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Using Gebharter’s representation, we consider aspects of the problem of discovering the
structure of unmeasured submechanisms when the variables in those submechanisms
have not been measured. Exploiting an early insight of Sober’s, we provide a correct
algorithm for identifying latent, endogenous structure—submechanisms—for a restricted
class of structures. The algorithm can be merged with other methods for discovering
causal relations among unmeasured variables, and feedback relations between measured
variables and unobserved causes can sometimes be learned.

1. Mechanisms and Submechanisms. Although disciplines often have
special depictions of causal systems, such as circuit diagrams in electronics,
in many scientific applications causal mechanisms are now routinely rep-
resented by directed graphs whose vertices represent variable features of a
system ðwhere the possible variation may be as simple as the presence or
absence of a featureÞ and whose directed edges represent ðrelative to the
other represented variablesÞ a direct causal connection between the vari-
ables. These representations are abstract in several ways. While the graph
topology characterizes a set of conditional independence relations via the
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well-knownMarkov condition, the graph itself does not fully specify a joint
probability distribution on the variables represented as vertices and gives no
indication of the strengths or even algebraic signs of influences, the vari-
ables represented need not be spatially localized, and the topology of the
graph does not necessarily correspond to a spatial layout. Thus, a switch
that is physically between an input and an output would not be represented
graphically by input → switch → output but rather by input → output ←
switch.1 Our concern here is with another aspect of abstraction: the graphs
do not represent what is going on in the process or processes represented by
a directed edge. “Inside” a directed edge there may be a submechanism, and
two or more submechanisms “inside” different directed edges may have
causal connections with one another. Gebharter ð2014bÞ proposed simple
rules for obtaining the graphical depiction of the less detailed mechanism,
or superstructure, by marginalizing out some variables and their relations
from the more detailed structure. His proposal is, as he notes ðGebharter
2014aÞ, a special case of the widely used mixed ancestral graph represen-
tation introduced a dozen years ago by Richardson and Spirtes ð2002Þ. Wil-
liamson and Gabbay ð2005Þ propose a quite different graphical represen-
tation. Gebharter’s proves to be useful.
In Gebharter’s representation, unobserved causal chains and unobserved

common causes are “marginalized out.” Thus, when X, Yare recorded vari-
ables and Z is not, and the graph with unobserved variables is X→ Z→W,
the marginal representation becomes X → Y. When there is a common
unobserved cause X← Z→W, themarginal representation becomes X↔Y.
If the full structure is as in figure 1a, then the marginal structure is figure 1b.
These marginalizations of graph structure preserve the conditional inde-

pendence and dependence relations among the observed variables implied
by the Markov condition for the full detailed structure. Representation is
one thing; it is quite another to extract information about the unobserved
mechanism from data about the observed variables if the truth is among the
representations, and that is the concern of this article.
Abstract representation—by graphical models or otherwise—is of scien-

tific value only if the representations are somehow useful. One use is in cal-
culating values of some variables from values of others when a represen-
tation is known or assumed as a hypothesis. Thus, Ohm’s law permits the
calculation of voltage drops given a circuit, various updating algorithms
permit the calculation of conditional probabilities in directed acyclic graphs
with a probability distribution satisfying the Markov condition ðPearl 1988Þ,

1. The graph input → switch → output, by the Markov condition, implies that input is
independent of output conditional on any value of switch. But it is intended that when
the switch is on the output depends on the input.
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and still other algorithms permit the calculation of conditional probabilities
upon exogenous interventions ðPearl 2000; Spirtes, Glymour, and Scheines
2000; Tian and Pearl 2002Þ. Zhang ð2008Þ shows when and how mixed an-
cestral graphs, including those Gebharter proposes, can be used to compute
the effects of interventions in a system without knowledge of its submech-
anisms. The problem of predicting with graphical causal models that are
superstructures over unknown submechanisms is essentially solved. The
problem of discovering those submechanisms from information about their
superstructures is not.
Another use of appropriate abstract representations is in discovering mech-

anisms.2 A computational procedure for discovery requires a mathematically
precise object for which to search, whether it is a real number ðas in sta-
tistical parameter estimationÞ, a differential equation ðas in system identi-
ficationÞ, or a directed graph. Efficient computational procedures are indis-
pensable when the “space” of alternative hypotheses is large, as it is in
statistical estimation of parameters, cellular biology, brain connectivity,
and other areas. ðImagine trying to estimate by trial and error the maximum
likelihood value of a statistical parameter as simple as the mean or variance.Þ
“Thick” descriptions of a system are important in limiting the search space,
in knowing what the measurements mean, how to conduct them, and how to
intervene on the system, but for discovery from data, once a search space is
specified what matters is the mathematical features of representations for
which efficient search is possible.

Figure 1.

2. As an interesting historical aside, Hempel denied ðincorrectlyÞ the possibility of us-
ing computers to algorithmically discover theories or models since, he claimed, no al-
gorithm could correctly discover novel or unmeasured properties ðHempel 1985Þ.
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Philosophical discussions of mechanisms and submechanisms have il-
lustrated representational issues with simple machines ðe.g., a water coolerÞ,
but the identification of submechanisms is serious science. The cellular path-
ways between transcription of genes and the production of proteins, for ex-
ample, form an important aspect of the fundamental biology of cancer, where
novel pathways are created or normal ones altered by novel genetic anom-
alies, and distinct tumor types vary in their pathways. Research has discov-
ered novel entities and conditions, such as microRNA and protein com-
plexes, that play roles in transcription, in the splicing of RNA, and in
translation of RNA into proteins. Discovering the causal relations of these
factors in the development of tumors is a prominent area of contemporary
research, but in many data sets variables that are thought to be relevant
intermediaries are unmeasured. Again, in psychological research, so-called
MIMIC ðMultiple Input Multiple IndiCatorÞ models postulate unmeasured
intermediate variables ðand their causal connectionsÞ between input ð“stim-
ulus”Þ and output ð“response”Þ. MIMIC models have been used to estimate
models of executive function ðHughes et al. 2009Þ. In economics, a number
of researchers have used MIMIC models to estimate the size of the shadow
economy ðTedds 1998; Giles 1999Þ. In public policy, MIMIC models were
used to estimate what factors led to the successful settlement of immigrants
ðLester 2008Þ.

2. Existing Search Procedures: Accuracy and Complexity. A variety of
computerized search procedures for causal relations have appeared in the
last quarter century and have found increasing application in the sciences,
especially in biomedicine and genomics. They vary in the conditions on
causal structure ðrepresented by directed graphsÞ, probability distribution
families, and sampling regimes for which sufficient conditions for their as-
ymptotic ðlarge sample limitÞ correctness are known. Necessary and suffi-
cient conditions for correctness are not known for any available search pro-
cedure. Proposed methods face two requirements for applicability to “big
data” or “high dimensional” problems that arise in genomics, climate re-
search, and elsewhere: accuracy and computational tractability. Even with-
out “latent”—unmeasured—common causes, all known methods that are
correct under the Causal Markov and Faithfulness conditions ði.e., all con-
ditional independence relations in a probability distribution satisfying the
Markov condition for a graph are those implied by the Markov condition;
Spirtes et al. 2000Þ increase exponentially in complexity in the worst case
ði.e., the true graph is complete—every pair of variables is connected by a
directed edgeÞ as the number of variables increases; successful causal search
is possible only for systems whose causal relations are relatively sparse.
Simplicity is less a metaphysical assumption than an epistemological bound-
ary: if the causal relations we are interested in are too many and too complex,
we will not discover most of them.
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The method most commonly used for MIMIC models is factor analysis.
Factor analysis estimates common causes of output variables, and it is as-
sumed that the investigator knows which input variables influence which
inferred unobserved ðlatentÞ causes of the output variables. Factor models
are known to be underdetermined and have no asymptotic proof of causal
correctness even up to the class of underdetermined alternatives. In section
6 below, we compare our procedure with factor analysis on a number of
alternative models.
The procedures that come closest to solving the problem of unobserved

intermediate structure as in MIMIC models and gene expression are the FCI
ðfast causal inferenceÞ algorithm ðSpirtes et al. 2000Þ and its speedups, no-
tably the RFCI ðreally fast causal inference algorithm; Kalisch et al. 2012Þ
and a series of procedures for identifying latent causal structure ðSilva et al.
2006; Kummerfeld and Ramsey 2015Þ. Despite its name, the FCI algorithm
is not tractable for problems with very large numbers of variables; an al-
ternative CI ðcausal inference; Verma and Pearl 1992Þ algorithm is much
slower still. RFCI, which in most but not all cases returns the same infor-
mation as FCI, will run on at least several hundred variables with sparse
graphs. An analysis of runtime and memory demands of RFCI as a function
of the complexity of the graph from which data are generated is not
available. ðThe lowest complexity bound on any search method using, as is
common, correlations is a quadratic increase in the number of computa-
tional steps as a function of the number of variables, because even the com-
putation of simple covariances of pairs of measured variables increases at
that rate, and covariance is about the computationally easiest measure of
association there is.Þ
FCI and RFCI are not suitable for our problem because while they return

true information, it is not the information we seek. For example, suppose the
true structure is as in figure 2.3 With the background information that X1,
X2, X3, and X4 are inputs ðexogenousÞ, FCI and RFCI will return the in-
formation that X1, X2, and X3 are causes of O1, and X2, X3, and X4 are
causes of O2, and O1 and O2 share a common unobserved cause. All of that
is true, but it does not tell us how many latent intermediate variables there
are or how they are connected to the input variables ðXÞ, the output vari-
ables ðOÞ, or each other.
A procedure that is closer to our aim has been provided by Kummerfeld

and Ramsey ð2015Þ. The procedure, improving on Silva et al. ð2006Þ, finds,
if such exist, a collection of subsets of measured variables, each subset hav-
ing at most two direct, unmeasured common causes, with no direct causal
connections between measured variables within a subset or between mea-

3. We owe the example to a question posed by an anonymous referee.
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sured variables in different subsets. The collection is not necessarily a par-
tition of the set of measured variables—some observed variables may be dis-
carded by the procedure. For input/output systems it is sufficient ðbut not
necessaryÞ for the correctness of the procedure ðassuming as well the Mar-
kov and Faithfulness conditions and identically, independently distributed
variablesÞ that output variables depend linearly on latent variables and that
every latent variable have at least three observed effects. The procedure ex-
ploits rank constraints on the correlation matrix of the observed variables.4

The practical computational limits of the procedure are well understood.
Suppose the true structure is as in figure 3. The procedure will find no

aspect of the true graph. If the true graph is like figure 3 but without the
causal connections from L4 to the X variables ði.e., the X variables are
jointly independentÞ, the procedure will find the three clusters of output var-
iables in figure 3 and that one ðand only oneÞ of the input variables to each
latent is its cause. It will find that there are causal connections among L1,
L2, and L3 but will not be able to determine the directions of influence
among those variables.

3. Strategies. We will describe and prove correct, assuming a restrictive
condition on the causal structure, a fast algorithm for identifying the struc-
ture of input/output systems with endogenous latent variables. Then we
show that the restrictive condition is not a necessary connection and note
that certain feedback relations between measured and unmeasured variables
represented by cyclic directed graphs can be discovered. First, however we
describe three methodological ideas that drive our algorithms.

Figure 2.

4. The well-known “tetrad constraints,” rij rkl 5 rikrjl, e.g., are rank 2 constraints on
the correlation matrix.
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3.1. Sober’s Criterion. Sober ð1998Þ addressed an aspect of discov-
ering submechanisms. Sober pointed out that if in input variable X has sep-
arate, noninteracting mechanisms through which it influences two ðor moreÞ
variables Y, Z, which are not otherwise causally connected, then Y, Z should
be independent conditional on X, but if there are no such separate mech-
anisms but instead X influences Yand Z through an intermediate variable U
that is a common cause of Yand Z, then Yand Z should not be independent
conditional on X. The first claim is a simple application of the Causal Mar-
kov condition ðSpirtes et al. 2000Þ to the graph Y ← X → Z. The second
claim is less obvious but is a consequence of the Faithfulness condition,
which implies that values of endogenous variables are not uniquely deter-
mined by values of their represented direct causes. Granting the assump-
tions, Sober’s criterion provides some information when there are more
complex structures. Consider the alternative MIMIC models in figures 4,
5, and 6.
Assuming it is known which input variables in these figures influence

ðdirectly or indirectlyÞ which output variables, Sober’s criterion tells us
different information for the three structures: for figure 4, for each pair of

Figure 3.
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Figure 4.

Figure 5.
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O variables, X1 has an unmeasured U intermediate and so does X2, and for
O3 and O4, every X variable has an unmeasured intermediate; for figure 5
the implications are different but parallel, with obvious permutations of
the variables; for figure 6, every X has an unmeasured U for every pair of
variables. This suggests that Sober’s criterion, with the assumptions and
prior information noted, could be used to identify the unobserved structure.
But Sober’s criterion can only be applied if it is known which input vari-
ables influence which output variables, and it will not tell us in figure 6 how
many unobserved intermediate variables there are, and in figures 4 and 5 it
will not tell us the direction of influence between the unobserved variables.
Nonetheless, in each case the algorithm we will describe recovers this infor-
mation from measurements of the X and O variables.
Sober’s criterion does not work if output variables caused by the unob-

served intermediates also directly affect one another. Further, there can be
measured outputs that are not directly influenced by unobserved interme-
diates, as in figure 7. Sober’s criterion implies that there is an unmeasured

Figure 6.

Figure 7.
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common cause of O3 and O2, and of O3 and O1, but would not reveal that
the unobserved variable influences O3 only through O2. The upshot is that
to use Sober’s criterion in an informative search procedure for complex sys-
tems, the space of hypotheses has to be carefully contoured, and Sober’s
criterion will need to be embedded in a more elaborate algorithm.

3.2. The Inclusion Criterion. Consider the structure in figure 8: X3
and X4 are associated with O3 and O4, while X1 and X2 are associated with
all four output variables. The inclusion relations among the sets of output
variables inform us about which input variables directly influence a latent
common cause of a set of outputs and about the directions of influence be-
tween the latents. Thus, assuming an input/output model with endogenous
causes of the outputs, the inclusion relations for figure 8 tell us that X3 and
X4 are parents of a latent variable that is a cause of O3 and O4, but not of
O1 and O2, and that X1 and X2 are causes of another latent that causes O1
and O2 and tells us the direction of influence between the latents. This works
if there is at most a single causal path between any two variables and in
certain other cases we later describe.

3.3. d-separation. The d-separation condition ðPearl 1988Þ provides a
graphical criterion for conditional independence relations implied by a di-
rected, acyclic graph and any probability distribution on the variables sat-

Figure 8.
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isfying the Markov condition for that graph.5 It is exploited in a class of
search algorithms, including the PC and FCI and RFCI algorithms, which
use a series of conditional independence tests, the Bayesian greedy equiv-
alence search ðGESÞ, which updates prior probabilities sensitive to condi-
tional independence relations, and many other algorithms. For input/output
systems in which the inputs are independent of one another but unknown,
and there are at least two inputs to each latent and each observed variable
is the effect of a latent variable, these search procedures can quickly dis-
tinguish inputs from outputs via the collider principle: if X1 → L, L2 → L,
and L → O, then X1 and X2 are dependent conditional on O. The collider
principle lies behind the famous Monte Hall problem ðRosenhouse 2009Þ.
For systems in which the inputs are previously distinguished from the out-
puts, d-separation allows application of the inclusion criterion by condition-
ing, for each input and all of the other input variables. For systems in which
some observed variables, say O3 are causes of other observed variables, say
O5, that are not directly caused by latent variables or inputs, search proce-
dures such as GES and PC allow identification of the O3→ O5 connection.

4. Simple Search. Suppose we are given data on a collection of variables
and we know that some of them, the inputs X, are potential causes of others,
the outputs O, but we have no prior knowledge of which inputs cause which
outputs. We assume the otherwise unknown causal structure is that of a
MIMIC model. Here is a summary of a search procedure, which we call de-
tect.mimic, or DM.
Start with a completely disconnected graph having X vertices and O

vertices. Identify the inputs ðXÞ. With routine statistical tests we can find
which X and O variables are dependent on one another. LetOUTðXÞ be the
set of O variables dependent on variable X, and let INðOÞ be the set of X
variables dependent on variable O. Partition the X variables by Xi ∼ Xj if
and only if OUTðXiÞ 5 OUTðXjÞ. For each such equivalence class, Xi, in-
sert a latent variable, Ui, and add edges from each X in Xi to Ui. Partially
order the OUTðXiÞ by inclusion. For each leaf ðterminal elementÞ in that
ordering,OUTðXkÞ, of the partial order, add a directed edge from Uk to each
member of OUTðXkÞ. Remove OUTðXkÞ from the set of observed vari-
ables and repeat. If OUTðXkÞ ⊂ OUTðXjÞ add a directed edge from Uk to Uj

unless there exist distinct Or ∈ OUTðXjÞ\OUTðXkÞ and Os ∈ OUTðXkÞ that

5. Two variables ðX and YÞ are said to be d-separated conditional on a set Z of other
variables if, for every undirected path between X and Y, either there is a vertex Von the
path such that two edges on the path are directed into V and there is no directed path
from V to any member of Z or there is a vertex Q in Z such that Q is on the path and
one path edge is directed out of Q.
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are independent conditional on some subset of Xk [ Xj. Use the PC ðSpirtes
and Glymour 1991Þ or other search algorithm to find any O variables that
are influenced by X variables only via other O variables and to find the
causal relations among them. Remove edges from latent variables to those
O variables.
In steps:

1. Start with a completely disconnected graph having X vertices and O
vertices. Identify the inputs ðXÞ by means of a procedure such as PC,
discarding variables whose direction cannot be estimated by that pro-
cedure ði.e., true output variables that are caused by only one input
variable and true input variables that cause a single output variableÞ.
ðThis step is unnecessary if inputs are previously distinguished from
outputs, which is often the case.Þ

2. With routine statistical tests find which X and O variables are de-
pendent on one another.

3. Let OUTðXÞ be the set of O variables dependent on variable X, and
let INðOÞ be the set of X variables dependent on variable O. Parti-
tion the X variables by Xi ∼ Xj if and only if OUTðXiÞ 5 OUTðXjÞ.

4. For each such equivalence class, Xi, insert a latent variable, Ui, and
add edges from each X in Xi to Ui.

5. Partially order the OUTðXiÞ by inclusion. For each leaf, OUTðXkÞ,
of the partial order, add a directed edge from Uk to each member of
OUTðXkÞ.

6. Remove OUTðXkÞ from the set of observed variables and repeat
step 5.

7. If OUTðXkÞ ⊂ OUTðXjÞ add a directed edge from Uk to Uj

8. If there exist Or ∈ OUTðXjÞ\OUTðXkÞ and Os ∈ OUTðXkÞ that are
independent conditional on some subset of Xk [ Xj, remove the
edge between the latent causes of Or and Os.

9. Use the PC or other search algorithm to find any O variables that are
influenced by X variables only via other O variables and to find the
causal relations among them. Remove edges from latent variables to
those O variables, and add any adjacencies to their fellow O variables
using the pattern outputted by PC or some other search algorithm.

Pseudocode for the procedure is given in appendix A.
Sufficient conditions for this procedure to find the true structure are very

restrictive:

1. Every causal path from an input to an output is through an unob-
served variable;
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2. Every output variable has an unobserved cause that is an effect of an
input variable;

3. There are no closed directed paths ði.e., no cyclesÞ;
4. Each unobserved variable has at least one observed effect and at least

one observed cause ðwhen there is no prior classification of variables
into input and output, each latent variable must have at least two
observed causesÞ;

5. The true structure is simply connected ði.e., there is at most one di-
rected path between any two variables;

6. The input variables are jointly independent;
7. The Causal Markov condition holds;
8. The sample cases are independently and identically distributed.
9. Nondeterminism: values of endogenous variables are not determined

uniquely by values of variables that are their direct causes.

Under these conditions, the procedure returns the true structure given true
facts about conditional independence and dependence of observed vari-
ables. A proof is given in appendix B. We show later that not all of these
conditions are necessary. We emphasize that the procedure is “nonpara-
metric”—it is not restricted to any functional form ðe.g., linearityÞ for the
relations between variables or to any family of probability distributions for
the variables.
An Illustration.—We assume probability relations are generated in accord

with the Markov condition for the graph shown in figure 9, and we show
how the algorithm we have described recovers the structure.
Step 1: We begin by applying the PC algorithm to the data set ðgenerated

from fig. 9Þ. The PC algorithm starts with a complete graph and uses con-
ditional independence facts to remove edges and direct remaining edges.
Here, we need only use unconditional independence facts. Using the pattern
returned by PC ðfig. 10Þ,6 we check each node’s indegree. If a node has an
indegree ði.e., the number of arrows “into” itÞ of 0, then we classify it as an
input. Otherwise, we classify the node as an output. In figure 10, we can see
that nodes X1–X4 are inputs, while nodes X5–X9 are outputs.
Step 1 can be skipped if, as is often the case, it is already known which

variables are inputs and which are outputs.
Step 2: The identification of correlated inputs and outputs is a result of

step 1.
Step 3: In figure 10, there are edges between every output variable and

nodes X1 and X2, but nodes X3 and X4 only have edges to outputs X8 and X9.

6. That is, a graph that may include undirected edges indicating that the direction can-
not be determined by the search procedure.
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If we think of this in terms of sets, we have an INðhX1, X2iÞ, or input set,
connected to the output set OUTðhX5, X6, X7iÞ. We also have another set,
INðhX1, X2, X3, X4iÞ connected to OUTðhX8, X9iÞ.7
Step 3a: The equivalence classes of input variables are INðhX1, X2iÞ and

INðhX3, X4iÞ.
Step 4: Insert a latent variable for each equivalence class.
Step 5: Now that the number of latents is known, we cluster outputs

around their respective latents. In the case of the example, INðhX1, X2iÞ is a
proper subset of INðhX1, X2, X3, X4iÞ and is a leaf in the ordering. We add
edges to L1 for X1 and X2.
Step 6: We remove X1, X2 from INðhX1, X2, X3, X4iÞ and add edges from

X3, X4 to L2.
Step 7: We use the information from steps 5 and 6 to introduce and orient

a latent-to-latent edge from INðhX1, X2iÞ’s latent to INðhX1, X2, X3, X4iÞ’s
latent.
Doing all of this gives us figure 11. Note that there are two mismatches

between the true graph and figure 11. There should not be a latent-to-latent

Figure 9. True graph.

7. Note the change in notation from the summary description of the procedure.
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edge connecting L1 to L2. Instead, X1 and X2 should have edges connecting
them to L2. Additionally, X6 should not be directly connected L1. These mis-
matches are corrected in the next several steps.
Step 8: Node X9 is independent of X5 when X1 and X2 are conditioned

on. We can therefore conclude that X9 and X5 are only connected via a path
through the inputs X1 and X2, rather than via an L1 to L2 edge ðelse by So-
ber’s criterion, conditioning would not have blocked the path from X9 to
X5Þ. Therefore, we remove the latent-to-latent edge.
This gives us figure 12. All that remains is to remove the incorrect edge

directly connecting L1 to X6.
Step 9: Run the PC algorithm on the data set again, with no bound on how

many variables are conditioned on. This gives us figure 13. We now check
the pattern in figure 13 for any output variables that have no directed edges
from input variables. If an output lacks such edges, we know that it cannot
be directly connected to a latent but must instead only be connected via its
fellow output variables. In figure 13, the output variable X6 has no edges
from input variables but remains connected to outputs X5 and X7. We there-
fore remove the edge from L1 to X6, in figure 13 and add edges connecting

Figure 10. Pattern after running the PC algorithm to find unconditional indepen-
dence relations.
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Figure 11. After step 7, before running Sober’s step.

Figure 12. After applying Sober’s step. Note the absence of the L1 to L2 edge.
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X6 to X5 and X7. For the new output-to-output edges, we use the direction
reported in figure 13. In some cases, this means that the added edges will
not have directions as the pattern returned by PC may fail to orient some
edges.
Step 10: The algorithm ends, and we return the discovered graph ðde-

picted in fig. 14Þ.

5. An Empirical Application. Currently, researchers are interested in un-
observed protein pathways connecting genes to measurable concentrations
of RNA. One possible use of such information is the study of cancer. Using
normal distribution tests, we applied our algorithm to a data set of patients
with ovarian cancer, which returned the results displayed in figure 15.8

While the true graph is likely both cyclical and multiply connected, vio-
lating two of our algorithm’s assumptions, some information can still be
obtained.

Figure 13. Pattern returned by PC. Note the absence of an edge from any input
variable to X6.

8. The data were gathered using massively parallel sequencing and microarray anal-
yses. There are 562 observations ðpatientsÞ, 17,610 gene variables ðrecording whether a
gene was mutatedÞ, and 12,042 gene expression variables ðoriginally continuous mea-
sures of mRNA levels, which were then converted into ordinal categorical variablesÞ.
Details on how data were gathered are available in Cancer Genome Atlas Research
Network ð2011Þ. The data themselves are available from http://cancergenome.nih.gov/.
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In figure 15 there are a number of distinct subgraphs in the overall graph,
as well as three subgraphs where many genes appear to be regulating a
single gene expression. It is not implausible that somatic mutations ðthe in-
putsÞ are independent, but the appearance of multiple gene regulators for a
single gene expression could also result from reducing the number of var-
iables in the very large data set of highly correlated gene expression mea-
surements—all but one may be removed in the variable reduction proce-
dure, which can in some cases undermine the correctness of the algorithm
because the partial ordering requires at least one direct measured effect for
each latent variable.9 Assuming figure 16 is correct, the conditions we prove
sufficient for correctness of the algorithm are not met, but the structure is

Figure 14. Final graph, returned by the algorithm.

9. The dimension reduction was performed using cross-validated lasso regression
ðHastie et al. 2009Þ to select related variables. Lasso regression fits models where there
are many more variables than observations by assigning less “useful” variables an ef-
fect size of 0, thus saving degrees of freedom for more useful variables. Gene mutations
were predicted using gene expressions ð17,610 regressionsÞ. Similarly, gene expres-
sions were predicted using gene mutations ð12,042 regressionsÞ. Only predictor var-
iables belonging to an unusually large group of predictors ðgreater than the ninety-ninth
quantileÞ were kept in the reduced data set.
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nonetheless uniquely identifiable by our algorithm because the inputs and
outputs are segregated before running the search procedure.
The example is a demonstration of feasibility rather than of empirical

correctness for the case. We are currently working on identifying indepen-
dently known cellular pathways on which to test the procedure and the
generalizations discussed below. The example required 43 minutes to run
on a single Core laptop, and on serious computers much larger systems
could be analyzed. Except for the last step of the algorithm where PC is run
with an “infinite” depth, the time complexity of the procedure increases
quadratically with the number of variables.

Figure 15. Protein signaling network reported after running the DM algorithm on a
4,369 variable subset ðof an almost 30,000 variable setÞ of a genomic data set.
Black nodes represent latents, gray nodes inputs ðgenesÞ, and light gray nodes
outputs ðgene expressionsÞ. Note that some edges can overlap others in the picture.
Color version available as an online enhancement.
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6. ComparisonwithFactorAnalysis. Factor analysis combined with guess-
work or knowledge about which input variables influence which output var-
iables is the most common method in practice for finding submechanisms
with endogenous unmeasured variables ði.e., MIMIC modelsÞ. So we com-
pare accuracies of factor analysis—merely for finding the number of latent
variables.
Data sets were generated 500 times from each of the graphs in figure 17.

Every variable was created by adding the values generated for its parents
plus an additional error term that followed a standard normal distribution.
Factor analysis and DM were then run on each data set, and the number of
times each algorithm reported an incorrect number of latent variables was re-
corded. The factor analysis program ðin RÞ uses four different nongraphical

Figure 16. Enlarged subgraph, where a latent-to-latent edge was found. Black
numbers are latents while the gray labels are genes and the light gray labels are gene
expressions. Color version available as an online enhancement.
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Figure 17. Various causal structures from which data were simulated. Note that L1,
L2, and L3 are all latents.
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versions of a scree plot to determine the number of latents.10 Each method
was given a vote for the number of latent variables, and the number with the
most votes was chosen. In the event of a tied vote, the smallest number in the
tie was selected.
Figure 18 illustrates that factor analysis is an unreliable tool for correctly

identifying the number of latent variables. While in some cases it performs
reasonably well ðas in the case of figs. 18b and 18cÞ, for other structures fac-
tor analysis is almost always mistaken ðfig. 18dÞ. In one case ðfig. 18aÞ, it per-
formed worse as sample size increased. In practice, when the true underly-
ing structure is unknown, one cannot have any reasonable confidence that
the factor analysis output is correct.

10. A scree plot depicts the amount of variance “explained” by a given latent, with each
latent on the X-axis and variance on the Y-axis. Usually, at some variance values, such
plots have a marked change in first difference, which is taken to indicate the number of
latent variables.

Figure 18. Proportion of cases ðout of 500Þ where an algorithm returned a model
with the incorrect number of latent variables. DM algorithm is depicted in gray ðon
the leftÞ, while factor analysis is depicted in light gray ðon the rightÞ. Data generated
from figure 17 graphs a–d. Color version available as an online enhancement.
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7. Generalizations. As written, the DM algorithm will identify substruc-
tures of some structures that are not simply connected. For example, for the
elaboration of figure 8 shown in figure 19 we find the structure in figure 8,
leaving out the X1 → O1 edge. The same is true if, in figure 19, edges are
added from X1 or X2 or both to L2. The procedure will not find a correct
singly connected substructure, however, if in figure 8 or 19 a directed edge
is added from X3 or X4 or both to L1. In that case, X3 or X4 or both will be
clustered with X1 and X2.
In cases such as that shown in figure 3, the problem can be solved by

modifying step 2 of the DM algorithm so that in finding the output variables
influenced by any input, X, the other input variables are conditioned on.
This step is not without risks, however, because if X and some other mea-
sured variable Xm both influence a third variable, say Xn, then conditioning
on Xn will create an association between X and the output variables in-
fluenced by Xn—another example of the collider problem illustrated by the
Monty Hall Problem. Automated search is an aid, not a full replacement for
investigators’ prior knowledge.

8. Merging. Silva et al. ð2006Þ and Kummerfeld and Ramsey ð2015Þ have
developed other methods for finding substructure. Their procedures have
both advantages and disadvantages. To advantage, they are not limited to

Figure 19.
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singly connected systems. Instead, they find subsets of measured variables
that are singly connected to one or two latent variables, if such exist. The
graphical causal relations among the latent variables do not have to be singly
connected. The disadvantages are linearity restrictions on the connections
between output variables and latent variables ðalthough not among the latent
variables themselvesÞ, that the procedures cannot identify all of the input
causes of a latent variable, and that the causal order of latent variables may
be underdetermined. The advantages help with the DM algorithm, since their
procedures provide a guarantee that the measured variables in each selected
subset have a common cause and are otherwise unconfounded by direct ef-
fects from other measured variables or extra common causes, and the latent-
to-latent causal relations need not be singly connected. The methods we have
described can help as well, because they can aid in identifying which input
variables influence which latent variables directly and can sometimes direct
edges between latent variables left undirected by the Silva and Kummerfeld
algorithms.
Figure 20 shows the output of the Silva or Kummerfeld algorithms for an

example in which X1, X2, and X3 are causes of L1, L2, and L3, respectively.
These procedures can, however, be combined with steps in our algorithm.

Figure 20. Produced by the Silva procedure that fails to cluster input variables and
does not find the directions for latent-to-latent edges.
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Step 2 can be applied to estimate which measured variables influence which
latent variables, and step 3 can be applied to determine the directions of
edges between the latent variables. The result is shown in figure 21.

9. Open Problems. One problem with our algorithm, or its combination
with the Silva or Kummerfeld algorithms, is that these procedures cannot
identify direct influences from input to output variables, which was part of
the aim of Sober’s procedure. A second issue is the restriction to singly con-
nected networks, which, as figure 21 illustrates, is relieved in part by com-
bining our procedure with Silva’s or Kummerfeld’s.
A third, fascinating, problem is discovering feedback structure involving

latent endogenous variables. In genomic processes, for example, mRNA is
transcribed from gene sequences of DNA by a process regulated by, among
other things, proteins. The mRNA, after a lot of subsequent processing, is
translated into proteins. Some of these proteins may regulate transcription

Figure 21. True causal structure, discovered after using step 2 of the DM algorithm
to cluster the inputs and step 3 to orient the latent-to-latent edges.
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of the gene from which they descend. The process may therefore involve a
feedback relation between measured effects and unmeasured causes.
Using rank constraints, we have been able to show that in linear systems

some cyclic feedback relations between measured and latent variables can
be identified, as in figure 22, when it is known that there are no direct causal
connections between output variables. We leave the details to another place,
but clearly the topic begs for further research.

10. Conclusion. While most of the metaphysical and conceptual analysis
of mechanisms is of little if any potential aid to science, two aspects are
prediction and discovery. The “thin” representation provided by graphical
causal models, supplemented where possible by estimates of the strengths
of effects, can be useful, even essential, for prediction and discovery pro-
vided the representations also imply statistical constraints that can be ex-
ploited to identify causal relations. With these representations, problems of
prediction with and without interventions have largely been solved, but
many problems about discovery remain open. Using Gebharter’s represen-
tation for such structures and exploiting an insight of Sober’s, d-separation,
and an inclusion principle, we have addressed one class of such problems for
structures with intermediate or endogenous unmeasured structure. Scientif-
ically important problems of search and discovery for related structures re-
main to be solved.

Figure 22. Causal system for which the cyclic structure is identifiable assuming
linearity and the absence of output-output connections.
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Appendix A

Algorithm Pseudocode

See Murray-Watters ð2014Þ.

Algorithm: DMðDataÞ
Step 1.
PC:5 A function returning the pattern produced by the PC algorithm.
inputs:5NULL fThe set of inputs.g
outputs:5NULL fThe set of outputs.g
X:5 Data
pc.pattern:5 PCðX, depth 5 0Þ
N:5 NodesðpcpatternÞ
For each n in N

If adjacencyðnÞ ∼ 55 0
then if adjacencyðnÞ 5 outdegreeðnÞ

add n to inputs
else

add n to outputs
Input.ParentsðnÞ:5 PARðn, pc.patternÞ ∩ inputs
Step 2.
Latents:5 NULL
Latents ðLÞ:5 hINðLÞ, OUTðLÞ, LCðLÞi
For all L, LatentsðLÞ: 5 hNULL, NULL, NULLi
Input.Parents: The set of cluster assignments. Each member of Latents
ði.e., a specific latentÞ contains hIN5 set of inputs for the latent,OUT5 set
of outputs, and LC 5 set of latent children ði.e., a latent descendantÞ.i
For all x in outputs

If there exists a y in latents such that Input.ParentsðxÞ 55 INðyÞ
OUTðyÞ:5 OUTðyÞ [ fxg.

else
Create a new member, z, of Latents, with LatentsðzÞ:5

hINðzÞ:5 Input.ParentsðxÞ,
OUTðxÞ [ fxg,
NULLi

Step 3.
For each x, y in Latents

If INðxÞ is a proper subset of INðyÞ, and INðxÞ is the largest such
subset, then

LCðxÞ:5 LCðxÞ [ fyg;
for all z in Latents,

INðzÞ:5 INðzÞ\INðxÞ
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Step 4.
For each x, y in Latents,

If LCðxÞ 55 y and OUTðxÞ_||_OUTðyÞ|ðINðxÞ and INðyÞÞ
LCðxÞ:5 NULL
Let z be the smallest subset of INðxÞ [ INðyÞ such that OUTðxÞ
_||_OUTðyÞ|ðzÞ
INðxÞ:5 INðxÞ [ fzg
INðyÞ:5 INðyÞ [ fzg

Step 5. pc.pattern.infinite:5 PCðX, depth 5 infiniteÞ
Step 6. Examine the graphs produced in steps 4 and 5 ðname these G4 and
G5, respectivelyÞ.
For each output variable Oi in G4 such that there is no direct edge between
Oi and any input variables in G5, remove the edge between Oi and its latent.
Add any adjacencies ðfrom G5Þ between Oi and the outputs connected to
Oi’s former latent.
Step 7. Return the graph from the end of step 6.

Appendix B

Proof of Algorithm Sufficiency

See Murray-Watters ð2014Þ.
Assumptions.

A1. Markov Assumption: Every variable is independent of its non-
descendants given the variable’s parents.

A2. Faithfulness: A graph and a probability distribution are faithful to
one another if all the ðunÞconditional independence relations in the
probability distribution are entailed by the graph and the Markov
Assumption.

A3. The true graph is acyclic.
A4. The true graph is singly connected.
A5. Every latent has at least two inputs and one output.
A6. No input has a path to an output except through a latent.
A7. Inputs are probabilistically independent of one another.

Note: Generalizations of the algorithm are possible without this
assumption ðA7Þ, but the information recovered may be reduced.

A8. Every measured variable is an input, an output, or a descendant of
ðanÞ outputðsÞ.

Proof of Correctness for Step 1. Because of assumptions A1, A2, and A3,
the PC algorithm will produce a pattern consistent with the unconditional
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independence relations true of the measured variables in the true graph.
Using this pattern, every input variable from the generating graph will only
have adjacencies connecting it to output variables in the generating graph
ðas assumption A7 forbids adjacencies between input variablesÞ.
For every pair of variables that are inputs in the true graph, there will be

no adjacency between the two variables in the PC pattern ðby A7Þ. For
every variable that is an input in the true graph and every output that is a
descendant of that input, there will be an adjacency in the pattern returned
by PC ðby A6Þ.
All of these adjacencies in the pc.pattern will ultimately be a directed

edge from an input to an output variable, as the only paths from inputs to
outputs in the PC graph output will be through unshielded colliders ðbe-
cause of assumptions A5 and A6Þ. Therefore, every input will have a total
degree of no more than 0. Finally, because of assumption A8, every output
variable must have an indegree greater than 0. So step 1 correctly classifies
the input and output variables.

Proof of Correctness for Step 2. As every edge connecting an input to an
output in pc.pattern must be the result of a path through a latent in the true
graph ðbecause of A6Þ and every output variable is a descendant of a latent
ðA8Þ, there must be at least one latent ðassuming the PC graph is not
emptyÞ. If there are sets of outputs whose members only have edges ðin the
pc.patternÞ to some subset of the inputs, then there must be more than one
latent ðbecause of A6Þ, and each of these sets of outputs must have its own
latent, as the only path from an input to an output is through a latent ðA6Þ,
thus giving the correct number of latents.

Proof of Correctness for Step 3. If the input set of a latent ðaÞ is a subset of
the input set of another latent ðbÞ, and a is the largest such subset, then it
must be the case that a is a latent cause of b ðor latents a and b share some
inputsÞ. Otherwise, the inputs of a would have to have a path to the outputs
of b via a nonlatent ðforbidden by A6Þ or via some latent between a and b
ðwhich is forbidden by the “largest subset” conditionÞ.

Proof of Correctness for Step 4. If step 3 reports an edge between two
latents, then either that edge exists in the true graph or the latents share some
input variables ðA4 forbids both being true simultaneouslyÞ. Therefore, if
there is not an edge connecting the two latents in the true graph, then
OUTðxÞ_||_OUTðyÞ|ðINðxÞ and INðyÞÞ, as there would be no open path
connectingOUTðL1Þ andOUTðL2Þ. If there is an edge between L1 and L2
in the true graph, then OUTðxÞ_\ || \ _OUTðyÞ|ðINðxÞ and INðyÞÞ.

Proof of Correctness for Step 5. PC can be used because of A1, A2, and
A3.
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Proof of Correctness for Step 6. If an output variable has no paths to an
input variable ðin the pc.infinite patternÞ, then that output variable must be a
child of only other output variables, else conditioning on observed variables
would be insufficient to block all paths between the output variable and the
input variables.
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