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BAD FIELDS WITH TORSION

JUAN DIEGO CAYCEDOANDMARTINHILS

Abstract. We extend the construction of bad fields of characteristic zero to the case of arbitrary
prescribed divisible green torsion.

§1. Introduction. In this note, we construct bad fields in characteristic 0 with
arbitrary prescribed divisible green torsion. For this, we prove that the free amalga-
mation class is axiomatisable and show that the collapse to a bad field may then be
performed exactly as in [1].
The axiomatisability of the free amalgamation class was first proved in the doc-

toral thesis of the first author ([3]), also in the case where the green points form a
subgroup of an elliptic curve and with any finite-rank green subgroup in place of
the green torsion. We include the proof in the relevant case, written in a way that is
consistent with the presentations in [6] and [1].
In the part on the collapse we will rely heavily on the results of [1] (and their

proofs), only indicating at some key steps the necessary changes when allowing
green torsion points. Roche had observed a gap in the proof of the collapse in [1],
related to choices of green roots. The second author addressed this issue in [4],
showing that Kummer genericity is a definable property and proposing improved
codes which take into account Kummer genericity. In the present paper, we seize
the opportunity to spell out the points in the construction of the bad fields where
the use of the improved codes is essential.
Recall that a bad field is a field of finite Morley rank equipped with a definable

proper infinite subgroup of the multiplicative group of the field. Their study origi-
nated in connection with the Cherlin-Zilber Algebraicity Conjecture which asserts
that a simple (infinite) group of finite Morley rank must be an algebraic group.
By a result of Wagner [7] the existence of a bad field of characteristic p > 0 is

very unlikely, as it would imply that there are only finitely many p-Mersenne primes,
that is, primes of the form pn−1

p−1 . Baudisch, Martin-Pizarro, Wagner and the second
author constructed a bad field of characteristic 0, thus answering a long-standing
open question of Zilber. More precisely, it is shown in [1] that Poizat’s green field,
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an infinite rank analogue of a bad field which Poizat had obtained in [6] using
Hrushovski’s amalgamation method, may be collapsed to a structure of finite
Morley rank.
Following Poizat, we call the elements from the distinguished multiplicative sub-
group the green points of the field. In Poizat’s green fields, as well as in the bad fields
from [1], the green points forma divisible torsion-free group. In the case of arbitrary
prescribed divisible green torsion �, Poizat shows that the construction can be car-
ried out provided the free amalgamation class is axiomatisable, and he proves that
this is the case under the assumption that the CIT, a conjecture of Zilber on unlikely
intersections, holds. We show that the free amalgamation class is axiomatisable for
arbitrary prescribed divisible green torsion, unconditionally. In the proof, the use
of the CIT is replaced by applications of a weaker proven statement, known as the
Weak CIT, and a theorem of Laurent.
An overview of the paper. In Section 2, we prove the axiomatisability of the free
amalgamation class. We then gather the material needed from [1], with a particular
emphasis on the construction of the improved codes, in Section 3. The main results
are given in Section 4 where we construct both (infinite rank) green fields and
bad fields with green torsion equal to �. We also include a complete proof of the
axiomatisability of existential closedness, illustrating how the improved codes are
used.

§2. Axiomatisability of the free amalgamation class. Let Tor denote the group of
roots of unity in Qalg. Let us fix a divisible subgroup � of Tor.
Let L be the expansion of the language of rings by a unary predicate Ü. Let K be
the class of L-structures (K,+,−, ·, 0, 1, Ü) satisfying the following conditions:
(i) (K,+,−, ·, 0, 1) is an algebraically closed field of characteristic 0,
(ii) Ü is a divisible subgroup of (K∗, ·),
(iii) the group of torsion elements of Ü is isomorphic to �,
(iv) for all n ≥ 1 and all y ∈ Ün, the value �(y) := 2 tr.d(y) − l.dim(y) is

nonnegative.

Here, tr.d(y) denotes the transcendence degree of the field Q(y) over Q, and
l.dim(y) denotes linear dimension of the subspace generated by y in the Q-vector
space K∗/Tor.
We show below that K is an elementary class. In [6] the same result is proved
assuming the Conjecture on Intersections with Tori (CIT) (cf. [6, Corollaire 3.5])
and unconditionally only in the case where � is trivial. The idea of replacing the use
of the CIT by a combination of the Weak CIT and Laurent’s theorem, Facts 2.1
and 2.2 below, comes from [10].
In the definitions and facts below, K denotes an algebraically closed field of
characteristic 0.
Let us fix some notation. For every n, (K∗)n is an algebraic group under
coordinate-wise multiplication. Form = (m1, . . . , mn) ∈ Zn and y = (y1, . . . , yn) ∈
(K∗)n , let ym :=

∏
i y
mi
i . More generally, for a k × n-matrixM over Z with rows

M1, . . . ,Mk and y = (y1, . . . , yn) ∈ (K∗)n , let yM := (yM1 , . . . , yMk ). The map
from (K∗)n to (K∗)k given by y �→ yM is a homomorphism of algebraic groups.
Its kernel, the subset of (K∗)n defined by the system of equations yM = 1, is thus
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an algebraic subgroup of (K∗)n. All algebraic subgroups of (K∗)n are of this form.
If the matrix M has rank k, then the corresponding algebraic subgroup T has
dimension n − k as a Zariski closed set. For the dimension of T we may use the
notation dim(T ) or l.dim(T ). A torus is a connected algebraic subgroup of (K∗)n.
A variety V will always be a closed algebraic subvariety of some (K∗)n

(not necessarily irreducible). Given an irreducible subvariety V of (K∗)n , its mini-
mal torus is the smallest torusT , such thatV lies in some coset ā ·T . In this case, we
define the codimension ofV by cd(V ) := dim(T )−dim(V ) = l.dim(V )−dim(V ),
where l.dim(V ) := dim(T ). An irreducible subvarietyW ⊆ V is called cd-maximal
in V if cd(W ′) > cd(W ) for every irreducible varietyW ′ such thatW �W ′ ⊆ V .
We now state a variant of Zilber’sWeak CIT [8] due to Poizat [6, Corollaire 3.7]:

Fact 2.1. Let V (x̄, z̄) be a uniformly definable family of varieties in (K∗)n . There
exists a finite collection of tori {T0, . . . , Ts}, such that for every b̄ the minimal torus
of every cd-maximal subvariety of Vb̄ belongs to the collection {T0, . . . , Ts}.
Henceforth we denote by T (V (x̄, z̄)) a collection {T0, . . . , Ts} of tori as provided

by the above fact, with T0 = (K∗)n and T1 = {1}n.
The following is Laurent’s theorem from [5] on intersections of subvarieties of

(K∗)n with a finite rank subgroup, in the case where the subgroup is Torn.
Fact 2.2. For every proper algebraic subvariety W of (K∗)n, there exist proper

algebraic subgroupsH1, . . . ,Hr of (K∗)n and �1, . . . , �r ∈ Torn such that

W ∩ Torn =
r⋃
j=1

�j(Hj ∩ Torn).

Theorem 2.3. The class K is elementary.
Proof. It is clear that conditions (i) and (ii) can be expressed by a set of

L-sentences. Moreover, it is easy to see that condition (iii) can be expressed by
a set of sentences requiring that Ü has nontrivial p-torsion precisely for those
primes p for which � has nontrivial p-torsion.
We shall now see that, modulo (i),(ii), and (iii), condition (iv) is equivalent to

the validity of the following sentences: for each n ≥ 1, and each subvarietyW of
(K∗)n defined and irreducible over Q of dimension < n

2 , the sentence

�W := ∀y
[
(y ∈W ∧ y ∈ Ün ∧y 
∈W ∗) −→

∨
1≤i≤s
Wi �=(K∗)ki

∨
1≤j≤ri

yMi ∈ Hij
]
,

where

• T1, . . . , Ts are the (proper) subtori of (K∗)n provided by Fact 2.1 forW , and
for i = 1, . . . , s ,Mi is a ki × n-matrix over Z of rank ki such that Ti is defined
by the system of equations yMi = 1;

• for each i = 1, . . . s ,Wi is the Zariski closure of the setWMi := {yMi | y ∈W }
inside (K∗)ki ;

• for each i = 1, . . . , s such that Wi is a proper subvariety of (K∗)ki , for each
1 ≤ j ≤ ri , Hij is a proper algebraic subgroup of (K∗)ki defined over Q
such thatHij ⊇ �ijH ′

ij , where �i1, . . . , �iri and H
′
i1, . . . ,H

′
iri
are as provided by

Fact 2.2 for the varietyWi ;
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• W ∗ :=
⋃s
i=1W

∗i , where

W ∗i := {b ∈W | dimW ∩ bTi > dimW − dimWi}.
Observe that eachWi , eachW ∗i ,W ∗ and the Zariski closure ofW ∗ are definable
over Q (in the language of rings). Let us see that W ∗ is a nongeneric subset of
W , that is, its Zariski closure is not the whole of W . For each i , consider fi :
W → Wi given by b �→ bMi . Suppose b is generic in W over Q. Then fi(b) is
generic in Wi over Q. Also, dimW ∩ bTi = tr.d(b/fi(b)). Indeed, W ∩ bTi is
defined over fi(b), as the fibre of fi above fi(b) inside W , and for any element
b′ of W ∩ bTi the element fi(b′) = fi(b) is algebraic over each of b and b′, so
tr.d(b′/fi(b)) ≤ tr.d(b/fi(b)). Since tr.d(b/fi(b)) = tr.d(b) − tr.d(fi(b)), we
get dimW ∩ bTi = dimW − dimWi . Thus, b 
∈W ∗.
Now assume (K, Ü) satisfies (i)–(iii) and all the above sentences �W . To see that
(K, Ü) must then also satisfy (iv), suppose towards a contradiction that b is an
n-tuple from K such that �(b) < 0. It is easy to see that we may assume b to be
green and multiplicatively independent. LetW be the algebraic locus of b over Q.
Then, since �(b) < 0, we have dimW < n

2 . Thus, by our assumption, �W holds.
Since b is generic in W over Q, we have b ∈ (W \W ∗) ∩ Ün. Thus, we get a
multiplicative dependence on b from �W , hence a contradiction. This proves that
(K, Ü) satisfies (iv).
Conversely, assume that (K, Ü) satisfies (i)–(iv) and let us see that the above
sentences hold in (K, Ü). Let n ≥ 1 and let W be a subvariety of (K∗)n defined
and irreducible over Q of dimension < n

2 . Suppose b is in the set (W \W ∗) ∩ Ün.
Since tr.d(b) ≤ dimW < n/2 and by assumption �(b) ≥ 0, the tuple b must be
multiplicatively dependent. Thus, we may chooseH a proper algebraic subgroup of
(K∗)n containing b such that dim(H ) = l.dim(b).
Let T be the connected component of H (so T is a torus), and let S be an
irreducible component ofW ∩ bT containing b. Note that bT is defined over Qalg,
and so S is defined over Qalg as well. In particular, there is b′ ∈ S(Qalg).
Note that (iv) implies that Ü∩Qalg = �. It follows that l.dim(b) =
l.dim(b/Qalg) = dim(T ), and thus 0 ≤ �(b) ≤ 2 dim(S) − dim(T ) = dim(S) −
cd(S), since tr.d(b) ≤ dim(S). We thus have cd(S) ≤ dim(S) < n

2 .
Let S ⊆ S′ ⊆ W be such that cd(S′) = cd(S) and S′ is cd-maximal in W .
So the minimal torus of S′ is equal to Ti for some i , with T ⊆ Ti . Moreover, since
cd(S′) ≤ dim(S′) < n

2 , necessarily i 
= 0. Let α = b′Mi = bMi . The coordinates of
α are from Ü∩Qalg, so α ∈ �ki by what we said above. Thus, α ∈ Wi ∩ Torki , and
hence it is in one of theHij .
It remains to show that Wi is a proper subvariety of (K∗)ki . First, note that

n
2 > cd(S) = cd(S

′) = dim(Ti ) − dim(S′) ≥ dim(Ti) − dim(W ∩ bTi). Using
b 
∈W ∗, we conclude by the following calculation:

dim(Wi ) = dim(W )− dim(W ∩ bTi)
<
n

2
− dim(W ∩ bTi)

=
n

2
− dim(Ti) + (dim(Ti)− dim(W ∩ bTi))

<
n

2
− (n − ki) +

n

2
= ki . 
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§3. Improved codes. In this section, we give a precise description of the improved
codes proposed in [4]. As was mentioned in the introduction, Roche had found a
gap in the original construction which made this improvement necessary.
For V ⊆ (K∗)n and m ≥ 1, the set {(a1, . . . , an) ∈ (K∗)n | (am1 , . . . , amn ) ∈ V }

will be denoted by m
√
V .

Definition 3.1. Let V be an irreducible subvariety of (K∗)n.
• V is called Kummer generic if m

√
V is irreducible for every m ≥ 1.

• V is called free if it is not contained in a coset of a proper subtorus of (K∗)n.

Part (1) of the following fact is due to Zilber [9], and part (2) is due to the second
author [4]. For a more conceptual proof of the corresponding result in arbitrary
semiabelian varieties, see [2].

Fact 3.2.

(1) If V is free, then there is N ≥ 1 such that every irreducible component of
N
√
V is Kummer generic.

(2) Kummer genericity is a definable property, i.e. given a definable family V (x, z)
of subvarieties of (K∗)n, the set of parameters b for which V (x, b) is Kummer
generic is definable.

Before we construct the improved codes, let us recall the notion of minimal
prealgebraicity from [1, Section 3].
For A ⊆ K∗, we denote by 〈A〉 the divisible hull of the (multiplicative) subgroup

of K∗ generated by A. If b ∈ K∗ is a finite tuple, we let �(〈Ab〉/〈A〉) := �(b/A) :=
2 tr.d(b/A)− l.dim(b/A).

Definition 3.3.

• Let A = 〈A〉 ⊆ 〈Ab〉 = B. The extension B/A is called minimal prealgebraic
(of length n) if the following conditions hold:
– 2 ≤ l.dim(B/A) = n <∞,
– �(B/A) = 0, and
– �(B/B ′) < 0 for every B ′ = 〈B ′〉 with A � B ′ � B.

• A strong n-type p(x) = stp(b/A) is minimal prealgebraic if the extension
〈Ab〉/〈A〉 is minimal prealgebraic of length n (in particular, in this case the
tuple b is multiplicatively independent over A).

For two formulas ϕ(x) and �(x) of Morley degree 1 we write ϕ ∼ �
if MR(ϕΔ�) <MR(ϕ), where ϕΔ� denotes their symmetric difference.

Definition 3.4. Let ϕ(x) be a formula of Morley degree 1 (x ranging over
(K∗)n).

• ϕ(x) is called minimal prealgebraic if its generic type is minimal prealgebraic.
• ϕ(x) is called Kummer generic if the unique irreducible variety V (x) such that
ϕ ∼ V is Kummer generic. Similarly, a strong type is called Kummer generic if
it is the generic type of a Kummer generic variety.

Let T ⊆ (K∗)n × (K∗)n be an n-dimensional torus such that �1(T ) =
(K∗)n = �2(T ). Such a torus will be called a correspondence torus. Let ϕ1 and
ϕ2 be two formulas ofMorley degree 1, and let Xi ⊆ (K∗)n be the set defined by ϕi .
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We say that T induces a toric correspondence between ϕ1 and ϕ2 if (X1 × X2) ∩ T
projects generically onto both X1 and X2.
The following lemma is easy.

Lemma 3.5.

(1) The set of Kummer generic formulas is closed under multiplicative translations:
if ϕ(x) is Kummer generic and m ∈ (K∗)n, then ϕ(x ·m) is Kummer generic,
too.

(2) The set of minimal prealgebraic formulas is closed under toric correspondences
and under multiplicative translations.

Corollary 3.6.

(1) Every minimal prealgebraic formula is in toric correspondence with some
Kummer generic (and minimal prealgebraic) formula.

(2) For every formula ϕ(x, z) the set of b such that ϕ(x, b) is minimal prealgebraic
(Kummer generic, respectively) is definable.

Proof.

(1) Using Lemma 3.5, this follows from Fact 3.2(1), since every minimal
prealgebraic variety is free.

(2) Minimal prealgebraicity is a definable property by [1, Lemma 4.3], and the
definability of Kummer genericity is Fact 3.2(2). 

Lemma 3.7. Let V ⊆ (K∗)n be a Kummer generic variety and T ⊆ (K∗)2n a
correspondence torus. Then there is a unique (irreducible) variety V ′ ⊆ (K∗)n such
that T induces a toric correspondence between V and V ′.

Proof. Let a = (a1, . . . , an) be generic in V over K . As �1(T ) = (K∗)n , there is
a′ such that (a, a′) ∈ T . Let V ′ be the locus of a′ over K . Then T induces a toric
correspondence between V and V ′. This proves existence.
To prove uniqueness ofV ′, note that,modulo torsion,T corresponds to the graph
of some Γ ∈ GLn(Q). Let N ∈ N,N > 0, be such that Γ = 1

N Δ for a matrix Δ with
integer coefficients. We may thus find a tuple α′ so that α′Δ = a′ and (α′i )

N = ai for
i = 1, . . . , n. Moreover, whenever T induces a toric correspondence betweenV and
some irreducible varitey V ′′, there is a′′ such that (a, a′′) ∈ T and a′′ is generic
in V ′′ over K . As before, we may find α′′ such that α′′Δ = a′′ and (α′′i )

N = ai
for i = 1, . . . , n. By Kummer genericity of V , tp(α′/K) = tp(α′′/K). In particular,
tp(a′/K) = tp(a′′/K), proving that V ′ is unique. 
If one does not assume V to be Kummer generic, V ′ is in general not unique.

Definition 3.8. Let X ⊆ (K∗)n be definable. A formula ϕ(x, z) and a torus
T encode X = X (x), if there is some b such that T induces a toric correspondence
between ϕ(x, b) and X (x). We say that ϕ encodes X if the above correspondence is
the identity (i.e., ϕ(x, b) ∼ X ).

Definition 3.9. A code α is a ∅-definable formula ϕα(x, z) and integers nα , kα
satisfying the following:

(a) The length of x is nα = 2kα.
(b) ϕα(x, b) is a subset of (K∗)nα .
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(c) ϕα(x, b) is either empty or has Morley rank kα and Morley degree 1.
(d) If ϕα(x, b) 
= ∅, then ϕα(x, b) is minimal prealgebraic and Kummer generic,
with irreducible Zariski closure Vα(x, b).

(e) Suppose ϕα(x, b) 
= ∅. Then �(a/B) ≤ 0 for every b ∈ B and a |= ϕα(x, b).
Moreover, �(a/B) = 0 if and only if a ∈ 〈B〉 or a is B-generic in ϕα(x, b).

(f) ϕα(x, z) encodes every multiplicative translate of ϕα(x, b).
(g) If ∅ 
= ϕα(x, b) ∼ ϕα(x, b′), then b = b′.

We set 	α(z) := ∃xϕα(x, z).
If follows from (g) that b is the canonical base of the minimal prealgebraic type

determined by ϕα(x, b). Note that the only place where this definition differs from
the one given in [1, 4.7] is (d), where we added Kummer genericity as a condition.

Lemma 3.10. Let X be a minimal prealgebraic and Kummer generic definable set.
Then X can be encoded by some code α.

Proof. Using definability of Kummer genericity (Corollary 3.6(2)), it is easy to
see that the proof of [1, Lemma 4.8] adapts to our context. 
Combining Corollary 3.6(1) with Lemma 3.10, one sees that the proof of

[1, Satz 4.10] goes through, yielding the following result.

Proposition 3.11. There exists a collection C of codes with the following
properties:

(1) Every minimal prealgebraic definable set X can be encoded by some α ∈ C and
some correspondence torus T .

(2) The codeα ∈ C from (1) is uniquely determined byX , and there are only finitely
many correspondence tori T such that X is encoded by α and T .

For the rest of the paper, we fix a set of codes C satisfying the conclusion of
Proposition 3.11, and we call the elements of C good codes.
Fact 3.12 ([1, Lemma 4.9]). Let α ∈ C and let G(α,α) be the set of correspon-

dence tori T that induce a toric correspondence between some nonempty instances
ϕα(x, b) and ϕα(x, b′) of α. Then G(α,α) is finite.

3.1. Difference sequences. We now recall an important technical device from [1]
which is used in the collapsing process.

For a good codeα ∈ C, we choosemα < 
 such that for any b |= 	α, b is definable
over any Morley sequence in ϕα(x, b) of length mα . (The existence of mα follows
from code property (g).)

Fact 3.13 ([1, Satz 5.5]). For any code α ∈ C and any � ≥ mα there is a formula
�α(x0, . . . , x�) (whose realisations are called difference sequences) satisfying the
following properties:

(h) If |= �α(ē0, . . . , e�), then ei 
= ej for i 
= j.
(i) For b |= 	α and any Morley sequence (e0, . . . , e�, f) in ϕα(x, b), we have

|= �α(e0 · f−1, . . . , e� · f−1).

(j) If |= �α(e0, . . . , e�), there exists a unique b with |= ϕα(ei , b) for i = 0, . . . , �,
called the canonical parameter of the sequence.Moreover, b lies in the definable
closure of any subsequence of (e0, . . . , e�) of length mα .
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(k) If |= �α(e0, . . . , e�), then |= �α(e0, . . . , e�′) for each mα ≤ �′ < �.
(l) Let i 
= j and let b be the canonical parameter of the sequence (e0, . . . , e�) |=
�α . If there is some T in G(α,α) and e′j with (ej , e

′
j) ∈ T and if ei is generic

in ϕα(x, b) then ei 
 |�b
e′j · ei−1.

(m) If |= �α(e0, . . . , e�), then |= �α(∂i(e0, . . . , ē�)) for i ∈ {0, . . . , �}, where

∂i(e0, . . . , e�) := (e0 · ei−1, . . . , ei−1 · ei−1, e−1i , ei+1 · ei−1, . . . , e� · ei−1).

§4. Main results and elements of the proof. In this last section,wewill return to the
coloured context of Section 2 and state ourmain results, both in the uncollapsed case
(Theorem 4.4) and in the collapsed case (Theorem 4.10), thus constructing green
fields of Poizat andbadfieldswith green torsion equal to �.Once the axiomatisability
of the class K is established, the proofs of the corresponding results in the case were
� is trivial go through without major changes. In particular, the presence of green
torsion does not affect the arguments in the collapsing process.
While we are at it, we will indicate the places where the use of the improved codes
in the collapse is crucial. As an illustration, we will present a complete proof of the
axiomatisability of existential closedness (Proposition 4.7).

4.1. Green colour. It is convenient to slightly modify the definition of the class
K fromSection 2, allowing not only structures of the form (K,+, ·, 0, 1, Ü) satisfying
conditions (i)–(iv) from the beginning of Section 2 but also 〈·〉-closed subsets of
such structures. We will do this working in a language L∗ = LMorley ∪ {Ü}, where
LMorley is a relational language inwhichACF0 maybe axiomatised andhas quantifier
elimination. (See [1, Section 6].) Clearly, Theorem 2.3 holds in this modified setting,
i.e., K is axiomatisable in L∗.
Let B ⊆ A be structures from K. If l.dim(A) is finite, let �(A) =
2 tr.d(A) − l.dim(Ü(A)). If l.dim(A/B) is finite, or more generally if both
tr.d(A/B) and l.dim(Ü(A)/ Ü(B)) are finite, we set �(A/B)) = 2 tr.d(A/B) −
l.dim(Ü(A)/ Ü(B)), the predimension ofA overB. Note that ifA has a green linear
basis over B, this definition coincides with the one used in the previous section.
We say that B is self-sufficient in A if �(A′/B) ≥ 0 for all B ⊆ A′ = 〈A′〉 ⊆ A
with l.dim(A′/B) <∞. As usual we denote this by B ≤ A. For the basic properties
of � and ≤, we refer to [1].

Convention 4.1.

• In the following, we use terms like algebraic, generic, Morley sequence, tp(·),
stp(·) etc. with respect to the theory ACF0. In particular, a ∈ acl(A) means
that a is algebraic over A in the field sense.

• An extension B ≤ A in K will be called minimal prealgebraic if there is a green
tuple a ∈ A such that tp(a/B) is minimal prealgebraic and 〈Ba〉 = A.

• We will not distinguish between 〈A〉 ⊆ K∗ and 〈A〉 ∪ {0} ⊆ K . This abuse of
notation is entirely harmless.

Call a self-sufficient extension B ≤ A minimal if it is proper and such that
whenever B ≤ A′ = 〈A′〉 ≤ A, either A′ = B or A′ = A.
Fact 4.2 ([1, Lemma 6.4]). LetB ≤ A be a minimal self-sufficient extension inK.
Then one of the following cases holds:
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(1) (algebraic): Ü(A) = Ü(B) and A = 〈Ba〉 for some element a ∈ acl(B) \ B;
(2) (white generic): Ü(A) = Ü(B) and A = 〈Ba〉 for some element a 
∈ acl(B);
(3) (green generic): there is an element a ∈ Ü(A) \ acl(B) such that A = 〈Ba〉;
(4) (minimal prealgebraic): B ≤ A is minimal prealgebraic (in the sense of
Convention 4.1).

Lemma 4.3. Let B = 〈B〉 ∈ K and let p(x) be a strong field type over B that is
Kummer generic. For i = 1, 2, let B ⊆ Ai = 〈Bai 〉, where ai |= p is a green Q-basis
of Ü(Ai) over Ü(B). Then a1 �→ a2 extends to an isomorphism A1 � A2 over B.
Proof. For i = 1, 2, using the divisibility of Ü(Ai), construct inductively a

sequence (ai,n)n≥1 in Ü(Ai ) such that ani,n = ai and (ai,mn)
m = ai,n (component-

wise) for all m, n ≥ 1. Kummer genericity of p(x) implies that for every n ≥ 1,
stp(a1,n/B) = stp(a2,n/B), so the map defined by a1,n �→ a2,n for all n ≥ 1 extends
to an L∗-isomorphism from A1 to A2 over B. 

4.2. The uncollapsed case: green fields with green torsion equal to �. It is shown
in [6] that the class (K,≤) has the amalgamation property and the joint embedding
property. Moreover, using Lemma 4.3 together with Fact 3.2(1), one may show that
every A ∈ K of finite linear dimension has only countably many strong extensions
of finite linear dimension, up to isomorphism. There is thus a unique countable rich
M
 ∈ K, the Fraı̈ssé-Hrushovski limit of the subclass ofK given by the structures of
finite linear dimension. By definition, the theory of green fields, T
 , is the complete
theory of the structure M
 . In [6], Poizat notes that his results hold for arbitrary
divisible green torsion � if the axiomatisability of the class K can be established
unconditionally. Since this missing point is provided by Theorem 2.3, we obtain the
following result.

Theorem 4.4. T
 is 
-stable of Morley rank
 · 2, with Ü having Morley rank
.
The green torsion in models of T
 is equal to �.

A structure in K is rich if and only if it is an 
-saturated model of T
 . It follows
that the type of a 〈·〉-closed self-sufficient subset of a model of T
 is determined by
its quantifier free type (in L∗). Using code properties (d) and (e), Lemma 4.3 yields
the following result.

Lemma 4.5. Let α ∈ C, b ∈ B = 〈B〉 ≤ M |= T
 and ai ∈ M with M |=
ϕα(ai , b) and ai 
∈ B for i = 1, 2. Then tpT
 (a1/B) = tpT
 (a2/B).
The following remark, an immediate consequence of the lemma, clarifies the

role of Kummer genericity and green torsion as far as multiplicity issues in T
 are
concerned. Indeed, the corresponding remark [1, Bemerkung 6.7] is incorrect as
stated, and one needs to add Kummer genericity to the assumptions.

Remark 4.6. Let ϕα(x, z) be a code. Assume that |= 	α(b). Then ϕα(x, b) ∧∧n
i=1 Ü(xi) is a strongly minimal formula in T
 .
In fact, one may show that it would be enough to require in the definition of a

Kummer generic variety V that p
√
V is irreducible for those primes p for which �

does not contain any (nontrivial) p-torsion.

4.3. The collapse to a bad field. In order to collapse the green field of Poizat
we obtained to a bad field, we may proceed as in [1, Sections 7–11]. Alas, the
procedure is quite technical. The idea is to forbid infinitely many realisations of
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the same minimal prealgebraic extension. The codes allow us to work uniformly in
parameters, and the notion of difference sequences helps to address the delicate issue
of controlling the interactions between different minimal prealgebraic extensions.

We choose functions �∗, � : C → N with finite fibres satisfying some tech-
nical conditions, namely (1) �∗(α) ≥ nαkα + 1, (2) �∗(α) ≥ �α(mα + 1) and
(3) �(α) ≥ �α(�∗(α)). Here, �α : N → N is some strictly increasing function
related to the conclusion of [1, Lemma 7.3]. We now define the class K� as the
subclass of K consisting of those M which do not contain any green difference
sequence of α of length �(α) + 1, for any good code α.

In the proofs of the following two propositions (which correspond to
[1, Folgerung 8.4] and [1, Satz 9.2], respectively), Kummer genericity is used in
an essential way. At the end of this section, we will present the argument for one
of them in detail, namely for Proposition 4.7, since in this case the use of Kummer
genericity is less apparent.

Proposition 4.7. For every good code α, there is a ∀∃-sentence �α such that for
every algebraically closed structureM in K�, the sentence �α holds inM if and only
ifM has no minimal prealgebraic extensions in K� coded by α.
Proposition 4.8. The class (K�,≤) has the amalgamation property.
Let M� be the Fraı̈ssé-Hrushovski limit of the class (K�,≤), i.e., the unique
countable structure in K� that is rich for the subclass ofK� of all structures of finite
linear dimension. Set T� := Th(M�).
Consider the theory T̃ � expressing the following for an L∗-structureM :
(1) M ∈ K�;
(2) M |= ACF0;
(3) M |= �α for every good code α ∈ C;
(4) axioms which guarantee that if M is 
-saturated, then there are elements
gi ∈ Ü(M ), i ∈ N, such that d(g1, . . . , gn) = n for every n.

Here, d denotes the usual dimension function associated to the predimension �
(see [1, Definition 10.1]).
The axiomatisability of (1) follows from Theorem 2.3, and the �α in (3) are from
Proposition 4.7. Finally, (4) is axiomatisable by [1, Lemma 10.3].
The theory T̃ � we just defined is an axiomatisation of T�. Indeed, the following
proposition is proved exactly as [1, Satz 10.5].

Proposition 4.9. The 
-saturated models of T̃ � are precisely the rich structures
in K�. In particular, T� = T̃ �.
As in the case without green torsion, the theory T� has some level of quantifier
elimination (the quantifier free type of a 〈·〉-closed self-sufficient set determines its
type) and is model complete (cf. [1, Folgerung 10.6 and 10.7]).

We may now state our main result, the analogue of [1, Satz 11.2].

Theorem 4.10. T� hasMorley rank 2, with Übeing stronglyminimal. In particular,
M� is a bad field of rank 2 with green torsion Ü∩Tor = �.
Indeed, as in [1] one shows that MR(a/B) = d(a/B) holds in any model of T�.

4.4. Proof of the axiomatisability of existential closedness. We finish with the
proof of Proposition 4.7 on the axiomatisability of existential closedness. Here we
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follow closely the argument in [1]. At two places we will make an essential use of
the improved codes, namely when applying Lemma 3.7 and Lemma 4.5.
The following lemma provides the key structural property used in the proof.

Lemma 4.11 ([1, Folgerung 8.3]). Let M ∈ K�, and let M ≤ M ′ ∈ K be a
minimal self-sufficient extension ofM .

(1) AssumeM ′/M is algebraic, green generic or white generic. ThenM ′ ∈ K�.
(2) AssumeM ′/M is minimal prealgebraic. ThenM ′ 
∈ K� if and only if there is
a good code � ∈ C and a difference sequence (e0, . . . , e�(�)) for � in M ′ such
that one of the following two cases occurs:
(a) e0, . . . , e�(�)−1 ∈ M , 〈Me�(�)〉 = M ′, and � is the unique code which
describes the extensionM ′/M .

(b) A subsequence of (e0, . . . , e�(�)) of length �∗(�) is a Morley sequence for
ϕ� (x, b) overMb, where b is the canonical parameter of the sequence.

Proof of Proposition 4.7. Let α ∈ C. SupposeM ∈ K� is algebraically closed,
b ∈M and a is a green generic solution of ϕα(x, b) such thatM [a] := 〈Ma〉 is not
in K�. Hence there exists a good code � and a difference sequence (e0, . . . , e�(�))
for � inM [a]. Let b′ be the canonical parameter of the sequence.
By Lemma 4.11, we may assume that either (a) e0, . . . , e�(�)−1 are inM ,M [a] =

M [e�(�)] and � = α, or (b) there is a subsequence of (e0, . . . , e�(�)) of length
�∗(�) that is a Morley sequence for ϕ�(x, b′) overMb′.
In case (a), b′ is in M and, since M ≤ M [a], we have that e�(α) is generic in

ϕα(x, b′) over M (and green). It follows that both tuples a and e�(α) are Q-linear
bases of Ü(M [a]) over Ü(M ).
Consider therefore the following condition on b:

(∗) There exist an n-tuple m ∈ Ü(M ), a torus T ∈ G(α,α) and a difference
sequence (e0, . . . , e�(α)−1) for α such that T induces a toric correspondence
between �α(e0, . . . , e�(α)−1, x) and ϕα(x ·m, b).

By code property (f), ϕα(x ·m, b) is coded by α as well. Thus, by the finiteness of
G(α,α) (Fact 3.12), (∗) can be expressed by 	(a)(b), where 	(a)(z) is an existential
formula. Moreover, the Kummer genericity of ϕα(x · m, b) ensures that if a′ is a
generic green solution of ϕα(x · m, b) over M (equivalently, a′ · m−1 is a generic
green solution of ϕα(x, b)) then for any green tuple e with (a′, e) ∈ T one has
�α(e0, . . . , e�(α)−1, e) (by Lemma 3.7). This shows that 	(a)(b) holds if and only if
we are in case (a).
In case (b), since all elements in theMorley subsequence are linearly independent

overM , we have �∗(�) ≤ nα
n�

≤ nα . Since �∗ is finite-to-one, there are only finitely
many good codes � for which this happens.
Express the set defined by the formula �� as a finite union

⋃r
k=1(Vk \Zk) where

Vk and Zk are varieties defined over Q with Zk � Vk .
LetV0 = Vα(x, b) be the Zariski closure ofϕα(x, b). This is an irreducible variety

by code property (d), and so it is equal to the locus of a overM . Fix k ∈ {1, . . . , r}
such that (e0, . . . , e�(�)) ∈ Vk \ Zk , and letW be the locus of (a, e0, . . . , e�(�)) over
M . SoW is a subvariety of V := V0 × Vk . Let {T0, . . . , Ts} = T (Vα(x, z)× Vk).
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Note that cd(W ) = cd(V0) = kα . Indeed, sinceM is algebraically closed and all
the elements in the tuples e0, . . . , e�(�) are fromM [a], we have:

cd(W ) = l.dim(a, e0, . . . , e�(�)/M )− tr.d(a, e0, . . . , e�(�)/M )
= l.dim(a/M )− tr.d(a/M )
= cd(V0).

Let T be the minimal torus ofW and m ∈W (M ) be such thatW ⊂ mT .
LetW ′ be a maximal irreducible subvariety of V defined overM withW ⊆W ′

and cd(W ′) = cd(W ). The varietyW ′ is hence cd-maximal in V , its minimal torus
is therefore some T� ∈ T (Vα(x, z) × Vk), andW ′ ⊆ mT� .
Let (a∗, e∗0 , . . . , e

∗
�(�)) be a generic of W

′ over M . From cd(W ′) = cd(W ) =
cd(V0), we get

l.dim(a∗/M ) − tr.d(a∗/M ) = l.dim(a/M )− tr.d(a/M )
= l.dim(a∗, e∗0 , . . . , e

∗
�(�)/M )

− tr.d(a∗, e∗0 , . . . , e∗�(�)/M ).
Therefore,

l.dim(e∗0 , . . . , e
∗
�(�)/Ma

∗) = tr.d(e∗0 , . . . , e
∗
�(�)/Ma

∗) =: �.

We now choose a linear basis f0, . . . , f�−1 over Ma∗ from the elements of the
tuple (e∗0 , . . . , e

∗
�(�)). The elementsf0, . . . , f�−1 are hence algebraically independent

overMa∗.
That the coset mT contains the green tuple (a, e0, . . . , e�(�)) implies that if we
describe mT by equations {

∏n
i=1 x

nij
i = cj}, then the cj are all green. (Note that

cj =
∏
m
nij
i .) As mT� ⊇ mT , the same is true for a set of equations defining

mT� . It is then easy to see that there is a structure N in K extending M and
with domain N = 〈Ma∗, f0, . . . , f�−1〉 = 〈Ma∗, e∗0 , . . . , e∗�(�)〉 such that the tuple
(a∗, e∗0 , . . . , e

∗
�(�)) is green and (a

∗, f0, . . . , f�−1) is a linear basis of Ü(N) over
Ü(M ).
For 0 ≤ j ≤ �−1, let Fj := 〈Ma∗, f0, . . . , fj−1〉 and observe that each extension
Fj ≤ Fj+1 is a green generic extension. Applying Lemma 4.11 repeatedly we get:
M [a∗] ∈ K� if and only if N ∈ K�. Also, by Lemma 4.5, the map a �→ a∗ extends
to an isomorphism overM betweenM [a] andM [a∗]. Thus,

M [a] ∈ K� if and only if N ∈ K�.
Now both (e0, . . . , e�(�)) and (e∗0 , . . . , e

∗
�(�)) lie in Vk . And, since (e0, . . . , e�(�)) is a

specialisation of (e∗0 , . . . , e
∗
�(�)) and (e0, . . . , e�(�)) 
∈ Zk , also (e

∗
0 , . . . , e

∗
�(�)) 
∈ Zk .

Hence (e∗0 , . . . , e
∗
�(�)) realises �� .

Thus, in case (b), we have shown that the existence of a green difference sequence
for � of length �(�) + 1 in M [a] implies the existence of one such particular
difference sequence in N , and, conversely, that the existence of such a difference
sequence (e∗0 , . . . , e

∗
�(�)) in N implies thatM [a] is not in K

�.

Consider therefore the following condition on b: there is a tuple m from Ü(M )
and an irreducible componentW ′ of V ∩mT� (where V is as above) such that:
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(1) If the coset mT� is given by {
∏
x
nij
i = cj}1≤j≤t , then all cj are green;

(2) W ′ projects generically onto V0;
(3) cd(W ′) = cd(V0), and
(4) for generic (a∗, e∗0 , . . . , e

∗
�(�)) inW

′, ��(e∗0 , . . . , e
∗
�(�)) holds.

Note that the condition can be expressed by an existential sentence with parameters
from b. Let 	(b)(b) be the disjunction over all � ∈ C with �∗(�) ≤ nα , all k ∈
{1, . . . , r} and all � ∈ {1, . . . , s} of these sentences.
Now �α = ∀z [¬	α(z) ∨ 	(a)(z) ∨ 	(b)(z)] is ∀∃ and does the job. 
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[5]Michel Laurent, Équations diophantiennes exponentielles. Inventiones mathematicae, vol. 78

(1984), no. 2, pp. 299–327.
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