EndZ×Gsc(V) = EndTE×Gsc(V). This gives a nontrivial condition on Φ. To
state it, we introduce the notion of a partial CM type.

Definition 4.1 Let E be a CM field with maximal totally real subfield E0. Let k ⊂ E0
be a subfield and let Σ be a subset of Emb(k). Then by a partial CM type relative to
(k, Σ) we mean a subset Φ ⊂ Emb(E) such that the map φ ↦ φ∣E0 gives a bijection

Φ ∼
→ {φ0 ∈ Emb(E0) ∣ φ0∣k ∈ Σ}.

We say that a partial CM type Φ ⊂ Emb(E) relative to (k, Σ) is primitive if for every
φ ≠ φ′ in Emb(E) with φ∣k = φ′∣k , there exists an element γ ∈ ΓQ such that γ ○ φ ∈ Φ
while γ ○ φ′ ∉ Φ.

Note that in other places in the literature (e.g., [10, Section 3.1]) the term “partial
CM type” is used for any subset Φ ⊂ Emb(E) with Φ ∩ Φ = ∅. Of course, any such Φ
is a partial CM type in our sense for some choice of (k, Σ), as we can just take k = E0
and Σ = {φ∣E0 ∣ φ ∈ Φ}; but the condition for Φ to be primitive depends on the choice
of (k, Σ), see the next examples.

4.14 Examples

(1) If we take k = Q and Σ = Emb(Q), we recover the usual notion of a CM type. As
we shall show, such a CM type Φ is primitive in the above sense if and only if it is
primitive in the classical sense, i.e., if Φ is not induced from a proper CM subfield of
E. See Remark 4.15.

(2) Suppose we take k = E0. Then a partial CM type Φ ⊂ Emb(E) relative to (k, Σ)
is primitive whenever Σ ≠ ∅. Indeed, if k = E0 and Σ ≠ ∅ then for any φ ≠ φ′ in
Emb(E) with φ∣E0 = φ0 = φ′∣E0 , we can find an element γ ∈ ΓQ such that γ ○ φ0 ∈ Σ.
Then γ ○ φ and γ ○ φ′ are the only two elements of Emb(E) that restrict to γ ○ φ0, so
precisely one of them lies in Φ. Possibly after composing γ with complex conjugation
we find that γ ○ φ ∈ Φ and γ ○ φ′ ∉ Φ.

(3) In the situation considered in Proposition 4.4, we have a partial CM type Φ
relative to k = kI and Σ = {I ∈ I ∣ σnc ∉ I}. (Here we identify Emb(kI) with I .)

Proposition 4.5 Let notation and assumptions be as in Proposition 4.4. Then the
partial CM type Φ relative to (kI , {I ∈ I ∣σnc ∉ I}) is primitive.

Proof Recall from 2.3 that StE denotes the standard representation of TE . The char-
acter group X∗(Z) of Z is a quotient of X∗(TE) = ⊕φ∈Emb(E) Z ⋅ eφ . Write ēφ ∈ X∗(Z)
for the image of eφ . Because ΓQ acts transitively on the set of elements eφ , the index
ν = [Stab(ēφ) ∶ Stab(eφ)] is independent of φ. Let K be the centre of EndZ(StE); then
K is a subfield of E with [E ∶ K] = ν. Further, EndZ(StE) ≅ Mν(K), and the embedding
E = EndTE (StE) ↪ EndZ(StE) realizes E as a maximal commutative subalgebra of
EndZ(StE).

Let KkI ⊂ E be the compositum of the subfields K and kI . We first show that the
equality EndZ×Gsc(V) = EndTE×Gsc(V)holds if and only if KkI = E. The isomorphism
(4.8) restricts to an isomorphism

EndZ×Gsc(V) ≅ EndEI
(H) ∩ EndZ(H).(4.12)
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In either of the cases distinguished in Proposition 4.4, H is isomorphic, as a represen-
tation of TE , to a direct sum of copies of the standard representation StE . The inclusion
K ↪ E gives H the structure of a K-vector space, and the relation EndZ(StE) ≅ Mν(K)
implies that EndZ(H) = EndK(H). Therefore, the right hand side of (4.12) equals
EndKEI

(H), where KEI is the subalgebra of EEI generated by K and EI . Recall
that EI is a quaternion algebra over kI , so KEI ≅ KkI ⊗kI

EI is a 4-dimensional
central simple algebra over KkI . On the other hand, EndTE×Gsc(V) = EndEEI

(H). By
the double centralizer theorem, we have EndZ×Gsc(V) = EndTE×Gsc(V) if and only if
KEI = EEI . Because EEI is a 4-dimensional central simple algebra over E, this is in
turn equivalent to KkI = E.

Next we show that we have an equality KkI = E if and only if Φ is primitive.
For φ ∈ Emb(E), write P(φ) = {φ′ ∈ Emb(E) ∣ φ∣kI

= φ′∣kI
}, which is the fibre of the

restriction map Emb(E) → Emb(kI) that contains φ. Then

Gal(Q/φ(E)) = Stab(φ) = Stab(eφ) ⊂ Gal(Q/φ(kI)) = Stab(P(φ)).

(By Stab(P(φ)) ⊂ ΓQ we mean the stabilizer of P(φ) as a set, not the pointwise
stabilizer. Note that the ΓQ-action permutes the sets of the form P(φ), so that indeed
Stab(φ) ⊂ Stab(P(φ)).) On the other hand, it follows from Proposition 4.1(1) together
with the characterization of Z as the smallest subtorus of TE such that μc factors
through ZC, that

Stab(ēφ) = {δ ∈ ΓQ ∣ f(γ ○ δ ○ φ) = f(γ ○ φ) for all γ ∈ ΓQ}.

The equality KkI = E is equivalent to the condition that for some (equivalently: for
every) φ ∈ Emb(E), the inclusion Stab(φ) ⊂ Stab(P(φ)) ∩ Stab(ēφ) is an equality. In
other words,

KkI ⊊ E ⇐⇒ Stab(φ) ⊊ Stab(P(φ)) ∩ Stab(ēφ)
⇐⇒ ∃ φ′ = δ ○ φ ∈ P(φ) such that φ′ ≠ φ and

f(γ ○ φ′) = f(γ ○ φ) for all γ ∈ ΓQ .

This proves the proposition. ∎

4.15 Remark

Suppose we take k = Q and Σ = Emb(Q). In this case, Φ is a CM type on E in the usual
sense, and we claim that it is primitive in the sense of Definition 4.1 if and only if Φ
is not induced from a proper CM subfield of E. To see this, let μ∶Gm,C → TE ,C be the
cocharacter defined by Φ, i.e., μ = ∑φ∈Φ ěφ , and let Z ⊂ TE be the smallest subtorus
such that μ factors through ZC. If X is a complex abelian variety of CM type (E , Φ)
(which is uniquely determined up to isogeny), Z is the Mumford–Tate group of X.
With notation as in the proof of Proposition 4.5, Φ is primitive if and only if Stab(ēφ) =
Stab(eφ) = Stab(φ), which is equivalent to the condition that EndZ(StE) = E, which
in turn is equivalent to the condition that End0(X) = E. It is classical that this happens
if and only if Φ is not induced from a proper CM subfield of E.
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5 A classification result

5.1

Let g be a positive integer. If (V , φ) is a symplectic space of dimension 2g
over Q, let H(V , φ) denote the space of homomorphisms h∶S → GSp(V , φ)R that
define a Hodge structure of type (−1, 0) + (0, −1) on V for which ±(2πi) ⋅ φ is a
polarization. The group GSp(V , φ)(R) acts transitively on H(V , φ) and the pair
(GSp(V , φ),H(V , φ)) is a Shimura datum, which is usually called a Siegel modular
Shimura datum. To simplify notation, we denote this datum by S(V , φ).

The associated tower of Shimura varieties ShK(S(V , φ)), for K running through
the set of compact open subgroups of GSp2g(V , φ)(Af), is isomorphic to the tower
Ag ,K of moduli spaces of g-dimensional principally polarized abelian varieties with a
level K structure; see for instance [4, Section 4].

If (V1 , φ1) and (V2 , φ2) are symplectic spaces and f ∶ (V1 , φ1) → (V2 , φ2) is a
similitude, f induces an isomorphism of Shimura data S(V1 , φ1)

∼
→ S(V2 , φ2).
Conversely, every such isomorphism is induced by a similitude. In particular, all
automorphisms of the Shimura datumS(V , φ) are inner, i.e., are given by conjugation
with an element of GSp(V , φ)(Q). (Note that GSp(V , φ) has non-inner automor-
phisms, but these do not map H(V , φ) into itself.)

5.2

Let F be a totally real number field, D a 4-dimensional central simple F-algebra,
and assume there exists a unique embedding σnc ∈ Emb(F) such that D ⊗F ,σnc R ≅
M2(R). Define GD = ResF/Q PGL1,D , and let YD be the GD(R)-conjugacy class of the
homomorphism S → GD ,R that on the unique noncompact factor PGL2 of GD ,R is
given by a + bi ↦ [ a −b

b a ] and that is trivial on the compact factors. The pair (GD , YD)
is a 1-dimensional adjoint Shimura datum. Because GD is a Q-simple group, it is the
generic Mumford–Tate group on YD .

We claim that all automorphisms of the Shimura datum (GD , YD) are inner, i.e.,
D∗/F∗ ∼
→ Aut(GD , YD). The automorphism group of GD is the group of pairs (α, f )
where α ∈ Aut(F) and f ∶PGL1,D

∼
→ PGL1,α∗D is an isomorphism of groups over F.
(See [3, Proposition A.5.14]; the result is stated there for simply connected groups but
the same argument works for adjoint groups.) As α has to preserve σnc, only α = id is
possible. Since all automorphisms of PGL1,D are inner, this gives the claim.

5.3

Our goal is to classify the 1-dimensional Shimura subvarieties of Ag . This leads us to
consider triples (G , Y, ρ), where (G , Y) is a Shimura datum with dim(Y) = 1 such
that G is the generic Mumford–Tate group on Y, and ρ∶ (G , Y) ↪ S(V , φ) is an
embedding of (G , Y) into a Siegel modular Shimura datum.

If we have two such triples (G i , Yi , ρ i ∶ (G i , Yi) ↪ S(Vi , φ i)), for i = 1, 2, we
say these are equivalent if there exist isomorphisms of Shimura data α∶ (G1 , Y1)

∼
→
(G2 , Y2) and β∶S(V1 , φ1)

∼
→ S(V2 , φ2) with β ○ ρ1 = ρ2 ○ α.
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If (G , Y, ρ) is a triple as above, the adjoint Shimura datum of (G , Y) is of the
form described in 5.2. In what follows, we fix F and D as in 5.2 and study only triples
(G , Y, ρ) such that (Gad , Y ad) ≅ (GD , YD). Let m = [F ∶ Q], and continue to write
σnc ∈ Emb(F) for the unique embedding such that D ⊗F ,σnc R ≅ M2(R). We write
G sc

D = ResF/Q SL1,D for the simply connected cover of GD , and we fix identifications
as in (4.2) (with GD in place of G). If I is a ΓQ-orbit of nonempty subsets of Emb(F),
we denote by ρI ∶G sc

D → GL(WI) the corresponding irreducible representation.

5.4

The following summarizes what is explained in [5, Section 1.1]. Let (G , Y) be a
Shimura datum whose weight is defined over Q, and such that for some (equivalently:
all) h ∈ Y the involution Inn(h(i)) of (G/w(Gm))R is a Cartan involution.

Let h0 ∈ Y, and let ρ∶G → GL(V) be a representation such that ρ ○ h0 defines a
Hodge structure of weight n on V, for some n ∈ Z. Then there exist:
• a character ν∶G → Gm such that ν ○ w∶Gm → Gm is given by z ↦ z−2n ,
• a bilinear form φ∶V × V → Q(−n),
such that φ(gv , gv′) = ν(g) ⋅ φ(v , v′) for all g ∈ G and v, v′ ∈ V , and such that φ is a
polarization of the Hodge structure on V given by ρ ○ h0. The form φ is symmetric
(resp. symplectic) if the weight n is even (resp. odd). If h = g ⋅ h0 ∈ Y is any other
element, either φ or −φ (depending on the sign of ν(g)) is a polarization of the Hodge
structure defined by ρ ○ h.

For our purposes, it suffices to consider the case where Y is 1-dimensional and the
Hodge structure on V is of type (−1, 0) + (0, −1). From now on, we assume this. Let h0,
ν and φ be as above. Then ρ defines an embedding of (G , Y) into the Siegel modular
datum S(V , φ) and (G , Y, ρ∶ (G , Y) ↪ S(V , φ)) is a triple as in 5.3.

For a given representation ρ, the form φ is not unique in general. To analyze this,
we first make the simplifying assumption that ρ is isotypical, i.e., ρ is isomorphic to
a sum of copies of an irreducible representation. (We shall return to the general case
in Section 6.) The endomorphism algebra A = End(ρ) is then a matrix algebra over a
finite dimensional division algebra over Q. The involution † on A that is induced by φ
is positive, so that (A, †) is a pair of the type classified by Albert. (See [9, Section 21],
for instance.) The set As = { f ∈ A ∣ f = f †} of symmetric elements in A is a formally
real Jordan algebra for the product given by f1 ⋆ f2 = ( f1 f2 + f2 f1)/2, and the totally
positive elements in As form an open cone As,+. (Note that As is a Jordan algebra
over Q, so by “cone” we here mean a cone in a Q-vector space. Further, writing E0
for the field of †-symmetric elements in the centre of A, which is a totally real field,
we call an element f ∈ As totally positive if its image in the Jordan algebra (A ⊗E0 , ι
R)s is positive for every embedding ι∶ E0 → R. With this notation, if h0 ∈ Y is Hodge
generic, every other polarization form for the Hodge structure given by ρ ○ h0 is of
the form ψ(v , v′) = φ(av , v′) for some a ∈ As,+. Conversely, for every such a the form
ψa(v , v′) = φ(av , v′) is a polarization, and (G , Y, ρ∶ (G , Y) ↪ S(V , ψa)) is again a
triple as in 5.3.

In general, it is somewhat complicated to say under what conditions on a ∈ As,+ the
forms φ and ψa give rise to equivalent triples. A sufficient condition for these triples to
be equivalent is that there exists a G-equivariant similitude (V , φ) → (V , ψa), which
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happens if and only if a = ν ⋅ b†b for some b ∈ A∗ and ν ∈ Q∗. (Note that a Siegel
modular datum S(V , φ) does not change if we multiply φ by a scalar in Q∗.) If
all automorphisms of the Shimura datum (G , Y) are inner, this is also a necessary
condition; but in general (G , Y) can have non-inner automorphisms.

After these preliminaries, we now discuss two constructions that, together, describe
all possible triples (G , Y, ρ) as in 5.3 for which the representation ρ is isotypical. (See
Theorem 5.1.) This is essentially Section 4 in reverse. We fix (GD , YD) as in 5.3.

5.5 Construction 1

Let ρ̃s∶Gsc
D → GL(V) be the corestriction representation; this is the case I =

{Emb(F)} that was discussed in Example 3.1, applied with L = F. Let G̃ = Gm,Q × G sc
D ,

and let ρ̃∶ G̃ → GL(V) be given by (c, g) ↦ c ⋅ ρ̃s(g). Let G = Im(ρ̃) be the image of
ρ̃, and let ρ∶G ↪ GL(V) be the induced representation.

Let μ̃∶Gm,C → G̃C be the cocharacter given by z ↦ z on the first factor of G̃ and
by formula (4.6) on the factor Gsc

D ,C. As μ2 = { ± 1} ⊂ Gm,C lies in the kernel of ρ̃ ○ μ̃,
there exists a unique cocharacter μ∶Gm,C → GC such that ρ̃ ○ μ̃ lifts the square of ρ ○ μ.
Let h∶Gm,R → GR be the homomorphism such that hC = μ ⋅ μ̄, and let Y be the G(R)-
conjugacy class of h. The pair (G , Y) is a Shimura datum whose weight is defined over
Q such that (Gad , Y ad) ≅ (GD , YD). (See also 5.1.) It is clear from the construction that
G/w(Gm) = Gad and that G is the generic Mumford–Tate group on Y.

Let r be a positive integer, and consider the representation ρ⊕r . By what was
explained in 5.4, there exists a polarization form φ on V⊕r such that ρ⊕r factors
through GSp(V⊕r , φ); we choose one. Then (G , Y, ρ∶ (G , Y) ↪ S(V⊕r , φ)) is a triple
as in 5.3.

The endomorphism algebra A0 of the representation ρ is described as in Proposi-
tion 4.2(3). The endomorphism algebra A of ρ⊕r is the matrix algebra Mr(A0). Let †
be the involution of A given by the chosen form φ, and let the notation As,+ ⊂ As be as
in 5.4. For a ∈ As,+ the form ψa given by ψa(v , v′) = φ(av , v′) has the property that ρ
factors through GSp(V⊕r , ψa), and (G , Y, ρ∶ (G , Y) ↪ S(V⊕r , ψa)) is again a triple
as in 5.3.

5.6 Construction 2

Let I be a ΓQ-orbit of nonempty subsets of Emb(F), with I ≠ {Emb(F)}, and let
ρI ∶Gsc

D → GL(WI) be the corresponding irreducible representation. Let �(I) be the
cardinality of the sets in I , let EI = End(ρI), and let kI be the centre of EI , which
is a totally real field. As explained in Remark 3.3, there is a natural identification
I = Emb(kI), and we use this to view Σ = {I ∈ I ∣ σnc ∉ I} as a subset of Emb(kI). Let
kI ⊂ E0 be a finite totally real field extension and E0 ⊂ E a totally imaginary quadratic
extension (so E is a CM field). Let Φ ⊂ Emb(E) be a primitive partial CM type relative
to (kI , Σ). (Note that such a type Φ may not exist for all choices of E.) Let H be the
unique simple right (E ⊗kI

EI)-module, and define V = H ⊗EI
WI , viewed as a Q-

vector space.
Define a multiplication type f as in (4.11). Let μ̃c∶Gm,C → TE ,C be the cochar-

acter that is given, as element of X∗(TE), by μ̃c = ∑φ∈Emb(E)
2⋅f(φ)

n ⋅ ěφ , where
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n = dimE(V), which equals 2�(I) if the class of E ⊗kI
EI in Br(E) is trivial, and

else equals 2�(I)+1. Let Z ⊂ TE be the smallest subtorus such that μ̃c factors through
ZC. Let μ̃s∶Gm,C → Gsc

D ,C be as in Proposition 4.1(2) (here with G = GD), and let
μ̃ = (μ̃c , μ̃s)∶Gm,C → ZC × GD ,C.

We have a natural action of TE on H by EI-linear automorphisms. This gives a
representation of TE on V which commutes with the action of G sc

D and therefore
defines a representation ρ̃∶ TE × G sc

D → GL(V). Let

G = ρ̃(Z × G sc
D ) ⊂ GL(V)

be the image of Z × G
1.8ptsc
D under ρ̃, and write ρ∶G ↪ GL(V) for the induced

representation.
We claim that μ2 ⊂ Gm,C lies in the kernel of ρ̃ ○ μ̃. To see this, we observe that

(depending on the structure of E ⊗kI
EI ) either V or V⊕2 is isomorphic to StE ⊠kI

WI

as a representation of TE × G
1.8ptsc
D . It therefore suffices to show that the action of

−1 ∈ C∗ = Gm(C) on (StE ⊠kI
WI) ⊗Q C is trivial. We have a decomposition (4.9).

For a given φ ∈ Emb(E), if σnc ∈ Iφ then μ̃c(−1) and μ̃s(−1) both act on the summand
⊠σ∈Iφ Stσ as −id; if σnc ∉ Iφ then both elements acts as the identity. In either case,
therefore, we see that −1 ∈ C∗ = Gm(C) acts as the identity, which proves our claim.
It follows that there exists a unique cocharacter μ∶Gm,C → GC such that ρ̃ ○ μ̃ lifts the
square of ρ ○ μ. Let h∶Gm,R → GR be the homomorphism such that hC = μ ⋅ μ̄, and
let Y be the G(R)-conjugacy class of h. The pair (G , Y) is a Shimura datum whose
weight is defined over Q (see 5.1), and ρ ○ w∶Gm,R → GL(V)R is given by z ↦ z ⋅ idV .
By construction, the adjoint Shimura datum (Gad , Y ad) is isomorphic to (GD , YD).

Let r be a positive integer, and consider the representation ρ⊕r . It follows from
its definition that Z is contained in the torus UE ⊂ TE given by UE = {x ∈ E∗ ∣ xx̄ ∈
Q∗}. As (UE/Gm)R is compact, Inn(h(i)) is a Cartan involution of (G/w(Gm))R. It
therefore follows from what was explained in 5.4 that there exists a polarization form
φ on V⊕r such that ρ⊕r factors through GSp(V⊕r , φ); we choose one.

By Lemma 3.1, the assumption that Φ is primitive implies that EI is a quaternion
algebra over kI . The endomorphism algebra of ρ̃ is isomorphic to EndE⊗kI EI

(H). The
proof of Proposition 4.5 shows that End(ρ) = End(ρ̃); hence the representation ρ is
irreducible. More precisely, if we write A0 = End(ρ) then either E ⊗kI

EI ≅ M2(E),
in which case A0 = E, or E ⊗kI

EI is a quaternion algebra over E, in which case
A0 = E ⊗kI

EI . The endomorphism algebra A of ρ⊕r is the matrix algebra Mr(A0), on
which φ induces an involution. For a ∈ As,+, let ψa(v , v′) = φ(av , v′); then ρ⊕r factors
through GSp(V⊕r , ψa), and (G , Y, ρ∶ (G , Y) ↪ S(V⊕r , ψa)) is a triple as in 5.3.

Theorem 5.1 The constructions in 5.5 and 5.6 give triples (G , Y, ρ) as in 5.3 with the
property that the representation ρ is isotypical. Every such triple is obtained in this way.

Proof In either case, the construction yields a Q-group G, a homomorphism h∶S →
GR, and an embedding ρ∶G ↪ GL(V) such that

• the Hodge structure on V defined by ρ ○ h is of type (−1, 0) + (0, −1);
• Gad ≅ GD , and ad ○ h ∈ YD ;
• Inn(h(i)) is a Cartan involution of (G/w(Gm))R.
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With Y = G(R) ⋅ h, these properties imply that (G , Y) is a Shimura datum whose
weight is defined over Q, such that (Gad , Y ad) ≅ (GD , YD).

In either construction, it is clear that the triples (G , Y, ρ) that we obtain satisfy the
conditions of 5.3. In Construction 1 it is clear that the representation ρ is irreducible,
and as explained in 5.6, in Construction 2 the irreducibility follows from the assump-
tion that Φ is primitive.

The last assertion follows from the results in Section 4. ∎

5.7 Remark

In the situation considered in 5.5 (Construction 1), all automorphisms of (G , Y)
are inner. To see this, we use that Gad ≅ G/Gm, so that the map G(Q) → Gad(Q)
is surjective. As explained in 5.2, all automorphisms of the adjoint Shimura datum
are inner. Therefore, if α is an automorphism of (G , Y) then possibly after changing
α by an inner automorphism, we may assume α induces the identity on Gder. The
only non-inner automorphism of G with this property is the one given by z ↦ z−1 on
the centre Gm and by the identity on Gder; but this automorphism does not give an
automorphism of (G , Y) (it does not even preserve the weight).

As discussed at the end of Section 5.4, the fact that all automorphisms of (G , Y)
are inner implies that the forms φ and ψa give rise to equivalent triples if and only if
a = ν ⋅ b†b for some ν ∈ Q∗ and b ∈ A∗. Let us also note that if r = 1 and the Albert type
is I or III (i.e., either m = [F ∶ Q] is even or the Brauer class of CorF/Q(D) is trivial)
then in fact φ is, up to scalars, the unique symplectic form on V such that ρ factors
through GSp(V , φ).

In Construction 2 (Albert type IV), it is in general more complicated to say when
different polarization forms give rise to equivalent triples, as in this case (G , Y) may
have non-inner automorphisms. It is of course still true that φ and ψa give equivalent
triples if a = ν ⋅ b†b for some ν ∈ Q∗ and b ∈ A∗, but this may in general not be a
necessary condition.

5.8 Remark

As mentioned in the introduction, it appears that at some places in the literature
there are misconceptions about the classification of “‘Shimura curves”. As a concrete
example, we explain why [16, Theorem 0.7] is not true. We briefly recall the setting. The
authors start (op. start (op. cit., Example 0.6) by considering a quaternion algebra A
over a number field F such that A splits at precisely one real place. If L ⊂ F is a subfield,
there exists an embedding j∶CorF/L(A) ↪ M2μ(L) with μ = [F ∶ L] if CorF/L(A) has
trivial Brauer class and μ = [F ∶ L] + 1 otherwise. Next the authors say there exists a
complex Shimura curve Y ′ such that j gives rise to a local systemVL of L-vector spaces
on Y ′ whose underlyingQ-local systemXA,L is irreducible. The algebraic monodromy
group of XA,L has GA = ResF/QPGL1,A as its adjoint group, so up to isomorphism, A
is determined by XA,L .

It is not so hard to relate the construction of Y ′ and XA,L to our classification.
Let us do this in the cases L = Q and L = F. For L = Q, the Shimura curve Y ′ that is
constructed in [16] corresponds to the Shimura datum of our Construction 1 (see 5.5),
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and the local system XA,Q is the one that corresponds to the embedding ρ∶ (G , Y) ↪
S(V , φ) as in our construction; in other words, the monodromy representation is
the corestriction representation as in Example 3.1. If L = F, the Shimura curve that
is obtained corresponds to the example we have discussed in 4.12; in this case the
monodromy representation is as in Example 3.2, where we take for I the set of
singletons in Emb(F).

In [16, Theorem 0.7], the authors consider a complete nonsingular curve Y and an
abelian scheme f ∶ X → Y that reaches the Arakelov bound. The assertion is that there
exists a quaternion algebra A as above and an étale covering Y ′ → Y , for some Y ′ as
above, such that X′ = X ×Y Y ′ decomposes, up to isogeny, as a product of a constant
factor B and abelian schemes h i ∶ Z i → Y ′ (i = 1, . . . , �) whose generic fibres are simple,
and such that each R1h i ,∗QZ i is a direct sum of copies copies ofXA,L i for some subfield
L i ⊂ F.

According to [7, Theorem 1.2], if Y ↪ Ag is an irreducible component of a Shimura
curve, the corresponding abelian scheme over Y reaches the Arakelov bound. There-
fore, if we take an example as in Construction 2 (see 5.6) with F of prime degree over
Q (so that F has no subfields other than Q and F) and with I not the set of singletons
in Emb(F) (and of course also I ≠ {Emb(F)}), we obtain a counterexample to [16,
Theorem 0.7].

6 The nonsimple case

6.1

In Section 4, we have discussed simple abelian varieties with 1-dimensional associated
Shimura datum. We now consider the general case.

Let X be a complex abelian variety. Let (G , Y) be the Shimura datum given by X,
and assume dim(Y) = 1. There exists an isogeny f ∶ X → X0 × Xm1

1 × . . . × Xm t
t , where

X0 is an abelian variety of CM type, X1 , . . . , Xt (with t ≥ 1) are simple complex abelian
varieties that are not of CM type, no two of which are isogenous, and m1 , . . . , mt are
positive integers. Write V = H1(X ,Q) and Vi = H1(X i ,Q). The isogeny f induces an
isomorphism V ∼
→ V0 ⊕ V⊕m1

1 ⊕ . . . ⊕ V⊕m t
t , and we use this to view ∏t

i=0 GL(Vi)
as a subgroup of GL(V), with GL(Vi) for i ≥ 1 acting diagonally on V⊕m i

i .
Let (G i , Yi) be the Shimura datum given by X i . Then G = MT(X) ⊂ GL(V) is a

subgroup of G0 × G1 × . . . × Gt . The projections pri ∶G → G i are surjective and for i ≥ 1
they induce isomorphisms of adjoint Shimura data prad

i ∶ (Gad , Y ad) ∼
→ (Gad
i , Yad

i ).
The datum (G , Y) can be recovered from (Gad , Y ad) together with the data (G i , Yi)
and the isomorphisms prad

i , as follows. We have

Y
∼

→
∏ p i

{(h0 , h1 , . . . , ht) ∈
t

∏
i=0

Yi ∣ (prad
1 )−1 ○ h1 = . . . = (prad

t )−1 ○ ht} ,(6.1)

where we recall that the adjoint map G i → Gad
i identifies Yi with a union of connected

components of Yad
i . (Note that Y0 is a singleton.) The group G can be recovered as the

smallest subgroup of ∏t
i=0 G i such that all h ∈ Y factor through GR.
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6.2

For the general classification of triples (G , Y, ρ) as in 5.3, the solution is obtained as
follows. First we fix F and D as in 5.2, so that we have an adjoint datum (GD , YD).
Next we choose a triple (G0 , Y0 , ρ0) where (G0 , Y0) is a 0-dimensional Shimura
datum (so G0 is a torus and Y0 is a singleton), and ρ0 is an embedding (G0 , Y0) ↪
S(V0 , φ0) into a Siegel modular datum. All such triples are described in terms of
classical CM theory. As a next step, we fix finitely many triples (G i , Yi , ρ i ∶ (G i , Yi) ↪
S(Vi , φ i))i=1, . . . ,t as in 5.3 such that ρ i is an isotypical representation, and such
that there exist isomorphisms p i ∶ (GD , YD) ∼
→ (Gad

i , Yad
i ). For each i we fix such an

isomorphism p i (which, as remarked in 5.2, is unique up to inner automorphisms
of GD .) Via these choices we can view ρ i ∶G i → GL(Vi) as a representation of G sc

D .
We make these choices in such a manner that there are no indices 1 ≤ i < j ≤ t
such that ρ i and ρ j , viewed as representations of G sc

D , have isomorphic underlying
irreducible representations. This condition is independent of how we choose the
isomorphisms p i .

Define V = V0 ⊕ V1 ⊕ . . . ⊕ Vt and define a symplectic form φ on V by φ = φ0 ⊥
φ1 ⊥ . . . ⊥ φt . This gives an embedding ρ♯∶∏t

i=0 G i ↪ GSp(V , φ). Define Y as in the
right hand side of (6.1) (with p i instead of prad

i ), let G ⊂ ∏t
i=0 G i be the smallest Q-

subgroup such that all h ∈ Y factor through GR, and let ρ be the restriction of ρ♯ to G.
This gives us a triple (G , Y, ρ) as in 5.3 and it follows from what was explained in 6.1
that every such triple is obtained in this way.
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