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Abstract A simple Steinberg algebra associated to an ample Hausdorff groupoid G is algebraically
purely infinite if and only if the characteristic functions of compact open subsets of the unit space
are infinite idempotents. If a simple Steinberg algebra is algebraically purely infinite, then the reduced
groupoid C∗-algebra C∗

r (G) is simple and purely infinite. But the Steinberg algebra seems too small for
the converse to hold. For this purpose we introduce an intermediate ∗-algebra B(G) constructed using
corners 1UC∗

r (G)1U for all compact open subsets U of the unit space of the groupoid. We then show that
if G is minimal and effective, then B(G) is algebraically properly infinite if and only if C∗

r (G) is purely
infinite simple. We apply our results to the algebras of higher-rank graphs.
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1. Introduction

Inspired by the success of classifying purely infinite simple C∗-algebras, Ara, Goodearl
and Pardo extended the notion of purely infinite C∗-algebras to unital rings, and studied
their basic properties [4]. Purely infinite rings were studied further in [1,3,6,19]. In
particular, [6] develops a general theory of purely infinite rings by presenting an algebraic
parallel of the work in [21] on purely infinite C∗-algebras. Here we investigate a question
asked in [6, Problem 8.4]. Suppose that A0 is a dense subalgebra of a C∗-algebra A. If
A0 is purely infinite in the algebraic sense, is A purely infinite in the C∗-algebraic sense?
We focus on the situation where the C∗-algebra is a simple C∗-algebra associated with
an ample Hausdorff groupoid, that is, an étale groupoid with a basis of compact open
sets. Since every non-unital, purely infinite, simple, nuclear C∗-algebra in the UCT class
is isomorphic to the reduced C∗-algebra C∗

r (G) of some ample Hausdorff groupoid G (see
[35, p. 367]), this is a good setting to investigate this problem and its converse.
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We investigate two different dense subalgebras of C∗
r (G). The first is the complex

Steinberg algebra A(G) associated with an ample groupoid G. Simplicity of A(G) and
C∗

r (G) are well understood (provided G is amenable and second countable): A(G) is
algebraically simple if and only if C∗

r (G) is C∗-algebraically simple, and this happens
if and only if G is minimal and effective [8]. For the remainder of the introduction, we
assume that G is a minimal and effective ample groupoid.
It was shown in [9, Theorem 4.1] that C∗

r (G) is purely infinite if and only if, for
every compact open set U of the unit space, the characteristic function 1U is an infinite
projection. As a direct consequence, we obtain an affirmative answer to [6, Problem 8.4]
when A0 = A(G) (see Corollary 3.1). The converse remains an open question because, in
a way, A(G) is too small.
The second dense subalgebra B(G) of C∗

r (G) that we investigate contains the corners
1UC

∗
r (G)1U for all compact open subsets U of the unit space of the groupoid, and so is

much larger than A(G). The reason why B(G) is useful is twofold. First, unlike C∗
r (G),

B(G) is s-unital, and so we can apply the results of [6] directly to it. Second, unlike A(G),
B(G) has the property that B(G)xB(G) is contained in B(G) for every x ∈ C∗

r (G). Using
these two properties, we show in Theorem 4.7 that B(G) is algebraically properly infinite
if and only if C∗(G) is purely infinite.
Our motivation for studying these dense subalgebras is to make progress on the long-

standing open question of finding necessary and sufficient conditions on a groupoid G that
characterize when the C∗

r (G) is purely infinite. Anantharaman-Delaroche introduced the
notion of a locally contracting groupoid in [2], and then showed the reduced C∗-algebra
of a locally contracting groupoid is purely infinite [2, Proposition 2.4]. It is not known if
the converse holds, even for the C∗-algebras of higher-rank graphs which can be modelled
using ample groupoids.
It follows from [2, Proposition 2.2] that in an ample, locally contracting groupoid, the

1U are all infinite projections, but again it is not known if the converse holds. For the
groupoids of higher-rank graphs, it would suffice to understand what graph properties
ensure that all vertex projections are infinite projections in the graph C∗-algebra [9,
Corollary 5.1].
Following [14], substantial progress has been made in investigating a possible

dichotomy for the C∗-algebras of ample groupoids [7,29]: that C∗-algebras of ample
groupoids are all either purely infinite or stably finite. At this stage, it has been estab-
lished that the dichotomy holds when a certain type of semigroup is almost unperforated.
Also, [7, Corollary 4.9] gives a sufficient condition for an inner exact groupoid to have
a purely infinite C∗-algebra. [29, Proposition 7.1] gives a necessary condition on G for
the C∗-algebra to be purely infinite. How either of these conditions relates to a locally
contracting groupoid is not immediately clear.
The outline of this paper is as follows. In § 2 we give some preliminaries, including

algebraic and C∗-algebraic definitions of infinite idempotents/projections, and purely
infinite rings and C∗-algebras. The main focus of § 3 is to prove an algebraic version of
[9, Theorem 4.1] for Steinberg algebras: A(G) is algebraically purely infinite if and only if,
for every compact open set U of the unit space, 1U is an infinite idempotent in A(G). In
§ 4, we introduce B(G). Our main theorem, Theorem 4.7, says that B(G) is algebraically
properly infinite if and only if C∗

r (G) is C∗-purely infinite. The forward implication is
very general in that it does not require G to be minimal or effective.
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Finally, in § 5, we show how our results apply to higher-rank graphs and their algebras.
The Steinberg algebra of the graph groupoid is canonically isomorphic to the Kumjian–
Pask algebra of the graph [5,15], and the C∗-algebra of the graph groupoid is isomorphic
to the C∗-algebra of the graph. We reconcile our results with recent results by Larki
about purely infinite Kumjian–Pask algebras [23]. Finally, in Corollary 5.5, we consider
the special case of an aperiodic and cofinal higher-rank graph which has a return path
with an entrance, and show these graphs give rise to purely infinite algebras. Along the
way, we prove Lemma 5.6 which allows us to construct return paths with entrances. This
fills a gap in [16, Corollary 5.7] and [34, Proposition 8.8].

2. Preliminaries

We start by summarizing the algebraic and C∗-algebraic definitions that we use from [6]
and [21], respectively.

2.1. Algebraic preliminaries

Definition 2.1. Suppose that p and q are idempotents in a ring R, a ∈ R, x ∈ Mk(R)
and y ∈ Mn(R). Set RaR := span{cad : c, d ∈ R}.

(1) R is s-unital if, for each r ∈ R, there exist u, v ∈ R such that ur = rv = r.

(2) p ≤ring q if pq = qp = p.

(3) p <ring q if p ≤ring q and p �= q.

(4) p ∼ring q if there exist s, t ∈ R such that st = p and ts = q.

(5) x �ring y if there exist α ∈ Mk,n(R) and β ∈ Mn,k(R) such that x = αyβ.

(6) p is an infinite idempotent if there exists an idempotent q such that p ∼ring q <ring p.

(7) p is a algebraically properly infinite idempotent if there exists an idempotent q such
that p⊕ p ∼ring q ≤ring p.

(8) a is algebraically infinite if there exists t ∈ R \ {0} such that a⊕ t �ring a.

(9) a is algebraically properly infinite if a �= 0 and a⊕ a �ring a.

(10) R is algebraically purely infinite simple if R is algebraically simple (R has no
non-trivial two-sided ideals) and every non-zero right ideal contains an infinite
idempotent.

(11) R is algebraically properly infinite (also called properly purely infinite) if every
non-zero element of R is algebraically properly infinite.

(12) R is algebraically purely infinite if
(a) no quotient of R is a division ring, and

(b) whenever a ∈ R and b ∈ RaR, we have b �ring a.
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Remark 2.2. Here we clarify some of the relationships between the definitions given
above.

(1) If p and q are idempotents with p ≤ring q, then p �ring q.

(2) By [6, Remarks 2.7], an idempotent is an infinite idempotent if and only if it is
algebraically infinite and it is an algebraically properly infinite idempotent if and
only if it is algebraically properly infinite.

(3) Let R be a ring with local units, which means that for every finite set F there
exists an idempotent e such that F ⊂ eRe. (The existence of local units implies
that R is s-unital.) Then R is algebraically purely infinite simple if and only if (i)
R is not a division ring and (ii) for all a, b ∈ R with a �= 0 we have b �ring a [1,
Proposition 10]; in particular, R is simple and algebraically purely infinite if and
only if R is algebraically purely infinite simple.

The next lemma is an algebraic version, for s-unital rings, of [21, Lemma 3.17].

Lemma 2.3. Suppose that R is an s-unital ring. Let p, q, a ∈ R, and suppose that q
is an idempotent, and that p is an infinite idempotent.

(1) If p �ring a, then a is algebraically infinite.

(2) If p ≤ring q, then q is an infinite idempotent.

(3) If p ∼ring q, then q is an infinite idempotent.

Proof. (1) is precisely [6, Lemma 3.9(iii)]. For (2), suppose that p ≤ring q. By
Remark 2.2(1), p �ring q. Since p is algebraically infinite, (1) gives that q is also
algebraically infinite.
For (3), suppose p ∼ring q. Then there exist r, s ∈ R such that rs = p and sr = q. Let

α = r and β = s. Then

αqβ = rqs = r(sr)s = (rs)2 = p2 = p.

Now p ≤ring q and p is algebraically infinite, and so q is algebraically infinite by (1). �

2.2. C∗-algebraic preliminaries

Let A be a C∗-algebra. We write A+ for the positive elements of A, and then A+ =
{a∗a : a ∈ A}. We write C0(X) for the C∗-algebra of continuous functions from X to C

that vanish at infinity. The following definitions come from [21].

Definition 2.4. Let A be a C∗-algebra, let p and q be projections in A, and let
a, b ∈ A+, x ∈ Mk(A) and y ∈ Mn(A).

(1) a ≤C∗ b if b− a ∈ A+.

(2) a <C∗ b if a ≤C∗ b and a �= b.

(3) p ∼C∗ q if there exists t ∈ A such that tt∗ = p and t∗t = q.
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(4) x �C∗ y if there exists a sequence {αi} ⊆ Mk,n(A) such that αiyα
∗
i → x in norm.

(5) p is an infinite projection if there exists a projection q such that p ∼C∗ q <C∗ p.

(6) p is a C∗-properly infinite projection if there exist mutually orthogonal projections
q1 and q2 such that q1 ≤ p, q2 ≤ p and q1 ∼C∗ p ∼C∗ q2.

(7) a is C∗-infinite if there exists a non-zero t ∈ A+ such that a⊕ t �C∗ a.

(8) a is C∗-properly infinite if a �= 0 and a⊕ a �C∗ a.

(9) A C∗-subalgebra B ⊆ A is hereditary if a ≤C∗ b and b ∈ B implies a ∈ B.

(10) A is C∗-purely infinite simple if A is simple (A has no non-trivial closed ideals) and
every hereditary subalgebra contains an infinite projection.

(11) A is C∗-purely infinite if
(a) there are no non-zero ∗-homomorphisms from A to C, and

(b) for every a, b ∈ A+ we have b �C∗ a if and only if b ∈ AaA.

Remark 2.5. As in the algebraic situation there are relationships between these
notions.

(1) By [21, Lemma 3.1], a projection p is a C∗-infinite projection if and only if it
is C∗-infinite. Similarly, p is a C∗-properly infinite projection if and only if p is
C∗-properly infinite.

(2) By Theorem 4.16 of [21], a C∗-algebra A is C∗-purely infinite if and only if every
non-zero positive element of A is C∗-properly infinite. There is no algebraic analogue
of [21, Theorem 4.16]; see [6, Examples 3.5] for a counter-example.

(3) By [21, Proposition 5.4], a C∗-algebra A that is simple and C∗-purely infinite is
C∗-purely infinite simple. By [21, Proposition 4.7], a C∗-algebra A being C∗-purely
infinite simple implies that A is simple and A is C∗-purely infinite. Thus the two
notions of C∗-purely infinite are compatible for simple C∗-algebras.

Lemma 2.6. Let A be a C∗-algebra and A0 a dense subalgebra. Let p be a projection
in A0. If p is an infinite idempotent in A0, then p is an infinite projection in A.

Proof. Since p is an infinite idempotent in A0, there exists an idempotent e ∈ A0 such
that p ∼ring e <ring p. Thus eA � pA. By [33, Exercise 3.11(1)], there exists a projection
q ∈ A such that e ∼ring q in A and eA = qA. Since ∼ring is transitive, we have p ∼ring q
in A. Thus we have p ∼C∗ q by, for example, [33, Exercise 3.11(2)]. Also, since pA �=
eA = qA, we have q �= p. To see that q ≤C∗ p, we show that pq = q, which suffices by [24,
Theorem 2.3.2]. Since qA � pA, there exists a ∈ A such that q2 = pa, that is, q = pa. So
pq = p2a = pa = q. Thus p is an infinite projection. �
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2.3. Groupoids and groupoid algebras

Let G be a topological groupoid. We write G(0) for the unit space of G, and r, s : G →
G(0) for the range and source maps. An open subset B of G is an open bisection if the
source and range maps restrict to homeomorphisms on B, and r(B) and s(B) are open
subsets of G(0). We say that G is ample if G has a basis of compact open bisections.
Equivalently, G is ample if G is étale and its unit space G(0) is totally disconnected (see
[17, Proposition 4.1]). In this paper, we consider only ample Hausdorff groupoids.
Let G be an ample Hausdorff groupoid and let K be a field. The Steinberg algebra

AK(G) is the K-algebra of functions from G to K that are both locally constant and
compactly supported. Addition is defined pointwise. The multiplication is convolution:
for f, g ∈ AK(G), we have

(f ∗ g)(γ) =
∑
αβ=γ

f(α)g(β).

When K has an involution k �→ k, we define an involution f �→ f∗ on AK(G) by

(f∗)(γ) = f(γ−1).

We write A(G) for AC(G).
Let B be a compact open bisection, and write 1B for the characteristic function from

B to K. We will often use the fact that every f in AK(G) can be expressed as a sum

f =
∑
B∈F

cB1B ,

where F is a finite set of disjoint compact open bisections and 0 �= cB ∈ K for each B ∈ F .
For compact open bisections B and C, we have

1B ∗ 1C = 1BC and 1∗B = 1B−1 .

Indeed, the compact open bisections in an ample groupoid form an inverse semigroup
under the operations

BC = {γη : r(η) = s(γ), γ ∈ B, η ∈ C} and B−1 = {γ−1 : γ ∈ B},
and the multiplication in AK(G) agrees with these operations. Every Steinberg algebra is
s-unital by [11, Lemma 2.6]. See [12,36] for more information about Steinberg algebras.

The reduced groupoid C∗-algebra C∗
r (G) was introduced in [30], and for ample

groupoids the definition reduces as follows. With convolution and involution as above,
the set Cc(G) of continuous compactly supported functions from G to C is a ∗-algebra.
Let u ∈ G(0). Set Gu = {γ ∈ G : s(γ) = u}. Write δγ for the basis of point masses in
�2(Gu). There is a ∗-representation Ru : Cc(G) → B(�2(Gu)) such that, for f ∈ Cc(G)
and γ ∈ Gu,

Ru(f)δγ =
∑

{α∈G:s(α)=r(γ)}
f(α)δαγ .

The reduced C∗-algebra C∗
r (G) is the completion of the image of Cc(G) under the direct

sum
⊕

u∈G(0) Ru. By construction, the complex Steinberg algebra A(G) is a dense ∗-
subalgebra of C∗

r (G).
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We say that G is effective if, for every compact open bisection B ⊆ G \G(0), there
exists γ ∈ B such that s(γ) �= r(γ). (See [8, Lemma 3.1] and [31, Corollary 3.3] for some
equivalent characterizations of effective groupoids.) We say that G is minimal if G(0)

has no non-trivial open invariant subsets. By [10, Theorem 4.1], AK(G) is algebraically
simple if and only if G is minimal and effective. If G is second-countable, minimal and
effective, then C∗

r (G) is C∗-simple, and the converse holds if G is amenable (see, for
example, [8, Theorem 5.1]).

Since G is ample, the unit space G(0) is open in G, and we may view C0(G
(0)) as a

subalgebra of C∗
r (G). For f, g ∈ C0(G

(0)), we have

f ≤C∗ g if and only if f(x) ≤ g(x), for all x ∈ G(0).

3. Algebraically purely infinite simple Steinberg algebras

By combining [9, Theorem 4.1] and Lemma 2.6, we get the following interesting result.

Corollary 3.1. Let G be a second-countable ample Hausdorff groupoid. Suppose that
G is minimal and effective. IfA(G) is algebraically purely infinite, then C∗

r (G) is C∗-purely
infinite.

Proof. Since G is minimal and effective, by [9, Theorem 4.1] it suffices to show that
1U is an infinite projection for every compact open U ⊆ G(0). Since A(G) is algebraically
purely infinite simple, every idempotent is infinite [4, Proposition 1.5]. Thus every 1U
with U ⊆ G(0) is an infinite idempotent in A(G) and hence the result follows from
Lemma 2.6. �

We now prove the algebraic analogue of [9, Theorem 4.1].

Theorem 3.2. Let K be a field and let G be an ample Hausdorff groupoid. Suppose
that G is minimal and effective. Then AK(G) is algebraically purely infinite simple if and
only if 1U is an infinite idempotent for every compact open U ⊆ G(0).

Proof. By [10, Theorem 4.1], AK(G) is algebraically simple if and only if G is minimal
and effective.
First suppose that AK(G) is algebraically purely infinite simple. Then all non-zero

idempotents are infinite by [4, Proposition 1.5]. In particular, 1U is an infinite idempotent
for every compact open U ⊆ G(0).

Conversely, assume 1U is an infinite idempotent for every compact open U ⊆ G(0). Fix a
non-zero right ideal I ⊆ AK(G). We need to show that I contains an infinite idempotent.
Let 0 �= b ∈ I and write

b =
∑
B∈F

cB1B ,

where F is a finite set of disjoint compact open bisections and 0 �= cB ∈ K for each B ∈ F .
Fix B0 ∈ F . Then

c−1
B0

b1B−1
0

= 1r(B0) +
∑

B∈F,B �=B0

c−1
B0

cB1BB−1
0

.
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Since F is a disjoint collection, for each B �= B0 we have BB−1
0 ⊆ G \G(0). So

L :=
⋃

B∈F,B �=B0

BB−1
0

is a compact open subset of G \G(0). Let U := r(B0). Then U is a compact open subset
of G(0). Since G is effective, we apply [8, Lemma 3.1(4)] to get a non-empty open set
V ⊆ U such that V LV = ∅. Now

1V (c
−1
B0

b1B−1
0

)1V = 1V

(
1r(B0) +

∑
B∈F,B �=B0

c−1
B0

cB1BB−1
0

)
1V

= 1V +
∑

B∈F,B �=B0

c−1
B0

cB1V BB−1
0 V

= 1V .

Set p := (c−1
B0

b1B−1
0

)1V . Then p ∈ I and

p2 = (c−1
B0

b1B−1
0

)(1V (c
−1
B0

b1B−1
0

)1V ) = (c−1
B0

b1B−1
0

)1V = p.

Thus p is a non-zero idempotent in I. Further, 1V p = 1V and p1V = p, and hence p ∼ring

1V . �

Corollary 3.3. Let K be a field, let G be an ample Hausdorff groupoid and let B be a
basis forG(0) consisting of compact open subsets. Suppose thatG is minimal and effective.
Then AK(G) is algebraically purely infinite simple if and only if 1U is an algebraically
infinite idempotent for every compact open U ∈ B.

Proof. The forward implication is immediate from Theorem 3.2. For the reverse im-
plication, suppose that 1U is an algebraically infinite idempotent for every compact open
U ∈ B. Fix a compact open subset V ⊆ G(0). By Theorem 3.2, it suffices to show that 1V
is an infinite idempotent. Since B is a basis, there exists W ∈ B such that W ⊆ V . Then

1W 1V = 1W = 1V 1W ,

and so 1W ≤ring 1V . By assumption, 1W is an algebraically infinite idempotent. Since
AK(G) is s-unital, Lemma 2.3(2)) applies, and 1V is an algebraically infinite idempotent
as well. �

A Hausdorff ample groupoid G is locally contracting [2, Definition 2.1] if, for every
compact open U ⊆ G(0), there exists a non-empty compact open bisection B ⊆ G such
that

s(B) � r(B) ⊆ U.

The following corollary to Theorem 3.2 is the algebraic analogue of [2, Proposition 2.4]
which gives a useful sufficient condition for a C∗-algebra to be C∗-purely infinite simple.
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Corollary 3.4. Let K be a field and let G be an ample Hausdorff groupoid. Suppose
that G is minimal, effective and locally contracting. Then AK(G) is algebraically purely
infinite simple.

Proof. Fix U ⊆ G(0). By Theorem 3.2, it suffices to show that 1U is an infinite idem-
potent. Since G is locally contracting, there exists a compact open bisection B ⊆ G such
that s(B) � r(B) ⊆ U . Then

1s(B)1r(B) = 1s(B) = 1r(B)1s(B)

gives 1s(B) ≤ring 1r(B), and s(B) � r(B) gives 1s(B) <ring 1r(B). Further,

1B−11B = 1B−1B = 1s(B) and 1B1B−1 = 1BB−1 = 1r(B)

and so 1r(B) ∼ring 1s(B). Thus

1r(B) ∼ring 1s(B) <ring 1r(B).

Therefore 1r(B) is an infinite idempotent. Since 1r(B) ≤ring 1U , 1U is algebraically infinite
by Lemma 2.3(2). By [6, Remarks 2.7], 1U is an algebraically infinite idempotent as
required. �

4. A larger dense subalgebra

We want to connect the notion of C∗-purely infinite simplicity in the C∗-algebra with
some kind of algebraic pure infiniteness. Corollary 3.1 is a start, but we seek an if and
only if characterization and A(G) seems too small. Even with the assumption that G is
minimal and effective, if C∗

r (G) does not have an identity, then it is not s-unital and it
is not algebraically simple: for example, the Pedersen ideal (see [27, Theorem 5.6.1]) is
always a non-trivial dense non-closed ideal.
We now introduce a large s-unital subalgebra of C∗

r (G). Define

B(G) := {1Ux1U : x ∈ C∗
r (G) and U ⊆ G(0) is a compact open set}.

It is straightforward to check that A(G) is a subset of B(G). Since the Pedersen ideal
contains all the projections of C∗

r (G) (see [27, 5.6.3]), it contains all elements of the form
1U for compact open U ⊆ G(0). Thus B(G) is contained in the Pedersen ideal.
We apply techniques from [6, Theorem 3.17] to see that whenG is minimal and effective,

B(G) is algebraically properly infinite if and only if C∗
r (G) is C∗-purely infinite.

Lemma 4.1. Let G be an ample Hausdorff groupoid. Then B(G) is a dense s-unital
subalgebra of C∗

r (G).

Proof. That B(G) is dense in C∗
r (G) follows because A(G) ⊆ B(G) and A(G) is dense

in C∗
r (G) by [12, Proposition 4.2]. For any 1Ux1U ∈ B(G), we have 1U (1Ux1U )1U =

1Ux1U , and so B(G) is s-unital. To see that B(G) is a subalgebra, fix b1 := 1U1
x1U1
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and b2 := 1U2
x1U2

in B(G) and r ∈ C. Let U := U1 ∪ U2. Then U is compact and open
because the Ui are. Then

b1 − b2 = 1U (1U1
x1U1

− 1U2
x1U2

)1U ∈ B(G).

Similarly,

b1b2 = 1U (1U1
x1U1

1U2
x1U2

)1U ∈ B(G) and rb1 = r1U1
x1U1

= 1U1
(rx)1U1

∈ B(G). �

Remark 4.2. If G(0) is compact, then C∗
r (G) is unital with unit 1G(0) . Thus, for any

x ∈ C∗
r (G), x = 1G(0)x1G(0) and hence B(G) = C∗

r (G).

Proposition 4.3. Let G be a second-countable ample Hausdorff groupoid. Suppose
that G is minimal and effective. If B(G) is algebraically properly infinite, then C∗

r (G) is
C∗-purely infinite.

Proof. We show that C∗
r (G) is C∗-purely infinite by verifying the two conditions of

Definition 2.4(11). First, we have to show that there are no non-zero C∗-homomorphisms
from C∗

r (G) to C. Aiming for a contradiction, suppose that there is a non-zero C∗-
homomorphism π : C∗

r (G) → C. Since G is minimal and effective, C∗
r (G) is simple [30,

Proposition II.4.6], so π is injective, and C∗
r (G) is C∗-isomorphic to C. In particular,

A(G) is isomorphic to C. But A(G) is algebraically purely infinite, and hence contains an
infinite idempotent. But then so does C, a contradiction. Hence, there are no non-zero
homomorphisms from C∗

r (G) to C.
Second, we have to show that, for x, y ∈ C∗

r (G)+, we have y �C∗ x if and only if
y ∈ C∗

r (G)xC∗
r (G). Since C∗

r (G) is simple, C∗
r (G)xC∗

r (G) = C∗
r (G); so it suffices to show

that y �C∗ x for all x, y ∈ C∗
r (G)+. Fix x, y ∈ C∗

r (G)+. Since B(G) is dense in C∗
r (G),

we have

B(G)xB(G) = C∗
r (G)xC∗

r (G) = C∗
r (G).

Fix ε > 0. Since y is a positive element, so is
√
y. Since

√
y ∈ B(G)xB(G), there exists a

sequence bn ∈ B(G)xB(G) such that bn → √
y. Since B(G)B(G)xB(G) ⊆ B(G) we have

bnb
∗
n ∈ B(G)xB(G)B(G)xB(G) ⊆ B(G)xB(G)

and bnb
∗
n → y. Thus there exists a positive b ∈ B(G)xB(G) such that ‖b− y‖ < ε. Now

[21, Lemma 2.5(ii)] gives (y − ε)+ �C∗ b. Since ε was fixed, [21, Proposition 2.6] gives
y �C∗ b.
We claim that b �C∗ x. By the definition of B(G)xB(G), there exist ci, di ∈ B(G)

such that b =
∑k

i=1 cixdi, and hence there exists a compact open subset W of G(0) such

that b =
∑k

i=1 1W ci1Wx1W di1W . Thus b ∈ B(G)1Wx1WB(G). Since B(G) is s-unital (by
Lemma 4.1) and is algebraically properly infinite (by Proposition 4.6), it follows from [6,
Lemma 3.4(i)] that B(G) is algebraically purely infinite. Thus by Definition 2.1(12b),
b ∈ B(G) ∩B(G)1Wx1WB(G) implies b �ring 1Wx1W in B(G), that is, there exist
c, d ∈ B(G) such that

b = c(1Wx1W )d = (c1W )x(1W d).

Now applying [32, Proposition 2.4 (iii) ⇒ (ii)] to the positive elements b, x of C∗
r (G) and

the constant sequences c1W , 1W d gives a sequence {rn} ⊆ C∗
r (G) such that rnxr

∗
n → b.

Thus b �C∗ x. Since �C∗ is transitive, we get y �C∗ x. �
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Lemma 4.4. If 1U is a C∗-properly infinite projection in C∗
r (G), then 1U is an

algebraically properly infinite idempotent in B(G).

Proof. Let p := 1U be an algebraically properly infinite projection in C∗
r (G). By the

definition of algebraically properly infinite projection, there exist q1, q2, x, y ∈ C∗
r (G) such

that

x∗x = p, xx∗ = q1 ≤C∗ p, y∗y = p, and yy∗ = q2 ≤C∗ p− q1.

Thus x and y are partial isometries in C∗
r (G) with range projections q1 and q2, re-

spectively, and source projection p. Thus xp = x and q1x = x, and similarly for y. Take
x′ := pxp and y′ := pyp. Then x′, y′ ∈ B(G). Now let z be the 1× 2 matrix [x′ y′]. It is
straightforward to check that

z∗z = p⊕ p and zz∗ = q1 + q2 ≤C∗ p.

Thus p is an algebraically properly infinite idempotent in B(G). �

Lemma 4.5. Let G be a minimal and effective groupoid. Suppose that U, V ⊆ G(0) are
non-empty compact open sets such that 1U is an algebraically properly infinite idempotent
in B(G). Then 1V �ring 1U in B(G).

Proof. Since G is minimal and effective, A(G) is simple. Thus the ideal generated by
1U in A(G) is all of A(G). Therefore, there exist ai, bi ∈ A(G) such that

1V =

n∑
i=1

ai1Ubi

�ring

n⊕
i=1

ai1Ubi by [6, Lemma 2.2(vi)] because A(G) is s-unital

�ring

n⊕
i=1

1U by [6, Lemma 2.2(ii)]

�ring 1U in B(G)

because 1U is algebraically properly infinite in B(G). Finally, since �ring is transitive by
[6, Lemma 2.2(i)], we have 1V �ring 1U in B(G). �

Proposition 4.6. Let G be a second-countable ample Hausdorff groupoid. Suppose
that G is minimal and effective, and that C∗

r (G) is C∗-purely infinite. Then the algebra

B(G) = {1Ux1U : x ∈ C∗
r (G) and U ⊆ G(0) is a compact open set}

of Lemma 4.1 is algebraically properly infinite.

Proof. Since G is minimal and effective, C∗
r (G) is C∗-purely infinite simple. Then

[21, Theorem 4.16] says that every positive element of C∗
r (G) is C∗-properly infinite. In

particular, for every compact open U ⊆ G(0), 1U is a C∗-properly infinite projection in
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C∗
r (G). So Lemma 4.4 says every 1U is an algebraically properly infinite idempotent in

B(G).
Fix a non-zero a ∈ B(G). We need to show that a is algebraically properly infinite,

that is, that a⊕ a �ring a. Since a ∈ B(G), there exist a compact open V ⊆ G(0) and
x ∈ C∗

r (G) such that a = 1V x1V .
We claim that there exists a compact open U ⊆ G(0) such that 1U �ring a∗a in B(G).

Since a∗a is positive, by the proof of [9, Lemma 3.2] there exists a non-zero h ∈ C0(G
(0))+

such that h �ring a∗a in C∗
r (G). (The statement of [9, Lemma 3.2] gives h such that

h �C∗ a∗a, but a look at the proof shows h �ring a∗a.) Since h ∈ C0(G
(0))+ \ {0}, there

exists a compact open subset U of G(0) such that h(u) > 0 for all u ∈ U . Define g by

g(u) =

⎧⎨
⎩

1√
h(u)

if u ∈ U,

0 otherwise.

Then g ∈ C0(G
(0)), and ghg = 1U . Thus 1U �ring h in C∗

r (G). Now the transitivity of
�ring gives 1U �ring a∗a in C∗

r (G). In particular, there exists y, z ∈ C∗
r (G) such that

za∗ay = 1U .
Let W := U ∪ V . Then 1U = 1W 1U1W and a∗a = 1V x

∗1V 1V x1V = 1W a∗a1W , and

1W z1Wa∗a1W y1W = 1W za∗ay1W = 1W 1U1W = 1U .

Thus 1U �ring a∗a in B(G), as claimed.
We have a∗a = a∗a1V and a∗ = 1V x

∗1V ∈ B(G), and hence

a∗a = a∗a1V = (1V x
∗1V )a(1V ).

Thus a∗a �ring a in B(G). Now 1U �ring a in B(G) by transitivity of �ring.
Since B(G) is s-unital and 1U an algebraically properly infinite idempotent in B(G),

we apply [6, Lemma 3.9(ii)] to get that

a⊕ 1U �ring a

in B(G). We have a �ring 1V because a = (1V x1V )1V (1V ) and Lemma 4.5 implies
1V �ring 1U in B(G). The transitivity of �ring implies a �ring 1U in B(G). We also have
a �ring a because B(G) is s-unital, and so

a⊕ a �ring a⊕ 1U

by [6, Lemma 2.2(ii)]. Finally, transitivity gives a⊕ a �ring a in B(G). �

Combining Propositions 4.3 and 4.6, we get our main theorem.

Theorem 4.7. Let G be a second-countable ample Hausdorff groupoid. Suppose that
G is minimal and effective. Then B(G) is algebraically properly infinite if and only if
C∗

r (G) is C∗-purely infinite simple.

Theorem 4.7 together with Corollary 3.1 give the following corollary.
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Corollary 4.8. Let G be an ample Hausdorff groupoid. Suppose that G is effective
and minimal. If A(G) is algebraically purely infinite, then B(G) is algebraically properly
infinite.

We conclude this section with some open questions.

Questions 4.9.

(1) Is there a groupoid G such that A(G) is algebraically purely infinite simple and
C∗

r (G) is not algebraically purely infinite?

(2) Is there a groupoid G such that C∗
r (G) is C∗-purely infinite simple and A(G)

is not algebraically purely infinite simple? (In other words, does the converse of
Corollary 3.1 fail?)

(3) Let U be a compact open subset of G(0). If 1U is an infinite projection in C∗
r (G), is

it an infinite idempotent in A(G)? This would be a kind of converse to Lemma 2.6.

5. Kumjian–Pask algebras

In this section we show how our results apply to the subclass of algebras associated
with higher-rank graphs. C∗-purely infinite simple C∗-algebras of higher-rank graphs
are considered in [9,14,16,25,26,34], but, in general, a condition on the graph that
characterizes pure infiniteness has remained elusive.
Kumjian–Pask algebras were defined in [5] for higher-rank graphs without sources, and

were then generalized to locally convex graphs in [13] and to finitely aligned graphs in
[15]. The groupoids built from k-graphs are described, for example, in [18,20,22,38]. To
make our exposition as self-contained as possible we will include some of this construction
below.
We view Nk as a category with one object and composition given by addition. A higher-

rank graph of rank k or k-graph is a countable category Λ with a functor d : Λ → Nk,
called the degree map, that satisfies a unique factorization property : if λ ∈ Λ with d(λ) =
m+ n, then there exist paths μ, ν ∈ Λ such that d(μ) = m, d(ν) = n and λ = μν. We
call the domain and codomain of a morphism λ the source and range of λ, respectively,
and write s(λ) and r(λ) for them. We call the objects and morphisms in Λ vertices
and paths, respectively; we denote the set of vertices by Λ0 and the set of paths by
Λ. Thus s, r : Λ → Λ0. For v ∈ Λ0 and n ∈ Nk, we set vΛ := r−1(v), Λn := d−1(n) and
vΛn := vΛ ∩ Λn.
For m = (m1, . . . ,mk) and n = (n1, . . . , nk) ∈ Nk, we define

m ∧ n := (min{m1, n1}, . . . ,min{mk, nk}),
m ∨ n := (max{m1, n1}, . . . ,max{mk, nk}).

Let λ, μ ∈ Λ. If d(λ) = m+ n, we write λ(0,m) and λ(m,m+ n) for the unique paths
of degree m and n such that λ = λ(0,m)λ(m,m+ n). Then τ ∈ Λ is a minimal common
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extension of λ and μ if

d (τ) = d (λ) ∨ d (μ) , τ (0, d (λ)) = λ and τ (0, d (μ)) = μ.

We define

Λmin (λ, μ) := {(ρ, τ) ∈ Λ× Λ : λρ = μτ is a minimal common extension of λ, μ} .
Then Λ is finitely aligned if Λmin(λ, μ) is finite (possibly empty) for all λ, μ ∈ Λ. This class
of k-graphs was introduced in [28] and is the most general type of k-graph considered in
the literature.
A set E ⊆ vΛ is exhaustive if, for every λ ∈ vΛ, there exists μ ∈ E such that

Λmin(λ, μ) �= ∅. The set of finite exhaustive sets is then

FE (Λ) =
⋃

v∈Λ0

{E ⊆ vΛ\ {v} : E is finite and exhaustive} .

The unit space of the groupoid of a finitely aligned higher-rank graph consists of the
set of boundary paths, defined as follows. First, for k ∈ N and m ∈ (N ∪ {∞})k, let Ωk,m

be the category with objects {p ∈ Nk : p ≤ m}, morphisms

{(p, q) : p, q ∈ Nk, p ≤ q ≤ m},
r(p, q) = p and s(p, q) = q. With degree functor d(p, q) = q − p, Ωk,m is a k-graph. A
degree-preserving functor x : Ωk,m → Λ is a boundary path of Λ if, for all n ∈ Nk with
n ≤ m and all E ∈ x(n, n) FE(Λ), there exists λ ∈ E such that x(n, n+ d(λ)) = λ. We
write ∂Λ for the set of all boundary paths.
For p ∈ Nk and λ ∈ Λp, we define σp(λ) = λ(p, d(λ)). As a set, the groupoid of a finitely

aligned higher-rank graph is

GΛ := {(x,m, y) ∈ ∂Λ× Zk × ∂Λ : there exists p, q ∈ Nk such that p ≤ d (x) , q ≤ d (y) ,

p− q = m and σp(x) = σq(y)}.
The range of (x,m, y) ∈ GΛ is x and its source is y. Composition is given by

(x,m, y)(y, n, z) = (x,m+ n, z),

and a computation shows that this is well defined. We identify ∂Λ with G
(0)
Λ by x �→

(x, 0, x).
When endowed with the topology described in [38],GΛ is a second-countable, Hausdorff

and ample groupoid. For λ ∈ Λ and finite subsets F of s(λ)Λ, define

Z(λ) := {x ∈ ∂Λ : x(0, d(λ)) = λ} and Z(λ\F ) := Z(λ)\
( ⋃

ν∈F

Z(λν)

)
.

Then the unit space G
(0)
Λ has a basis of compact open sets of the form Z(λ\F ). For each

λ, μ ∈ Λ with s(λ) = s(μ), define

Z(λ, μ) := {(λx, d(λ)− d(μ), μx) : x ∈ ∂Λ and s(λ) = s(μ) = r(x)}.
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Then the basis for the topology on GΛ consists of sets of the form

Z(λ, μ \ F ) := Z(λ, μ) \
( ⋃

ν∈F

Z(λν, μν)

)
,

where again F is a finite subset of s(λ)Λ. The subspace topology of G
(0)
Λ is the one

described above.
Given a field K, we define the Kumjian–Pask algebra and the C∗-algebra of Λ by

KPK(Λ) := AK(GΛ) and C∗(Λ) := C∗
r (GΛ),

respectively. These definitions are consistent with previous definitions in the literature via
the isomorphism characterized by sμ �→ 1Z(μ,s(μ)) (see [15, Proposition 5.4] for KPK(Λ)
and [18, Theorem 6.9] for C∗(Λ)). To be consistent with the literature we write sv :=
1Z(v,v) and sμ := 1Z(μ,s(μ)). We write KP(Λ) for KPC(Λ).
A k-graph Λ is cofinal if, for all v ∈ Λ0 and x ∈ ∂Λ, there exists n ≤ d(x) such that

vΛx(n) is non-empty. A k-graph is aperiodic if, for all v ∈ Λ0, there exists x ∈ v∂Λ such
that αx = βx implies α = β. By [15, Proposition 7.1], GΛ is minimal if and only if Λ is
cofinal; and by [15, Proposition 6.3], GΛ is effective if and only if Λ is aperiodic.

Corollary 5.1. Let Λ be a finitely aligned higher-rank graph. Suppose that Λ is cofinal
and aperiodic. Then KP(Λ) is algebraically purely infinite simple if and only if sv is an
infinite idempotent for all v ∈ Λ0.

Proof. Suppose that KP(Λ) is algebraically purely infinite simple. Fix v ∈ Λ0. Then

Z(v) is a compact open subset of ∂Λ = G
(0)
Λ . Thus sv = 1Z(v) is an infinite idempotent

by Theorem 3.2.
Conversely, suppose that sv is an infinite idempotent for all v ∈ Λ0. We consider the

basis B = {Z(λ \ F ) : λ ∈ Λ, finite F ⊆ s(λ)Λ} of compact open sets for G
(0)
Λ , and seek

to apply Corollary 3.3. First, consider a non-empty Z(λ). Then we have

1Z(λ) = sλsλ∗ ∼ring sλ∗sλ = ss(λ).

By assumption, ss(λ) is an infinite idempotent. Since KP(Λ) is s-unital, sλsλ∗ is an infinite
idempotent by Lemma 2.3(3). It follows that 1Z(λ) is an infinite idempotent in KP(Λ).
Second, consider a non-empty Z(λ \ F ). Then there exists λ′ ∈ s(λ)Λ such that

Z(λλ′) ⊆ Z(λ \ F ). Then

1Z(λλ′) ≤ring 1Z(λ\F ),

and 1Z(λλ′) is infinite by Lemma 2.3(2). Thus KP(Λ) algebraically purely infinite simple
by Corollary 3.3. �

Corollary 5.2. Let Λ be a finitely aligned higher-rank graph. Suppose that Λ is cofinal
and aperiodic.

(1) If KP(Λ) is algebraically purely infinite simple, then C∗(Λ) is C∗-purely infinite
simple.
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(2) Suppose that sv is an infinite idempotent in KP(Λ) for all v ∈ Λ0. Then each sv is
an infinite projection in C∗(Λ).

Proof. (1) is immediate from Theorem 4.7.
(2) Since sv is an infinite idempotent in KP(Λ) for all v ∈ Λ0, KP(Λ) is alge-

braically purely infinite simple by Corollary 5.1. Since KP(Λ) and A(GΛ) are isomorphic,
Theorem 4.7 implies that C∗(Λ) is C∗-purely infinite simple. Then every projection in
C∗(Λ) is an infinite projection by [9, Corollary 5.1]. �

We now connect our work with that of Larki in [23]. Recall from [16, Lemma 3.2] that
a pair (μ, ν) is called a generalized cycle if Z(μ) ⊆ Z(ν). This generalized cycle has an
entrance if the containment is strict.
Let Λ be a finitely aligned, aperiodic and cofinal k-graph such that every vertex of Λ

can be reached from a generalized cycle with an entrance. Then [23, Theorem 5.4] implies
that KP(Λ) is algebraically purely infinite simple. The next lemma shows that this also
follows from Corollary 3.4.

Lemma 5.3. Let Λ be a finitely aligned higher-rank graph. Suppose that every ver-
tex of Λ can be reached from a generalized cycle with an entrance. Then GΛ is locally
contracting.

Proof. Fix a non-empty compact open U ⊆ G(0). Then there exist λ ∈ Λ and a finite
subset F of s(λ)Λ such that ∅ �= Z(λ \ F ) ⊆ U . Further, since every vertex can be reached
from a generalized cycle, Z(λ \ F ) �= {λ}. Thus there exists λ′ ∈ s(λ)Λ such that d(λ′) �= 0
and Z(λλ′) ⊆ Z(λ \ F ). By assumption, s(λ′) can be reached from a generalized cycle
(μ, ν) with an entrance. Suppose λλ′βμ ∈ Λ. Then (λλ′βμ, λλ′βν) is a generalized cycle
with an entrance. Then

B = Z(λλ′βμ, λλ′βν)

is a compact open bisection with

s(B) = Z(λλ′βν) � Z(λλ′βμ) = r(B) ⊆ U.

Thus GΛ is locally contracting. �

We now restrict to row-finite locally convex k-graphs. Let Λ be a k-graph. Then Λ is
row-finite if vΛn is finite for all v ∈ Λ0 and n ∈ Nk; Λ is locally convex if, for every distinct
i, j ∈ {1, . . . , k}, v ∈ Λ0 and paths λ ∈ vΛei , μ ∈ vΛej , the sets s(λ)Λej and s(μ)Λei are
non-empty. Since our graphs might have sources, for n ∈ N we define

Λ≤n := {λ ∈ Λ : d(λ) ≤ n and s(λ)Λei = ∅ whenever d(λ) + ei ≤ n}.
When Λ is locally convex, by [37, Proposition 2.12] the boundary path space ∂Λ equals

Λ≤∞ := {x : Ωk,m → Λ : x is a functor such that if v ∈ Ω0
k,m and vΩ≤ei

k,m = {v},
then x(v)Λ≤ei = {x(v)}}.

A path α ∈ Λ \ Λ0 is a return path if r(α) = s(α); a return path α has an entrance
if there exists a δ ∈ s(α)Λ with d(δ) ≤ d(α) and α(0, d(δ)) �= δ. Our aim is to prove the
following proposition.
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Proposition 5.4. Let Λ be a row-finite locally convex higher-rank graph. Suppose
that Λ is cofinal and aperiodic, and that Λ contains a return path with an entrance.
Then each vertex in Λ can be reached from a return path with an entrance.

We then obtain the following corollary.

Corollary 5.5. Let Λ be a row-finite locally convex higher-rank graph. Suppose that
Λ is cofinal and aperiodic, and that Λ contains a return path with an entrance. Then
KP(Λ) and C∗(Λ) are algebraically and C∗-purely infinite simple, respectively.

Proof. Let μ be a return path with an entrance. Then (μμ, μ) is a generalized cycle
with an entrance. Then Proposition 5.4 implies that every vertex can be reached from
a generalized cycle. By [23, Theorem 5.4], KP(Λ) is algebraically purely infinite simple.
Then C∗(Λ) is C∗-purely infinite simple by Theorem 4.7. �

For 1-graphs, Proposition 5.4 follows directly from cofinality: if α is a return path with
an entrance, then x = αα · · · is a boundary path, and cofinality implies that, for every
v ∈ Λ0, there exists μv ∈ vΛ such that s(μv) is a vertex on x and hence on α. When we
try to apply this idea to a general k-graph it fails: x = αα · · · may not be a boundary
path. In fact, x is not a boundary path whenever d(α) ∧ (1, 1, . . . , 1) �= (1, 1, . . . , 1). The
keys to proving Proposition 5.4 are Lemma 5.6 and Corollary 5.7, where we construct a
boundary path x that has enough return paths with entrances.

Lemma 5.6. Let Λ be a row-finite and locally convex higher-rank graph. Suppose
that Λ has a return path α with an entrance and that there exists μ ∈ s(α)Λ \ {s(α)}
with d(μ) ∧ d(α) = 0. Then there exist P ∈ N, a return path β with an entrance such
that d(β) = Pd(α), and a path from s(β) to s(α) of degree at least d(μ).

Proof. Let α be a return path with an entrance δ. We may extend δ until δ ∈
s(α)Λ≤d(α). By assumption, there exists μ ∈ s(α)Λ \ {s(α)} with d(μ) ∧ d(α) = 0.

By local convexity applied to the pair (μ, δ), there exists μ0 ∈ s(δ)Λd(μ). If s(δ) = r(δ)
we can take μ0 = μ. We will now use the unique factorization property to construct the
path β.
Consider δμ0. Applying the unique factorization property to the path δμ0 gives μ1 ∈

s(α)Λd(μ) and γ1 ∈ Λ≤d(α)s(μ0) such that

δμ0 = μ1γ1.

By the unique factorization property and induction, for i ≥ 2 there exist μi ∈ s(α)Λd(μ)

and γi ∈ Λd(α)s(μi−1) such that

αμi−1 = μiγi. (5.1)

Notice that {μi : i ≥ 0} ⊆ s(α)Λd(μ) is finite because Λ is row-finite. So there exists i �= j
such that μi = μj , and in particular s(μi) = s(μj). Let m,n ∈ N with m < n be such that
(m,n) is smallest with respect to the dictionary order and such that μm = μn. Then

θ := γnγn−1 · · · γm+1

is a return path.
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First, suppose that m �= 0. By the minimality of (m,n), γm �= γi for m+ 1 ≤ i ≤ n,
and hence γm is an entrance to θ. Notice that δμ0γ1 . . . γm is a path of degree more than
d(μ) from s(θ) to s(α). Since d(γi) = d(α) for i ≥ 2, we get that β := θ with P = m− n
satisfies the lemma.
Second, suppose that m = 0. Then

θ = γn · · · γ1.
Here θ is a return path, but it may not have an entrance. We will construct another
return path with an entrance as required. Since μn = μ0, we have s(α) = r(δ) = s(δ). In
particular, d(δ) = d(α) (for otherwise we could extend δ ∈ Λ≤d(α) further using α).
We claim that there exist q ∈ N and 1 ≤ i ≤ n such that γi+qn �= γi. Aiming for a

contradiction, we suppose that γi+nq = γi for all q ∈ N and 1 ≤ i ≤ n. We will show by
induction on q that

Γq := {μ1, μ1+n, . . . , μ1+qn}
has q + 1 distinct elements. Then Γq ⊆ s(α)Λd(μ) for every q, and this contradicts that
s(α)Λd(μ) is finite. When q = 0 we have Γq = {μ1} and there is nothing to prove. For the
inductive step, we will use the following two observations.

(1) μ1 �= μ1+tn for any t ∈ N (for otherwise (5.1) gives αμtn = μ1+tnγ1+tn = μ1γ1 =
δμ0, contradicting that α �= δ).

(2) Let 1 ≤ i ≤ n. Then (5.1) gives

μi+1+tnγi+1 = μi+1+tnγi+1+tn = αμi+tn.

So if {μi+tn : 0 ≤ t ≤ q} has q + 1 elements, then {μi+1+tn : 0 ≤ t ≤ q} has q + 1
elements.

Now suppose that q ≥ 0 and that Γq has q + 1 elements. We apply observation (5) once
to get that

{μ2, μ2+n, . . . , μ2+qn}
has q + 1 elements. After n− 1 further applications of observation (5), we get that

{μ1+q, μ1+2q, . . . , μ1+(q+1)n}
has q + 1 elements. Now we use observation (1) to see that

{μ1, μ1+q, μ1+2q, . . . , μ1+(q+1)n}
has q + 2 elements. This proves our claim.
Let (q0, i0) be smallest in the dictionary order such that γi0+q0n �= γi0 . Since {μi : i ≥

i0 + q0n} is finite, there exist smallest (i, j) such that i0 + q0n ≤ i < j and s(μi) = s(μj).
Then

β := γj . . . γi+1

is a return path of degree (j − 1)d(α). If i > i0 + q0n, then γi−1 is an entrance to β. If
i = i0 + q0n, then γi0−1 is an entrance. In either case there is a path from s(β) to s(α)
of degree at least d(μ). �
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Corollary 5.7. Let Λ be a row-finite and locally convex k-graph. Suppose that Λ
contains a return path with an entrance. Then there exists x ∈ Λ≤∞ such that, for all
m ≤ d(x), there exist n ≥ m and a p ∈ Nk such that x(n, n+ p) is a return path with an
entrance.

Proof. Let α be a return path with an entrance. We construct a boundary path by
induction. If αα · · · ∈ Λ≤∞ we are done. So suppose that αα · · · �∈ Λ≤∞. Let

t = (1, . . . , 1)− (1, . . . , 1) ∧ d(α).

Since αα · · · /∈ Λ≤∞, there exists μ1 ∈ s(α)Λ≤t. Using Lemma 5.6, we find P1 ∈ N and a
return path β1 with an entrance such that, without loss of generality, β1 ∈ s(μ1)Λ

P1d(α).
Let i ≥ 1, and suppose that we have μi ∈ Λ≤t, Pi and βi ∈ s(μi)Λ

Pid(α)s(μi) such that
βi has an entrance. If βiβi · · · ∈ Λ≤∞, then take x = βiβi · · · . Otherwise there exists
μi+1 ∈ s(βi)Λ

≤t. Using Lemma 5.6 applied to βi, there exist P ′
i+1 ∈ N and a return path

βi+1 ∈ s(μi+1)Λ
P ′

i+1Pid(α) with an entrance. Take Pi+1 = P ′
i+1Pi.

If this process terminates at βi0 , take x = βi0βi0 · · · . If this process never terminates,
take

x = αμ1β1μ2β2 · · · .
In either case, x ∈ Λ≤∞ has the desired properties. �

Remark 5.8. Corollary 5.7 fills a gap in the proof of [16, Corollary 5.7] and in the
last statement of [34, Proposition 8.8]. The last statement of [34, Proposition 8.8] claims
that if Λ is cofinal and contains a return path with an entrance, then every v ∈ Λ0 can
be reached from a return path with an entrance. Our Corollary 5.7 and cofinality ensure
that this is indeed the case. For [16, Corollary 5.7], Evans and Sims construct a single
return path with entrance and then apply [34, Proposition 8.8].

We are now ready to prove Proposition 5.4.

Proof of Proposition 5.4. Since Λ contains a return path with an entrance,
Corollary 5.7 gives x ∈ Λ≤∞ such that, for all m ≤ d(x), there exist n ≥ m and p such
that x(n, n+ p) is a return path with an entrance. Let v ∈ Λ0. Since Λ is cofinal there
exists m ≤ d(x) such that vΛx(m) is non-empty. Pick ωv ∈ vΛx(m). Now pick n ≥ m and
p such that x(n, n+ p) is a return path with an entrance. Then μv = ωvx(m,n) connects
v to a return path with an entrance as desired. �
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