
Proceedings of the Royal Society of Edinburgh, 145A, 779–790, 2015
DOI:10.1017/S0308210515000141

Superlinear elliptic problems under
the non-quadraticity condition at infinity

Marcelo F. Furtado
Departamento de Matemática, Universidade de Braśılia,
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1. Introduction

In this paper we consider the nonlinear elliptic equation

−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

}
(1.1)

where Ω ⊆ R
N , N � 3, is a bounded smooth domain and f ∈ C(Ω ×R, R) satisfies

the standard subcritical growth condition:

(f0) there exist a1 > 0 and p ∈ (2, 2∗) such that

|f(x, s)| � a1(1 + |s|p−1) for any (x, s) ∈ Ω × R.

Under this condition the weak solutions of the problem are precisely the critical
points of the C1-functional

I(u) := 1
2

∫
Ω

|∇u|2 dx −
∫

Ω

F (x, u) dx, u ∈ H1
0 (Ω),

where F (x, s) :=
∫ s

0 f(x, τ) dτ . Hence, we can use all the machinery of the critical
point theory to look for weak solutions. It is well known that this theory is based
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on the existence of a linking structure and on deformation lemmas [1, 2, 23, 25].
In general, to be able to derive such deformation results, it is supposed that the
functional satisfies some compactness condition. We use here the Cerami condition,
which reads as follows: the functional I satisfies the Cerami condition at level
c ∈ R ((Ce)c for short) if any sequence (un) ⊂ H1

0 (Ω) such that I(un) → c and
‖I ′(un)‖H1

0 (Ω)′(1 + ‖un‖) → 0 has a convergent subsequence.
Our main objective is to present sufficient conditions to ensure that the func-

tional satisfies the Cerami condition. More specifically, we shall consider the non-
quadraticity condition at infinity introduced by Costa and Magalhães [4]:

(NQ) setting H(x, s) := f(x, s)s − 2F (x, s), we have that

lim
|s|→∞

H(x, s) = +∞ uniformly for x ∈ Ω.

In the core result of this paper we show that the above condition and (f0) are
suffice to guarantee compactness for the functional I. More specifically, we prove
the following result.

Theorem 1.1. Suppose that f satisfies (f0) and (NQ). Then the functional I sat-
isfies the Cerami condition at any level c ∈ R.

As an application of this theorem we prove some new results for the problem (P )
in the case that f is superlinear at infinity and at the origin. Furthermore, we give
a unified approach for any superlinear elliptic problem using the non-quadraticity
condition. In order to better explain our results we recall that, in their seminal
work, Ambrosetti and Rabinowitz [1] introduced the following condition.

(AR) There exist θ > 2 and s0 > 0 such that

0 < θF (x, s) � sf(x, s) for any x ∈ Ω, |s| > s0.

A straightforward calculation shows that this yields c1 > 0 such that F (x, s) �
c1|s|θ for |s| large. Thus, the problem is called superlinear in the sense that the
primitive of f lives above any parabola of the type c2s

2. Unfortunately, there are
several nonlinearities which are superlinear but do not satisfy the above inequality.
For example, if we take f(s) = |s| ln(1 + |s|), we can easily check that

lim
s→+∞

F (s)/sθ = 0

for any θ > 2. So, it is reasonable to ask if we can replace (AR) by a more natural
condition.

(SL) The following limit holds:

lim
|s|→+∞

2F (x, s)
s2 = +∞ uniformly for x ∈ Ω.

One of the main features of condition (AR) is that it provides the boundedness
of Palais–Smale sequences. In the past 40 years many authors have tried to obtain
the solution in situations where (AR) is no longer valid. Instead, they consider the
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condition (SL) with extra assumptions. See [4, 10–16, 18, 20, 21] and the references
therein; in most of these papers, there is some kind of monotonicity assumption
on the functions F (x, s) or f(x, s)/s, or some convexity condition on the function
f(x, s)s − 2F (x, s).

Our results concerning problem (P ) are stated below.

Theorem 1.2. Suppose that f satisfies (f0), (NQ) and (SL). Then problem (1.1)
has at least one non-zero weak solution, provided that

(f1) it holds that

lim sup
s→0

F (x, s)
s2 = 0 uniformly for x ∈ Ω.

If f(x, s) is odd in s, then we can drop condition (f1) and obtain infinitely many
weak solutions.

We note that, for the existence result, we can suppose that the limit in (SL) holds
only for x ∈ Ω0, where Ω0 ⊂ Ω is a subset with positive measure (see the proof
of theorem 1.2). So, we can deal with nonlinearities that are locally superlinear at
infinity.

In order to compare our existence result with the literature, we start by again
citing [4], where Costa and Magalhães supposed, among other conditions, that

(Fµ) there exist a2 > 0 and µ > 1
2N(p − 2) such that

lim inf
|s|→∞

H(x, s)
|s|µ � a2 uniformly for x ∈ Ω,

where the number p ∈ (2, 2∗) comes from (f0). Since µ > 0, we see that (NQ)
is weaker than (Fµ), and therefore our existence result extends theorem 1 of [4].
It also extends the main theorem of [18], where the conditions (f1) and (NQ) are
replaced by

(f̂1) f(x, s) = o(s) as s → 0, uniformly for x ∈ Ω,

(M1) the function f(x, s)/|s| is increasing in |s| for |s| > s1.

In addition to the conditions at the origin in [18] being stronger than ours, the
main point is that (M1) and (SL) together imply (NQ). Indeed, it can be proved
that (M1) implies that H(x, s) is increasing in |s| for |s| > s2. Hence, if s > s2, we
have that

F (x, s)
s2 − F (x, s2)

s2
2

=
∫ s

s2

d
dτ

{
F (x, τ)

τ2

}
dτ =

∫ s

s2

H(x, τ)
τ3 dτ

� H(x, s)
(

− 1
2s2 +

1
2s2

2

)
, (1.2)

and therefore
F (x, s)

s2 � c3 + c4H(x, s)

for some c3, c4 > 0. It follows from (SL) that lims→+∞ H(x, s) = +∞. An analogous
argument shows that the same occurs as s → −∞. In [7], Fang and Liu obtained
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one non-zero solution by assuming (f0), (SL), (f̂1) and the following:

(J) there exists θ � 1 such that H(x, ts) � θH(x, s) for any (x, s) ∈ Ω × R and
t ∈ [0, 1].

This quasi-monotonicity condition was introduced by Jeanjean in [11]. The same
argument used in (1.2) shows that (J) and (SL) imply (NQ), and therefore theo-
rem 1.2 extends theorem 1.1 of [7].

Our existence result also complements many other works of the updated litera-
ture. For example, in [17], Liu and Wang obtained a non-zero solution under (f̂1),
(SL) and the following version of (M1):

(M̂1) the function H(x, s) is non-decreasing in |s| and increasing for |s| small.

This hypothesis plays an important role in their proof, since they apply the Nehari
method. Finally, Schechter and Zou [22] assumed (f0), (SL) and (f̂1) hold. More-
over, they additionally assumed that H(x, s) was convex on s or

(SZ) there exist θ > 2, a3 � 0 and s3 � 0 such that

θF (x, s) − sf(x, s) � a3(1 + s2) for any x ∈ Ω, |s| � s3.

Since we do not require any kind of monotonicity or convexity, our existence
result extends or complements the aforementioned works. It also complement other
results on superlinear problems (see [17, 20, 21, 24, 26] and the references therein).
As a matter of fact, we can consider here the nonlinearity f such that H(x, s) =
a(x)s2(1+cos(s))+ln(1+|s|), with a ∈ C∞(Ω) being positive. Hence, the arguments
presented in the cited papers do not work in our setting.

The multiplicity statement of theorem 1.2 complements many results on mul-
tiplicity of solutions for superlinear problems (see, for instance, [1, 9, 27] and the
references therein). The main novelty here is that the non-quadraticity condition
is considered in the superlinear setting. We emphasize that, in some of the afore-
mentioned works, the proof of existence is given by showing that the (bounded)
Palais–Smale sequence weakly converges to a non-zero critical point of I. Hence,
their authors cannot obtain multiple solutions, even if the function f is odd. Since
here we prove compactness for I, we are able to use the symmetric mountain pass
theorem to obtain infinitely many solutions in this context.

In the next section we prove our main result, namely theorem 1.1. The result is
applied in § 3, where we present the proof of theorem 1.2. Note that our ideas can
be used in many different linking-type settings, so § 4 gives possible extensions of
the study of problem (P ).

2. Proof of the main result

Throughout the paper we suppose that the function f satisfies (f0). For brevity,
we write

∫
Ω

g instead of
∫

Ω
g(x) dx. For any 1 � t < ∞, |g|t denotes the norm in

Lt(Ω).
We denote by H the Hilbert space H1

0 (Ω) endowed with the norm

‖u‖2 =
( ∫

|∇u|2
)1/2

for any u ∈ H.
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As stated in § 1, the weak solutions of (P ) are precisely the critical points of the
C1-functional

I(u) := 1
2‖u‖2 −

∫
F (x, u) for any u ∈ H.

By using some careful estimates we can prove our compactness result as follows.

Proof of theorem 1.1. Let (un) ⊂ H be such that

I(un) → c, ‖I ′(un)‖H′(1 + ‖un‖) → 0,

where c ∈ R. Since f has subcritical growth it suffices to prove that (un) is bounded.
Arguing by contradiction we suppose that, along a subsequence, ‖un‖ → +∞ as

n → +∞. For each n ∈ N, let tn ∈ [0, 1] be such that

I(tnun) = max
t∈[0,1]

I(tun). (2.1)

Setting vn := un/‖un‖, we obtain v ∈ H such that, along a subsequence,

vn ⇀ v weakly in H,

vn → v strongly in Lq(Ω) for any 1 � q < 2∗,

vn(x) → v(x).

⎫⎪⎬
⎪⎭ (2.2)

In what follows we prove that v �= 0. Indeed, suppose by contradiction that v = 0.
Then it follows from (f0) and the strong convergence in (2.2) that

∫
F (x,

√
4mvn) →

0 as n → +∞ for any fixed m > 0. Since we may suppose that
√

4m < ‖un‖, it
follows from the definition of tn in (2.1) that

I(tnun) � I(
√

4m

‖un‖ un) = 2m −
∫

F (x,
√

4mvn) � m > 0, (2.3)

for any n � n0, where n0 ∈ N depends only on m.
We look for a contradiction by considering two cases.

Case 1 (along a subsequence, tn < (2/‖un‖)). In this case we first use the condi-
tion (f0) and the Sobolev embeddings to obtain c1, c2 > 0 such that∣∣∣∣

∫
H(x, tnun)

∣∣∣∣ � c1tn‖un‖ + c2t
p
n‖un‖p � 2c1 + c22p = c3.

If tn > 0, it follows from I ′(tnun)(tnun) = 0 that

0 = t2n‖un‖2 −
∫

f(x, tnun)(tnun) = 2I(tnun) −
∫

H(x, tnun),

and therefore
I(tnun) = 1

2

∫
H(x, tnun) � 1

2c3.

The above inequality also holds if tn = 0, and therefore we obtain a contradiction
with (2.3), since the number m > 0 in that expression is arbitrary. Hence, case 1
cannot occur.

It remains to disprove the following.
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Case 2 (along a subsequence, tn � (2/‖un‖)). In this setting we fix γ > 0 such
that

3γ|Ω| > 4, (2.4)

where |Ω| stands for the Lebesgue measure of Ω. In view of (NQ) we can obtain
s0 > 0 such that H(x, s) � γ for any x ∈ Ω, |s| � s0. On the other hand, since H
has a subcritical growth, we have that H(x, s) � −C|s| for any x ∈ Ω, |s| � s1,
where s1 > 0 is small.

We consider the non-negative cut-off function ψε : R → R given by

ψε(s) =

{
e−ε/s2

if s �= 0,

0 if s = 0,

with ε > 0 free for now. Note that ψε is smooth and

lim
s→0

ψε(s) = lim
s→0

ψ′
ε(s) = 0.

These limits, (f0) and the continuity of H provide Cγ,ε > 0 such that

H(x, s) � γψε(s) − Cγ,ε|s| for any (x, s) ∈ Ω × R.

Given 0 < s < t, we can use the above inequality and the definition of H to get

I(tun)
t2‖un‖2 − I(sun)

s2‖un‖2 = −
∫

Ω

∫ t

s

d
dτ

(
F (x, τun)
τ2‖un‖2

)
dτ dx

= −
∫

Ω

∫ t

s

H(x, τun)
τ3‖un‖2 dτ dx

�
∫

Ω

∫ t

s

(
Cγ,ε

‖un‖
|un|
‖un‖τ−2 − γψε(τun)

‖un‖2 τ−3
)

dτ dx,

from which it follows that

I(tun)
t2‖un‖2 � I(sun)

s2‖un‖2 + Cγ,ε
|vn|1
s‖un‖ − γ

∫
Ω

∫ t

s

ψε(|τun|)
‖un‖2 τ−3 dτ dx.

We now set

s = sn =
1

‖un‖ <
2

‖un‖ � tn.

Since ∫ tn

sn

τ−3 dτ = 1
2 (‖un‖2 − t2n),

we have that

I(tnun)
t2n‖un‖2 � I(vn) + Cγ,ε|vn|1 − γ|Ω|

2

(
1 − 1

t2n‖un‖2

)
+ γAn

� Bγ + Cγ,ε|vn|1 −
∫

F (x, vn) + γAn (2.5)
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with

An =
∫ tn

sn

∫
Ω

1 − ψε(|τun|)
‖un‖2 τ−3 dxdτ � 0

and
Bγ = 1

2 (1 − 3
4γ|Ω|) < 0,

where we have used (2.4) in the last inequality.
We shall verify below that, uniformly in n ∈ N, the following limit holds:

lim
ε→0

∫ tn

sn

∫
Ω

1 − ψε(|τun|)
‖un‖2 τ−3 dxdτ = 0. (2.6)

If this is true, we can choose ε > 0 such that γAn < − 1
2Bγ for all n ∈ N. Since

we are supposing that v = 0, it follows from (2.2) and (f0) that |vn|1 = on(1) and∫
F (x, vn) = on(1) as n → +∞. Hence, we can take the limit in (2.5) to obtain

lim sup
n→+∞

I(tnun)
t2n‖un‖2 � Bγ − Bγ

2
=

Bγ

2
< 0,

and therefore I(tnun) < 0, for n large, again contradicting (2.3).
We proceed now with the proof that the limit in (2.6) is uniform. We start by

considering δ > 0 and splitting the term An into two integrals∫ tn

sn

∫
Ω

1 − ψε(|τun|)
‖un‖2 τ−3 dxdτ =

∫ tn

sn

∫
|τun|�δ

(· · · ) +
∫ tn

sn

∫
|τun|<δ

(· · · ).

For ease of notation we call the first integral on the right-hand side above A+
n,δ, and

the second one A−
n,δ. It suffices to show that these quantities go to 0, uniformly in

n, as ε → 0.
Since ψε is non-decreasing we have that

A+
n,δ � 1 − e−ε/δ2

δ‖un‖2

∫ tn

sn

∫
|τun|�δ

|τun|τ−3 dxdτ

� 1 − e−ε/δ2

δ‖un‖

(
1
sn

− 1
tn

) ∫
Ω

|un|
‖un‖

�
(

1 − e−ε/δ2

δ

)
|vn|1,

since sn‖un‖ = 1. Recalling that (|vn|1) is uniformly bounded, we conclude that
the limit limε→0 A+

n,δ = 0 is uniform.
The calculations for A−

n,δ are more involved. We first note that, for each |s| � δ
fixed, the function ε 
→ ψε(s) is smooth. Hence, it follows from Taylor’s theorem
that, for h(s) = s−2e−(ε,s2),

1 − ψε(s) = εs−2e−ε/s2
+ r(ε, s) = ε

(
h(s) +

r(ε, s)
ε

)
� ε(h(s) + 1)

holds, since the continuous remainder term r is such that limε→0 r(ε, s)/ε = 0 uni-
formly in the compact set |s| � δ. By applying Taylor’s theorem again, we get,
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for |s| � δ,
h(s) = h(0) + h′(0)s + r1(ε, s) = r1(ε, s),

with r1(ε, s) = o(|s|) as s → 0. Thus, we conclude that if δ > 0 is small,

1 − ψε(s) � ε(1 + |s|) for any |s| � δ.

The above inequality and the definition of A−
n,δ give

A−
n,δ =

∫ tn

sn

∫
|τun|<δ

1 − ψε(|τun|)
‖un‖2 τ−3 dxdτ

� ε

∫ tn

sn

∫
Ω

τ−3

‖un‖2 dxdτ + ε

∫ tn

sn

∫
Ω

|un|
‖un‖2 τ−2 dxdτ

= ε
|Ω|
2

(
1 − 1

t2n‖un‖2

)
+

ε

‖un‖

(
1 − 1

tn‖un‖

) ∫
Ω

|vn| dx

� ε

(
|Ω|
2

+ |vn|1
)

,

since we may assume that ‖un‖ > 1. This implies that, uniformly in n,

lim
ε→0

A−
n,δ = 0

holds. This completes the proof that the weak limit v is non-zero.

After proving that v �= 0 we can prove the theorem in the following way: the
set Ω̃ := {x ∈ Ω : v(x) �= 0} has positive measure. Moreover, since ‖un‖ → +∞,
we have that |un(x)| → +∞ almost everywhere in Ω̃. Thus, the continuity of H,
Fatou’s lemma and (NQ) yield

2c = lim
n→+∞

(2I(un) − I ′(un)un)

� meas(Ω \ Ω̃) min
Ω̄×R

H +
∫

Ω̃

lim inf
n→+∞

H(x, un) = +∞,

which is a contradiction. Hence, we have that (un) is bounded and the theorem is
proved.

3. Proof of theorem 1.2

In this section we prove our results concerning problem (P ). For the multiplicity
part we need the following version of the symmetric mountain pass theorem [19,
theorem 9.12] (see [2, theorem 1.3] for the proof that the deformation lemma used
in [19] also holds with the Cerami condition).

Theorem 3.1. Let X be an infinite-dimensional Banach space, let I ∈ C1(X, R)
be even and satisfy (Ce)c for any c ∈ R and satisfy I(0) = 0. If X = V ⊕W , where
V is finite dimensional, and I satisfies the following conditions, then I possesses
an unbounded sequence of critical values.
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(I1) There exist α, ρ > 0 such that

I(u) � α for any u ∈ ∂Bρ(0) ∩ W.

(I2) For any finite-dimensional subspace X̂ ⊂ X there exists R = R(X̂) such that

I(u) � 0 for any u ∈ X̂ \ BR(0).

We are now ready to obtain the solutions for (P ).

Proof of theorem 1.2. Conditions (f0), (f1) and standard arguments imply that∫
F (x, u) = o(‖u‖2) as ‖u‖ → 0. Hence, there exist α, ρ > 0 such that I(u) � α

whenever u ∈ ∂Bρ(0) ⊂ H. Suppose that the limit in (SL) holds for x ∈ Ω0 ⊂ Ω
of positive measure. If we take a positive function φ ∈ H1

0 (Ω0), we can use (SL) to
conclude that I(tφ) → −∞ as t → +∞. Since I satisfies the Cerami condition, it
follows from the mountain pass theorem that I has a non-zero critical point.

To prove the multiplicity part we shall apply theorem 3.1 with X = H and
I = I. Since f is odd in the second variable, I is even. Recalling that I(0) = 0 and
I satisfies the Cerami condition, it remains to check the geometric conditions (I1)
and (I2).

Let X̂ ⊂ H be a finite-dimensional subspace. Since all the norms in X̂ are
equivalent, there exists c1 > 0 such that ‖u‖2 � c1

∫
u2 for any u ∈ X̂. Given

M > (2/c1), it follows from (SL) that F (x, s) � Ms2 − c2 for any x ∈ Ω and s ∈ R.
Hence,

I(u) � 1
2

(
1 − 2M

c2

)
‖u‖2 + c1|Ω|,

and we conclude that I(u) → −∞ as ‖u‖ → +∞, u ∈ X̂. This establishes (I2).
In order to verify (I1) we set, for each k ∈ N,

Vk := span{ϕ1, . . . , ϕk}, Wk = V ⊥
k ,

where (ϕk)k∈N are the eigenfunctions of (−∆, H1
0 (Ω)). Integrating the inequality

in (f0), we get
I(u) � 1

2‖u‖2 − c3|u|pp − c4,

for some c3, c4 > 0. Since 2 < p < 2∗, the interpolation inequality |u|p � |u|θ2|u|1−θ
2∗ ,

for some θ ∈ (0, 1), yields

I(u) � 1
2‖u‖2 − c3|u|pθ

2 |u|p(1−θ)
2∗ − c4 � 1

2‖u‖2 − c5|u|pθ
2 ‖u‖p(1−θ) − c4,

where c5 > 0 and we have used the embedding H ↪→ L2∗
(Ω).

The above inequality holds for any u ∈ H. If we take u ∈ Wk, we can use the
variational inequality ‖u‖2 � λk+1|u|22 to obtain

I(u) � 1
2‖u‖2 − c5

λ
pθ/2
k+1

‖u‖pθ‖u‖p(1−θ) − c4 =
(

1
2

− c5

λ
pθ/2
k+1

‖u‖p−2
)

‖u‖2 − c4.

We now set ρ = 2
√

c4 + 1 and choose k ∈ N such that

c5

λ
pθ/2
k+1

ρp−2 � 1
4
. (3.1)
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This is always possible, since λk → +∞. It follows that, for any u ∈ ∂Bρ(0) ∩ Wk,

I(u) � ( 1
2 − 1

4 )ρ2 − c4 = 1
4 (2

√
c4 + 1)2 − c4 = 1

holds. Therefore, (I1) is satisfied with α = 1, ρ = 2
√

c4 + 1 and the decomposition
of H being H = Vk ⊕ Wk. The multiplicity result follows from theorem 3.1.

4. Further remarks

In this final section we present many variants for consideration. For example, con-
cerning the condition at the origin, we could suppose that

lim
s→0

2F (x, s)
s2 = K0(x) uniformly for x ∈ Ω,

where K0 ∈ Lt(Ω) for some t > 1
2N and the positive part of K0 is non-trivial. In

this case the linear problem

−∆u = λK0(x)u, u ∈ H1
0 (Ω),

has a sequence of eigenvalues (λj(K0))j∈N with λ1(K0) > 0. A simple inspection of
the proof of theorem 1.2 shows that it remains true if we suppose that λ1(K0) > 1
instead of applying condition (f1). Indeed, we can deal with non-resonance at the
origin in the following sense: suppose that λm(K0) < 1 < λm+1(K0) for some m �
1. In this case we can apply the local linking theorem given by Li and Willem [15],
together with our compactness result, to obtain a non-zero solution. So, it is possible
to generalize the main theorems contained in [6, 12,13].

We could also treat the asymptotically linear case, by replacing (SL) by the
following condition:

lim
|s|→+∞

2F (x, s)
s2 = K∞(x) uniformly for x ∈ Ω,

where K∞ ∈ Lt(Ω) for some t > 1
2N and the positive part of K∞ is non-trivial.

If λm(K∞) = 1 for some m � 1, we could use the saddle-point theorem to extend
the existence result of [4, theorem 2] (see also [8] for related results). This means
that, under the non-quadraticity condition, we give here a unified approach for
nonlinear elliptic problems that are superlinear or asymptotically linear at infinity.
Actually, our theorem 1.1 presents another proof of [4, lemma 1.2] but with weaker
conditions. Hence, we could also consider the double-resonant case:

(DR) there exists j � 1 such that

λj � lim inf
|t|→∞

f(x, t)
t

� lim sup
|t|→∞

f(x, t)
t

� λj+1,

where λj is the sequence of eigenvalues on (−∆, H1
0 (Ω)). In this case the resonant

phenomena are allowed in two consecutive eigenvalues. The main point here is to
obtain compactness for the associated functional, but now this is a consequence of
condition (NQ). Thus, we can obtain a non-trivial solution under the assumption

λm < lim
s→0

f(x, s)
s

< λm+1
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for some m � 1 as a consequence of the local linking theorem (see [3,5,8] for more
details on double-resonant problems).

Finally, under the hypothesis of theorem 1.2, it is possible to argue as in [1] to
obtain two solutions, one positive and other negative. Indeed, to obtain the first
one we define

f+(x, s) :=

{
f(x, s) if s � 0,

0 if s < 0,

and consider the functional

I+(u) := 1
2‖u‖2 −

∫
F+(x, u), u ∈ H1

0 (Ω),

where

F+(x, s) :=
∫ s

0
f+(x, τ) dτ.

We have that F+ is superlinear at infinity and non-quadratic at infinity in one
direction. More precisely,

lim
s→∞

(sf+(x, s) − 2F+(x, s)) = +∞ uniformly in x ∈ Ω,

and we can argue as in the proof of theorem 1.2 to obtain a positive solution. The
negative solution can be obtained with the analogous truncation, f−.
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