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We study the fluid dynamics of rolling wheels at Reynolds number ReD 6 1000 (where
ReD is the Reynolds number based on the wheel diameter), with the objective of
characterizing the various regimes of steady and unsteady motion. Regardless of the
Reynolds number, the flow is found to separate approximately 10◦ upstream of the
apex of the wheel, where a saddle point in the pseudo-streamtrace pattern is observed.
Under the flow conditions here essayed, the drag coefficient steadily decreases with
ReD, and the lift coefficient remains strictly positive. The positive lift provided by the
rolling wheel is associated with the presence of a strong (positive) peak of the static
pressure in the upstream proximity of the contact point with the ground, which we
interpret as the result of the impingement of flow particles entrained in the boundary
layer that develops on the front part of the wheel. Steady laminar flow is observed
up to ReD ≈ 300, which is characterized by a three-dimensional wake whose length
increases with the Reynolds number. Unsteadiness is first observed at ReD ≈ 400,
under which conditions the flow retains planar symmetry, and is characterized by
the quasi-periodic shedding of hairpin vortices. Transition to three-dimensional flow
happens at ReD ≈ 500, in which case a sinuous mode of instability in the wheel
wake is established, which modulates the shedding of the hairpins, and which causes
the onset of a non-zero side force. At the highest Reynolds number considered
here (ReD = 1000) the wake exhibits some characters of turbulence, with wide-band
frequency spectra, and its topology entirely changes, becoming split into two parts,
and being much shortened compared to the lower-ReD cases. Despite the limitation of
the study to low Reynolds numbers we find that, once significant three-dimensionality
and scale separation are established in the wheel wake, the nature of the flow becomes
qualitatively similar to fully developed turbulent flow. In perspective, this observation
opens interesting avenues for the prediction of unsteady flow around rotating tyres at
moderate computational cost.
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1. Introduction
The flow around objects of complex shape, and in the presence of solid boundaries,

is a subject of the utmost interest in aerodynamic applications. Most of our knowledge
of massively separated flows behind blunt-shaped objects derives from basic studies
performed on prototype geometries, such as cylinders and spheres. The aerodynamics
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The fluid dynamics of rolling wheels at low Reynolds number 497

of cylinders in particular has attracted the attention of scientists, and it has been the
subject of dedicated reviews (Williamson 1996) because of the extremely rich variety
of the flow structures. The flow around a cylinder in an unbounded incompressible
fluid is parametrized by the Reynolds number (for instance based on the cylinder
diameter, ReD), and it is well known that different flow patterns may occur as ReD

is varied. Steady laminar flow exists at Reynolds numbers up to ReD ≈ 40, with a
pair of symmetric counter-rotating vortices forming behind the cylinder at ReD > 5.
Nominally two-dimensional vortex shedding is observed up to ReD ≈ 190, beyond
which fully three-dimensional flow is observed. The shear layers separating from the
cylinder become unstable at ReD ≈ 1200, and for ReD > 3.5 × 106 the boundary layer
on the surface of the cylinder becomes turbulent before separation, yielding a lower
base suction coefficient and lower drag due to delayed separation.

Although interesting from an academic standpoint, the flow around a spanwise
infinite cylinder is of limited practical interest, since any real object has finite aspect
ratio. In this respect, the flow around a sphere is the simplest prototype of flow around
a compact body. Although not as widely studied as the cylinder flow, the sphere has
been the subject of several numerical and experimental studies, which have highlighted
dynamics other than the cylinder, and several regimes have been identified which
depend sensitively on the Reynolds number. The presence of solid walls adds a degree
of complexity to the problem, qualitatively changing the flow behaviour, as highlighted
in several recent studies (Stewart et al. 2010a,b; Rao et al. 2012).

Although of extreme interest for industrial applications (the most obvious being car
tyre aerodynamics), the flow around a finite cylinder (hereafter referred to as a wheel)
in contact with the ground has never been previously investigated from a fundamental
point of view. Part of the reason may reside in its intrinsic geometric complexity,
which limits the application of body-fitted numerical methods, and in the difficulty in
correctly reproducing the perfect rolling condition both numerically and experimentally.
All previous related studies were focused on real tyre geometries (with inherent
complications for computational fluid dynamics, CFD), and Reynolds numbers in the
range ReD = 105–106, which is of interest for automotive engineering. The evidence
of experimental studies is quite contradictory, and apparently there is no consensus
on very fundamental issues, such as the geometric properties of the wake (not even
in the time-average sense) and on the direction of the vertical force, some authors
claiming that a down-force should be present, and others (the majority) supporting
the occurrence of positive lift. Early studies (Cogotti 1983) pointed to the sensitivity
of the flow, in particular the sensitivity of the lift coefficient, to the details of the
experimental arrangement, and especially to the presence of a small gap between the
tyre and the wall, which may yield negative values for the lift coefficient (Morelli
1969). Cogotti (1983) speculated that the wake vortex system consists of three pairs
of counter-rotating vortices, two shed from the upper edge of the wheel, two from the
tyre hub (if present), and two weaker ones caused by the splatting of fluid at the front
surface of the wheel. Through a particle image velocimetry (PIV) study, Saddington,
Knowles & Knowles (2007) found that only two counter-rotating vortex pairs are
present in the tyre wake, which both induce motion towards the wall in between, and
sufficiently far from the tyre only the near-wall pair survives. These facets of the fluid
dynamics of wheels have important practical implications for the aerodynamic design
of cars, especially those made to operate with exposed tyres, as is the case for racing
cars (Katz 2006), for which the drag force associated with rolling tyres may amount to
up to 40 % of the total drag.
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Computational studies of rolling wheels are very rare in the open literature, and to
our knowledge, the only relevant studies are those of McManus & Zhang (2006) and
Axerio et al. (2009). The former study is based on Reynolds-averaged Navier–Stokes
(RANS) modelling of turbulence, which only yields information on the mean structure
of the flow field. Those authors discussed the topology of the flow around a realistic
tyre, highlighting the differences between the cases of stationary and rolling wheels,
and observing that in the latter case only two counter-rotating vortices appear in
the tyre wake. The only instance of unsteady simulation of flow around a tyre was
reported by Axerio et al. (2009), who performed a large-eddy simulation (LES) at
realistic operating conditions, unfortunately only for the case of stationary tyres, which
is fundamentally different from that of rolling tyres.

In this paper we aim to study the aerodynamics of wheels rolling (without slipping)
on a solid wall through numerical simulations. For that purpose we intentionally avoid
the use of any turbulence model, and perform direct numerical simulation (DNS) of
the governing flow equations. As a consequence, the study is limited to low Reynolds
numbers (ReD 6 1000), which are far from realistic operating conditions. The study
is carried out with a compressible flow solver, which also allows us to establish the
influence of Mach number variation (albeit weak in the range of flow conditions of
interest for the car industry). The paper is organized as follows. In § 2 we present the
numerical method used for the analysis, which is then validated through comparison
with other studies in § 3. The results obtained for flow around a rolling wheel are
presented in § 4, and concluding remarks are given in § 5.

2. Numerical method
The flow solver used for the numerical study was previously applied to the analysis

of compressible wall-bounded turbulence in the presence of shock waves (Pirozzoli
2011; Pirozzoli & Bernardini 2011). The key ingredient of the code is a dissipation-
free finite-difference discretization of the convective terms in the Navier–Stokes
equations capable of guaranteeing exact discrete kinetic energy preservation in the
limit of inviscid incompressible flow, which makes the discretization compatible with
the analytical secondary conservation properties. We stress that this is a mandatory
prerequisite for the accurate prediction of turbulent and transitional flows. The
inclusion of the compressibility effects (although weak) allows the extraction of
additional information related to the acoustic radiation of the flow, which will be
the subject of a separate study. The main limitation of using a compressible solver to
study flow cases where the Mach number is typically very low (M∞ 6 0.3) is some
degree of inefficiency, given the time step restriction associated with the necessity
to resolve the time evolution of acoustic waves, which become much faster than
hydrodynamic waves when the Mach number is much less than unity. However, the
use of a compressible flow solver avoids the solution of the Poisson equation for
pressure, which greatly facilitates implementation on massively parallel computers and
the use of mesh stretching in all coordinate directions. To alleviate the computational
effort involved in numerical simulations, the study of the rolling wheel is carried out
at M∞ = 0.3. Although this is at the higher end of the Mach number range of interest
for racing cars, the compressibility effects are still very weak (as later shown for the
simulations of flow around a sphere), and we expect that the results are representative
of the whole low-Mach-number range.

The main addition to the baseline flow solver is the inclusion of an immersed
boundary capability, i.e. the ability to deal with embedded geometries with arbitrary
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shape on a Cartesian grid. The immersed boundary (IB) method is here implemented
following the approach proposed by Fadlun et al. (2000), and modified by de Palma
et al. (2006) for steady compressible flows. Specifically, at each Runge–Kutta substep
the velocity at grid points lying inside the body is modified to make it consistent with
the local body velocity, which is zero in the case of a stationary body, and equal to the
local rotation velocity for the case of a rolling wheel. Furthermore, the velocity at the
fluid points nearest to the body surface is extrapolated in such a way that the no-slip
condition is satisfied at the boundary points, thus providing second-order accuracy
in the boundary treatment. The solver is capable of reading CAD geometry files
in the stereolithography (STL) format. Then, a preprocessor based on a ray-tracing
algorithm (O’Rourke 1998) discriminates between inner and outer points. One of the
many advantages of the IB method consists in the fact that the estimation of the global
aerodynamic forces acting on immersed bodies is straightforward. Here we follow the
approach proposed by Taira & Colonius (2007), and determine lift, drag and side
forces by summing the equivalent body forces at the interior and boundary nodes of
the immersed objects.

Regarding the numerical boundary conditions, locally one-dimensional characteristic
decomposition is used at the boundary points to discriminate between incoming and
outgoing waves. At the inlet and far-field boundaries the amplitude of the incoming
waves is then estimated assuming relaxation to the free-stream conditions (Poinsot &
Lele 1992). As also proposed by Poinsot & Lele (1992), the effect of the bottom
wall is accounted for by enforcing perfect reflection of the impinging acoustic waves.
More details on the computational arrangement used for the study of the flow around a
rolling wheel are given in § 4.

3. Code validation tests
3.1. Flow around a rotating cylinder

As a preliminary step, we consider the two-dimensional flow around a rotating
cylinder, which is widely documented in the literature. In the incompressible case
the flow is parametrized through the Reynolds number ReD = u∞D/ν∞, and the non-
dimensional rotation rate α = ΩR/u∞, where R and D are the cylinder radius and
diameter, respectively, and Ω is the imposed cylinder rotation rate (assumed positive
when anticlockwise). In the compressible case that we are dealing with a further
independent parameter is the free-stream Mach number M∞ = u∞/c∞. The mesh used
for the simulations covers the rectangular domain [−15R : 25R] × [−20R : 20R], and it
has a resolution of ∼30 points per radius near the cylinder.

The early stages in the flow evolution (at α = 0.5, ReD = 1000) starting from rest
are addressed in figure 1, where the computed instantaneous streamlines are reported
at various non-dimensional times, τ = tu∞/D. At early times (τ = 3) two eddies form
behind the cylinder because of boundary layer separation, which induce secondary,
counter-rotating eddies near the cylinder, clearly visible at τ = 4. The main effect
of the imposed rotation is a clear asymmetry in the flow pattern, apparent in the
faster growth of the upper eddy, which is eventually shed off the cylinder at τ = 11.
Agreement between the present results (here shown for M∞ = 0.3) and previous
computations and experiments (also reported in figure 1) is good. The evolution of
the flow over long times eventually leads to a quasi-periodic state, which is addressed
next, for α = 1, corresponding to a case where the cylinder’s peripheral velocity equals
the free-stream velocity. The computed instantaneous flow patterns at ReD = 100, 200
are shown in figure 2, where vorticity contours are plotted. As has also been found
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FIGURE 1. (Colour online) Flow around an impulsively started rotating cylinder at ReD =
1000, α = 0.5, M∞ = 0.3: (a) τ = 3, (b) τ = 4, (c) τ = 11. Comparison between present
data (left column), numerical simulations by Mittal & Kumar (2003) (middle column), and
experiments by Badr et al. (1990) (right column).

by previous investigators, the flow is similar to that around a steady cylinder, with
quasi-periodic shedding of eddies of opposite sign on either side of it. One should
note, however, that eddies tend to be shed in the positive half-plane, consistent with
the direction of the cylinder rotation. Further, it can be seen that the spacing of
the eddies is decreased as ReD increases, reflecting the increase of the shedding
frequency. The numerical results are compared with incompressible simulations by
Kang et al. (1999) and Mittal & Kumar (2003) in figure 3, where we show the mean
lift and drag coefficients, cl = Fy/(ρ∞u2

∞R), cd = Fx/(ρ∞u2
∞R), and the peak Strouhal

number (StD = fD/u∞) of the lift coefficient spectrum, all estimated after the flow has
reached a statistically steady state. As previously noticed, the Strouhal number has a
tendency to increase with ReD, and the asymmetry of the flow is reflected in a net
lift pointing in the negative-y direction. Clearly, the simulations performed at the lower
Mach number (M∞ = 0.1) match very well both the incompressible force coefficients
and the shedding frequency. On the other hand, the single simulation performed at
M∞ = 0.3 yields larger drag, and it somewhat overpredicts the peak Strouhal number.
This behaviour is probably due to the effect of finite flow compressibility, which may
yield non-negligible variation of the aerodynamic forces even at low free-stream Mach
number, especially in the case considered here of two-dimensional flows, in which
strong accelerations and decelerations take place. To give an idea, in the case of the
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FIGURE 2. Vorticity contours for the flow around a rotating cylinder for α = 1 at (a)
ReD = 100, (b) ReD = 200 (in both cases M∞ = 0.1). Sixteen colour levels are shown, with
−4.2 6 ωD/u∞ 6 4.2, the colour scale ranging from black to white.

rotating cylinder simulation at M∞ = 0.3, the maximum Mach number reached within
the flow is ∼0.6.

3.2. Flow around a rolling cylinder
The flow around a rolling cylinder is a two-dimensional prototype of the flow that we
are interested in, and it has been recently investigated (in the incompressible limit) by
Stewart et al. (2010b). Those authors considered rotating cylinders in the very close
proximity of a solid wall, which was made to translate with the free-stream velocity.
Several cylinder rotation rates were considered, and the influence of the gap height (G)
was studied. Regarding the latter issue, those authors were unable to simulate the flow
in the case of cylinder in direct contact with the ground (G = 0), and noticed weakly
singular behaviour of the force coefficients as the gap becomes vanishingly small.
Here we directly consider the case of cylinder in contact with the wall, and assume
zero slip velocity, which is achieved for α = 1. The mesh used for the simulations
covers the rectangular domain [−15R : 30R] × [−R : 20R], and it has a resolution of
∼40 points per radius near the cylinder. The adequacy of the computational mesh was
assessed through a grid convergence study of the force coefficients. All simulations
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FIGURE 3. (Colour online) (a) Drag coefficient, (b) lift coefficient and (c) Strouhal number
for flow around a rotating cylinder at α = 1. Solid symbols denote simulations at M∞ = 0.1
(circles), M∞ = 0.3 (squares). Open symbols denote data from other authors: �, Kang, Choi &
Lee (1999); ◦, Mittal (1999b).
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FIGURE 4. Vorticity contours for the flow around a rolling cylinder at (a) ReD = 100,
(b) ReD = 200 (in both cases M∞ = 0.1). Frame (c) is the same as (b), but in the presence of
a small gap (G/D = 0.005). Sixteen colour levels are shown, with −6.8 6 ωD/u∞ 6 6.8, the
colour scale ranging from black to white.

are started impulsively, e.g. the velocity is set to its free-stream value throughout, and
results are only shown after the flow has reached a statistically stationary state.

The qualitative properties of the flow field can be understood from inspection
of figure 4, where instantaneous vorticity contours are shown for ReD = 100, 200
(figure 4a,b). As noticed in previous simulations and experiments (Stewart et al.
2010b), the main effect of the bottom wall is to inhibit the shedding of eddies
from the lower side of the cylinder. Clockwise vortices are observed to be shed from
the upper edge of the cylinder, which promote the formation of anticlockwise vorticity
near the wall because of the no-slip condition (Orlandi 1990). In the case of higher
ReD, the secondary vorticity is observed to couple with the primary one to form
vortex dipoles which propel themselves away from the wall. This scenario is entirely
consistent with the findings of Stewart et al. (2010b). To establish the effect of the
presence of a finite gap on the computed flow pattern, in figure 4(c) we show the
results obtained by enforcing a small gap (G/D = 0.005, as also considered by those
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authors). It can be noted that, by matching the time instant for the comparison, the
vorticity field looks virtually indistinguishable from the zero-gap case (compare with
figure 4b). In figure 5 we show the mean force coefficients and the peak Strouhal
numbers determined from the lift coefficient time history. In this case, qualitative
agreement with the reference incompressible data is observed for the drag coefficient
and for the characteristic flow frequency, but with deviations of ∼20–30 %. Much
more critically, the lift coefficient seems to be inaccurate for the incompressible data,
especially as M∞ is lowered. We have then tried to verify whether the observed poor
agreement is due to the presence of a finite gap in the data of Stewart et al. (2010b),
and performed additional simulations with G/D= 0.005, whose grid-converged results
(obtained with 80 points per radius, and 12 points inside the gap zone) are shown
in figure 5 with triangle symbols. Although the disparity in the computed cl is
substantially less than in the no-gap case, wide differences persist, which apparently
cannot be traced back to lack of resolution of the present data. It is also noteworthy
that the M∞ = 0.3 simulation yields reduced drag compared to the M∞ = 0.1 case.
After examination of flow snapshots and of the mean fields (not shown here), we
have found that this is due to a qualitative modification of the shedding pattern past
the cylinder, which translates into a longer recirculation bubble. This is a further
demonstration that compressibility effects may play a (often non-trivial) role in the
case of two-dimensional flows. As shown in the following, this is not the case for
three-dimensional flows.

3.3. Flow around a sphere
To test the capabilities of the flow solver to accurately predict three-dimensional
flows, we consider the flow around a sphere at ReD 6 500. Despite its apparent
simplicity, this flow is extremely rich in terms of flow dynamics, and it constitutes
a severe challenge for numerical algorithms. Four flow regimes were identified in
previous studies in the Reynolds number range here explored (Johnson & Patel 1999;
Mittal 1999a; Tomboulides & Orszag 2000). For ReD . 210, steady axisymmetric
flow is recovered, with a recirculation bubble whose length increases with ReD. At
ReD ≈ 210 a regular bifurcation occurs, which leads to steady non-axisymmetric flow,
characterized by a typical double-thread wake. At ReD ≈ 270 a second bifurcation
occurs, which leads to an unsteady pattern characterized by regular shedding of
hairpin vortices in the sphere wake, symmetric about a plane whose orientation
(which depends sensitively on the initial conditions) remains fixed with time. At
higher ReD (transition is reported by Mittal 1999b to occur around ReD ≈ 350–375)
planar symmetry is lost, and the orientation of the hairpins being shed varies randomly
in time.

We then performed a set of simulations at representative Reynolds numbers
(ReD = 100, 250, 300, 350, 500), and compared the results with data available in the
literature. For all the simulations the computational mesh has been selected to be
sufficiently wide to minimize the effect of numerical blockage, often quoted as the
reason for the scatter in the results of previous authors, the domain extending for
[−15R : 35R] × [−15R : 15R] × [−15R : 15R] in the three coordinate directions. The
mesh is stretched in such a way that the spacing in all coordinate directions is nearly
the same around the body, with a resolution of 30 points per sphere radius. The total
number of grid points used for the simulations is 512 × 240 × 240, which is found to
be sufficient to obtain accurate results at the Reynolds numbers considered here. To
compare with results in the literature, all of which deal with incompressible flow, we
have performed simulations in the low-Mach-number range, for M∞ = 0.1, 0.2, 0.3.
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FIGURE 5. (Colour online) (a) Drag coefficient, (b) lift coefficient and (c) Strouhal number
for flow around a rolling cylinder. Solid symbols denote our simulations at M∞ = 0.1
(circles), M∞ = 0.3 (squares). The triangles denote the results obtained with a finite gap
(G/D= 0.005) at M∞ = 0.1. Lines denote data from Stewart et al. (2010b).
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FIGURE 6. (Colour online) Vortical structures (educed through swirling strength iso-surfaces)
in the near wake of a sphere at (a) ReD = 100 (λc,i = 0.02u∞/D), (b) ReD = 250
(λc,i = 0.02u∞/D), (c) ReD = 350 (λc,i = 0.42u∞/D), (d) ReD = 500 (λc,i = 0.42u∞/D). for
all cases, M∞ = 0.1.

Flow visualizations of representative simulations are shown in figure 6, through
iso-surfaces of the swirling strength (λc,i), which is the imaginary part of the complex
conjugate eigenvalue pair of the velocity gradient tensor, and which allows us to
effectively educe flow zones dominated by swirl (Zhou et al. 1999). As expected,
the simulations performed at ReD = 100 yield stationary, axisymmetric solutions, even
though the simulations are started impulsively with free-stream conditions, and random
perturbations are initially added to break any possible symmetry. In that case a
closed recirculation bubble forms, and no vortex is observed to detach from the
sphere surface (figure 6a). At ReD = 250 the double-thread wake pattern is observed
(figure 6b), whose symmetry plane does not rotate significantly during the course
of the simulations. Hairpin-shaped vortices are found to be shed at the two higher
Reynolds numbers, which retain planar symmetry at ReD = 350 (figure 6c), and have
more erratic orientation at ReD = 500 (figure 6d).

Accurate estimates of the drag coefficient and of the wake length for axisymmetric
flow around a sphere were reported by Fornberg (1988), which are compared with
the present simulations in table 1. At the lower Mach number the drag coefficient is
predicted to within 0.3 % accuracy, as is also the wake length. Weak effects of flow
compressibility are observed at higher M∞. This favourable comparison supports the
predictive capability of the numerical algorithm for complex three-dimensional flows.
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FIGURE 7. (Colour online) Spectra of drag coefficient for flow around a sphere at ReD = 300
(squares), ReD = 350 (diamonds), ReD = 500 (circles), M∞ = 0.1 (solid line), M∞ = 0.2
(dashed line), M∞ = 0.3 (dot-dashed line).

M∞ cD Lw/R

Fornberg (1988) Inc. 1.084 2.744
Present 0.1 1.082 2.688
Present 0.2 1.093 2.712
Present 0.3 1.114 2.756

TABLE 1. Computed drag coefficient and wake length for flow around a sphere at
ReD = 100.

The dynamics of the unsteady flow cases can be conveniently characterized by
analysing the spectra of the drag coefficient, cD = 2Fx/(ρ∞u2

∞πR2), which are shown
in figure 7 as a function of the Strouhal number based on the sphere diameter.
Consistent with the findings of other authors (Mittal 1999a; Tomboulides & Orszag
2000), we find that in the low-ReD end of the unsteady regime one dominant mode
is present, associated with the shedding frequency of the hairpins, at StD ≈ 0.13. At
higher ReD one additional mode is observed at lower frequency (StD ≈ 0.04), which is
related to a modulating effect on the vortex shedding, presumably associated with the
rotation frequency of the shedding plane.

The computed mean drag coefficient and the characteristic Strouhal numbers at the
various ReD considered here are compared with data from other authors in figure 8.
The drag coefficient is consistent with previous incompressible data to within a few
per cent, supporting the validity of the numerical algorithm and the minor influence
of compressibility in a three-dimensional flow environment. The predicted Strouhal
numbers associated with the shedding and the low-frequency modes are also consistent
with other studies, even though the scatter is more significant.
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FIGURE 8. (Colour online) (a) Drag coefficient and (b) Strouhal number for flow around a
sphere. Solid symbols denote our simulations at M∞ = 0.1 (square), M∞ = 0.2 (diamond),
M∞ = 0.3 (circle). Open symbols denote data from other authors: 1, Fornberg (1988); ∇,
Johnson & Patel (1999); �, Mittal (1999b); ◦, Tomboulides & Orszag (2000). The solid line in
(a) denotes the empirical fit cD = 0.28+ 6/Re1/2

D + 21/ReD (Wu & Faeth 1993).

4. Flow around a rolling wheel
The computational set-up used for the study is sketched in figure 9. The total

length of the computational domain in the streamwise direction is Lx1 + Lx2 = 30R,
and the axis of the wheel (which is assumed to be the origin of the reference
system) is placed at Lx1 = 10R from the inflow. The length of the domain in the
spanwise and wall-normal directions is Lz = 10R, Ly = 10R, respectively. Preliminary
studies have shown that the selected domain size is sufficient to minimize numerical
blockage effects. To accurately mimic the case of a wheel rolling on the wall without
slip, the wheel is made to rotate with angular velocity Ω = u∞/R (where R is
the wheel radius) in the anticlockwise direction, and a translation velocity equal to
the free-stream value is imparted to the bottom wall. As shown by Stewart et al.
(2010a,b), this arrangement prevents the formation of a boundary layer upstream of
the wheel, which is a major difficulty in experimental studies, in which the boundary
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FIGURE 9. (Colour online) Sketch of computational arrangement for the study of flow
around a rolling wheel.

layer issuing from the wind tunnel walls must be suitably removed through bleeding
holes (Fackrell & Harvey 1975). The aspect ratio of the cylinder is taken to be
W/D = 0.4, which is typical of racing car tyres (Fackrell & Harvey 1973). The mesh
is stretched in all three coordinate directions, and the mesh spacing around the wheel
is 1x ≈1y ≈1z ≈ R/60, which, as shown later, is sufficient to resolve the boundary
layer enveloping the wheel. The total number of grid points in the three coordinate
directions is 768× 256× 384.

Given the results of the simulations around a sphere, which suggest a very weak
effect of compressibility in three-dimensional flow, the simulations were carried out at
M∞ = 0.3, to keep the computational effort within reasonable bounds. The simulations
were advanced over time intervals of 102–103D/u∞, to allow for initial transients to
be washed away, and to collect a sufficiently long time record to have meaningful
flow statistics. Several values of Reynolds number based on the wheel diameter were
considered, namely ReD = 100, 200, 300, 400, 500, 1000, to establish its influence on
the flow dynamics.

An additional simulation was performed at M∞ = 0.1, ReD = 1000, to quantify
possible effects of flow compressibility, and another one at M∞ = 0.3, ReD = 1000, on
a grid with doubled resolution in all coordinate directions, to verify grid convergence
in the most critical flow case. However, owing to the huge computational cost,
this simulation was only continued until the mean flow properties were reasonably
converged, and unless explicitly stated, the results reported hereafter refer to the
baseline grid.

4.1. Instantaneous fields and spectral analysis
The qualitative properties of the flow fields can be understood from inspection of the
instantaneous flow visualizations shown in figures 10–11. The vortex pattern in the
wheel wake is rendered through iso-surfaces of the swirling strength, as previously
done for the flow around a sphere. For ReD 6 300 the flow is characterized by the
presence of a boundary layer around the body, which detaches from its upper edge
to form an arch-shaped vortex. Two small longitudinal vortices are observed to depart
from both sides of the wheel near the wall, which resemble the downstream legs of
the horseshoe vortex that typically develops at the base of obstacles in developing
boundary layers (Acarlar & Smith 1986). One should however note that in this case
there is no boundary layer in the upstream flow, and the near-wall vorticity must be
fed by the vorticity that forms around the wheel and is conveyed to the contact region

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

27
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.273


510 S. Pirozzoli, P. Orlandi and M. Bernardini

y

xz

y

xz

y

xz

y

xz

y

xz

(a) (b)

(c) (d )

(e) ( f )

y

xz

FIGURE 10. (Colour online) Vortical structures (educed through swirling strength iso-
surfaces, λc,i = 0.2u∞/D) in the near wake of a rolling wheel at (a) ReD = 100, (b) ReD = 200,
(c) ReD = 300, (d) ReD = 400, (e) ReD = 500, (f ) ReD = 1000. Axonometric view.

by the wheel rotation. Once in the contact region, the vorticity is diverted toward the
exterior of the wheel, becoming tilted in the streamwise direction.

It is noteworthy that the low-Reynolds-number simulations (ReD 6 400) do not
exhibit any shedding of eddies in the wheel wake. Shedding of hairpin-shaped vortex
tubes is observed only for ReD & 400. In this case hairpin vortices are shed in a very
ordered fashion at ReD = 400, in which case the flow retains perfect symmetry about
the middle x–y plane. The shedding of hairpins at ReD = 500 is found to be more
chaotic, and planar symmetry is lost. The top view of figure 11 apparently supports
the occurrence of a sinuous mode of oscillation in the wake, associated with a change
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FIGURE 11. (Colour online) The same as figure 10, top view.

in the shedding direction of the hairpins from time to time. The flow becomes even
more disordered at ReD = 1000, even though remnants of hairpin vortices are clearly
visible. In this case the presence of sinuous or varicose oscillations of the wake is
harder to discern, and probably the two modes coexist. If so, the spanwise excursion
of the shed eddies is more limited, compared to the ReD = 500 case. It is also worth
noticing that, as the Reynolds number increases, the streamwise distance between
consecutive hairpins is reduced, which is consistent with the observed increase of the
typical Strouhal numbers with ReD in flows past cylinders and spheres. A similar route
of transition to a chaotic state was also recently observed by Rao et al. (2012) in the
flow past a rolling sphere.

The mechanisms of vorticity generation and transport can be clarified considering
the iso-surfaces of the individual vorticity components, shown in figures 12–14. As
expected, spanwise vorticity (given in figure 12) in the close proximity of the wheel
surface is clockwise (i.e. positive), given the contrast between the upstream motion of
the tip of the wheel and the incoming flow. A layer of positive spanwise vorticity is
observed on both sides of the wheel and behind it near the wall, as a consequence
of the acceleration imposed by the bottom wall on the retarded wake flow. When
the Reynolds number becomes sufficiently high (figure 12d), part of the positive
vorticity layer detaches from the contact zone, yielding downstream-leaning tongues.
At ReD = 1000 the positive and negative vorticity layers in the wheel wake interact,
giving rise to discrete ωz patches. In particular, the heads of the hairpin vortices are
clearly visible in the upper part of figure 12(f ). Streamwise vorticity (figure 13) is
mainly produced at the upstream bottom and top edges of the wheel, because of
the strong wall-normal acceleration of the fluid particles (mainly associated with the
∂v/∂z derivative). Quasi-streamwise concentrations in the wheel wake are found to be
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FIGURE 12. (Colour online) Iso-surfaces of spanwise vorticity, ωz = ±0.2u∞/D (positive in
light shades, negative in dark shades), in the near wake of a rolling wheel at (a) ReD = 100,
(b) ReD = 200, (c) ReD = 300, (d) ReD = 400, (e) ReD = 500, (f ) ReD = 1000.

formed because of the roll-up of the streamwise vorticity near the contact point with
the ground, whose length increases with ReD. Streamwise vorticity tubes of different
sign are seen to become intertwined in the upper part of the wake (figure 13d–f ), and
contribute to the legs of the hairpin vortices of figure 10. The wall-normal vorticity
(figure 14) is mainly produced from the middle upstream edge of the wheel, where the
fluid particles undergo strong acceleration in the streamwise direction, associated with
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FIGURE 13. (Colour online) Iso-surfaces of streamwise vorticity, ωx = ±0.2u∞/D (positive
in light shades, negative in dark shades), in the near wake of a rolling wheel at (a) ReD = 100,
(b) ReD = 200, (c) ReD = 300, (d) ReD = 400, (e) ReD = 500, (f ) ReD = 1000.

the ∂w/∂x derivative (but ∂u/∂z is also important). The wall-normal vorticity tends
to concentrate into tube-like vortices departing from the contact region, and into large
tube-like structures that detach from the upper part of the wheel, giving rise to the
necks of the hairpin vortices.

The results can be quantitatively interpreted by monitoring the force coefficient
experienced by the rolling wheel. Note that in this case, consistent with engineering
practice, the reference area for the definition of cD, cL, cZ is the cross-stream section
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FIGURE 14. (Colour online) Iso-surfaces of wall-normal vorticity, ωy = ±0.2u∞/D (positive
in light shades, negative in dark shades), in the near wake of a rolling wheel at (a) ReD = 100,
(b) ReD = 200, (c) ReD = 300, (d) ReD = 400, (e) ReD = 500, (f ) ReD = 1000.

of the body, S = W × D. The time history of the force coefficients is displayed
in figure 15, over a short time interval. Steady (or nearly steady) flow is observed
for ReD 6 300, whereas oscillatory behaviour is found at higher ReD, with sizeable
oscillations in the side force starting at ReD = 500. The mean and root-mean-square
(r.m.s.) values of the force coefficients are given in table 2, and their spectral densities
are plotted in figure 16, as a function of the Strouhal number. Consistent with the
case of the flow around a sphere, the mean drag coefficient is found to steadily
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FIGURE 15. (Colour online) Time history of force coefficients for ReD = 100 (dot-dot-
dashed line), ReD = 200 (long dashes), ReD = 300 (dotted line), ReD = 400 (dashed line),
ReD = 500 (dot-dashed line), ReD = 1000 (solid line). (a) Drag, (b) lift, (c) side force.

decrease in the Reynolds number range considered here. In an inviscid framework,
the occurrence of anticlockwise rotation of the wheel would cause a down-force, on
because of the Magnus effect. In contrast, the lift coefficient is found to be positive
at all Reynolds numbers. The same effect was observed by Stewart et al. (2010a,b)
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ReD M∞ cD cD,p cD,v cL cL,p cL,v cDrms cLrms cZ rms

100 0.3 2.35 1.76 0.59 1.44 1.62 −0.18 7.16× 10−5 1.25× 10−4 1.26× 10−6

200 0.3 1.68 1.41 0.27 1.19 1.34 −0.15 9.08× 10−5 3.37× 10−4 3.10× 10−6

300 0.3 1.45 1.30 0.15 1.03 1.16 −0.13 2.19× 10−4 3.79× 10−4 3.51× 10−6

400 0.3 1.32 1.23 0.09 0.94 1.07 −0.13 2.55× 10−3 3.36× 10−3 1.14× 10−5

500 0.3 1.24 1.19 0.05 0.91 1.03 −0.12 6.96× 10−3 9.86× 10−3 1.55× 10−2

1000 0.3 1.01 0.99 0.02 1.03 1.09 −0.06 1.07× 10−2 1.59× 10−2 2.39× 10−2

1000 0.1 1.00 0.99 0.01 1.05 1.10 −0.05 9.83× 10−3 1.72× 10−2 2.25× 10−2

1000∗ 0.3 1.05 1.00 0.01 1.01 1.07 — — — —

TABLE 2. Force coefficients for flow around a rolling wheel. The subscripts p and v
denote, respectively, the pressure and viscous contributions to the aerodynamic actions. All
simulations are performed on a 768 × 256 × 384 mesh, except the one denoted with an
asterisk, which was performed on a 1536× 512× 768 mesh.

for rolling two-dimensional cylinders and rolling spheres, and related by those authors
to a strong over-pressure localized in the upstream part of the contact zone between
the wheel and the ground, to which we will return when discussing figure 22. The
lift force coefficient is observed to decrease up to ReD = 500, and it increases again
at ReD = 1000. As will be shown later, this effect is linked to substantial changes in
the flow topology. The side force coefficient (having zero mean for obvious symmetry
reasons) has non-zero r.m.s. value for ReD & 500, reflecting the loss of symmetry
observed in the flow visualizations.

The computed mean force coefficients for the simulation at ReD = 1000, M∞ = 0.1,
shown in table 2, suggest that for the present flow conditions compressibility effects
play a minor role, at least for M∞ 6 0.3. This is to be contrasted with the strong
effect noticed for the corresponding two-dimensional simulations presented in figure 5.
The force coefficients for the refined ReD = 1000 simulation, also listed in the table,
indicate minor grid sensitivity for the most challenging flow case. The statistics of the
force coefficient fluctuations are not reported for this computation, since they were not
fully converged over the time interval covered.

Further information on the nature of the aerodynamic actions can be gained by
isolating the contributions of the pressure forces (indicated with the subscript p) and
the viscous forces (denoted with the subscript v). For that purpose we add up the
equivalent immersed boundary forces associated with the pressure and viscous terms
in the Navier–Stokes equations, respectively. The results of this analysis are also listed
in table 2. Regarding the drag coefficient, both pressure and viscous forces decrease
as ReD increases, but the latter at a much faster rate, becoming almost negligible
at ReD = 1000. A similar trend is found for the lift coefficient. The table confirms
that pressure forces are responsible for the positive lift, whereas viscous forces are
apparently responsible for a (small) down-force.

The spectra of the force coefficients, shown in figure 16, highlight several physical
effects. At low Reynolds number (ReD . 300) the flow is very nearly stationary,
as can be judged by the very small value of all r.m.s. force coefficients. However,
the corresponding spectra (e.g. at ReD = 300), suggest the presence of (very-small-
amplitude) tones at frequency multiples of about St = 0.3. This frequency is not
related to any particular shedding mechanism, but it is linked to the rotation frequency
of the wheel, which is St rot = 1/π ≈ 0.32. A wider band of energetically active
frequencies appear in the spectrum at higher Reynolds numbers. At ReD = 400
the drag and lift spectra are characterized by a strong peak at St ≈ 0.21 (multiple
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FIGURE 16. (Colour online) (a) Spectra of drag coefficient, (b) lift coefficient and (c) side-
force coefficient for flow around a rolling wheel at α = 1. ReD = 300 (dotted line), ReD = 400
(dashed line), ReD = 500 (dot-dashed line), ReD = 1000 (solid line).

frequencies are also apparent in the drag spectrum), and a smaller peak at St ≈ 0.1.
This value is apparently linked to the shedding frequency of the eddies in figure 10(d).
Whenever an eddy is shed in the wheel wake, conservation of the vortex impulse
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FIGURE 17. (Colour online) Vortical structures (educed through swirling strength iso-
surfaces, λc,i = 0.2u∞/D) in the near wake of a rolling wheel at ReD = 400 at various instants
over one cycle of the fundamental frequency (corresponding to the bullets in figure 19a). Top
view.

implies that a force is exerted on the wheel in the direction opposite to its
motion (Jeon & Gharib 2004). To clarify this assertion, in figure 17 we show a
sequence of flow snapshots at ReD = 400, at equally spaced time instants, which are
indicated with bullets in the time histories of the drag coefficient in figure 19(a). In
figure 17(a) the primary shear layer is clearly observed on top of the wheel, and it
is rolling up to give rise to a hairpin vortex. Another hairpin vortex, still connected
to the shear layer through its quasi-streamwise legs, is also observed, and another one
completely detached further downstream. The largest increase in the drag coefficient
takes place in the time interval between figures 17(a) and 17(b), during which the
new hairpin first detaches from the parent shear layer. As time progresses the hairpin
proceeds downstream, until the same configuration as in figure 17(a) is replicated
(in figure 17h), after which the cycle repeats itself, indicating nearly perfect flow
periodicity. Focusing on the evolution of individual hairpins in the snapshots, one will
also realize that the time interval between the formation of the hairpins and their
final pinch-off from the wheel (taking place between figures 17c and 17d) requires
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FIGURE 18. (Colour online) Vortical structures (educed through swirling strength iso-
surfaces, λc,i = 0.2u∞/D) in the near wake of a rolling wheel at ReD = 500 at various instants
over one cycle of the fundamental frequency (corresponding to the bullets in figure 19b). Top
view.

two periods of the fundamental frequency, which makes up for the weak peak in the
spectra of the force coefficients at St ≈ 0.1.

At ReD = 500 a peak in the force coefficient spectra associated with the shedding
of eddies is still observed around St ≈ 0.2, in the form of a pure tone in the side
force. The lift and drag signals now also exhibit substantial low-frequency content,
with a weakly dominant peak at St ≈ 0.1. These observations can be interpreted
by looking at the flow snapshots of figure 18, with the aid of the drag coefficient
history in figure 19(b). Unlike in the ReD = 400 case, hairpin vortices are observed
to be shed off the wheel quasi-periodically at a non-zero angle with respect to the
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FIGURE 19. Time evolution of drag coefficient for (a) ReD = 400 and (b) ReD = 500. The
bullets correspond to the flow snapshots shown in figures 17 and 18.

streamwise direction, yielding a tonal contribution to the side force. Focusing on the
hairpin forming from the primary shear layer in figure 18(a), one will notice that
its detachment is not perfectly symmetric with respect to the x–y plane, and as it
detaches and proceeds downstream, it tends to bend in the positive-z direction. The
opposite happens to the next hairpin (forming around figure 18d), which bends in the
negative-z direction. An alternating sinuous pattern of hairpin vortices results, which
very nearly repeats itself over the time interval covered in figure 18, and corresponding
to one period of the low-frequency oscillation (St ≈ 0.1). During this interval two
hairpins are shed, which explains the presence of two primary peaks in the spectra
of the aerodynamic coefficients. The scenario further changes at ReD = 1000. At these
conditions, a clear peak at St ≈ 0.2 is only observed for the lift signal, and the
spectrum in the low-frequency end is nearly flat, reflecting the onset of dynamics with
very long times scales, barely resolvable with the available flow record. The spectrum
for St & 0.2 is found to be dense, with the formation of a nearly power-law region,
which might hint at transition to a turbulent state within the wake.

4.2. Mean fields and flow topology
The mean structure of the wheel wake is shown in figure 20, where the same type
of representation is used for the time-average fields as for the instantaneous fields of
figure 10 (except for a closer viewpoint). As expected, the mean and instantaneous
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FIGURE 20. (Colour online) Time-averaged vortical structures (educed through swirling
strength iso-surfaces, λc,i = 0.2u∞/D) in the near wake of a rolling wheel at (a) ReD = 100,
(b) ReD = 200, (c) ReD = 300, (d) ReD = 400, (e) ReD = 500, (f ) ReD = 1000. Axonometric
view of the mean field.

flow visualizations do not differ visibly for ReD 6 300, the flow being very nearly
stationary. At ReD = 400, while no change is observed around the contact line and
in the lower part of the wake, differences are found in the upper part of the wake,
where the shedding of eddies in the instantaneous fields translates in mean flow
terms into the onset of two quasi-streamwise vortex tongues. At ReD = 500 similar
considerations apply, but the streamwise tongues appear to be less intense, presumably

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

27
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.273


522 S. Pirozzoli, P. Orlandi and M. Bernardini

because of the averaging effect caused by the wavy spanwise motion of the wake. As
the Reynolds number becomes higher (ReD = 1000) the average structure of the wake
changes, and three pairs of counter-rotating quasi-streamwise vortices form, one pair
being the trace of the upper-wake shedding, another pair associated with the near-wall
vortices (significantly intensified compared to the lower-ReD cases), and one further
pair detaching from the middle of the wheel.

In figure 21 we show the profiles of the mean tangential velocity (uθ ) in the
vicinity of the wheel surface in its mid-plane, in the θ = 0◦, 270◦, 180◦, directions. The
velocity profiles in the 0◦ direction (corresponding to the wheel’s front point) show the
typical behaviour of an attached laminar boundary layer, with flow pointing towards
the wheel/ground contact point. As expected, the thickness of the layer decreases as
ReD becomes higher. At the upper edge of the wheel (θ = 270◦) the thickness of the
boundary layer is much larger, and the tangential velocity exhibits a sign inversion,
which is a symptom of flow separation. At this position, because of the no-slip
condition the fluid particles adjacent to the body surface must move anticlockwise,
following the rotation of the wheel, whereas particles further away from the surface
must move in the opposite direction, following the main stream. Although the flow is
fully separated in the aft part of the wheel, boundary layer behaviour is still observed
at θ = 180◦ (figure 21c). It is important to note that at each of the sections under
scrutiny the boundary layer thickness is larger that 0.08R (approximately), which
implies that at least five points are placed within the boundary layer, supporting the
accuracy of the flow representation.

In figure 22 we show the circumferential distribution of the mean pressure
coefficient in the wheel symmetry plane, as a function of the θ angle, counted in the
anticlockwise direction starting from the wheel’s front point, as sketched in figure 9.
Regardless of the Reynolds number, the pressure coefficient in the foremost part of
the wheel is close to the unit value predicted from the inviscid theory, and lack of
complete recovery is observed in the aft part, which is the cause of the large form
drag. Values much larger than unity are observed near the contact point of the wheel
with the ground (θ = 90◦). Upstream of the contact point the pressure coefficient
assumes very large values, yielding a positive contribution to the overall lift, which
is only partly compensated by the strong flow expansion occurring downstream of the
contact point (θ & 90◦). This behaviour can be interpreted as the consequence of the
severe thinning that the boundary layer developing on the front part of the wheel must
undergo while it is convected towards the contact point. As can be expected on the
basis of figure 21(a), this effect is stronger the thicker is the upstream boundary layer
(i.e. the lower is ReD), and as a matter of fact the compression and the expansion
taking place near the contact point become weaker as ReD becomes higher.

The topology of the mean flow is studied next through inspection of two-
dimensional slices, which are shown in figures 23–28. In the figures we plot
the pseudo-streamtraces associated with the plane-restricted velocity field, whose
interpretation requires some attention (Tobak & Peake 1982; Délery 2001). The
pseudo-streamtraces in the x–y symmetry plane (i.e. the streamtraces formed with
the u–v velocity vectors), given in figure 23, highlight the presence of a primary,
two-dimensional-like separation at θ ≈ 285◦, on the right upstream side of the wheel
upper edge. As noted by Fackrell & Harvey (1975), the definition of separation from
a rotating object is a sensitive topic, as it cannot be directly related to the formation
of a half-saddle point on its surface, as is the case of separation from a stationary
object (Tobak & Peake 1982). In the present case, separation from the body surface
can be linked to the presence of a saddle point within the flow, just outside the
boundary layer, and which is indicated with S1 in figure 25(a). Notably, the main
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FIGURE 21. (Colour online) Time-averaged azimuthal velocity profiles near the wheel
mid-plane (refer to figure 9), as a function of the wall distance, taken at (a) θ = 0◦,
(b) θ = 270◦, (c) θ = 180◦. Data are shown for ReD = 100 (dot-dot-dashed line), ReD = 200
(long dashes), ReD = 300 (dotted line), ReD = 400 (dashed line), ReD = 500 (dot-dashed line),
ReD = 1000 (solid line).

separation point is apparently unaffected by the variation of ReD and, even in the case
when the boundary layer on the wheel surface is turbulent, separation is still observed
at θ ≈ 280◦ (Fackrell & Harvey 1975).
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FIGURE 22. (Colour online) Time-averaged pressure coefficient at the wheel mid-plane as
a function of θ (as defined in figure 9), for ReD = 100 (dot-dot-dashed line), ReD = 200
(long dashes), ReD = 300 (dotted line), ReD = 400 (dashed line), ReD = 500 (dot-dashed line),
ReD = 1000 (solid line). The inset figure is a magnified view of the contact region.

The geometry of the streamtraces in the wheel wake for ReD . 300 is characterized
by the presence of a main separating streamline D1 issuing from the primary saddle
point S1, and a weak secondary focus near the rear contact point with the ground (F1),
with an associated saddle point (S2), as shown in the magnified view of figure 25(b).
A three-dimensional reattachment line (R1) characterized by divergence of the pseudo-
streamlines, departs from F1, which can be regarded as the downstream boundary
of the separated flow region. As ReD is increased the wake becomes longer, until
a first topological change takes place at ReD = 400, in which case two additional
critical points appear. Specifically, a focus (F2) with outward spiralling motion is
found, which can be physically traced back to the vortex shedding activity, and which
is isolated from the outer flow by an additional saddle point, which we mark as S3.
At higher Reynolds numbers (ReD = 1000) a second topological change is observed,
with the formation of a node of attachment type in the near wake (N), characterized
by divergence of the pseudo-streamtraces, and of a further saddle point, S4. This
change implies the splitting of the separated flow region into two parts, divided by
a secondary dividing streamline (D2), which roughly coincides with the y = 0 line.
Three-dimensional reattachment is observed at the downstream end of the lower (R1)
and the upper (R2) parts of the separated flow region. Regarding the focus associated
with the main flow separation (F2), it is found to become smaller and to get closer to
the upper edge of the wheel. In addition to these major topological changes, significant
shortening of the separated flow region is observed, compared to the lower-Re cases,
which is likely to be the cause for the decreased value of the pressure drag.

The streamline pattern in the symmetry plane is also reported for the ReD = 1000
case at M∞ = 0.1 and at M∞ = 0.3 on the refined mesh in figure 24. Apparently, the
flow field is not significantly affected by compressibility effects, or contaminated by
insufficient mesh resolution. Therefore, we believe that observed abrupt change in the
wake topology is not a result of computational artifacts. It is also noteworthy that
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FIGURE 23. (Colour online) Time-averaged streamtraces in the symmetry plane of a rolling
wheel at (a) ReD = 100, (b) ReD = 200, (c) ReD = 300, (d) ReD = 400, (e) ReD = 500, (f )
ReD = 1000.
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FIGURE 24. (Colour online) Time-averaged streamtraces in the symmetry plane of a rolling
wheel at ReD = 1000 at (a) M∞ = 0.1 on the baseline mesh, and (b) M∞ = 0.3 on the refined
mesh. Compare with figure 23(f ).

a very similar flow pattern to the ReD = 1000 case was also observed by means of
PIV visualizations in the x–y plane in experiments at much higher Reynolds numbers
(Issakhanian et al. 2010).

When viewed in the x–z plane through the centre of the wheel (figure 26), the
pseudo-streamline pattern resembles that found in two-dimensional flow around a
rectangle, with a weak separation past the leading edge of the wheel, for ReD < 1000,
and flow separation in its wake, with nearly closed streamlines, which are indicative
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FIGURE 25. (Colour online) Time-averaged streamtraces in the symmetry plane of a rolling
wheel at ReD = 200. Magnified views are shown (a) in the vicinity of the forebody separation
point and (b) in the aft part of the contact region.
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FIGURE 26. (Colour online) Time-averaged streamtraces in the y = 0 plane of a rolling
wheel at (a) ReD = 100, (b) ReD = 200, (c) ReD = 300, (d) ReD = 400, (e) ReD = 500, (f )
ReD = 1000.

of quasi-two-dimensional flow. At ReD = 1000 the same pattern as for the other
cases is observed in the lower part of the recirculation bubble (figure 27a), with the
dominance of two counter-rotating eddies. In the upper part of the recirculation bubble
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FIGURE 27. (Colour online) Time-averaged streamtraces in the wake of a rolling wheel at
ReD = 1000: sections at (a) y=−0.5, (b) y= 0.5.

(figure 27b), two small foci of separation type (Tobak & Peake 1982) are found, with
an associated pair of saddle points within the flow.

The streamwise velocity fields (with superposed instantaneous streamtraces) in a
cross-stream plane in the wheel wake (figure 28) show that most of the velocity deficit
at low ReD is concentrated in the upper part of the wheel, and the velocity contours
have a distinctive inverse teardrop shape. As ReD increases, the velocity deficit in the
upper part of the wake is recovered within a shorter distance, owing to the chaotic
shedding of hairpin vortices. On the other hand, a stronger velocity deficit is observed
at the two sides of the wheel near the ground. As can be argued from inspection of the
z–y pseudo-streamtraces, this phenomenon is strictly related to the intensification of
the two near-wall quasi-streamwise vortices, which tend to bring low-momentum fluid
from the wake interior to the periphery of the wheel. The same inverse-T shape of the
velocity deficit found in figure 28(f ) was also observed via PIV by Saddington et al.
(2007).

Looking more in detail at the streamtrace pattern at ReD = 1000, it is possible to
compare with previous studies that addressed the structure of the trailing vortices past
a rolling wheel, for which various models were proposed (Cogotti 1983; Saddington
et al. 2007). Our observations support a pattern consisting of (at least) three pairs of
counter-rotating vortices (also recall figure 20 for a three-dimensional representation),
which we explain as follows. The edge vortices, which depart from the apex of the
wheel, are associated with the roll-up of the primary separating shear layer. Their
sense of rotation can be predicted by noticing that a stagnation point is present on
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FIGURE 28. Time-averaged streamtraces and streamwise velocity contours in the cross-
stream plane (x/R = 2) in the near wake of a rolling wheel at (a) ReD = 100, (b) ReD = 200,
(c) ReD = 300, (d) ReD = 400, (e) ReD = 500, (f ) ReD = 1000. Dark shades correspond to low
speed, and light shades to high speed.

the front part of the wheel, as shown in figure 25(a), where the pressure is higher
than around the wheel. As a consequence, the edge vortices are such as to induce an
up-lift in between. In contrast, the ground vortices are formed because of the large
pressure unbalance between the front and the aft part of the contact zone, and their
sense of rotation is analogous to the free vortex system behind a lifting wing. The
increased strength of the ground vortices with ReD would then provide an explanation
for the previously noticed tendency for the lift coefficient to rise up at ReD = 1000. An
additional pair of vortices is observed at ReD = 1000, detaching approximately from
the middle of the tyre. This vortex pair is apparently the result of the roll-up of the
dividing surface that separates the lower from the upper part of the wake, and in
previous experimental studies of flow around tyres it was attributed to the presence
of a hub (Cogotti 1983). Extrapolating the present low-Re results to higher Re, one
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would then expect that only two vortex pairs should be present in the near wake
of a wheel, namely the ground and the mid vortex, whereas the edge vortex would
become comparatively weaker. In that case, the same scenario would be recovered as
in experiments (Saddington et al. 2007; Issakhanian et al. 2010) at ReD ≈ 5× 105.

Although two-dimensional sections of the flow field can give a rough idea of the
flow behaviour, its complexity can be guessed (even though the interpretation is not
easy from printed images) from the analysis of the three-dimensional streamtraces
depicted in figure 29. At ReD = 500, the streamtraces coming from the main stream
are mostly diverted either on top or on the sides of the wheel. The streamtraces issued
from points in the near wake tend to linger in the lower rear part of the wheel,
whence they are lifted upward, and either proceed downstream in the upper part of the
shear layer, or are diverted to the wheel sides, undergoing a complex rotatory motion,
and eventually being absorbed again in the separated flow region, or proceeding
downstream. A similar scenario is also observed at ReD = 1000. However, in this case,
some of the streamtraces issued from the base flow region move toward the ground,
and directly proceed downstream. Some others are lifted upwards, becoming entrapped
in the two vortices that dominate the upper recirculation region, and whose traces were
seen in figure 27(c).

Even though the flow is not strictly turbulent, it is also instructive to look at
the statistics of the velocity fluctuations which are shown in figure 30, limited
to cases where significant unsteadiness is observed (ReD > 400). Comparing with
figure 23(a–c), one will see that most turbulent activity takes place right past the
saddle point (S3) which terminates the recirculation zone, and which moves closer to
the wheel as ReD increases. At the highest Reynolds number, significant turbulent
activity also takes place past the saddle point S4. Consistent with the universal
behaviour of turbulent shear flows, the shear stress is negative in the primary
separating shear layer. At ReD = 1000 the turbulent shear stress also attains positive
values in the region between the lower and upper recirculation bubble, where the
flow has reversed direction, i.e. pointing toward the wheel. The similarity between the
pattern shown in figure 23(c) and the experiments of Issakhanian et al. (2010) (see
their figure 11) in this respect is striking.

5. Conclusions
We have studied the flow around a rolling wheel at low Reynolds number by means

of direct numerical simulations, whereby the geometric complexity of the problem
is handled through the immersed boundary method. Preliminary studies have shown
the suitability of the numerical algorithm to predict the flow topology and the force
coefficients for canonical two- and three-dimensional flows, including the flow around
a sphere, for which large amount of information is available.

In the Reynolds number range considered here the flow around the rolling wheel
exhibits the formation of a strong shear layer at the upper edge of the wheel, caused
by the detachment of the boundary layer, and which becomes unstable for ReD & 400,
yielding a characteristic pattern of hairpin-shaped vortices, which dominate the wake
in the higher range of ReD considered here. From a dynamic standpoint the main
feature of the flow is the presence of a strong over-pressure in the fore part of the
wheel near the ground, which is caused by the wall impingement of the boundary
layer dragged by the wheel’s front surface. A negative pressure coefficient is observed
right behind the contact point with the ground, which does not compensate the strong
fore compression. This observation appears to hold true in the range of low Mach
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FIGURE 29. (Colour online) Time-averaged three-dimensional streamlines in the wheel wake
at (a) ReD = 500, (b) ReD = 1000.

numbers (M∞ 6 0.3) and low Reynolds numbers (ReD 6 1000) considered here, and
supports experimental studies (Fackrell & Harvey 1975) claiming that a rolling wheel
produces positive lift, whereas other studies supported down-lift (Morelli 1969). Of
course, given the wide disparity of Reynolds numbers (which are well in excess
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FIGURE 30. Contours of kinetic energy (left column) and Reynolds shear stress (right
column) in the near wake of a rolling wheel at (a) ReD = 400, (b) ReD = 500, (c)
ReD = 1000. Eighteen contour levels are shown, with a colour scale from white to black,
0 6 k/u2

∞ 6 0.063, −0.024 6−τxy/ρ∞u2
∞ 6 0.024.

of ReD ∼ 105 in experiments and real applications), the computed drag and lift
coefficients (both of order unity here) are substantially larger than those measured
in experiments. For instance, Fackrell & Harvey (1975) report cL = 0.44, cD = 0.58
for a real tyre in ground contact, with aspect ratio similar to that considered here.
Nevertheless, we believe that this study can be instructive also for practical purposes,
since many of the qualitative properties observed in high-ReD experiments begin to
appear at the higher Re considered here. Indeed, the structure of the flow field of the
ReD = 1000 simulation shows hints of turbulent behaviour in the wheel wake, which is
reflected in the power spectra of the force coefficients, and it is not very different from
the fields visualized in the experiments of Saddington et al. (2007) and Issakhanian
et al. (2010). Specifically, a concentrated spanwise vortex is observed in the time-
average fields right past the apex of the wheel, which is the result of the collapse of
the top shear layer, and a spanwise vortex is observed near the aft contact point, which
was also observed by Issakhanian et al. (2010). Particular significance is assumed
by the wake structure in cross-stream planes, because of an existing controversy
about the sign and direction of the quasi-streamwise vortices that are shed past the
wheel. In this respect we find confirmation of recent experimental results (Issakhanian
et al. 2010), which indicate two pairs of counter-rotating vortices. However, probably
because of the limited Reynolds number that we are able to simulate, we also observe
an additional vortex pair near the edge of the wheel. To conclude, we believe that
DNS applied to the study of a rolling wheel, besides giving insight into the rich
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physics of a computationally complex problem, could potentially lend some insight
into practical problems. This DNS strongly supports the dynamical importance of
complex vortex dynamics phenomena in the flow field, and suggests the importance
of using unsteady flow simulations for its correct prediction, for which steady-type
modelling approaches such as RANS are not suitable. Further efforts will be directed
to establishing the validity of our Reynolds number extrapolation, and possibly to
including simplified subgrid-scale LES turbulence models to access Reynolds numbers
of direct practical relevance.
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separation. Annu. Rev. Fluid Mech. 33, 129–154.
FACKRELL, J. E. & HARVEY, J. K. 1973 The flow field and pressure distribution of an isolated

road wheel. In Advances in Road Vehicle Aerodynamics (ed. H. S. Stevens), pp. 155–165.
BHRA Fluid Engineering.

FACKRELL, J. E. & HARVEY, J. K. 1975 The aerodynamics of an isolated road wheel. In Second
AIAA Symposium on Aerodynamics of Sports and Competition Automobiles (ed. B. Pershing),
pp. 119–125. Western Periodicals Co.

FADLUN, E. A., VERZICCO, R., ORLANDI, P. & MOHD-YUSOF, J. 2000 Combined immersed-
boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput.
Phys. 161, 35–60.

FORNBERG, B. 1988 Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid Mech.
190, 471–489.

ISSAKHANIAN, E., ELKINS, C. J., LO, K. P. & EATON, J. K. 2010 An experimental study of the
flow around a Formula 1 racing car tire. Trans. ASME: J. Fluids Engng 132, 071103.

JEON, D. & GHARIB, M. 2004 On the relationship between the vortex formation process and
cylinder wake vortex patterns. J. Fluid Mech. 519, 161–181.

JOHNSON, T. A. & PATEL, V. C. 1999 Flow past a sphere up to a Reynolds number of 300.
J. Fluid Mech. 378, 19–70.

KANG, S., CHOI, H. & LEE, S. 1999 Laminar flow past a rotating circular cylinder. Phys. Fluids 11,
3312–3321.

KATZ, J. 2006 Aerodynamics of race cars. Annu. Rev. Fluid Mech. 38, 27–63.
MCMANUS, J. & ZHANG, X. 2006 A computational study of the flow around an isolated wheel in

contact with the ground. Trans. ASME: J. Fluids Engng 128, 521–530.
MITTAL, R. 1999a Planar symmetry in the unsteady wake of a sphere. AIAA J. 37, 388–390.
MITTAL, R. 1999b Vortex dynamics in the sphere wake. AIAA Paper 99-3806.
MITTAL, S. & KUMAR, B. 2003 Flow past a rotating cylinder. J. Fluid Mech. 476, 303–334.
MORELLI, A. 1969 Azioni aerodinamiche sulla ruota d’automobile. ATA Review 22, 281–288.
ORLANDI, P. 1990 Vortex dipole rebound from a wall. Phys. Fluids A 2, 1429–1436.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

27
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.273


The fluid dynamics of rolling wheels at low Reynolds number 533

O’ROURKE, J. 1998 Computational Geometry in C. Cambridge University Press.
DE PALMA, P., DE TULLIO, M. D., PASCAZIO, G. & NAPOLITANO, M. 2006 An immersed

boundary method for compressible viscous flow. Comput. Fluids 35, 693–702.
PIROZZOLI, S. 2011 Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194.
PIROZZOLI, S. & BERNARDINI, M. 2011 Turbulence in supersonic boundary layers at moderate

Reynolds number. J. Fluid Mech. 688, 120–168.
POINSOT, T. S. & LELE, S. K. 1992 Boundary conditions for direct simulations of compressible

viscous flows. J. Comput. Phys. 101, 104–129.
RAO, A., PASSAGGIA, P.-Y., BOLNOT, H., THOMPSON, M. C., LEWEKE, T. & HOURIGAN, K.

2012 Transition to chaos in the wake of a rolling sphere. J. Fluid Mech. 695, 135–148.
SADDINGTON, A. J., KNOWLES, R. D. & KNOWLES, K. 2007 Laser Doppler anemometry

measurements in the near-wake of an isolated Formula One wheel. Exp. Fluids 42, 671–681.
STEWART, B. E., THOMPSON, M. C., LEWEKE, T. & HOURIGAN, K. 2010a Numerical and

experimental studies of the rolling sphere wake. J. Fluid Mech. 643, 137–162.
STEWART, B. E., THOMPSON, M. C., LEWEKE, T. & HOURIGAN, K. 2010b The wake behind a

cylinder rolling on a wall at varying rotation rates. J. Fluid Mech. 648, 225–256.
TAIRA, K. & COLONIUS, T. 2007 The immersed boundary method: a projection approach.

J. Comput. Phys. 225, 2118–2137.
TOBAK, M. & PEAKE, D. J. 1982 Topology of three-dimensional separated flows. Annu. Rev. Fluid

Mech. 14, 61–85.
TOMBOULIDES, A. G. & ORSZAG, S. A. 2000 Numerical investigation of transitional and weak

turbulent flow past a sphere. J. Fluid Mech. 416, 45–73.
WILLIAMSON, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28,

477–539.
WU, J.-S. & FAETH, G. M. 1993 Sphere wakes in still surroundings at intermediate Reynolds

number. AIAA J. 31, 1448–1455.
ZHOU, J., ADRIAN, R. J., BALACHANDAR, S. & KENDALL, T. M. 1999 Mechanisms for

generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

27
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.273

	The fluid dynamics of rolling wheels at low Reynolds number
	Introduction
	Numerical method
	Code validation tests
	Flow around a rotating cylinder
	Flow around a rolling cylinder
	Flow around a sphere

	Flow around a rolling wheel
	Instantaneous fields and spectral analysis
	Mean fields and flow topology

	Conclusions
	Acknowledgement
	References




