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Abstract

The value of comprehensive rationale for documenting a design has long been recognized. However, designers rarely
produce detailed rationale in practice because of the substantial time investment required. Efforts to support the ac-
quisition of rationale information have focused on languages and tools for structuring the acquisition process, but still
require substantial involvement on the part of the designer. This paper describes an experimental system, the Rationale
Construction Framework~RCF!, that acquires rationale information for the detailed design process without disrupting
a designer’s normal activities. The underlying approach involves monitoring designer interactions with a commercial
computer-assisted design~CAD! tool to produce a rich process history. This history is subsequently structured and
interpreted relative to a background theory ofdesign metaphorsthat enable explanation of certain aspects of the design
process. The framework provides an environment that can acquire rich, meaningful rationale information in a time- and
cost-effective manner, with minimal disruption to the designer.
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1. INTRODUCTION

Representations of designs in current-generation computer-
assisted design~CAD! frameworks consist primarily of di-
agrammatic specifications, possibly augmented with simple
annotations andad hocdocumentation. Even the most so-
phisticated design systems lack much in the way of struc-
tured documentation for the design: Why is the design the
way it is? What key decisions and tradeoffs were made?
What interactions and dependencies exist among compo-
nents? What assumptions are critical for the success of the
designed artifact?

It is well accepted within the design community that the
availability of explicit, declaratively representeddesign ra-
tionalewould be a tremendous asset. Design rationale would
serve as a record of the basic structure of a design, codify-
ing how the design satisfies specified requirements, as well
as key decisions that were made during the design process.
This information would facilitate collaboration among mul-
tiple distributed designers—a tremendous benefit for large-

scale design efforts. Rationale would also provide guidance
in exploring alternative designs, whether as part of the nat-
ural evolution of a design or in response to changing re-
quirements. Finally, design rationale would enable easier
maintenance of artifacts over their life cycles and more ef-
fective reuse of designs by making it easier for downstream
engineers to understand how a design works. For example,
Brazier et al.~1997! presents an example of stored rationale
being used in the redesign of a model passenger aircraft to
accommodate changes in the overall design requirements.

Despite the tremendous advantages that explicit design
rationale would provide, designers rarely produce it in prac-
tice because of the substantial time commitment required.
Tools that support the specification of structured rationale
by a designer have met with limited success because they
either demand substantial designer time to enter informa-
tion ~Carroll & Moran, 1991! or they change the manner in
which designers work~Conklin & Yakemovic, 1991!. Fur-
thermore, designers have little motivation to participate in
such activities since the benefits surface downstream of their
contributions. Recently, nonintrusive approaches have been
explored that involve video or audio recording of design
sessions~Chen et al., 1991; Shipman & McCall, 1997!; how-
ever, a lack of structure in the produced representations hin-
ders effective use of the information that they provide.
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Given the tremendous value of structured design ratio-
nale but the unacceptable burden of constructing it manu-
ally, we were motivated to explore the use of artificial
intelligence~AI ! methods for automatically generating ra-
tionale without disrupting the normal design process. Our
work focuses on thedetailed designphase, in which tools
~e.g., CAD systems, analysis packages! are used to gener-
ate a schematic that meets the specifications laid out for an
artifact. This contrasts with theconceptual designphase, in
which the scope and capabilities are set for the artifact to be
designed.

1.1. Rationale: Conceptual versus detailed design

Moran and Carroll~1996! describe the life cycle of an ar-
tifact as having arequirements, or conceptual phase; a~de-
tailed! designphase, which results in a detailed specification
of the artifact; abuilding ~or construction! phase; adeploy-
mentphase, in which the artifact is marketed, distributed,
and used; amaintenancephase; and possibly aredesign
phase, in which the original design is modified to produce a
new artifact.

The conceptual phase focuses on identifying and resolv-
ing high-level issues of functionality and requirements, with
design rationale recording the justifications for the deci-
sions that have been made. Decisions are grounded primar-
ily in assumptions or nontechnical criteria such as end-user
preferences. During detailed design, functionality and re-
quirements may be refined. However, issues such as com-
ponent structures and interactions, validation, functionality,
and design alternatives are of greater importance. The level
of abstraction at which these issues are considered is much
lower than during the conceptual phase. Choices and deci-
sions are grounded primarily in physical constraints on com-
ponents and the designer’s insights into the composition of
good designs. These insights include criteria such as sim-
plicity, ease of modification, and intuitive feel for success.
Thus, rationale for the detailed design phase focuses onhow
a given design works, andwhy the specific detailed design
choices were made.

Work to date on the acquisition of design rationales has
focused on the issues and choices made during the concep-
tual phase: deciding on the functional requirements for an
object, and the high-level design approaches to be pursued
in meeting those requirements~Carroll & Moran, 1991!.
There has been little work on capturing the decision-making
and logic that underlies the process of constructing the de-
sign itself. It has been shown that designers are reluctant to
document their actions during the detailed design process
~Fischer et al., 1991!. Because of this resistance, it is criti-
cal to investigate nonintrusive methods for rationale acqui-
sition during detailed design.

1.2. The Rationale Construction Framework

The premise for our work was the observation that many
of the operations that a designer can perform with modern

CAD tools @the design substrate~Hutchins et al., 1986;
Fischer & Lemke, 1988!# have meaningful semantic con-
tent. For example, CAD tools allow users to select objects
with assigned semantic types from predefined libraries. This
contrasts with most tools for designing software, where in-
teractions are generally at the level of keystrokes. Nonin-
trusive monitoring of the actions taken by a designer with
a CAD tool would thus provide a rich, semantically
grounded process history for detailed design. Techniques
from AI could be used to structure this information into
representations that would support query access and rea-
soning aboutdesigner intent. Valuable reasoning methods
would includeclusteringtechniques to aggregate CAD op-
erations into abstract summaries of designer activity,plan
recognitionto identify key episodes of activity, andqual-
itative reasoningabout the emerging design.

This paper describes the Rationale Construction Frame-
work ~RCF!, which embodies the above ideas in a system
that automatically constructs rationale information for the
detailed design process. RCF records events and data of rel-
evance to the design process, and structures them in repre-
sentations that facilitate generation of explanations for
designer activities. RCF operates in an opportunistic man-
ner, extracting rationale-related information to the extent pos-
sible from observed designer operations. For RCF, we
interpret rationale broadly to encompass any information that
will further the understanding of a design and its develop-
ment. This philosophy fits thegenerative paradigm~Gru-
ber & Russell, 1992! for rationale construction, which
focuses on supporting general queries about a design and
its evolution rather than answering fixed sets of questions.

RCF extracts two different types of rationale-related in-
formation. The first is a series of hierarchical abstractions
of the design history:what the designer did, andwhen. In
addition, RCF reasons about intent—why the designer per-
formed particular actions. A set ofdesign metaphors, which
describe temporally extended sets of designer operations that
constitute meaningful episodes of activity, drives the extrac-
tion of rationale related to designer intent~Section 4.2!. De-
sign metaphors provide the basis for inferring intent on the
part of the designer by linking observed activities to expla-
nations for them. A rich query interface allows users to ac-
cess extracted rationale from several different perspectives,
enabling them to overview the design history, and to elicit
information pertinent to their specific goals~Section 9!.

Automatic generation of complete rationale for all as-
pects of a design is clearly infeasible. Certainly, designers
make many critical decisions that are not explicit in the de-
signs nor in the design process. The work reported here seeks
to automate documentation of important but low-level as-
pects of the design process in a time- and cost-effective man-
ner, thus freeing designers to focus their documentation
efforts on the more creative and unusual aspects of the de-
sign. Ideally, the methods presented here would be comple-
mented by interactive rationale acquisition methods that
would enable designers to extend or correct automatically
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generated information. The ultimate goal is to produce an
annotated design history that tracks dependencies, assump-
tions, and tradeoffs, and so would greatly facilitate the un-
derstanding of a design by downstream designers.

We evaluated RCF informally by applying it in a case
study that involved the design of a three-degree-of-freedom
surgical robotic arm.1 RCF recorded designer activity over
several versions of the arm, starting from a rough initial de-
sign, through various stages of refinements and optimiza-
tions. From these recordings, RCF was able to summarize
designer activity at varying levels of abstraction, identify
phases where the designer concentrated on various parts or
subassemblies or where design parameters were tuned, track
the results of design tradeoffs, and explain key design
changes. The results validate the idea that meaningful ra-
tionale can be generated nonintrusively through application
of appropriate AI techniques.

1.3. Different perspectives on rationale

As summarized by Shipman and McCall~1997!, design
rationale can be viewed~and defined! from different
perspectives:

Argumentation: In this view, rationale captures the pro-
cess of reasoning and discourse, either by a single de-
signer or a design team. Rationale consists of the
problems or issues that arise in the course of a design,
along with pros and cons for each alternative. Ratio-
nale as argumentation need not be passive, but rather
can be used as a framework for structuring the design
process, to clarify and facilitate it. For example, Con-
klin and Yakemovic~1991! discuss the use of various
implementations of IBIS~Rittel & Webber, 1973!, or
“Issue-Based Information System,” in commercial de-
sign settings. They report that the use of these tools
can often uncover key issues and communication break-
downs during the design process that might otherwise
have been missed, or not detected until a later stage in
the process.

Documentation: From this perspective, rationale is viewed
as a “decision trail” for use by observers outside of the
design team. Rationale records what decisions were
made, when, why, and perhaps by whom. Information
would be presented in a way that makes the decision pro-
cess clear to observers who do not have full background
knowledge about the design effort.

Communication: Rationale is interpreted as the passive
recording of design discourse as it occurs. Rationale
stores the information needed to answer questions about
what was done, and why, possibly for recall during the
design process itself or for subsequent decision-making.

A rationale acquisition system can adopt more than one
of these perspectives. The work described in this paper fo-
cuses on rationale as documentation and communication.
Specifically, in recording the design process we wish to
make explicit the relationship between design decisions and
design requirements, as well as the interactions among var-
ious assemblies and components in the design. This infor-
mation will be useful during the development of the initial
design, providing the means for a designer to keep track of
options that have been explored and reasons for certain
modifications to the design. However, we envision that the
extracted rationale will be of even greater value later in
the life cycle of a design. We envision many of the poten-
tial users of RCF to be designers who have taken over a
previous design for maintenance or reuse. For them, it is
critical to be able to quickly develop an understanding of a
design, including the key assumptions and tradeoffs that it
embodies, to ensure that modifications are consonant with
the intent of the original designer.

1.4. Overview of paper

Section 2 describes the architecture for RCF, presenting over-
views of the main components of the system. Section 3 sum-
marizes the robotic arm design case used throughout to
illustrate the workings of RCF. Section 4 presents an over-
view of our approach to rationale extraction, which is sub-
sequently expanded in Sections 5 through 8. Section 9
describes mechanisms for accessing the extracted rationale.
Section 10 discusses evaluation of the approach taken and
future directions, while Section 11 describes related work.
Section 12 presents our conclusions.

2. RCF ARCHITECTURE

As depicted in Figure 1, RCF contains three main compo-
nents: an enhanced CAD tool, the Monitoring module, and
the Rationale Generation module~RGM!.

Within RCF, the designer interacts with the CAD tool as
if it were a standalone application. The operations that he
or she performs, however, are tracked by the Monitoring
module, which forwards relevant information about ob-
served designer events in real time to the RGM. From this
stream of events, the RGM constructs adesign event log
that provides a comprehensive history of operations per-
formed by the designer during the course of a design ses-
sion. Based on the incoming events, RGM also constructs
a symbolic design modelthat provides a qualitative descrip-
tion of the emerging design. The rationale construction
methods exploit these two components to construct ratio-
nale, usingdesign metaphorsand background information
about design requirements.

2.1. CAD tool

Several criteria drove the selection of a CAD system upon
which to build RCF. One criterion was the inclusion of so-1One of the authors served as the designer for this evaluation.
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phisticated modeling capabilities that would provide a rich set
of design operations suitable for demanding electromechan-
ical design tasks. A second criterion was that the system em-
ploy a design substrate of sufficiently high level~Hutchins
et al., 1986; Fischer & Lemke, 1988!. Third, extensibility of
the system would be critical for enabling the insertion of mon-
itoring hooks and the definition of additional CAD opera-
tions.After an extensive survey of available commercial and
research systems, Bentley’s MicroStation95~Bentley Sys-
tems, Inc., 1995! was selected as the system that best satis-
fied our needs.2

To support rationale acquisition within RCF, the set of
operations provided by MicroStation95 was extended to in-
clude several capabilities that raised the overall semantic
content of its design substrate. One class of added opera-
tions,annotations, enables users to specify thesemantic type
of an object along with associated type-specificsemantic
attributes. The semantic type of an object refers to the in-
tended semantic interpretation of the object with respect to
the particular design domain, in contrast to the structural
and geometric description of the object. For example, the
designer may declare that a given solid represents a gear, as
well as specifying gear-specific attributes such as number
of teeth, gear ratio, or quality. Such semantic information,
which RCF uses extensively, is provided as a by-product of
parametric design methods and part selection capabilities
found in numerous state-of-the-art CAD systems. We also
augmented MicroStation95 with a set of analysis programs
that can be linked directly to components in the CAD model,
thus extending the limited analysis capabilities within the
core system. This modification reflects a growing trend to-
ward building design environments that integrate a range of
design tools. Finally, we added an ability to select compo-

nents from predefined part libraries, which is standard in
many current CAD frameworks.

2.2. Monitoring module

The monitoring facility within RCF nonintrusively tracks
designer operations within MicroStation95, generating a
stream oftool eventsthat are sent in real time to the RGM.
Tool events are a system-dependent representation of the
activity of a designer. The tool events extracted by the mon-
itoring facility within MicroStation95 include the creation,
deletion, and modification of points, two-dimensional pro-
files, parametric solids, free-form solids, Boolean combi-
nations of solids, and features on solid objects~including
holes, bosses, protrusions, ribs, and cuts!. Manipulation op-
erations~e.g., move, copy, rotate! are supported, as is the
direct assignment of attributes. Creation and deletion of joints
are possible, leading to the connection of parts in pairwise
fashion into assemblies. The creation and importing of parts
are supported, as is the invocation of built-in analysis pro-
grams. Finally, process-level commands such as the undo-
ing and redoing of operations are also tracked. Overall, the
set of monitored commands is adequate for a wide range of
complex design tasks.

Certain aspects of the design process are explicitly ig-
nored by the monitoring process. Examples include certain
geometric information associated with the manipulation and
definition of objects~e.g., spatial positioning!, and design
commands not immediately relevant to rationale~such as
viewing commands!.

The monitoring process considers only fully prosecuted
commands. Thus, intermediate changes made within the mid-
dle of specifying an operation are ignored. For example, an
operation to connect two components with a specified type
of joint requires selection of two objects and an appropriate
joint type. For such multistep operations, a user may change

2While the RCF rests on top of a particular tool, its underlying models
apply more generally to a wide range of CAD tools.

Fig. 1. RCF architecture.
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the selected parameters for the operation before commit-
ting to a version of the command that should be executed.
The RCF monitoring process tracks only the executed
command.

2.3. Rationale generation module

The Rationale Generation Module~RGM!, the main infer-
ential component of the framework, performs the automated
generation of rationale structures. The RGM incrementally
constructs an abstract representation of observed CAD tool
operations, called thedesign event log, which provides a tool-
independent characterization of key design operations.

Based on the design event log, the RGM constructs asym-
bolic modelof the emerging design in incremental fashion.
This model contains the core elements of the design, along
with key relationships among them~e.g., part0subpart re-
lationships, interpart constraints!. Individual components are
tagged with annotations that are relevant to rationale, such
as timestamps, revision histories, and reuse information. The
symbolic model of the design contains limited geometry in-
formation, restricted mostly to dimensional information for
created objects.

The design event log and symbolic design model provide
the evolving information base from which rationale infor-
mation is generated, in conjunction with a formal specifi-
cation of the requirements for the design task and a set of
design metaphors. As described further in Section 4.2, de-
sign metaphors characterize sets of operations that consti-
tute meaningful episodes of designer activity. As such, they
provide the basis for inferring designer intent from designer
actions.

2.3.1. Event models

The operations supported within the design event model,
while not exhaustive, were chosen for their adequacy with
respect to an interesting set of design tasks. Two high-level
categories of operations are distinguished within the sys-
tem.Base-leveloperations~Table 1! support the direct cre-

ation, modification, and manipulation of objects.Process-
leveloperations~Table 2! do not operate directly on design
objects. Instead, they either manipulate information and
metalevel structures related to the design~such as files!, or
impact the interpretation for previously executed opera-
tions~e.g.,Undo0Redooperations!. Tracking the impact of
process-level operations requires complex bookkeeping
within RCF of current and previous states, to maintain an
accurate characterization of the current design within the
symbolic design model.

There are several possible semantic models for interpret-
ing Undo0Redo operations. Our model~as dictated by the
operational semantics of MicroStation95! limits the set of
operations that are “undoable.” In particular, only the base-
level operations Create, Copy, Delete, Modify, Manipulate,
and Annotate can be undone, and only Undo events can be
Redone. A given Undo or Redo operation impacts the most
recent operation for which the Undo or Redo is applicable
that has not already been undone or redone.

Many tool events have direct correspondents in the de-
sign event model~e.g., Create-Slab tool events map to a Cre-
ate operation for objects of type Slab!. However, certain
design events correspond to asetof tool events~e.g., joint
creation consists of an origin definition followed by a joint
declaration!. At present, there are no1:n mappings within
the framework, although macro definitions would require
such a capability.

Several properties are maintained for each design event.
The typeproperty stores one of the base- or process-level
event categories described above. Thetool eventsproperty
indicates the monitored operations that formed the basis for
the given design event. Thestatusproperty tracks whether
the event is:alive or :inactive, relative to Undo0Redo op-
erations. Thestatusfor an event starts out:alive, but will
switch to :inactive should the event be “undone” at some
later stage. Thestatuswill be reset to:activeshould the un-
done event subsequently be redone. The role of thefocus
objectproperty varies with the type of the design event. For
example, with a Create event, thefocus objectcorresponds
to the created object; for a Delete event, the focus object
corresponds to the deleted object. Theimpactproperty stores
rationale-related information for this event.

Additional type-specific properties are stored with de-
sign events. For example, an Analysis event includes infor-

Table 1. Base-level design events

Create define a new object from scratch
Copy define a new object by reference to a previously defined

object
Delete delete a previously created object
Modify change structural aspect of a design object
Manipulate reorient an object in space
Connect create a joint between two objects
Import read in a predefined part
Annotate set0reset the semantic attributes of a design object
Analyze invoke an evaluation tool for analyzing some aspect of

the design

Table 2. Process-level design events

Undo undo the previous ‘undoable’ operation
Redo redo the last undone operation
File-Open create or read-in a design file
File-Copy copy a design file
File-Save save a design file
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mation about objects used for the analysis and their attributes,
the analysis program invoked, and the results of the analy-
sis. An Annotate event stores information about the attributes
that are being modified, along with their newly assigned val-
ues. A Copy operation records the source object that was
copied and the newly created object.

2.3.2. Design event supertypes

Design event types distinguish design operations with sig-
nificant differences in their operational impact. Certain of
the rationale generation techniques described later~Section
6.2! use more abstract categorizations of designer activity,
organized around the set ofdesign event supertypesin
Table 3.

2.3.3. Symbolic design model

The symbolic design model provides an abstracted rep-
resentation of the emerging design that supports the reason-
ing required by the rationale construction process. It consists
of representations for key elements within the design and
relationships among them. It excludes certain information
stored within the CAD model of the design~in particular,
geometric information plays only a limited role!, but aug-
ments the CAD representation to include relevant process
information for objects within the design.

The representations employed support a rich set of de-
sign elements, spanning solid objects, features~structural
attributes of an object, usually corresponding to a machin-
ing operation!, two-dimensional elements used in the draft-
ing process, and points.~Linear elements and points in and
of themselves are not part of a design; rather, they are build-
ing blocks used to construct objects within the model.! Com-
ponents can be defined in terms of other components and
features; nested features are also supported.

Several categories of information are stored for a given
design object. First, there is the standard definitional infor-
mation: the object’s geometric category~i.e., sphere, slab,
line! and keystructural attributes~i.e., the diameter for a
sphere!. In addition, thesemantic categoryand category-
specificsemantic attributesare stored. Semantic attributes
encapsulate properties related to the intended semantics of
the object. The semantic attributes are determined by the

semantic categoryof the object. For example, an object in
the semantic categorygear could have semantic attributes
such asnumber-of-teeth, ratio, or width.3 The specification
of attributes can provide much insight into the evolution of
a design. For this reason, the RCF system keeps a record of
the evolving values for each attribute~structural and seman-
tic! that enables retrieval of values for any stage of the de-
sign process.

Several interobject relationships are stored for use in rea-
soning about rationale, includingparent0child relation-
ships that reflect hierarchical structuring of complex objects,
copies0sourcerelationships, andattachmentrelationships
indicating connection of two design objects through ajoint
of a designated type. We define anassemblyto be the clo-
sure of a set of objects under the attachment relationship
~i.e., under joint connectivity!.

On the process side, several additional forms of informa-
tion are stored, including a record of all operations per-
formed on the object, analyses related to the object, time
devoted to that object, the origins of the object~i.e., se-
lected from a part library, copied from a user, created by a
designer!, and status information~:alive or :inactive!. In ad-
dition, a link connects each object back to the correspond-
ing tool objectin the CAD model.

3. CASE STUDY: SURGICAL ROBOTIC ARM

RCF was evaluated in a case study involving the design of
a three-degree-of-freedom surgical robotic arm. The main
technical challenges for this design were to provide suffi-
cient actuation torque, while maintaining low inertia and
high precision. Table 4 provides detailed information about
the design requirements for this case.

RCF recorded designer activity over several versions of
the arm, starting from a rough initial design, through vari-
ous stages of refinements and optimizations. The designer
divided the design into three main subassemblies: thebase
assembly, including the motors, thearm assembly, includ-
ing the transmission, and thewrist assembly, including the
end effector and tool. Figure 2 shows the resultant CAD
model. From the recorded events, RCF was able to summa-
rize designer activity at varying levels of abstraction, to iden-
tify phases where the designer concentrated on various parts
or subassemblies or where design parameters where tuned,
to track the results of design tradeoffs, and to explain key
design changes. Examples from this case study will be used
throughout the remainder of the paper to illustrate the work-
ings of RCF.

3As described in Section 2.1, enhancements to the underlying CAD
system support the explicit assignment of a semantic category and corre-
sponding semantic attributes. A more advanced CAD system would pro-
vide such capabilities through the selection of semantically grounded
components from predefined component libraries.

Table 3. Design event supertypes

Construction Create, Copy, Import, Part, Connect
Revision Undo, Redo, Delete, Modify, Manipulate, Create~that

have been undone but not redone!, Annotate~that change
rather than initiate values!

Deletion Delete, Undo
Assembly Connect
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4. RATIONALE EXTRACTION: OVERVIEW
OF TECHNICAL APPROACH

We interpret design rationale broadly to include any aspect
of a design session that could further understanding of the
resultant design and the process by which it was developed.
RCF provides two categories of rationale information:ses-
sion contentand designer intent. Session content focuses
on summaries and abstracted views of the design process,
organized from several different perspectives. These per-
spectives support different approaches to comprehending the
design, each suited to a different set of needs. Rationale re-
lated todesigner intentprovides explanations for key de-
sign changes. Rationale extraction is organized around a set
of domain-independentdesign metaphors~Section 4.2! aug-
mented by limited amounts of task- and domain-specific de-
sign knowledge~Section 4.3!.

4.1. Rationale categories

4.1.1. Session content
Comprehension of the evolution of a design requires

records of complete histories of designer activities and snap-
shots of the current and past states. Toward this end,ses-
sion contentfocuses on characterizations at multiple
abstraction levels of events and objects for a given design
session. At the lowest level, complete and detailed descrip-
tions of all design events and objects are provided. Above
that, a variety of views at higher levels of abstraction ag-
gregate events and design objects into related units. These
abstracted summaries provide broad overviews of the de-
sign and its evolution.

RCF provides summaries of a design session from three
different perspectives. Theeffort-centeredperspective sum-
marizes where and how a designer spent his or her time~Sec-
tion 5!. The event-centeredperspective summarizes the
design session at multiple abstraction levels, using a com-
bination of design metaphors and clustering methods to per-
form the abstractions~Section 6!. The object-centered
perspective provides historical and explanatory informa-
tion for individual design objects and groups of objects that
may be explicit in the design~e.g., assemblies! or inferred
to be related by RCF~Section 7!.

4.1.2. Design intent
A finished CAD model shows the end product of a de-

signer’s efforts but omits thechangesthat were made in the
development of the design. Changes provide insight into
the evolution of the design, showing alternative paths that
the user explored and basic strategies used to produce the
final results. For this reason, a key focus within RCF has
been to identify and explain changes to a design, with em-
phasis on the following capabilities:

• Explain the motivations for changes in the design.

• Aggregate operations with a common purpose into co-
herent sets.

• Summarize considered options with possible explana-
tions for their acceptance or rejection.

In the terminology of Gero~1990!, we focus on theeval-
uation andreformulationof the design: the designer com-

Table 4. Requirements for the robotic arm design case

Arm-Inertia-Ix , 5 lb-in2 Working Envelope . 12 in
Arm-Inertia-Iz , 50 lb-in2 Mass , 2 lb.
Inertia ~unbalanced! , 1 lb-in2 Pitch Servo Resonance , 35 Hz
Precision~unloaded! , 0.004 in Pitch Cable Resonance , 70 Hz
Precision~loaded! , 0.01 in Arm Mechanical Resonance , 70 Hz
Tool Friction , 0.75 lb-in Tool Torque , 16 lb-in
Max. Stress to Yield Stress , 0.4

Fig. 2. CAD model for the surgical robot arm.
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pares the desired behavior of the ideal artifact with the actual
behavior of the proposed structure. Where the comparison
is unsatisfactory, the designer attempts to modify the struc-
ture accordingly. We assume that the desired behavior can
be expressed as a set of design requirements, and that the
analyses used to perform the evaluation are available for
inspection by RCF.

We have explored an approach that involves situating
changes within contexts defined byclusteringrelated events,
and reasoning withdomain knowledgeabout qualitative ef-
fects of design operations. This work is described in Sec-
tion 8.

4.2. Design metaphors

Design metaphors are multistep patterns of events~not nec-
essarily contiguous! that describe episodes of coherent de-
signer activity. They can be applied at varying scales of
resolution: at the design event level, or over groupings or
abstractions of design events. RCF contains a suite of de-
sign metaphors whose recognition enables generation of de-
feasible explanations of a range of designer activity. Two
example metaphors are presented here.

• The Refinementmetaphor consists of a cycle ofAna-
lyze X–Revisebehavior, indicating that the designer is
focusing on a particular design requirementX. It is rea-
sonable to infer that intervening modifications to the
design are performed with the goal of addressingX,
although not all such revisions will have been per-
formed withX in mind. Thus, while the metaphor does
not definitively link action and intent, it provides a plau-
sible explanation for the designer’s actions.

• The 1:1 Part Substitutionmetaphor captures the no-
tion that the designer has swapped one functional com-
ponent for another. In particular, PartB is considered
to be substituted for PartA when it is observed that
first, PartA is removed, and then some PartB from the
same functional category is added to the assembly with
the same connectivity as PartA. These part operations
must occur within a certain window of activity—
namely, an interval of operations that the system has
identified as being related~see Section 6.3!—but need
not be consecutive.4

TheRefinementand1:1 Part Substitutionmetaphors cap-
ture general design principles and as such are applicable to
a broad range of design tasks. To date, all design metaphors
within RCF share this domain-independence. Task-specific
design metaphors could readily be added to the system to
increase explanatory power, although at the cost of the
knowledge engineering involved. As an example, consider
the choice of a power regulator for a control system. Sup-

pose that the designer chooses a DC-DC converter to step
down from a 12V power supply to the required 5V control
supply, rather than a shunt regulator, the standard alterna-
tive. DC-DC converters are, in general, more expensive and
less reliable, but more efficient than shunt regulators. So, in
the context of supplying power to a circuit, it is reasonable
to infer that the choice of DC-DC converters indicates that
power efficiency was a primary goal of the designer. Here,
a fairly strong inference can be made. In general, task-
specific metaphors support correspondingly deeper expla-
nations of designer actions; however, that increased detail
comes at the cost of the knowledge engineering required to
encode metaphors for the given domain.

4.3. Domain knowledge

The use of background knowledge can greatly extend the
rationale extraction capabilities. However, such knowledge
can be difficult and expensive to acquire and represent. For
this reason, we explored a range of techniques that vary in
the amount of background knowledge that they use. RCF
uses two kinds of optional background knowledge, which
primarily support explanation of certain forms of designer
activity ~as described in Section 8!.

• Overall design requirementsare represented as a col-
lection of properties, possibly with threshold con-
straints that must be satisfied~e.g.,Arm-Inertia-Iz ,
50 lb-in2!. Nonmeasurable requirements, such asDu-
rability, do not include explicit thresholds. Design re-
quirements are used within RCF to provide possible
motivations for designer activities.

• Qualitative modelsof the effects of design operations
provide linkage from observed activities to their im-
pact on key design properties. Within RCF, these mod-
els enable casually grounded explanations of designer
activity.

5. EFFORT ALLOCATION

The manner in which a designer allocates his or her efforts
can provide valuable insight into the design. Time spent,
level of detail, and the number of alternatives explored can
all indicate what the designer thinks is important or what
has proven to be difficult within a given design task.

RCF tracks effort with respect tooperation allocationand
time allocation. Operation allocation is measured in terms
of number of design events. Time allocation is measured in
terms of clock time devoted to design events. In particular,
tool events are tagged with normalized timestamps to pro-
vide a basis for our temporal allocation model. The dura-
tion between timestamps is “wall-clock” time, including both
the time required to perform the operation, and inactive time
~i.e., between tool operations!. A normalization process elim-
inates large time gaps between tool commands, which are
assumed to correspond to designer idle time; tool events that

4Additional substitution metaphors could be defined that capture, for
example, one-to-many and many-to-one substitutions.
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occur after such gaps are assigned a default duration to gen-
erate the next timestamp. The time for a design event is de-
fined to be the difference between the normalized timestamps
for the corresponding tool event and the tool event for the
previous design event.

Time and operation allocation can be reported relative to
a given design object or a class of design objects. In addi-
tion, time allocation can be obtained for a given design event
or a class of design events. Relative distributions across de-
sign event types and objects are also supported.

These effort allocation models have certain drawbacks.
Characterizing operational effort in terms of number of de-
sign events ignores the relative significance of different kinds
of operations. For example, an operation that reads in a pre-
viously defined complex part would contribute only a sin-
gle increase to the operation tally, while recreation of the
part by hand could require a substantial number of opera-
tions. In certain situations, a weighted model for operations
might be appropriate; however, effort measured in terms of
operation count still provides insight into where the de-
signer focused his or her effort.

Issues arise as well with the model for time allocation. A
“credit assignment” problem arises in determining time al-
location in that several preparatory operations may be re-
quired for a given creation operation. For example, consider
the creation of a linear profile with a complex shape that is
to be used~with minor modifications! as the basis for a num-
ber of free-form solids. Ideally, time allocated to the cre-
ation of the profile should be distributed over all shapes built
with that profile. The complexity of the problem increases
once modifications and revisions are taken into account.

Despite the crudeness of the underlying models, effort
allocation information can provide useful insights into un-
derstanding a design. For instance, when faced with the task
of modifying a design, knowledge that the original designer
spent a significant amount of effort on a specific compo-
nent should alert the downstream designer that subtle de-
sign issues may be at hand. Alternatively, information that a
component received little attention could indicate either that
the component is relatively unconstrained~and hence was
easy to design!, or that the designer simply lacked suffi-
cient time to refine it.

6. THE EVENT-CENTERED PERSPECTIVE

The event-centered perspective provides summaries of a de-
sign session at varying levels of abstraction. To support these
different views, RCF first partitions the design event log
into versionsof artifacts~Section 6.1!. Within a given ver-
sion, RCF then aggregates designer activity into higher-
level abstractions. Individual design events are grouped into
part-level operations~Section 6.2!, which focus on design
objects at the level of parts in an assembly. Next, part-level
operations are grouped intoactivity phases~Section 6.3!,
which correspond to broader collections of activities with a
common design objective.

6.1. Versions

Versioning relies on the observation of coherent sets of op-
erations within a design file. Within RCF currently, the met-
aphorCreate0Copy File–Activity–Save Filedefines version
boundaries;~Qureshi et al., 1997! uses a similar conven-
tion. Clearly, more general metaphors are possible~as dis-
cussed further in Section 10!.

Within a version, the system tracks the different activity
phases of the designer, the subsystems of the design worked
on the most, the design requirements that were addressed,
and significant structural and attribute changes. Figure 3 sum-
marizes designer activity for one version~Version 2! of our
design case study.~More detailed information about theac-
tivity phaseswithin this summary is provided in Section 6.3.!
Figure 4 summarizes the changes between Versions 1 and 2
of this same design.

6.2. Part-level operations

Part-level operations aggregate individual design events into
higher level units that focus on design objects at the level of
parts in the assembly. Thus, rather than examining activity
on the level of features or components being modified or
joined, a part-level chronology consists of parts being cre-
ated, added or removed from the assembly, substituted for
other parts, or modified. The part-level view of the design
process is both more understandable to human observers and
more convenient for recognizing abstract design metaphors.

Part operations, shown in Table 5, are characterized in
terms of the event supertypes displayed in Table 3. By ne-
cessity, the part-level models within RCF are somewhat
implementation-specific to MicroStation95.

Figure 5 shows an example part-level abstraction pro-
duced by RCF. The excerpt from the design event log~on

Table 5. Example part operations

Part Creation A series of construction and revision events on a
set of related design objects, culminating in a part-
declaration command, defining a representative
component of this set of objects as a part.

Part Addition Assembly and construction events for objects that
are parts, design objects derived from parts, or
joints between parts. Operations on features and
subcomponents are explicitly excluded, corre-
sponding instead topartmodificationeventson the
parent component of the feature.

Part Removal Events that delete a part or all joints that link the
part to other parts within an assembly.

Part Modification Part-level revision events and feature-level cre-
ation or revision events on children of a part com-
ponent.

Part Substitution Defined by the 1:1 Part Substitution metaphor~de-
scribed in Section 4.2!.
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the left! constitutes a period of revision activity, in which
the designer replaces selected components in the design.
Within MicroStation95, ajoint connects two design objects
at a contact point; disconnecting a component from an as-
sembly generally requires a series of joint deletions. RCF
maps a joint back to the components that the joint connects,
and thus keeps track of parts being switched in and out of
the design. The part-level description on the right abstracts
the explicit joint manipulations into a summary of the parts
being removed, added, or replaced. Each object within RCF
has a uniquedesign object id, for example,DOBJ167. Ref-
erence to a design object corresponding to an instance of a

part generally includes the name of the original part from
which it was created. Thus,DOBJ212 andDOBJ213 are
instances of the previously created partARM3.

6.3. Activity phases

Activity phasesare groupings of events that describe the de-
signer activity at the level of abstract operations on compo-
nents, parts, or the design artifact itself. Four types of activity
phases are extracted from the sequence of part operations;
these types are summarized in Table 6. Analysis and part-
level statistics are kept for each type.

Fig. 3. Summary of activity within a single version of an artifact.
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During a given activity phase, a designer will often focus
on a specific part or set of parts for some time before switch-
ing attention to another aspect of the design. Using the ef-
fort allocation models described in Section 5, RCF identifies
the evolving focus of designer attention, at the level of de-
sign requirements being addressed, individual parts, sub-
assemblies of parts, andimplicit groupsof parts that are
identified automatically during the extraction of activity
phases~see Section 7.2!.

The focusduring an interval of activity is defined as a
part, a grouping of parts, or a design requirement, for which
the percentage of effort devoted to it exceeds some thresh-
old. It is possible for a period of activity to have no detected
focus. The effort metric used to determine attention focus
can be either number of operations or accumulated time per
part. For simplicity, RCF simply subdivides an activity phase
into three equal subintervals~BEGINNING, MIDDLE, and
END!. More generally, the number and length of subinter-

vals could be computed dynamically by applying clustering
techniques to define focus areas.

Figure 6 shows example revision and construction types
of activity phases and the detected foci within each. In Ac-
tivity Phase 3, note the focus on an implicit group of parts,
group4 , a set of bearings. The parts ingroup4 are not
explicitly linked in the design, nor are they even members
of the same subassembly; they were grouped because activ-
ity on any one part in the group correlated strongly with
activity on other parts in the group. Section 7.2 discusses
the methods used to identify suchimplicit groups.

7. THE OBJECT-CENTERED PERSPECTIVE

The object-centered perspective provides information about
the design process with respect to a particular design ob-
ject, or set of objects. Two types of object-centered infor-
mation are produced by RCF. Explicitobject historiesare

Fig. 4. Summary of part changes between two versions
of a design.

Fig. 5. Abstracting from design events to part-level operations.
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maintained for individual and aggregated objects. In addi-
tion, RCF looks for interesting relationships among parts or
between a part and design requirements, based on designer
activity.

7.1. Object histories

For each design object, RCF maintains a detailed history
that includes the object’s origins~how and when created!,
related design events, connections to other objects, and ef-
fort expended for that object. Additional information is kept
for parts: related part-level operations, a detailed part his-
tory, andpedigreeinformation. Pedigree information refers
to the heritage of a part. For example, a part can be selected

from a library or a catalog, it can be created from scratch, or
it can be copied from another part. A part can have several
versions: for example, ifPartB is created by making a copy
of PartA, and then modifying it, thenPartA is considered to
be a previous version ofPartB.

A part’s history includes when it was introduced into the
assembly, if and when it was removed, whether it was re-
placed by another part~i.e., instances of the1:1 Substitu-
tion metaphor!, and modifications to the part or any of its
attributes. The context of these operations is reported: which
version and what type of activity phase. Also recorded are
hypothesized explanations for activities related to the part
~see Section 8!, detected relationships between a part and
any design requirements, and inferred dependencies on other
parts through membership inimplicit groups.

Figure 7 shows the part histories for partsARM4and
BV_1250 . ARM4was copied fromARM3, and then re-
placed it in the assembly.ARM3was copied fromARM2,
and then modified. The modifications made at the time of
the part copy are recorded and shown.BV_1250 was added
to the assembly as the replacement for another part. Fur-
thermore, RCF hypothesized an implicit constraint between
thematerial attributes ofBV_1250 andBV_0625 .

7.2. Object abstractions: Implicit groups

The aggregation of objects into logically related groups is a
powerful mechanism for improving the understandability
of complex structures. Assemblies and hierarchies provide
examples of groups that a designer defines explicitly. In ad-
dition, “hidden” relationships can be present in a design that,
if made apparent, could similarly improve understanding.
For example, two parts~possibly from different subassem-
blies! may be implicitly dependent on each other, either struc-
turally or functionally, in a way that would not be apparent
from examination of the finished CAD model.

RCF searches forimplicit groupsof design objects that
satisfy such hidden relationships. While the system may or
may not be able to identify precise constraints among the
parts in an implicit group, it can bring them to the attention
of a designer, who may be able to identify a reason for such
a dependency. RCF contains design metaphors for recog-
nizing several types of implicit groups, which are listed in
Table 7. Figure 8 summarizes several implicit groups de-
tected during a portion of the robotic arm design session.

The period of time over which one looks for these part
activity patterns impacts the set of groups that are ex-
tracted. One could look for patterns conservatively, over the
entire session. This strategy would result in groups that are
likely to be significant; on the other hand, other significant
patterns, which may exist only for a shorter interval of the
session, will be missed. These groups would be discovered
by more localized search, over a single version of the de-
sign, for example. In this case, however, one might extract
spurious, coincidental patterns of activity. Currently, func-
tional groups are local to a single refinement phase, and are

Table 6. Types of activity phases

Construction a period of interleaved part creation and part addition
events

Revision a period of interleaved part revision, part addition, part
deletion, and0or part substitution

Analysis a period of analysis events not linked to any revisions
Refinement a period of analysis events and related revision events

Fig. 6. Example activity phases.
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taken with reference to the associated analysis. Other im-
plicit groups are taken over the whole session.

8. EXPLAINING CHANGES

The linking of activity with intent constitutes a key compo-
nent of rationale. RCF reasons about designer intent during
refinement phases, using a set of methods that vary in the
amount of background knowledge about the design task that
they require.

The approach involves gatheringevidenceto support a
range ofhypothesesas to the designer’s motivation for per-

forming particular operations or groups of operations. The
hypotheses postulate that the designer intended to impact
some design property~e.g.,Torque!, possibly to move in
some specified direction~e.g., increaseor decrease!. The
evidence is based on three sources of information: observed
operations by the designer, design requirements, and infor-
mation about the impact that various changes could have on
design requirements. As discussed further below, the latter
two types of evidence are not required, but enable richer
explanations when provided. A calculus for combining ev-
idence provides inference of defeasible conclusions about
designer intent.

8.1. Clusters, hypotheses, and evidence

To provide a context in which to relativize explanations, re-
lated change events are grouped intochange clusters. Analy-
sis events provide the basis for extracting change clusters,
in accord with the metaphorAnalysis1 . . . Analysisk2 Event1
. . . Eventj 2 Analysisk11 . . . Analysisn. The design proper-
ties tested by the analyses within the cluster are adopted as
hypotheses for explaining the motivation for changes per-
formed within the cluster. For example, during the devel-
opment of the robotic arm, the designer may conduct an
analysis to determine the resonance of the arm, perform some
additional modifications, calculate the arm inertia, recalcu-
late the resonance, and then perform modifications to a dif-
ferent part of the design. In this case, the system would
extract a cluster that begins with the first resonance analy-
sis and ends with the second resonance analysis. The hy-

Fig. 7. Example part histories and part version summaries.

Table 7. Example implicit groups

Insertion Group Parts thatareconsistentlyadded together to the
assembly during the same period of construc-
tion activity ~not necessarily in the same or-
der!.
~Metaphor:Insert A0 . . . Insert An ~repeated!!

Modification Group Parts that are consistently modified together
during the same period of part revision~not
necessarily in the same order!.
~Metaphor:Modify A0 . . . Modify An

~repeated!!.
Functional Group Parts that are consistently refined together

within a single refinement phase, in connec-
tion with the same design requirement.
~Metaphor:Analyze X - Modify A0 . . .Modify
An - Analyze X~repeated!!.
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potheses for this cluster would be that the designer is trying
to impact resonance and inertia.

RCF collectsevidenceto strengthen or weaken these ini-
tial hypotheses. Table 8 displays the types of evidence cur-
rently used within the system.MATCHED-ANALYSES
correspond to the inclusion of a pair of analyses, one from
the initial set of analyses and one from the final set, that
analyze the same design property. For example, the reso-
nance analyses in the above example satisfy this criterion.
As opposed to observing analyses in isolation, matched anal-
yses serve as an indicator that~at least some of! the inter-
vening operations were likely performed to impact the
design property that the analyses evaluate. Detection of a
REFINEMENT-TREND, whereby an analyzed design prop-
erty changes monotonically within a cluster, would simi-
larly increase the likelihood that the cluster is focused on
impacting that design property.MATCHED-ANALYSESand
REFINEMENT-TRENDevidence are extractable directly
from observed design events. The remaining evidence types
require additional background knowledge related to design
requirements and effects of design operations; they are dis-
cussed in Section 8.2.

An evidence calculusprovides the basis for combining
collected evidence to produce final interpretations. Hypoth-
eses that score over a designated threshold are considered
as intended effects; as such, we do not assume that a de-
signer has a single objective within a change cluster.

Different viewpoints or perspectives on the design pro-
cess can be supported by assigning different levels of sig-
nificance to various types of evidence. RCF distinguishes
two categories of evidence:cumulativeand primary. Cu-
mulative evidence simply increases or decreases the likeli-
hood of a hypothesis in a straightforward manner. Primary
evidence is deemednecessaryfor a conclusion to be drawn,
thus providing the means to filter irrelevant observations.
This technique allows the observer to specify the level of
granularity that the system should use to draw conclusions.
For example, the observer may want a coarse level of gran-
ularity, only considering the designer’s intentions over an
extended period of time. In this case, he or she may decide
to designateREFINEMENT-TRENDevidence as necessary
in order for an effect to be considered possibly intended.
Conversely, if an observer wishes to examine the design pro-
cess on a finer scale, considering all possible effects on an

Fig. 8. Implicit groups dedicated during a design session.

Table 8. Types of evidence to support hypotheses for impacting a design property

Type of Evidence Description Knowledge Requirements

MATCHED-ANALYSES The initial and final sets of analyses in the cluster include an analy-
sis that evaluates the design property.

None

REFINEMENT-TREND The cluster contains a monotonic trend~of length greater than two!
in the value of the design property.

None

PREVIOUSLY-
COUNTERED

Modifications were made in a preceding cluster that moved the
design property in the wrong direction with respect to its associated
design requirements.

Design Requirements

KNOWN-SAT
KNOWN-UNSAT

Requirements for the design property are known to be satisfied
~unsatisfied! at the beginning of the change cluster.

Design Requirements

MODIFY An event that could possibly impact this design property occurred
in the cluster.

Effects

MODIFY-WRONG-DIR
MODIFY-RIGHT-DIR

Modifications were made that moved the design property in the
wrong ~right! direction with respect to its associated design
requirements.

Design Requirements, Effects

128 K.L. Myers et al.

https://doi.org/10.1017/S0890060400142027 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400142027


event-by-event basis, he or she may choose not to designate
any evidence as primary. RCF interpretations also support
specifications of weights for emphasizing different types of
evidence.

Currently, RCF provides two interpretations. Afine-
grain interpretation considers all observed effects, with no
primary evidence. A coarsercontext-emphasizinginterpre-
tation requiresMATCHED-ANALYSESevidence for an ef-
fect to be considered as intended. Both interpretations
combine cumulative evidence additively, although this need
not be the case. In a probabilistic model, for example, evi-
dence would be combined multiplicatively.

8.2. Background knowledge

The evidence types described above are grounded in di-
rectly observable designer activity, and as such can be ap-
plied to a wide range of design tasks. However, they have
limited explanatory power. Substantially more interesting
explanations of designer intent can be generated through the
use of background knowledge. We consider two types: task-
specific design requirementsand general-purpose domain
knowledge about theeffectsof operations.

8.2.1. Design requirements

When available, quantitative knowledge about task-
specificthresholded design requirements~i.e., maximum or
minimum thresholds! can be used to further weaken or
strengthen belief in hypotheses. RCF uses five types of ev-
idence related to design requirements. If a change occurs
that increases the degree of satisfaction of a design require-
ment that is already known to be satisfied, it is less likely
~but not impossible! that the designer was intentionally fo-
cusing on that design requirement~i.e., KNOWN-SATfrom
Table 8!. Similarly, knowing that the requirement is not sat-
isfied would increase the likelihood that the designer was
focusing on that requirement~i.e., KNOWN-UNSAT!. The
evidence typePREVIOUSLY-COUNTEREDindicates that
modifications were made in one or more preceding clus-
ters that moved the design property away from the direc-
tion required to satisfy stated design requirements~e.g., as

a side effect of addressing some other requirement!. This
increases the likelihood that the designer would be attempt-
ing to address this recently countered requirement. The ev-
idence typesMODIFY-RIGHT-DIR andMODIFY-WRONG-
DIR require information about design requirements but also
of effects; for that reason, they are discussed in the follow-
ing section.

8.2.2. Effects of changes: QIC tables

Background knowledge of the possibleeffectsof de-
signer changes can similarly enable deeper explanations of
designer intent than is possible with observed designer ac-
tivity alone. We have developed an approach based on rea-
soning qualitatively about these possible effects. At the heart
of the method lies the specification of a table ofqualitative
impact of changes, which encodes the effects that a given
design change can have on designated design properties. This
information can also be used to assign intended effects to
specific events and to identify side effects not manifested
by the analyses performed.

Figure 9 presents an excerpt from thequalitative impact
of change~QIC! table for the robotic arm design case. Here,
the focus is limited to changes to semantic attributes. How-
ever, the approach can be readily extended to handle struc-
tural changes~e.g., the addition or deletion of objects! and
magnitudes of changes. For a given change to a semantic
attribute of an object, the QIC documents design-related
properties that are affected, along with a specification of
how those properties are impacted. As such, they can be
viewed as possibleexplanationsfor performing a given de-
sign change. Attributes have one of three types.Numeric
attributes show positive or negative correlation with design
properties.Binary attributes show correlation when the
attribute assumes values oftrue or false . Enumerated
attributes specify correlation for various ranking functions.

QIC tables share with theconfluencesof ~De Kleer &
Brown, 1984! the goal of representing the qualitative ef-
fects of change. Confluences are equations defined in terms
of qualitative derivatives of variables whose values range
over some limited domain~usually1, 2, or 0!. For exam-
ple, the confluence]P 1 ]A 2 ]Q 5 0 describes the behav-

Fig. 9. Excerpt from the QIC table for the robotic arm design case.
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ior of a valve with flow Q, flow areaA, and pressureP;
here,]Q, ]A, and]Q denote changes inQ, A, andP. While
confluences can be used to represent relations among a range
of changes to a device, QIC tables define only pairwise in-
teractions between individual design changes and desig-
nated design properties. Within the scope of our work, QIC
tables were defined by hand. However, techniques for rea-
soning about causal effects, such as propagation of distur-
bances among confluences~De Kleer & Brown, 1984! or
causal ordering and comparative statics~Iwasaki & Simon,
1986, 1994!, could be used to derive QIC entries from for-
mal descriptions of component behaviors.

Without QIC information, hypotheses are limited to the
design properties tested by analyses within the cluster. When
QIC information is available, the set of hypotheses is ex-
panded to include the effects of all actions performed within
the cluster. QIC information also provides the basis for two
additional types of evidence.MODIFYevidence indicates
that an action was performed that could possibly impact the
design property in question.MODIFY-RIGHT-DIR and
MODIFY-WRONG-DIRindicate that the designer made
changes that moved the design property in the right0wrong
direction relative to the stated design requirements.

Figure 10 presents summaries of two example clusters
extracted by RCF. Each summary includes~a! the key de-
sign events for the cluster~here, analyses and changes to
semantic attributes of objects!, and~b! classification of ef-
fects of change operations within the cluster~extracted from
the QIC table! asintendedor sideeffects. Evidence to sup-

port the classification is provided, along with scores in the
range@25,5# determined by the application of the evidence
calculus in use~here, thecontext-emphasizingcalculus!. A
positive score denotes “intended” while a negative score de-
notes “unintended,” with larger absolute scores indicating
greater belief in the hypothesis.

Within these clusters, the change events consist of modi-
fications to the semantic attributes of previously defined ob-
jects~via ANNOTATEdesign events!. The two attributes
changed are the material and catalog number~CAT-NUM!.5

In the first cluster, QIC knowledge is available only for the
change in material forDOBJ92fromDelrin to lighterAlu-
minum. RCF uses it to generate the hypotheses that the in-
tent of the cluster is to reduceweight , decreaseinertia ,
or increasestress . Based on additional evidence~such as
the fact that the weight requirements were not satisfied at that
point in the design!, RCF’s evidential reasoning calculus in-
fers that Event 312 was performed to reduceweight , but also
caused an undesirable increase instress ~as indicated by
the high likelihood values!. This latter inference bolsters the
hypothesis in the second cluster that the designer is attempt-
ing to reducestress through material changes in Events 318
and 321~as reflected by thePREVIOUSLY-COUNTEREDev-
idence!, even though doing so may counteract theweight
decrease of the previous cluster.

5A change in catalog number corresponds to selection of a different
part from a part catalog.

Fig. 10. Sample change clusters with evidence.
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8.3. Tradeoffs in QIC usage

Domain knowledge encoded as QIC tables enables the sys-
tem to generate richer and more meaningful rationale than
does the log of recorded design events in isolation. How-
ever, the production of the QIC tables by a domain expert
can be time-consuming; the background knowledge that a
human designer brings to bear when evaluating a design is
so rich that to encode more than a small part of it can be
impractical. In our system, for example, the QIC tables en-
code only the impact of changes to attributes or parameters
of parts, although in principle the approach could be readily
extended to the encoding of structural changes. In addition,
the resulting tables are not necessarily reusable across do-
mains because they embed assumptions about the context
in which operations will take place and the magnitude of
changes.

By using a combination of contextual evidence and back-
ground knowledge, rationale extraction can proceed along
the range from knowledge-free to knowledge-intensive, de-
pending on what is most practical for a given situation. How-
ever, for the knowledge-free extraction to be effective, the
system must at least have access to the designer’s analysis-
related activity.

9. ACCESSING THE RATIONALE:
DESIGNER INTERACTION

Effective use of constructed rationale requires presentation
of the information to a designer in a concise and understand-
able manner. The information can be presented from two
perspectives:

Summary Mode: Information is presented as a general
overview of the design process: What did the designer
do, and when? What different decisions did he or she
make, and why? What operations have been performed
on this part? What operations affected this design
requirement?

Goal-directed Mode: Information is presented to ad-
dress specific issues, related to the goals of a designer
who wishes to update or redesign an existing artifact:
Are there any dependencies between this part and that
one? What parts0subassemblies are most important for
this design requirement? What tradeoffs were made be-
tween this requirement and that one? What effect do
changes on a part have on the design? How important
was a given requirement in the overall design~priority!?

The rationale constructed by RCF would be valuable dur-
ing the development of the initial design, providing the means
by which a designer can keep track of options that have been
explored and reasons for certain modifications. In this case,
access would be focused on answering questions that target
specific issues. As such, we would expected goal-directed
access to dominate.

We anticipate the extracted rationale to be of even greater
use to designers downstream in the life cycle of the design.
Effective redesign or maintenance will require that the down-
stream designers have a deep understanding of the tradeoffs
and issues explored by the original designer, as well as key
implicit assumptions embodied in the design. Designers who
were not involved with the original design would benefit
the most; however, the original designers may also need to
refresh their memories of the original design process. For
redesign and maintenance, goal-directed access would cer-
tainly be important. However, the designers would first need
to develop a broad understanding of the process involved in
the original design, as provided by the summary mode of
access.

RCF provides a hierarchical query interface for extract-
ing summary information about a design session. Designers
can obtain an overall summary of the design in the form of
activity phases grouped by version. They can select a par-
ticular version and examine it at the level of activity phases
or part-level operations. Refinement phases can also be ex-
amined at the level of change clusters~which provide hy-
potheses of, and evidence for, designer intent!, or at the
design event level. Refinement phases can be further fil-
tered to examine only change clusters pertinent to a given
design requirement, or a given part. At the event level, RCF
provides the option to output tabular data, suitable for graph-
ical presentation, showing the history of changes to analy-
sis and parameter values. Changes between different versions
of the design can be shown either as text or in graphical
form, highlighting pertinent parts in the CAD file itself. A
color-coded effort distribution for the different parts in the
design can also be mapped onto the CAD model.

Information about parts and part histories can be ac-
cessed. The user can query the final state of a part and its
history: its source~a standard or library part, a modified
copy of another part, a part designed from scratch!, when
~which version! it was introduced into the design or re-
moved from the design, whether it was a replacement for
another part, modifications to the part, and the effects of
those modifications on design requirements, if any. The sys-
tem also reports any detected dependencies between the part
of interest and other parts.Versionsof parts~i.e., a part that
was copied from another part and then modified! can be
traced back, along with changes from version to version.
The history of changes to a particular parameter or attribute
of a part can be presented either textually or graphically.

10. EVALUATION AND DISCUSSION

The motivation for building RCF was to determine the ex-
tent to which nonintrusive methods could extract useful ra-
tionale with minimal disruption to the design process.
Although no formal evaluation has yet been undertaken, re-
sults from the application of RCF to the robotic arm design
case represent a qualified success: useful rationale was ex-
tracted and represented in structures that provide ready user
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accessibility. However, additional mechanisms will be re-
quired to produce a deployable tool for designers.

10.1. Future work

The inclusion of additional design metaphors, with partic-
ular focus on identifying intent, constitutes one important
direction for extending RCF. For example, anExploration
metaphor would track branching into different versions of a
design from the same source, thus generalizing the linear
metaphor currently used. In addition, one might want to de-
termine the priority of different requirements to the de-
signer. Evidence about priority comes not only from how
much effort was spent on a requirement, but when in the
session that effort was expended. Was effort spent mostly
in the beginning, or mostly at the end, or was it distributed
throughout the session? The last case may indicate that this
requirement was highly significant, and that the designer
spent much of his or her time balancing other requirements
relative to it.

The inspiration for RCF was the observation that many
of the operations that a designer can perform with a CAD
tool have meaningful semantic content. As CAD tools in-
crease in sophistication, the set of semantically meaning-
ful operations will increase further, thus enabling additional
automated rationale extraction. For example, Active Cata-
log ~Ling et al., 1997! provides a rich query interface for
selecting parts from online libraries, as well as simulation
capabilities to support a “try before you buy” model of
interaction. Observation of the queries formulated by a de-
signer interacting with such a tool would yield a rich data
stream from which to infer rationale.

10.2. Knowledge dependence

There is a fundamental tradeoff in the design of knowledge-
based systems between the cost of adding more knowledge
~in terms of knowledge acquisition and maintenance! and
the value that the added knowledge brings to the problem-
solving process. We intentionally designed RCF with anin-
crementalknowledge model that enables the system to run
with varying levels of domain-specific knowledge. The main
sources of application-specific knowledge within RCF are
explicit design requirements and the QIC tables. The sys-
tem can operate without this information, but generates in-
creasingly better results as more of it is provided.

Within RCF to date, design metaphors are domain-
independent. However, extraction of more intent-oriented ra-
tionalewillmost likely require theadditionofdomain-specific
metaphors that can directly link actions to explanations.

For domains involving many one-off designs, develop-
ment of extensive background theories will not be justified.
However, for domains in which designs will be repeatedly
produced, the application of domain-specific knowledge
could greatly increase the extent of the rationales that can
be generated.

10.3. Intrusiveness and usage requirements

The stated objective for this work was to generate useful
design rationale without substantially interfering with or
modifying the normal operations of a designer. RCF strongly
satisfies the requirement for nonintrusiveness: it runs com-
pletely in the background without any interruption to the
design process. One could argue, however, that to produce
useful rationale information, some limited changes in the
design process are required.

Within the current system, the designer must adhere to a
small number of conventions to support the use of RCF. For
example, when creating a new version of an existing design
file, the designer must first make a copy of the file and then
begin changes on the copy. Changes cannot be made di-
rectly on the original design file and then saved to a new
file ~i.e., via aSave Ascapability!, since RCF would incre-
mentally modify its internal model of the original artifact in
step with the designer’s changes, and then be left with no
way to undo those changes when the user saves the artifact
as a new version. Conventions of this type amount to minor
restrictions on the kinds and order of operations that the de-
signer can perform, and could be eliminated through slight
changes to RCF or the CAD system itself. In this case, for
example, eliminating theSave Ascapability from the CAD
framework would prevent violations of the convention. Sim-
ilarly, RCF could be readily extended to rollback changes
when such Save As commands occur, and recreate them on
a copy of the original file.

A more contentious issue relates to RCF’s reliance on se-
mantic annotations for objects, as assigned through our ex-
tensions to MicroStation95. While RCF can operate without
them, the semantic annotations are essential for enabling
certain aspects of the rationale extraction. In particular, the
Substitutionmetaphor and the effects-based reasoning about
designer intent~Section 8.2! require knowledge of the se-
mantic types of objects. As noted in Section 2.1, this type of
semantic information is generated as a by-product of para-
metric design methods and part selection capabilities found
within numerous state-of-the-art systems. Thus, while de-
signers are required to perform extra steps to supply anno-
tations within our framework, we feel that such steps will
be eliminated in future CAD systems. Of course, the ratio-
nale extraction methods that require semantic annotations
could not be used in portions of designs that required novel
types of components, which will not be predefined in librar-
ies or as parametric models.

11. RELATED WORK

11.1. Models of the design process

RCF bases its rationale extraction primarily on general met-
aphors for designer activity, rather than on domain-specific
knowledge about the artifact being designed. These meta-
phors are intended to reflect the process that designers use
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when working. Here, we describe efforts by others to model
design processes.

Thetask0episode accumulation~TEA! model of the me-
chanical design process was derived from protocol analysis
of videotaped design sessions~Ullman et al., 1988!. This
model focuses onnonroutinedesign, whereby the designer
has the requisite knowledge and experience to produce the
design but the specific task is new. The work was not ori-
ented exclusively toward the automation of the process, but
more generally toward understanding the design process and
its implications for education and the development of de-
signer aids and work environments. The results suggest that
designers satisfy, rather than optimize, and that they do not
work from a global plan, but rather develop a central con-
cept from which to start, and then refine the concept lo-
cally, on the task and episode level.

The Generic Task Model of Design~GTMD! models the
design process independently of the task domain~Brazier
et al., 1997!. GTMD applies at all levels of design, from
conceptual to detailed. In this model, design consists of three
types of manipulation subtasks: of requirements, of the de-
sign process, and of the design object. Each of these sub-
tasks can be decomposed intomodification, updateof
modification history,deductive refinement~deriving prop-
erties, behaviors, and so forth from the current descrip-
tion!, andupdate of current description.

The TEA model and GTMD address the full span of in-
dividual designer activity, from receipt of the initial speci-
fications~possibly including the requirements of other parties
on the design team! to the production of the final design. In
contrast, RCF considers the design only through the me-
dium of the CAD tool. Relative to the TEA model, RCF has
access to the layout and detail tasks, with some access to
the catalog selection task. Information about the conceptual
design is deemphasized. The TEA model and the GTMD
have distinctions between the acts of generating options, an-
alyzing and evaluating these options, and deciding among
them. Again, RCF has access to the analysis~and to a cer-
tain extent, the evaluation!; decisions that take the form of
patches, redos, or replacements can also be accessed. How-
ever, the generation step is less accessible. More sophisti-
cated access to the catalog selection task, such as the designer
using an online catalog that supports interactive queries~e.g.,
Ling et al., 1997!, would provide deeper insight into the
selection task.

11.2. Designer queries

Kuffner and Ullman~1990! present the results of an exper-
iment in which designers were given a design and its doc-
umentation as well as access to an expert who was familiar
with the design. The designers were then recorded while
performing a redesign task. The purpose of the experiment
was to determine the kinds of questions that designers asked,
and how they found the answers. The authors noted several
interesting results. Questions about the design tended to be

on the component or feature level two thirds of the time,
with the remaining one third of the time divided more or
less evenly between questions about the assembly as a whole,
interfaces, or relationships between various components. The
designers asked questions about the original design~i.e., in-
formation that is more or less available in traditional docu-
mentation!, and how potential changes could affect the
design. Questions often focused on structure and location
more than the operation or purpose of an object; however,
when the designer did have operation or purpose questions,
it was the human expert who most often was the source of
information. In fact, although almost half the questions0
conjectures posed by the designers went unconfirmed, or
were confirmed by the designers’ internal knowledge, the
great majority of the remaining questions were answered
by the expert. As the authors say:

The fact that . . . designers referred to the examiner’s stored
knowledge at all indicates that mechanical designers would
use design information stored in any intelligent CAD tool,
if available.

These results suggest that “intelligent CAD tools” should
concentrate on providing operation and purpose informa-
tion, where possible, because traditional documentation omits
them. They also suggest that designers would use such a
tool even for information already stored elsewhere, if the
information could be readily extracted~as from a human
expert!.

Based on a similar survey of designer protocol data, Gru-
ber & Russell~1996! conclude that design rationale tools
should concentrate on collecting a broad range of pertinent
data about a design. This data should be retrievable in re-
sponse to queries in such a way that rationale can be recon-
structed from the data. They call this thegenerative approach
to design rationale.

11.3. Design rationale acquisition and retrieval

Early work on the acquisition of design rationale focused
ondirect solicitationmethods, whereby users are explicitly
queried or provided with structured interfaces to elicit ra-
tionale~Russell et al., 1990; Gruber, 1991!. Because these
approaches impose a heavy documentation burden on de-
signers, they have had limited success.

Several attempts have been made to facilitate automated
rationale generation by imposing structure on the design pro-
cess~Ganeshan et al., 1994; Brazier et al., 1997!. The gen-
eral idea is to model design as selection from predefined
transformation rules. Rule selections are recorded along with
rule-specific rationale. By structuring the design process,
these approaches can provide deeper explanations of de-
signer intent than can RCF. However, they greatly constrain
designer activities and are unsuitable for ad hoc design cases
requiring novel design methods.

Acquiring design rationale automatically 133

https://doi.org/10.1017/S0890060400142027 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400142027


For example, Ganeshan et al.~1994! describe a system in
which the design is generally manipulated through pre-
defined transformations on objectives. To manipulate the de-
sign directly, a designer must provide explicit justifications
to the system. The design history consists of the log of trans-
formations, while designer intent is is described by the map-
ping between transformations and objectives. Similarly, the
work in Brazier et al.~1997! models design as selection from
predefined transformation rules that include rationale infor-
mation related to the operations performed by the rule. Upon
selection of a rule, the choice is recorded along with the
rule-specific rationale. The paper provides an example of
how to use the produced rationale to support redesign, re-
lated to the design of the Fokker 60~Fo60! passenger air-
craft from the design of the Fo50.

The Active Design Document~ADD! system~Garcia &
Howard, 1992; Garcia et al., 1997; Garcia & de Souza, 1997!
generates rationale forparametric design tasks, in which
the design process involves constraining or selecting values
for fixed sets of parameters. This class of designs, while
important, is much narrower in scope than that addressed
by RCF. The early ADD system observed the designer’s ac-
tions, and then attempted to generate explanations for them
by using a predefined knowledge base for the domain. If
the system was unsuccessful, or predicted an action other
than that taken, it would ask for an explanation. In this way,
a knowledge base could be built from observed cases. More
recent versions of ADD generate ranked alternatives and al-
low the designer to change the knowledge base to update
the system’s reasoning abilities.

Qureshi et al.~1997! describe a system for the nonintru-
sive archiving, and subsequent querying, of electromechan-
ical design process histories. ItsIntegration Core Model
representation of design history uses both a generic pro-
cess model and specialized process models to represent the
design information. The generic process model is indepen-
dent of the task domain~within the larger domain of elec-
tromechanical design! and the type of design task performed
~e.g., conceptual, parametric!. Generic process history is
essentially a step-by-step record of all activity. Local spe-
cialized models, which use more specific domain knowl-
edge to structure low-level detailed information about
various aspects of the design, can be incorporated into the
system. In particular, design rationale~in the sense of de-
signer intent! can be formulated as a specialized model,
separate from the Core Model. This approach allows dif-
ferent domain-specific models of rationale to be incorpo-
rated into the archiving process.

The Design History Tool~Chen et al., 1991! evolved from
TEA model of the design process and the studies of Kuffner
and Ullman on the understanding of others’ designs. This
system stores structured, hierarchical representations of a
design, which are extracted from manually transcribed vid-
eotapes of design sessions that include what the designer
saysas well as the operations he or she performs. The re-
sultant design history can be browsed with respect to struc-

ture, evolution, alternatives considered, and dependencies
in the design or among the requirements. This system pro-
vides more direct access to the designer’s thought pro-
cesses and intentions than does RCF, but at the costs of
intrusiveness into the design process and labor-intensive data
input.

12. CONCLUSION

RCF’s methods for acquiring design rationale present an in-
novative approach to a difficult and important problem. Pre-
vious work on rationale acquisition has focused on highly
intrusive techniques that either involve extensive participa-
tion by the human designer or change the underlying design
process. Because of the level of disruption to the underly-
ing design process, tools of this type have not been em-
braced within the design community.

In contrast, our idea of extracting design rationale from
observations of designer activity is rooted in a philosophy
of nonintrusiveness: rationale is produced as a natural by-
product of the design process. The human designer will need
to intervene to supply certain information of relevance to
the design but should be relieved of responsibility for re-
cording information about the noncreative aspects of a de-
sign. We have shown that this type of automation is possible
by applying key AI methods such as structured knowledge
representation, knowledge-based plan recognition, cluster-
ing techniques, and basic qualitative reasoning.
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