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Abstract
This paper is a report from the Extreme Events Working Party. The paper considers some of the

difficulties in calculating capital buffers to cover potential losses. This paper considers the reasons

why a purely mechanical approach to calculating capital buffers may bot be possible or justified.

A range of tools and techniques is presented to help address some of the difficulties identified.
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1. Introduction

Financial firms are regularly asked to provide reassurance that they have the capital strength to cope

with the events of the future. Regulators, shareholders, market counterparties and individual

policyholders alike demand assurance that capital buffers are large enough to withstand potential

losses. Where a track record of prudent management might have sufficed to engender trust in the past,

firms are now asked to report, or are keen to demonstrate, their supposed strength in a quantitative

manner. The ‘‘1-in-200 year’’ test in Individual Capital Assessment and Solvency II calculations are

examples of quantitative demonstration of capital strength in insurance that echoes the 5% daily value-

at-risk (VaR) number monitored by banks. Section 1.1 contains examples of two published cases where

the capital calculations based on 1-year VaR of firms proved to be insufficient.

Practitioners involved in these calculations are aware that a purely mechanical approach to a capital

or solvency calculation can be unhelpful. This paper looks at the various reasons why a purely

mechanical approach may not be possible or justified. It also presents tools and techniques to help

address some of these difficulties.

The main reasons for this, which are behind much of the thinking in this paper, can be summarised

in terms of breadth and depth:

Too much breadth – although unintuitive at first sight, one of the biggest issues related to the

calculation of solvency capital is that a glut of data/information on the numerous potential risks

that a firm is exposed to may actually make it difficult to see the wood from the trees. In other

words, a good understanding of what risks are important to the business is increasingly necessary,

and a simplification or sifting stage is essential to begin to quantify the risks faced by the firm.
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Insufficient depth – to adequately calibrate a probability event in the tail of a distribution requires a

large amount of data, which is often simply not available. There may not even be enough data to

know what model is most suitable for these tail events, never mind what parameters should be

chosen for this model.

In both cases, judgement is needed to make sensible choices, but these choices will influence the

results. Understanding this influence, and modifying results to allow for it, should be an important

aspect of capital calculations. This paper seeks both to offer a guide to the kinds of things that can

go wrong and to provide a set of tools that can be used to make capital calculations more robust.

It is tempting to believe that complex analytical and statistical approaches are doomed to

fail and that a simple approach is the best way forward. Haldane (2012) makes an erudite argument

for such an approach, and we recommend it as further reading. Our view is that risk models are

necessary but have to be carefully built, given that they can at best be an approximate

representation of the real world. In particular, practitioners need to be aware of the impact of the

multitude of choices they are forced to make, and model results should be treated with a healthy

dose of wariness.

1.1. A (Hypothetical) Motivating Example

We consider a set of hypothetical but not implausible events for a financial firm that assesses at the

start of the year that h10 bn is sufficient to absorb losses with 99.5% probability. By the end of the

year, the firm has lost h20 bn. Many things have gone wrong at once, including the following:

Accounting change

> A clarification in the regulatory calculation of the illiquidity premium meant that the insurer

could no longer use the yield on certain illiquid assets to discount the liabilities. The liabilities rose

as a result of this change, leading to an accounting loss. At the same time, a change in tax rules

meant that a deferred tax asset previously considered recoverable had to be written off.

Unmodelled heterogeneity

> A problem arose with a set of policies that, for calculation convenience, had been modelled

together. It turned out that within a group of policies assumed to be homogenous, there was in

fact a variety of investment choices; as a result, a large block of these policies had guarantees that

were significantly into the money. Policyholders selectively took advantage of these guarantees,

producing costs far beyond those projected from the capital model.

Market risks

> New risks emerged that had not previously been modelled explicitly. Specifically, a loss on

derivative positions arose from the widening of spreads between swaps based on LIBOR and

overnight index swaps. A euro government defaulted on its bonds.

> A change in the shape of the credit spread curve meant that the existing market-consistent ESG

could not exactly calibrate the year-end market conditions. Concerned about how this would

appear in upcoming meetings with the regulator, a new ESG from a different provider was put in

place at short notice. However, for reasons that are still not fully transparent, this led to an

increase in the stated time value of liability options.
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Non-market risks

> Losses from an earthquake in the Middle East were substantially greater than the maximum

possible loss calculated from a third-party expert model. The reasons for this seem to be a

combination of a disproportionate number of January policy inceptions (the model assumed

uniformity over the year), inadequate coverage of the region in the external catastrophe model,

and poor claims management exacerbated by political instability and corruption.

> The annuity portfolio took a one-off hit because of a misestimation of the proportion married

and a strengthening of the mortality improvement rates.

Poor returns on new investments

> Early in the year, the firm participated in some securitised AAA investments that exploited

market anomalies to provide yields closer to those on junk bonds. The capital model had been

based on the portfolio before this participation. The participation turned out to be disastrous,

and virtually all the investment had to be written off following an avalanche of unforeseen

defaults in the underlying assets.

Legal loophole

> Many life insurance claims became due following an industrial accident. The insurer was

confident that a proportion would be recovered from reinsurers as assumed within the capital

model. However, the reinsurance contract contained a clause not captured in the capital model,

which limited payouts in the event of large losses from a single event.

Although our example in this case is hypothetical, there are indeed real examples of firms who

proclaimed that they held economic capital to withstand a loss equivalent to a very extreme event

(e.g. a 1-in-2,000 year) before losing a multiple of that amount of that figure.

Table 1 shows the published 1-year VaR figures for two of the well-publicised cases in 2008 that

ultimately led to state bailouts – AIG (2008) and Fortis (2008). We have also calculated the confidence

level associated with the experienced losses, assuming normal distributions.

It is of course theoretically possible that such an outcome was a case of exceptionally bad luck, but

with hindsight we have seen how risks that ultimately proved to be important were either

overlooked or scoped out of the capital models.

Table 1. Published 2008 1-year VaR for AIG and Fortis

Firms Stated 1-year VaR – 2007 YE

Loss during 2008

(frequency based on Gaussian extrapolation)

AIG

Amount $14.5 bn–$19.5 bn h99.3 bn

Frequency 1-in-2,000 years 1 in 4 3 1062 years1

Fortis

Amount h17.6 bn h28 bn

Frequency 1-in-3,333 years 1 in 40,000,000 years

1Based on the upper value of $19.5 bn ECAP.
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1.2. Capital Model Scope

Our hypothetical example in section 1.1 highlights many possible sources of loss. Whereas some of these

are avoidable, and others may be captured within a stochastic internal model, many will not be modelled.

These losses may be attributed to lack of knowledge and genuine model uncertainty rather than an

explicit stochastic element. It is debatable whether probability theory is the right tool to address such risks.

If these risks are simply ignored, then firms are likely to see frequent exceptions, that is, experience

losses worse than the previously claimed 1-in-200 event. Mounting evidence of such exceptions

could undermine a firm’s claims of financial strength, and may even call into question the advertised

degree of protection (e.g. 1-in-200) that a supervisory regime claims to offer.

Thus, rather than simply asserting (ex post) that these risks were out of scope, it is therefore

desirable that risks are identified and some attempt is made at quantification, even if a variety of

techniques are needed to address different elements.

1.3. What’s in this Paper?

In the remainder of this paper, we focus on four specific types of error and also examine some

broad themes.

Section 2 considers the overall aspect of choice or judgement with respect to modelling, explaining

the basic need for judgement, and highlighting several broad areas where judgement/choice is

manifested in the context of actuarial modelling. The chapter then considers each area, and

introduces some methods of mitigating the need for judgement as well, providing some observations

on good practice for cases where judgement is inevitable.

Section 3 looks at the choice of risks to include in a model. Two key aspects are considered. These

are the selection of features and extraction of features to be modelled. How to allow for the risks

not explicitly covered in the model is also discussed. Some mitigants including grossing-up

techniques and stress testing are discussed.

Section 4 looks into model and parameter risk and describes classic statistical approaches to

parameter error, showing constructions of confidence and prediction intervals, incorporating the

T-effect, for a range of distributions and data sample sizes. It also tackles model error, with a

number of examples, before discussing some techniques to assess model errors.

Section 5 looks at several aspects of errors introduced by calculation approximations when, in the interest

of faster run times, assets or liabilities are approximated by polynomials. This first looks at proxy models,

and the potential errors that they introduce, as well as the errors introduced by Monte Carlo sampling.

Section 6 includes a summary of key conclusions from previous sections, our concluding thoughts

on the topic and references.

Appendix A draws together the use of Bayesian methods in risk analysis, including the application

of judgement, Bayesian networks and the use of Markov chain Monte Carlo methods to compute

posterior distributions.

Appendix B gives details of the liability valuation formulas used in the proxy model examples from

section 5.
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2. Judgement

First, it is important to acknowledge that judgement is a necessary and inescapable part of actuarial

modelling, and it is very difficult (in fact, one could argue impossible with the exception of

pathological examples) to simply avoid the need to make any choices. Moreover, as we shall

explain, judgement permeates almost every aspect of modelling, which means that one may

encounter the need to make choices at various levels.

Another aspect is that any judgement, by definition, depends to a certain extent on who is

making the judgement, and the framework within which they need to make the judgement. In the

United Kingdom, the board is ultimately responsible for all assumptions and judgements, and

statutory audits in the United Kingdom assert that a set of accounts provide a ‘‘true and fair’’ view,

in accordance with the accounting principles.

A specific element of the audit assesses whether judgements made by management during the

production of a set of ‘‘true and fair’’ accounts are reasonable. A reasonable judgement may be

interpreted as within the range of conclusions an expert could draw from the available data, and

will have regard to common practice in the market. The range for reasonable judgements may be

narrower than parameter standard errors in a statistical sense, especially when data are limited.

An audit process also looks for errors that are unintentional human mistakes, such as the use of an

incorrect tax formula or omitting an expense provision. Any such mistake is assessed using the concept

of a ‘‘materiality’’ limit. This is an amount of error, expressed in currency terms, which is deemed not

likely to change the decisions of the users. Material errors should be corrected, but a clean audit can still

be granted provided the aggregate effect of mistakes is within the materiality limit.

The exercise of judgement is not a mistake; it is possible for two reasonable judgements to differ by

more than the materiality limit. Therefore, decision makers relying on financial statements should be

aware that alternative judgements in the account preparations could have led to different decisions.

True and fair accounts must be free of material mistakes but cannot be free of material judgement.

Thus, there is a considerable element of judgement embedded in the production of the basic

‘‘realistic’’ or ‘‘best estimate’’ balance sheet, even before extrapolating into the calculation of the

capital required to withstand a hypothetical 1-in-200 event.

We try to address this aspect of judgement by looking at two elements:

> Section 2.1 aims to broadly categorise the different manifestation of choice/judgement inherent

within modelling, and point the reader to tools that potentially deal with each aspect.

> It is extremely unlikely that we can do away with judgement altogether, and there will be aspects

that inevitably require judgement. In section 2.2, we try and summarise some good principles

within current industry practices.

2.1. Manifestations of Judgement

Judgements are an integral part of any modelling exercise, because any model is necessarily a

simplified representation of the real world and as such needs to be stripped down to its most

relevant components. This ensures that the model is a useful analogy of the real world for the

specific purpose that a model is required for. The process of stripping down to the bare useful

components and ‘‘calibrating’’ the resultant model inevitably has a large amount of judgement

R. Frankland et al.

560

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1357321713000524
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 20:21:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1357321713000524
https://www.cambridge.org/core


associated with it. In the limited context of actuarial modelling, this judgement can broadly be

thought to manifest itself in the following ways:

> choosing which risk factors to model;

> choice of overall model framework;

> choosing individual parts of the model;

> choice of calibration methodology;

> judgements inherent within the data itself;

> choice of parameters.

One can imagine that these have (broadly) decreasing levels of significance to the end results. However,

the industry appears to have the greatest focus on the final (and perhaps second to last) elements of

parameter choice and calibration methodology, often to the detriment of the overall choice of

framework and model fitting. For example, companies may focus most of the documentation and

rationale of expert judgement in the final two categories, potentially at the expense of reduced oversight

and attention paid to the substantial implied judgements involved in the first two categories.

2.1.1. What Risk Factors to Model?
Perhaps the single biggest modelling choice to be made by a company is simply what risks to model.

As briefly explained above, a model can only hope to be a simplified representation of the reality it

intends to model. A philosophical way of thinking about it is that any model of the universe needs to

be at least as large as the universe itself, and in fact in order for us to project it into the future faster

than real time, it needs to be even larger.

A key constraint on the number of risk factors to include in a model is availability of resources.

Human resources, computer resources and time are required in most modelling exercises and these

have to be used in the most efficient manner. To that end, we need to choose the most appropriate

aspects to model. Suppose we could simplify the modelling problem considerably, by converting the

problem into a simple choice regarding the number of ‘‘risk factors’’ to model. It can be shown that

the number of modelling choices faced by a company is simply enormous! For example, section 3.1

details a case study to highlight the enormity of this decision, where over a million inputs to the

balance sheet are summarised by as few as 100 risk factors.

Needless to say, choosing the risk factors to model is an extremely important exercise and one that

should not be taken lightly. Also important is that once the modelling choices have been made is

how to allow for the risk factors that are not modelled. This is addressed in the ‘‘grossing-up

techniques’’ commentary in section 3.3.

2.1.2. Choice of Overall Framework
This is quite possibly the second most significant judgement to be made within a (capital) modelling

context, although it is not always appreciated as such. Of course, the materiality of the different

choices depends on the particular problem at hand. We try to illustrate this in the context of

aggregation methodology using a very simple case study with two risks (described as two products

of equal size, A and B):

> Each risk akin to a simple product with a guaranteed £100 m liability, in which not all the risks

are hedgeable. There is a residual 1-in-200 risk that the assets (and capital) would lose half their

Difficult risks and capital models
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value. The extra capital required at time 0 such that the product has a 99.5% probability of

meeting its guarantees at time 1 is (an extra) £200 m (£100 m for each product).

> The two products are assumed to be uncorrelated.

Let us now consider two commonly used methods of calculating the aggregate capital requirement:

1. Using an ‘‘external correlation matrix’’ approach, the answer is relatively simple. The aggregate

capital requirement can be calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Capital2A þ Capital2B

q
, which is £141.6 m in total and

£70.8 m per product.

2. Using an alternative approach of undertaking a Monte Carlo simulation of the losses of the two

products assuming the distribution of the losses are lognormal (again, a popular choice amongst

practitioners) with the same 1-in-200 individual capital requirements. This produces a different

aggregate capital requirement of £121 m and £60.5 m post-diversification capital requirement

for each product.

This simple example of the impact of the choice of the aggregation framework shows that the

aggregate capital requirement can differ by 20% of the liabilities. This example is not special in any

sense, in that the two products could represent pretty much any two risk factors.

One can appreciate that there are multiple choices to be made in simply aggregating different risk

factors. This is further compounded by choices that need to be made in relation to exotic copula

structures, non-linearities, etc.

Finally, this example only touches on a very specific aspect of framework choice; there are many

other implicit judgements necessitated by trying to create a simplified representation of the real

world. There is a long list of other judgements that need to be made, examples of which include:

> using heavy models versus lite (proxy) models;

> if proxy model, choice of proxy model;

> what measure is used to estimate capital, for example, VaR, tail VaR, etc;

> granularity of assets, model points;

> use of instantaneous stress approximation (time 0, time 1 or other);

> holistic model of the business versus detailed product-specific models aggregated;

> treatment of new business;

> fungibility of capital;

> measure of correlation used.

2.1.3. Choice of Model Components

The choice of model for each risk is an important aspect of modelling. A previous paper, an extract

of which is showed below, from this working party (Frankland et al., 2009) showed that fitting

different models to the same historical data can have a range of different results, even when using

relatively large amounts of data (Chart 1).

‘‘Even after settling on a single data set, the fitted curves for U.K. produce a wide range of

values for the 1-in-200 fall. The most extreme results are from a Pearson Type IV, applied to

simple returns, which implies a fall of 75% at the 1-in-200 probability level. At the other

extreme is the lognormal distribution, with a fit implying that even a 35% fall would be more

extreme than the 1-in-200 event. Other distributions produce intermediate results’’.

R. Frankland et al.
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Chart 2 shows the 0.5th percentile estimated using different models for the UK and Denmark.

Interestingly, the same extreme potential model error is also true for Denmark (which also has

relatively large amounts of historical data), but in this case the models that result in the most and

least extreme values are completely different.

Another example of model risk is described in section 4.2 and the reader is also referred to a recent

paper by Richards, Currie and Ritchie, and the subsequent discussion.

Chart 1. Quantile-Quantile plot of UK equity returns, 1969–2008, with various fitted models

Chart 2. 0.5th percentile estimated using different models based on UK and Danish equity data

Difficult risks and capital models
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2.1.4. Choices Inherent within the Calibration
There are other, more commonly acknowledged calibration choices that should be noted in the same

context. For example, calibration of a model is required to fit historical data to a 1-in-200 event,

and one of the decisions is the choice of data period to use. Very simply, if we are using x years

of data, then the model would accept the worst event within this data window as being a 1 in

x event. Thus, the choice of data window makes an important contribution to the results, and it is

important to note that even picking any available data set comes with a default assumption

regarding the data period.

This context results in an obvious place where one may want to exercise judgement, that is, one may

want to impose some views on the extremity of actual events observed. An obvious example can be

constructed by using very short data series that included the recent credit crisis, which would naively

overestimate the resulting extreme percentile calculated by assuming such an extreme event that would

occur regularly within such a short time period. Of course, it goes without saying that the reverse would

also have been true when looking at short-term data before the recent financial crisis.

Another example of judgement related to calibration is the choice of method to estimate the

parameters of a model. The two approaches that are commonly used are maximum likelihood

estimation and the method of moments (described further in section 4.1.4). In calibration exercises

where data are limited, these different approaches can lead to very different results.

2.1.5. Judgement Inherent within Underlying Data
Before the application of judgement to the data, it is useful to consider the nature of the raw data used to

calibrate the model. The data might not themselves be accurate, being based on estimates, or might

contain a systemic effect that would influence our interpretation of the data and perhaps the calibration.

A recent example of data that is based on estimates, which was perhaps not generally appreciated at

the time, is the ONS mortality data for older ages in England and Wales. The results of the 2011

Census revealed that there were 30,000 fewer lives aged 90 years and above than expected. In

absolute terms, a difference of 30,000 lives is not a large change. However, in relative terms, it

represents a reduction of around 15%. Between census years, the exposure to risk is an estimated

figure. The funnel of doubt around the estimate increases as the time since the last census increases.

The ONS data, being based on a large credible data set, are the source of most actuarial work on

longevity improvements, including the projection model developed by the continuous mortality

investigation. One implication of the recent census data is that estimates of the rate of improvement

of mortality at high ages might have been significantly overstated.

An example of a systematic effect that may be present in data, and should be considered before

using any data to calibrate an internal model, would be the derivation process behind a complex

market index. As an illustration, Markit publishes a report on its iBoxx EUR Benchmark Index1

that documents multiple changes to the basis of preparation. This index may be considered a

suitable starting point to construct a model of future EUR bond spread behaviour, but such an

analysis should consider the effect of the various changes. Of course, the report from Markit

contains extensive details of the past index changes, but an equivalent level of detail might not be

available for other potential data sources.

1 http://www.markit.com/assets/en/docs/products/data/indices/bond-indices/Markit_iBoxx%20EUR_Benchmark_

Guide.pdf
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2.1.6. Choice of Parameters and Expert Overlay
Irrespective of the model we have chosen to use, we would need to supply it with suitable

parameters. This can be done by using some statistical methods of choosing the best parameters,

acknowledging the parameter uncertainty inherent from fitting to limited data. Section 4.1.1 looks

at possible ways of quantifying the risk capital where parameters are uncertain.

In addition to genuine parameter uncertainty (assuming that past data are truly reflective of the

future), we may also have uncertainty as the future conditions may be different to historic

conditions (taking interest rates, for example). In this case, management still needs to make some

judgements on the choice of parameters.

This judgement on model parameters can be explicit or implicit. For example, at the most explicit

level, one may override the 1-in-200 stress itself by superimposing the views of investment

experts. In many cases, the paucity of data and the changing economic landscape makes this

a regular part of the capital calculation exercise. Alternatively, judgement can be more implicit in

the structure of the model. For example, conditional on the form of the model, one may have prior

views on certain parameters (e.g. we may have a prior view on the volatility parameter of a

lognormal distribution).

However, it should be recognised that any judgement (even though necessitated because of poor

data and changing environment) is ultimately subjective. One advantage of explicit judgement (over

implicit judgement) is that it is extremely transparent and openly recognises that models and data

can only go so far in terms of predicting future distributions.

For either explicit or implicit judgement, we need to recognise that, although one may have a better

base assumption, parameter uncertainty (section 4.1.1) still needs to be taken into account. In

addition, one should aim to follow a good process when coming up with the parameters, and some

observations on current practice within the industry are discussed in the next section.

2.2. Expert Judgement: Current Practices

Judgement is by no means limited to actuarial modelling, and it has been the subject of much

literature outside of the financial world, for example, engineering and public health. From a purely

statistical viewpoint, there is much to learn from Bayesian statistics, and a summary of Bayesian

methods is provided in Appendix A, which we hope the readers find useful. In addition, there has

been substantial research on this subject in other fields, particularly science and engineering (see

Ouchi, 2004 for a literature review of expert judgement research). We refer to some examples as

extremely useful reading,2 and perhaps learning good principles on judgement from other fields

could be the scope of further actuarial research.

However, perhaps because of the huge range of possible decisions to make within actuarial

modelling itself, we limited our scope to discuss aspects of current practices in the UK insurance

industry. It quickly becomes evident that judgement has always been a part of risk modelling, even if

it has not always been explicit. More recently, as firms started to prepare for Solvency II, there has

been a much greater level of codification and documentation of expert judgement, as with other

aspects of modelling. In this section, we look at how insurance firms are currently approaching this

area and briefly look at research on expert judgement outside financial modelling.

2 For one such example, please refer to European Commission (1999).
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2.2.1. Regulatory Background
The Solvency II Directive does not contain any direct references to expert judgement, but its use is

anticipated in the Level 2 technical standards:

Expert judgement

‘‘1. Insurance and reinsurance undertakings shall choose assumptions on the issues covered by

Title 1, Chapter VI of the Directive 2009/138/EC based on the expertise of persons with

relevant knowledge, experience and understanding of the risks inherent in the insurance or

reinsurance business thereof (expert judgement)’’.

Article 4, implementing measures, states that:

‘‘Insurance and reinsurance undertakings shall choose assumptions on [the issues covered by

Title 1, Chapter VI of the Directive 2009/138/EC] [valuation of assets and liabilities, cal-

culation of capital requirements and assessments of own funds] based on the expertise of

persons with relevant knowledge, experience and understanding of the risks inherent in the

insurance or reinsurance business thereof (expert judgment).

Insurance and reinsurance undertakings shall, taking due account of the principle of pro-

portionality, ensure that internal users of the relevant assumptions are informed about its

relevant content, degree of reliance and its limitations. For this purpose, service providers to

whom functions have been outsourced shall be considered as internal users’’.

Level 3, Guideline 55 requires that:

‘‘The actuarial function should express an opinion on which risks should be covered by

the internal model, in particular with regard to the underwriting risks. This opinion should be

based on technical analysis and should reflect the experience and expert judgement of

the function’’.

CEIOPS issued a consultative paper on internal models (CP56) in 2009 that, inter alia, set out its

views at that time on expert judgement, commencing that ‘‘CEIOPS recognises that in a great many

cases expert judgement comes into play in internal model design, operation and validation’’. Further

references from the CP are set out in the Appendix to this policy.

It is likely that the use of expert judgement will be subject to Level 3 guidance. EIOPA prepared an

early draft guidance paper on expert judgement, which concentrated on the need for proper

documentation, validation and governance of assumptions derived by expert judgement. It also

identified the need for clear communication between users and providers of expert judgement to

avoid misunderstandings. However, with the ongoing delays to the Solvency II project, it is not clear

when this particular guidance will be open to public consultation.

In a letter to firms on IMAP progress in July 2012 (Adams, 2012), the FSA identified

expert judgement as an area for additional commentary. This recognised expert judgement as

important and necessary in many aspects of internal models but identified areas for improvement

that include the same areas of documentation, validation and governance. This feedback indicates

that firms are finding it challenging to integrate expert judgement, with its inevitable uncertainties,

into internal model processes where the emphasis is on a high standard of justification and

documentation.
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Against this background, a wide range of practices have developed. We comment below on a few of

these, based on the experience of members of the working party and a survey made by the Solvency

& Capital Management Research Group (Michael et al., 2012) covering 15 UK life firms. Our

comments are biased towards risk calibration in internal models, although, as we note below, expert

judgement may apply in many other areas.

2.2.2. Scope of Expert Judgement
Expert judgement can be applied in many areas of actuarial work and not limited to deciding on the

distribution of risks. Examples of other areas where expert judgement is commonly used include

management actions applied in extreme scenarios, asset valuation in illiquid markets and the use of

approximations. Expert judgement applies to standard formula calculations and internal models.

Firms differ on which areas are within the scope of expert judgement and in fact defining that scope

is not straightforward. There is almost no area of a capital model that does not involve some

subjective aspects, and thus it is difficult to determine where the boundary should lie.

Defining when expert judgement should be used is also not easy. Sometimes there seems to be an

assumption that data analysis and expert judgement are mutually exclusive, usually with the

expectation that expert judgement is used only when data are insufficient to be relied on alone. In

practice, it seems more likely that decisions will combine both, but with more weight on expert

judgement as the quantity or quality of data diminishes.

In the area of risk distributions, expert judgement is commonly applied to the choice of data, calibrated

parameters of risk models and correlations. It is also commonly used to adjust the tails of the

distribution that are not considered sufficiently extreme, or conversely, are considered too extreme.

A more fundamental divergence between firms is whether the choice of overall risk model is considered

to be subject to expert judgement or not. In section 2.1, we have illustrated how model risk can be as

significant as other modelling decisions, if not more so; however, as we noted above, it seems that some

firms limit the scope of expert judgement to the choices made once the model is selected.

2.2.3. Expert Judgement Policies
Most firms have developed a framework for expert judgement and this is usually embodied in an

expert judgement policy. This is commonly a standalone policy covering all applications of expert

judgement, but may instead be embedded in the documentation of those parts of the internal model

where judgement is applied. Typically, the policies cover the high-level principles and the

governance process, such as the various levels of review and signoff needed for the approval of

specific expert judgements. Other contents vary widely and there are some significant differences in

the scope and application of expert judgement.

2.2.4. Who are the Experts?
Arguably, the single most important aspect of expert judgement is simply identifying suitable and

relevant experts. Policies may indicate what criteria are used to establish whether someone qualifies

as an expert, but often there is no formal process to identify them in advance. Instead the choice

might be left to the modeller’s discretion, which allows for some flexibility, but one may need to be

careful to ensure that a wide enough range of views is sought. Another important aspect is for the

experts to be sufficiently independent of both the calibration process and the capital calculation

process. The importance of this is likely underestimated, as are the risks of expert judgement

influencing the capital outcomes.
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Occasionally more than one expert may express a view, which in turn leads to differences of opinion

that need to be merged into a single modelling decision. Thus, in addition to model risk, we now

have to consider ‘‘expert risk’’. Some firms get round this by using a technical committee, and

therefore effectively (or explicitly) the committee acts as the ‘‘expert’’ and the committee process

resolves diverse views into a single decision. However, committees are only one way to aggregate the

opinions of several experts and may not be the most effective, and this aspect has been better

researched in other fields. See3 Ouchi (2004) for a literature review of expert judgement research.

A large part of this research covers elicitation and aggregation of expert judgement, which so far do

not seem to have been widely considered in economic capital applications (other than possibly

operational risk).

Elicitation is the process of gathering expert judgement. Experts are human and can be subject to various

biases or herding. In a group or committee, the most senior, most confident or simply most biased (e.g.

not independent) experts may overrule other opinions. Various structured approaches to elicitation have

been developed to reduce the impact of these biases (Cooke & Goossens, 1999) give a detailed procedure

guide. As an example, one of the first such approaches was the Delphi technique, in which experts give

their initial opinions individually and these are then shared anonymously with the group. The experts can

then revise their opinions and the process is repeated until a consensus is reached.

To summarise, we need to be conscious about careful choice of experts, ensuring independence of

experts, and the aggregation of expert judgement from more than one expert. There is scope for

further research in these areas to see whether a more structured approach to expert judgement could

address some of these perceived weaknesses.

2.2.5. Validation of Expert Judgement
Expert judgement in an internal model is subject to validation requirements. Expert judgement, by

its nature, is not the output of a mechanical process that can be tested in a simple manner. Where

expert judgement has been used and is of material consequence to capital requirements, it is good

practice to try and validate the judgement.

Some examples of potential methods that can be used to validate judgement are given below:

> The most common approach is a review and challenge process, which involves discussing the

judgement with the expert, with the aim of better understanding the rationale and applicability to

the current problem.

> Discussion by an independent panel (e.g. a technical committee) may provide a useful avenue for

discussion and debate.

> Sensitivity analysis, to establish the importance of the expert judgement.

> Comparison against any relevant external information such as industry benchmarks and other

regulatory information (e.g. internal model stress against the standard formula stresses). Care

must be taken to avoid systemic risk via ‘‘herd behaviour’’.

> Backtesting has also been proposed, although this may be problematic as judgement is often used

in situations where data are sparse by definition (i.e. opining on an extreme event).

3 Ouchi surveys three types of alternative approaches: non-Bayesian axiomatic (generally based on a

weighted average with weights to be estimated), Bayesian and pairwise comparison (experts are asked to express

preferences on pairs of possible choices). Elsewhere in this paper we give some worked examples of how

Bayesian methods can be used to blend multiple expert judgements with data.
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2.2.6. Case Study

We illustrate the importance of the validation of expert judgement and independence of experts by

considering the views of different experts (at different points in history) on the maximum possible

human lifetime for different countries. In 2002, Jim Oeppen and James W. Vaupel published a paper

looking at life expectancy, and how proposed limits on life expectancy have consistently been

exceeded by reality (Chart 3).

The markers on Chart 3 show male life expectancy at birth for a series of countries, expressed as a

function of the year of mortality table publication. The fitted trend is shown as the thick black

ascending line. The horizontal bars correspond to expert assertions of biological upper bounds on

life expectancy. The left-hand end of each bar represents the date of the assertion. The intersection

of each horizontal line with the ascending trend indicates the point at which experience refuted the

claimed upper bound. Where there is no intersection, and the horizontal bar lies to the right of the

fitted trend, this indicates that the asserted upper bound was already contrary to published

mortality tables at the date the assertions were made.

It is not surprising that even experts get life expectancy wrong. Longevity is a subtle and complex

area, with its fair share of historic data, data errors, competing models and uncertain impact of

future social trends. What is surprising is that experts have appeared to systematically

underestimate future lifespans rather than a mixture of underestimating and overestimating,

which we would have intuitively expected.

Chart 3. Male life expectancy at birth for a series of countries as a function of the year of publication
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Oeppen and Vaupel give one possible explanation for the consistent underestimates that ‘‘They give

politicians license to postpone painful adjustments to social security and medical-care systems’’.

One might say that in the market for theories, there is a demand from politicians for short lifespan

theories. There might be a similar demand from insurers or pension funds who write annuities.

There is no similar demand for theories of long lifespans, as the pensioners who might benefit from

better capitalised annuity writers are seldom sufficiently well organised to commission research to

support their case. As pointed out by Smith & Thomas (2002), a skewed demand for experts may

bias the theories that the market supplies.

2.3. Key Points

The salient point of this chapter is simply that, although the calculation of capital requirements is

extremely sensitive to judgements made, judgements are also a necessary and inescapable part of

actuarial modelling. To that end, it is important for the companies to recognise where judgement

occurs, and we try and broadly categorise different areas where judgements can occur, together with

some detailed examples. In particular, the importance of the choice of risk factors to model, choice

of framework and choice of model should not be underestimated.

Given that in many cases expert judgement is inescapable, we take a critical look at current

practices of expert judgement within the industry. Key aspects considered are the scope of expert

judgement (it needs to cover all the categories discussed, in particular choice of risk factors,

framework and models) as well as the importance of choosing independent experts. The paper also

highlights that we can perhaps learn more about the process of gathering expert judgement from

other fields.

3. Choice of Risk Factors to Model

As highlighted in section 2.1.1 previously, it is not always intuitive what risk factors to model or

how they should be modelled. To do this, it is essential to identify the features of the phenomenon

that are essential and then extract the features to be modelled. Consideration should be given to

features that are not considered. We discuss each of these in turn below.

3.1. Selection of Risk Factors

Selection of risk factors reduces the dimensionality of the data set by selecting only a subset of the

identified predictive variables or the factors that have the greatest impact on the variable of interest.

Although this is perhaps the single most important aspect of risk modelling within a company, it is

not always transparent what drives the selection of factors. In theory, the variables discarded are

those that have least predictive power in explaining a set of data outcomes.

In practice, the variables ultimately modelled are chosen using judgement accumulated over the

years; it is very unlikely for a model to be created entirely from scratch, and as such it often inherits

legacy judgements, such as granularity of model points, assets, time-step, etc.

It is perhaps useful to consider the selection of risk factors via a hypothetical example. One can

imagine that the number of inputs that affect the balance sheet of a firm that can be modelled

stochastically is in excess of a million (this could easily be true assuming you count separately each

number in the input mortality tables, have a number of different business units and products, etc.),

but that ultimately an internal model is constrained to use as few as 100 risk drivers (Chart 4).
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The processes from reducing the 1,000,000 to 100 could include:

> ignoring some drivers because they are deemed to be deterministic or ‘‘insignificant’’;

> using some as proxies for others;

> making some risk factors a function of others;

> more quantitative approaches such as principal component analysis (PCA) (Chart 5).

In addition to the selection methods alluded to above, there are many algorithmic approaches used

to identify those variables that minimise the measurement of predictive error subject to constraints

of the size of any subset studied. Algorithmic approaches typically carry out a feature selection by

Chart 4. Simple illustration of how the number of risk factors compounds

Chart 5. Simple illustration of how risk factors to include in the capital model might be obtained
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including extra variables one at a time when carrying out the process in a forward manner, or

exclude variables one at a time when carrying out the process in a backward manner. Of course, one

needs to be careful when interpreting p-values associated with adding or removing variables

problematic with this approach, as each is conditional on prior inclusion or exclusion of variables.

In addition, any R2 value may be overestimated, if based on the number of degrees of freedom from

using the fitted variables, rather than the number of degrees of freedom used up in the entire model

fitting process.

3.2. Dimension Reduction

This section focuses on the final step in the diagram overleaf, which considers the reduction in a

large number of stochastic variables to a smaller number of important or ‘‘principal’’ factors.

3.2.1. PCA
This is a statistical method that transforms data from a high dimension space into a space of

reduced dimension. A subset of new features from the original features in the data is performed by

means of functional mapping techniques that aim to keep as many features as possible of the

original data set. PCA is one of the most commonly used feature extraction techniques.

PCA uses an orthogonal transformation to convert a set of observations of correlated variables into

a set of orthogonal principal components. The number of principal components is less than or equal

to the number of original variables. PCA is a heavily researched statistical technique and already has

a lot of applications in finance. For detailed examples in the context of interest rate modelling, refer

to Lazzari & Wong (2012).

Deciding which factors to retain in the model can be based on the following techniques:

a) The eigenvalue-one criterion: also known as the Kaiser criterion, components are retained that

have an eigenvalue greater than or equal to 1, that is, the retained variable is accounting for a

greater amount of the variance than that contributed by one variable.

b) Proportion of variance retained: retain a component if it accounts for a threshold percentage, for

example, 5% or 10% of the total variance, where the proportion of variance retained is given

by: eigenvalue for component of interest/S (eigenvalues of correlation matrix).

Non-linear dimension reduction techniques extend these ideas based on non-linear mappings.

Again, the principle is the same, maximising the variance in the resulting data set relative to the

variance in the original data set.

The single biggest criticism of PCA in finance is that it is a pure statistical technique and ignores any

economic or real-world causalities. Thus, it needs to be used and interpreted very carefully to avoid

data mining and spurious accuracy. For example, you do not want to inadvertently have one of the

important risk factors of your model be the size of Brazilian coffee beans, simply because the time

series was included in the set of regression variables and provided an almost perfect fit. Although

this is an extreme example that is obviously nonsensical, the lesson is that pure statistical models

would be blind to this. More importantly, there may be many other significantly more subtle areas

where the models are inadvertently subject to data mining.

Another criticism is that pure PCA factors are simply a linear combination of many variables and

would lack intuition, as well as being subject to changes over time that are hard to explain.
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The main mitigant of inadvertent data mining is for there to be expert human intervention at key

stages of the process, choice of regression inputs through to sense checking and validation of the

output results. Some of these are discussed in the next section.

3.2.2. Direct Choice of Principal Factors
This is another technique that is also commonly used alongside the PCA approach. This method

directly chooses what are thought to be the principal factors so as to arrive directly at a fitted model,

without recourse to any dimension reduction technique being applied. As such, this approach relies

hugely on the skill or otherwise of the modeller in picking the appropriate modelling random

variables that best satisfy the ‘‘eigenvalue-one’’ criterion and/or the ‘‘maximising the proportion of

variance retained’’ criterion discussed above.

Although this approach could be very efficient in the presence of a skilled modeller, it suffers from

the same drawbacks as per other aspects of judgement. In addition, the subjective element reduces

the transparency of the choice components if not properly documented.

3.2.3. Hybrid Methods
In practice, neither a purely statistical nor a purely judgemental method is used. The method often

adopted is a combination of the direct choice of principal factors and statistical techniques.

Although this may often be done implicitly, it may be useful to be aware of the judgement and

statistical steps explicitly, so as to avoid the worst pitfalls of each method.

Also important is the need to be aware of areas where selection of risk factors can cause potential

problems. Some possible pitfalls are:

a) The model may have been subject to too wide a range of explanatory variables, resulting in

inadvertent data mining.

b) The most important factors may have been wrongly selected or not selected at all, giving

spurious and misleading results.

c) Presence of correlated variables results in a risk of a more intuitive/direct explanatory variable

killed for another less intuitive/useful variable.

d) If the factors selected mechanically have not been validated, there is a risk that some

inappropriate factors have been inadvertently included.

e) The weighting of the different factors may change over time. Factors that may have had an

influence in the past may dissipate over time, whereas the opposite may be true of other factors.

f) Exogenous factors, for example, a change in external regulatory or commercial environment

may change the nature of the problem and one needs to remember to revisit the choice of

random variables in the selection process (i.e. there may be some ‘‘emerging’’ risk factors).

3.3. Grossing-Up Techniques

Acknowledging that there are practical limitations to the number of risks that can be modelled,

some effort needs to be made to ‘‘gross up’’ the capital (i.e. make a capital allowance for the risks

that have not been explicitly modelled). Thus, having gone through the selection (and perhaps)

reduction of risk factors to come up with a capital model, one should take care not to forget these

steps when estimating the total capital.
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For example, as a very crude calculation, you might think that reducing 1,000,000 to 100 risk

drivers, the resulting SCR should be grossed up by a multiple of 10,000. Most of us would

probably say that is too big as there has been some effort to pick the most important of the

1,000,000 within the 100, but it is still likely that some important risks get squeezed out. Moreover,

this only considers the risk factors that have been identified but not modelled (and does not delve

into the unknown).

In principle, there is a strong relationship between grossing-up methodology and willingness to

update models/incorporate new risks. If your initial SCR contains an explicit gross-up factor, then it

is reasonable to release some of that factor as modelling becomes more detailed and comprehensive.

If there is no grossing up, then every new risk you model causes a higher SCR, and therefore one

might struggle to find acceptance within the business.

In addition to the basic grossing-up techniques for risk factors that may have been identified but not

modelled described above, the following grossing-up techniques following dimension reduction are

suggested below. Where the commonly used PCA approach has been used, it should be possible to

apply both grossing-up techniques discussed below.

3.3.1. R2 Adjustment
Following dimension reduction, a computation of the R2 value can be compared between the

original data set and the data set following dimension reduction. As noted above, the R2 value in the

dimensionally reduced data set will be an overestimate based on number of degrees of freedom used

in the fitted variables, rather than the degrees of freedom used in the fitting process. A possible

approximate grossing-up factor may be undertaken as follows:

ðAdjustedÞR2 value in dimension� reduced data set

R2 value in original data set

This only allows for the PCA element. A suitable margin for prudence should also be incorporated,

to allow for any potential missed features in both the original data set and the dimensionally

reduced data set that could affect results significantly in the future.

3.3.2. R Eigenvalue Grossing-up Factor
Compute the eigenvalue correlation matrix for both the components in the dimensionally reduced

model and the original model. The grossing-up factor for the model then becomes:

Sðeigenvalues of correlation matrix of original modelÞ

Sðeigenvalues of correlation matrix of dimensionally reduced modelÞ

Again a suitable prudence margin should be allowed for risk selection errors in the original model.

3.4. Stress and Scenario Testing

A possible method of estimating the impact of risks not modelled stochastically is to carry out a

series of ‘‘sensitivity tests’’ to the model with changes in that deterministic variable. In addition,

scenario testing is also useful, both as an addition to the aggregation methods applied and as an

explanatory aid to senior management.
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It should be noted that scenario and sensitivity testing could quite easily span a number of sections

in this document as it is quite a broad method and can be used for a number of purposes. In addition

to modelling non-stochastic risks and addressing some aspects of uncertainty on models and

parameters, some specific examples of reasons why sensitivity testing is required are listed below.

> Not enough data for calibration of model – model uncertainty. An example of these is in the

aggregation of capital owing to lack of data, there may be uncertainty as to the copula to use. For

example, use of a Gaussian versus Student T copula. The impact of using an alternative copula

can be tested;

> Not enough data for calibration of the parameters of a model – parameter uncertainty. An

example of this is assessing the impact using a different loss, given default in deriving the capital

for credit risk;

> Changes in conditions – the past may not be a good guide to what may happen in the future such

as changes in interest rate regimes;

> Assessing the importance of assumptions made – the assumptions that have the most impact on

the results can be determined by changing each assumption by the same proportion;

> Regulatory requirements such as ‘‘What if scenarios’’, ‘‘reverse stress testing’’, etc.

> Management information – an example of this is to assess the impact of different volumes of new

business or different business mix on the capital strength of a firm in the next 3 years.

> Assessing the impact of different data sources used in the calibration of a model. For a lot of risks,

there are alternative data sources. For equities, S&P500 or FTSE 100 or FTSE All Share indices

can be used to calibrate the risk. A sensitivity test can be undertaken in which the stresses derived

from using different data sources are assessed.

> Assess the impact of prior beliefs. Most actuarial tasks involve a number of prior beliefs.

Examples of prior beliefs in actuarial tasks include the distribution that the aggregate capital of a

fund or company is assumed to follow. Sensitivity testing allows the impact of these assumptions

to be assessed.

A detailed example of scenario and stress testing related to aggregation methodology is provided in

the next section.

3.4.1. Stress and Scenario Testing: an Example
In this section, the results of a case study to assess the impact of the use of different copulas models

are investigated.

This case study assesses the impact of prior beliefs, especially when there are not sufficient data to

be conclusive about the assumption being made. It involves assessing the impact on aggregate

capital when different types of copulas are used to aggregate individual capital requirements.

The copulas used in these case studies are the copulas that lend themselves easily to aggregate more

than two risks. As such copulas such as Gumbel, Clayton and Frank are not considered.4

In the first case, the marginal distributions are all assumed to be normally distributed as shown in

Table 2. Another case study is presented later in which different marginal distributions are assumed.

We assume that we have the following risks with the distributions as specified in Table 2.

4 See Cherubini et al. (2004) for some background reading on Copulas.
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The risks are assumed to be correlated as per Table 3.

The aggregate capitals based on the following copulas are assessed:

a. correlation matrix;

b. normal;

c. Student T with different degrees of freedom.

The results of using different copulas are set out in Table 4.

It is worth noting that when the marginals are all elliptically distributed (e.g. normal, Student T) the

results of a normal copula and correlation matrix should be very similar, with any difference arising

because of an inadequate number of simulations used in the Monte Carlo simulation.

Another sensitivity test was undertaken in which the marginal distributions were not all normally

distributed. The distributions used are set out in Table 5. The parameters and the distributions were

selected such that the capital of the marginal distributions was the same as that of the normal

distributions above.

Table 2. Marginal risk factor distribution

Risks Distribution Mean Standard Deviation Capital

Market Normal 180 38.8 100

Insurance Normal 350 58.2 150

Credit Normal 600 116.5 300

Operational Normal 105 77.6 200

Table 3. Correlation between risk factors

Risks Market Insurance Credit Operational

Market 1 0.25 0.75 0.25

Insurance 0.25 1 0.25 0.5

Credit 0.75 0.25 1 0.5

Operational 0.25 0.5 0.5 1

Table 4. Capital required by type of copula

Assumption Capital Difference in Capital (%)

Correlation matrix 581 0.0

Normal 581 0.0

Student-T 50 d.f. 585 0.7

Student-T 40 d.f. 586 0.8

Student-T 30 d.f. 587 1.0

Student-T 20 d.f. 591 1.7

Student-T 10 d.f. 599 3.1

Student-T 5 d.f. 613 5.5

Student-T 1 d.f. 652 12.2
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The results of this sensitivity are shown in Table 6.

The sensitivity testing as described in the case study above can be used to assess the range of values that the

aggregate capital can assume, given the uncertainty about the appropriate dependency approach to use. It

is important to note that this covers just one aspect of sensitivity testing, and that this would ideally need

to be repeated for all of the key decisions in the capital calculation framework.

3.5. Key Points

The selection of what risk factors to model stochastically is a crucial choice within capital models, and

deserves a great deal of attention. We illustrate this by an example where a very large number of potentially

stochastic inputs are compressed to merely 100 risk drivers. We discuss the possible range of factor-

reduction methods at the final stages of the selection and highlight some potential pitfalls in the process.

We also explain the importance of ‘‘grossing up’’ for all the risk factors that are not modelled

stochastically, by considering the link between grossing-up methodology and willingness to update

models/incorporate new risks.

Finally, we discuss the idea of scenario and stress testing, together with a worked example on capital

aggregation.

4. Model and Parameter Error

4.1. Allowing for Model and Parameter Risk

With the ‘‘appropriate’’ model and ‘‘accurate’’ assumptions, we can justify statements such as ‘‘with

h100 m of available capital, there is a 99.5% probability of sufficiency one year from now’’.

Table 5. Sensitivity - the effect of some risk factors not being normally distributed

Risks Distribution Mean1 Standard Deviation Capital

Market Lognormal 4.5 0.28 100

Insurance Lognormal 5.1 0.25 150

Credit Normal 600 116.5 300

Operational Normal 105 77.6 200

1Note that the mean and standard deviation do not refer to lognormal distribution, but to its logarithm.

Table 6. Sensitivity - capital required when some risk drivers are not normally distributed

Assumption Capital Difference in Capital (%)

Correlation matrix 581

Normal 561 23.4

Student-T 50 d.f. 564 22.9

Student-T 40 d.f. 566 22.5

Student-T 30 d.f. 568 22.2

Student-T 20 d.f. 572 21.6

Student-T 10 d.f. 581 0.0

Student-T 5 d.f. 595 2.4

Student-T 1 d.f. 636 9.5

Difficult risks and capital models

577

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1357321713000524
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 20:21:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1357321713000524
https://www.cambridge.org/core


However, given that a model is only intended to be a representation of reality, it is unlikely any model

will be ever fully correct, or the assumptions fully accurate. This section considers how such a statement

may be modified if a firm has concerns about the correctness of models or accuracy of parameter

estimates. There might be several models that adequately explain the data. Even when one model is a

better fit than another, we may not be able to reject the worse fitting model as a possible explanation of

the data. There is a difference, however, between picking one model as the most credible explanation

and picking one model as the only credible explanation. We should not discount the possibility that

some initially less plausible model could subsequently turn out to be the most appropriate.

Model error is one of many risks to which financial firms are exposed. We might hope to quantify

model error in much the same way as other risks, by examining the potential losses arising from

model mis-specification. These might then be incorporated into a risk aggregation process, making

appropriate assumptions about the correlation between model risk and other risks.

In this section, we argue that model risk is of an essentially different nature to other modelled risks.

To describe interest rate risk, we take as given a model of how interest rates might move, test the

model against past data and use this model to explore the likelihood of possible adverse shocks. A

probability approach is ideal for such an analysis. The probability framework is less equipped to

cope with ambiguity in models. For example, we may struggle to find an empirical basis to express

the likelihood of alternative models being correct.

Several different models might account for the historic data, but they might have different implied

capital requirements. Percentile-based capital definitions no longer produce a unique number, but

rather a scatter of numbers depending on which model is deemed to be correct. If we want the

answer to be a single number, then we have to change the question.

We then give concrete examples of model and parameter risk. We consider possible ways of clarifying

the 99.5%-ile question in the context of model ambiguity and explore the impact on model output.

It is helpful to consider model ambiguity in three stages:

> Models and parameters are known to be correct. This is the (hypothetical) base case to which we

compare other cases.

> Location scale uncertainty (section 4.1.1): past and future observations are samples from a given

distribution family, but the model parameters are uncertain. Specifically, we consider situations

where candidate distributions are related to each other by shifting or scaling.

> Model and location scale uncertainty (section 4.1.2): both the applicable model and the para-

meters are uncertain. For example, there may be some dependence between observations and the

observations may be drawn from one of a family of fatter-tailed distributions. In each case,

limited data are available to test the model or fit the parameters.

4.1.1. Parameter Uncertainty in Location Scale Families

We consider an example where the underlying model is of a known shape, but where the location

and scale of the distribution are subject to uncertainty. This is usually the case in practice.

We then consider three possible definitions of a percentile where parameters are uncertain (Table 7).

It is not always clear in practice, even for statutory purposes such as computing the solvency capital

requirement, which, if any, of these definitions applies.
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4.1.2. Comparison of Statistical Definitions to Actuarial Best Estimates
We contrast probability definitions with actuarial concepts of best estimates, as discussed, for

example by Jones et al. (2006):

‘‘best estimates y contain no allowance or margin for prudence or optimism’’.

‘‘y they [best estimates] are not deliberately biased upwards or downwards’’.

‘‘The estimates given in the report are central estimates in the sense that they represent our

best estimate of the liability for outstanding claims, with no deliberate bias towards either

over or under-statement’’.

The actuarial best estimate definitions refer to a lack of deliberate bias. This suggests that provided

the actuary did not intend to introduce bias, a ‘‘best estimate’’ results. If there turns out to be a bias

in a statistical sense, this does not disqualify an actuarial best estimate provided the bias is

unintentional. This highlights the difference between actuarial best estimates defined in terms of

intention and statistically unbiased estimates defined in a mechanical way.

Our statistical definitions refer to probabilities that can in principle be tested in controlled

simulation experiments, and indeed we will conduct such experiments in the example that follows.

As defined above, any best estimate is a point estimate. However, there is an interval of plausible

outcomes around this estimate. There are different statistical definitions for such an interval. The

experiment that follows considers two of these intervals (described in section 4.1.1):

> substitution: b-quantile;

> confidence interval with probability g containing the b-quantile;

> prediction interval containing the unseen observation with probability b.

What the experiment shows is that the properties of a probability distribution do not necessarily

determine a unique construction for an interval. There might be (and indeed, there are) several ways

to construct intervals satisfying the definitions.

Table 7. Possible percentile definitions when there is parameter uncertainty

Method Construction Allowance for parameter uncertainty

Substitution

method

Model parameters are estimated and

substituted into the formula for the

percentile given the parameters

The objective is to get as close as possible to

the answer that would be obtained, were the

parameters certain; there is no extra margin

for the parameter uncertainty

Confidence

interval

A confidence interval is a function of data

that has (at least) a given probability of

containing the true parameters. If we want

to estimate the 99.5%-ile of a distribution,

we could construct a confidence interval

that has a 99.5% probability of containing

the true 99.5%-ile

This implies a large impact for parameter

uncertainty, as we construct a parameter

at a 99.5% confidence level and then look

at a 99.5%-ile event, given those extreme

parameters

Prediction

intervals

Given a series of historic observations and

unseen observations from the same

distribution, a prediction interval is a function

of the historic data with a given probability of

containing the unseen observations

Extreme parameter errors do not necessarily

coincide with extreme percentile outcomes

given the parameters, and therefore a prediction

interval captures some diversification between

the two types of risk
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4.1.3. Five Example Distributions
We now show some example calculations of these intervals based on five distribution families. In

each case, we define a standard version of a random variable X; the other distributions in the family

are the distributions of sX 1 m where m can take any value and s . 0.

Our five distributions include fatter- and thinner-tailed examples, and include asymmetric

distributions (Table 8).

Our families consistent of cumulative distribution functions F x�m
s

� �
and density 1

s f x�m
s

� �
, where F

and f are taken from a (known) row of Table 8.

Chart 6 shows these probability density functions. We have chosen values of m and s for each family

to make the distributions as close as possible to each other.

Table 8. The five example distributions and their properties

Distribution

Probability

Density (f(x))

Cumulative Distribution

Function (F(x))

Inverse CDF

(F21(p))

Gauss 1ffiffiffiffiffiffi
2p
p exp �

x2

2

� �
1ffiffiffiffiffiffi
2p
p

Zx
�1

exp �
x2

2

 !
dx

Not tractable

Logistic ex

ð1 þ exÞ
2

ex

1 þ ex
¼ 1�

1

1 þ ex ln
p

1�p

� �
Log Pareto (2) 2e2x

1 þ ex½ �3
ex

1 þ ex

� �2

ln

ffiffiffi
p
p

1�
ffiffiffi
p
p

� �
Student T with 4 d.f. 12

4 þ x2
� �5=2 1

2
þ

x3 þ 6x

2 4 þ x2
� �3=2 4 sin 1

3 sin�1 2p�1ð Þ
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4sin2 1

3 sin�1 2p�1ð Þ
	 
q

Gumbel exp �x� e�x½ � exp �e�x½ � � lnf� ln pg

Gauss

Logistic

LogPareto2

Student T4

Gumbel

Chart 6. Probability density functions of the five example distributions
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4.1.4. Methods of Estimating Parameters
We consider four ways of estimating model parameters given a random sample of historic

data (Table 9).

4.1.5. Interval Calculation
We now provide algorithms for calculating the different types of intervals (Table 10).

Table 9. Four methods of estimating model parameters

Method Description

Formulas Based on

Observations x1,y, xn

Method of moments Choose the distribution by equating the sample

mean and standard deviation to the theoretical

values

m̂ ¼
1

n

Xn

i¼1

xi

ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Xn

i¼1

ðxi� m̂Þ2
s

Probability weighted

moments

Choose the distribution by equating the sample

mean and L-scale to the theoretical values l̂ ¼
Xn

i¼1

2i�n�1

nðn�1Þ
xi In this

expression the xi are sorted into

increasing order

Maximum likelihood Find the distribution that maximises the density

function multiplied over all observations

Choose s and m to maximise:

¼
Qn

i¼1

1

s
f

xi�m

s

� �
 �

Bayesian methods Treat the parameters as random variables with a

prior distribution. Calculate intervals based on a

posterior distribution of parameters given the data

See Appendix A

Table 10. Algorithm for calculating the different types of interval

Method Substitution: b-quantile

Confidence Interval with

Probability g of Containing

the b-quantile

Prediction Interval

Containing the

Unseen Observation with

Probability b

Method of

moments
m̂ þ ŝF�1

ðbÞ where m̂; ŝ

are MOM estimates

ð�1; m̂ þ kŝÞ where k satisfies:

Prob m þ F�1
ðbÞs � m̂ þ kŝ

	 

¼ g

Equivalently:

Prob
m� m̂ þ F�1

ðbÞs
ŝ

� k


 �
¼ g

ð�1; m̂ þ kŝÞ where k

satisfies:

Prob Xnþ1 � m̂ þ kŝ
	 


¼ b
Equivalently:

Prob
Xnþ1� m̂

ŝ
� k


 �
¼ b

Probability

weighted

moments

m̂þ ŝF1
ðbÞ where m̂; ŝ

are PWM estimates

Maximum

likelihood
m̂ þ ŝF�1

ðbÞ where m̂; ŝ

are maximum likelihood

estimates

Bayesian

methods
m̂ þ ŝF�1

ðbÞ where m̂; ŝ

are means under the

posterior distribution

(0,k) where:

Prob m þ sF�1
ðbÞ � k

	 

¼ g under

the posterior distribution for (m,s)

(0,k) where:

EF
k�m

s

� �
¼ b under the

posterior distribution for (m,s)
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When talking about probabilities, care needs to be taken with respect of the set over which averages

are calculated. The frequentist methods (method of moments, probability weighted moments,

maximum likelihood) measure probabilities over alternative data sets. The Bayesian statements

average over possible alternative parameter sets but not over any data sets, besides the one that

actually emerged. A 99.5% interval under a frequentist approach is not the same as a 99.5%

Bayesian interval.

We use Monte Carlo methods to calculate confidence and prediction intervals. We show these in the

case of 20 data points, using the method of moments, based on the 99.5%-ile. These measures differ

only because the data are limited; as the data increase these are all consistent estimators of the

‘‘true’’ percentile. None of these is *the* right answer; the different numbers simply answer different

questions (Chart 7).

The interval size (expressed as a number of sample standard deviations) varies from one distribution

to another. Note that, although the T4 distribution has the fattest tails in an asymptotic sense (it has

a power law tail, whereas the others are exponential), the Gumbel produces the largest confidence

intervals. This is because the asymptotic point at which the T4 distribution becomes fatter lies way

beyond the 99.5%-ile in which we are interested.

We also consider how the intervals vary by the number of observations. The prediction intervals are

shown below. We can see that the prediction interval requires a smaller number of standard

deviations as the sample size increases, because a better supply of data reduces the errors in

parameter estimates (Chart 8).

Chart 7. Illustration of various interval definitions for the five example distributions
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4.2. More on Model Risk

We have described ways of calculating 99.5%-iles in the presence of parameter risk, at least in the

case of location scale probability distribution families.

Uncertainty about shape parameters or about underlying models is more difficult to address. The

difficulty is constructing an interval that covers 99.5% of future outcomes, uniformly across a broad

family of models. In general, the best we can hope is an inequality, so that at least 99.5% is covered.

We set out two examples of the impact of using different models to estimate variables of interests.

These show that the choice of the models has a very material impact of the estimate of the variable

of interest. We then set out some techniques that can be used to assess the impact of model errors.

The techniques described later are by no means an exhaustive list, but a list of the techniques

commonly used in practice.

4.2.1. Example of Model Risk
A recent paper by Richards, Currie and Ritchie compares seven different models of longevity.

They compare the value of a life annuity with a 70-year-old man, limited to 35 years and

discounted at 3%. The paper constructs a probability distribution forecast for this annuity in

1 year’s time using different models of mortality improvements. We reproduce table 5 from that

paper below (Table 11)..

Chart 8. Prediction Interval variation by sample size for the five example distribution

Difficult risks and capital models

583

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1357321713000524
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 20:21:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1357321713000524
https://www.cambridge.org/core


Please refer to the paper by Richards et al. (2014) for more details about the mortality models. We

might hope for a degree of consensus between the different modelling approaches, but these figures

show the opposite. Indeed, a future annuity value of 12.5 lies below the mean for two of the models,

but above the 99.5%-ile for two other models (http://www.actuaries.org.uk/sites/all/files/documents/pdf/

value-risk-framework-longevity-risk-printversionupdated20121109.pdf).

4.2.2. Another Example: Gauss and Gumbel Distributions
Let us return to the set of five probability distributions described in section 4.1.3. The distribution

functions are sufficiently close that the curves are difficult to distinguish by eye. However, we can

separate them by subtracting one of the cumulative distribution functions, for example, the logistic.

Chart 9 shows the CDF for each distribution minus the logistic CDF.

Although these distributions have different shapes, the distribution functions differ nowhere by

more than 4%. This suggests that it will be difficult to separate the distributions using statistical

tests based on small sample sizes.

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%
Gauss
Logistic
Log Pareto (2)
Student T4
Gumbel

Chart 9. Illustrating the difference in the CDF of the five example distributions, measured relative
to the logistic

Table 11. Comparison of average annuity value and percentile estimate by different

longevity models

Value of a�3%

70: 35
��

Model (Appendix) (a) Average value (b) 99.5th percentile

LC (A1) 12.14 12.72

DDE (A1) 12.15 12.77

LC(S) (A1) 12.15 12.76

CBD Gompertz (A2) 11.98 12.44

CBD P-spline (A2) 11.89 12.36

APC (A3) 12.61 13.04

2DAP (A4) 12.80 13.69
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Goodness-of-fit tests such as Kolmogorov–Smirnov and Anderson–Darling have low power when

data are scarce. Table 12 shows the power of KS and AD tests with 20 data points. The chance of

rejecting an incorrect model is often only marginally better than the chance of rejecting the correct

model, and in a few cases the correct model is more likely rejected than an incorrect one.

Even with samples of 200 or more, it is common not to reject any of our five models. This implies

that model risk remains relevant for applications including scenario generators, longevity forecasts

or estimates of reserve variability in general insurance.

4.3. Techniques to Assess Model Errors

The examples described above shows that there are a range of models that can be used to undertake

a task. This motivates a quest to understand any error introduced by model choice.

Model risk remains relevant for virtually all aspects of actuarial modelling, from longevity

forecasting to capital aggregation. Are we then at risk of channelling too much energy and expense

into the ‘‘holy grail’’ route of modelling, justifying each parameter and component of a single

model? Does our governance process consider model risk, or does board approval for one model

implicitly entail rejection for all others?

Given the inevitable uncertainty in which model is correct, how can we make any progress at all?

There are several possible ways to proceed:

> Pick a standard distribution, for example, the Gaussian distribution, on the basis that it is not

rejected. The statistical mistake here is to confuse ‘‘not rejected’’ with ‘‘accepted’’.

> Taking the prudent approach – the highest 99.5%-ile from all the models.

> Build a ‘‘hyper-model’’, which simulates data from a mixture of the available models, although

expert judgement is still needed to assess prior weights. Ian Cook (2011) has described this

approach in more details on the context of catastrophe models.

Industry collaboration on validation standards may lead to generally accepted practices. For example,

over a period of time practice may converge on a requirement to demonstrate at least 99.5% confidence

if the data happen to come from a Gaussian or logistic distribution, but not for Student T or Gumbel

distributions. This may not always be a good thing, particularly if it leads to a false sense of security.

A commonly used mitigant against model and parameter error already in use within the industry is

to carry out scenario- and stress-testing approaches. These were described in section 3.4. A more

Table 12. Probability of Rejecting a Model Fitted Using the Method of Moments Tested Using a Kolmogorov–

Smirnov (or Anderson–Darling) Statistic Based on 95% Confidence and 20 Observations

Fitted distribution

True distribution Gauss Logistic Log Pareto (2) Student T4 Gumbel

Gauss 5.0% (5.0%) 3.7% (3.8%) 6.8% (7.3%) 2.6% (4.0%) 18.0% (28.3%)

Logistic 8.7% (10.7%) 5.0% (5.0%) 9.0% (10.0%) 2.6% (2.8%) 21.8% (33.8%)

Log Pareto (2) 10.5% (13.2%) 6.9% (7.5%) 5.0% (5.0%) 3.9% (4.3%) 10.0% (14.7%)

Student T4 17.4% (22.3%) 10.5% (12.1%) 15.6% (18.0%) 5.0% (5.0%) 28.7% (40.4%)

Gumbel 20.3% (27.5%) 15.4% (19.0%) 7.2% (7.9%) 9.8% (11.4%) 5.0% (32.2%)
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statistical technique that may prove useful is the concept of robust statistics and ambiguity sets

described below.

4.3.1. Robust Statistics and Ambiguity Sets
Robust statistics is the study of techniques that can be justified across a range of possible models

rather than a single model. It can be used to help derive prediction intervals that are robust to the

choice of distribution.

Suppose using the method of moments we wanted to construct a prediction interval of the form

�1; m̂ þ yŝð Þ valid across a class of distributions (this set is known as the ambiguity set). We

cannot achieve exact a-coverage for all distributions. We can, however, achieve at least a-coverage

for a class of distributions simply by taking the largest y across that class. For example, we might

specify that the methodology should cover at least a proportion a of observations Xn 1 1 for an

ambiguity class, including Gaussian and logistic distributions. In this case, our chart in section 4.1.4

shows that the logistic distribution produces the highest y, and therefore the prediction interval is

defined based on the logistic distribution, knowing this is conservative for other distributions in the

specification of the ambiguity class.

Robustness for a given ambiguity class says nothing about models outside the class. We might construct

prediction intervals robust across uniform, normal and logistic distributions, but these intervals would

not be valid for Gumbel distributions. They would also not be valid if other assumptions are violated –

if the observations are not independent or are drawn from more than one distribution.

The size of the ambiguity set is a key determinant of prediction interval size. A bigger ambiguity set

means a harsher test of coverage and larger prediction intervals. It also means more wastage, in the

sense that if the true distribution is one of the more benign from the ambiguity set, then the

prediction interval will contain a higher than intended proportion of future observations.

Nassim Taleb (2007) has popularised the notion of ‘‘Black Swan’’ events, that is, unpredictable

events that arise with no prior warning (and by definition unpredictable with models that existed

before the event happening). Models popular in the mid-2000s, many based on Gaussian

distributions, were criticised for producing too few Black Swan events and therefore understating

risks. Black Swan events also highlight the classic philosophical ‘‘problem of induction’’ that

inference from past events can only work to the extent that the same model applies in the past as in

the future. We could define a ‘‘Black Swan’’ model as one where one set of formulas applied until

yesterday, and tomorrow another unrelated set of formulas takes over. There can be no robust

statistical procedure that works for such models as the past data are of no value for future inference.

It may potentially be the case that the world has fundamentally and unrecognisably changed, but

one also needs to be extremely careful that less likely models are not rejected early on in the

decision-making process in favour of the most plausible model without allowing for model risk.

One conclusion is that any claims of robustness with respect to a statistical procedure should

include a careful description of the ambiguity set against which the procedure is robust.

4.4. Key Points

This section focused on model and parameter error and considers in details two cases, where

observations are from a given distribution, but there is uncertainty about the parameters (parameter

error) or where we are uncertain about the actual model itself (model error).
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It also highlighted the important case that when we have model or parameter uncertainty, the

capital estimation problem itself is not unambiguous, going on to discuss three possible definitions

of a percentile where parameters are uncertain. We also provided an extended example, based on

different methods of estimating parameters and based on different possible distributions.

Finally, we also discussed different techniques to assess model errors, and introduced the idea of

robust statistics and ambiguity sets, which look at techniques that apply over a range of candidate

models, rather than a single model that is considered to be most plausible, finishing with a caution

to properly allow for model risk before labelling too many events as ‘‘Black Swans’’.

5. Errors Introduced by Calculation Approximations

So far, we have looked at errors in the process of trying to build the best model, while

acknowledging that any model is at best a representation of reality. However, in practice, the models

are not always run to their full capacity in terms of granularity or number of simulations.

In particular, over the last few years, there has been a rise in so-called proxy (or ‘‘lite’’) models,

which purport to have a good approximation of the more established ‘‘heavy’’ models. These

approximations are usefully introduced in the interest of faster run times and quicker reporting, and

may include the approximation of asset and liabilities by simpler polynomials and/or running a

limited number of simulations.

Section 5.1 looks at the types of errors that can arise from the proxy model approximations,

whereas section 5.2 tackles Monte Carlo sampling error. In addition, some simplified insurance

assets and liabilities are described for the purpose of testing proxy models in capital aggregation

calculations, and some lessons presented.

5.1. Proxy Models

Insurers’ assets and liabilities are complicated functions of millions of inputs whose future values are

uncertain. The inputs include market prices of assets and financial instruments, incidence of events

giving rise to insured losses, and vast tables of experienced and projected actuarial decrements such

as mortality or attrition. Insurers use ‘‘heavy models’’ to compute the value of assets and liabilities as

functions of the long list of inputs.

In theory, insurers are supposed to perform full stochastic projection to demonstrate there is a

relatively high probability that, in future, assets will exceed the value of liabilities. This means:

- simulate millions of joint scenarios;

- in each scenario, the asset and liability functions are evaluated using a heavy model fed from the

millions of jointly simulated input variables.

In cases where a market-consistent valuation of a complex, path-dependent option is required for

each real-world simulation, the well-known ‘‘nested stochastic’’ situation arises. In this structure, a

set of market-consistent simulations is required for each ‘‘real-world’’ scenario.

Despite advances in computer calculation speed and storage capacity over the last few decades, a

full stochastic projection remains beyond the reach of most insurers. Instead, there is a widespread

use of simplified ‘‘proxy’’ models. These are simple functions of a small number of variables
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intended to approximate the heavy model output, usually expressed as a sum of terms whose

coefficients are estimated by fitting to heavy models. While running the heavy model millions of

times is costly, this number of proxy model evaluations is easily feasible.

The functions that make up the proxy models are referred to as basis functions.

5.1.1. Spanning Error
The method of proxy functions assumes that the true assets and liability functions are of the chosen

form, or can be approximated sufficiently accurately by functions of that form. This assumption

could fail severely, for example, if:

> Assets and liabilities depend on inputs that have been excluded in the selection of risk factors to

model, through the dimension reduction process discussed previously. Thus, the behaviour of

assets and liabilities are not sufficiently explained by the retained risk factor inputs.

> The true function has a ‘‘cliff-edge’’ (i.e. a discontinuity), whereas all the basis functions are

continuous. More subtly, the true function could have a kink (i.e. point where it is not differentiable),

whereas the basis functions are assumed to be continuously differentiable.

> The assets and liabilities have ‘‘sink holes’’, that is, regions of parameter values where assets

collapse or liabilities explode, whereas none of the basis functions exhibit this behaviour.

> The asymptotic behaviour of the liabilities is simply different from the functions chosen. This is not an

uncommon occurrence, because polynomials (apart from constants) tend to 6N, whereas guaran-

teed liabilities would tend to 0 when they are out of the money and N when in the money.

These are all examples of ‘‘spanning failure’’, where the true assets and liabilities are not in the linear

span of a proposed set of basis functions. The ‘‘spanning error’’ is any mis-statement in the required

capital that arises from spanning failure. We set out some approaches that can be used to validate

proxy models through case studies in the sections that follow.

5.1.2. Selected Test Models
We construct test valuation formulas based on three risky asset classes: government and corporate

bonds, equities and a risk-free cash asset. We consider three lines of business: regular premium term

assurance, a life annuity and a single premium-guaranteed equity bond. We use simplified policy

models so that exact valuation is possible with closed formulas, based on nine risk drivers: risk free

rate, equity price, equity volatility, corporate bond spread, liquidity premium, mortality (term and

annuity) and lapses (term and guaranteed equity).

This is a simplified set of risk drivers for ease of calculation. We use a single discount rate for risk-

free cash flows of all maturities. The equity volatility is required for valuing the guarantee according

to option pricing theory. We assume that annuities cash flow will be discounted at a discount rate

that includes a return premium for holding illiquid assets. This is assumed to be assessed with

respect to the observed yield spread on a class of illiquid asset subject to credit rating criteria.

Our firm also holds corporate bonds. The change in value of these bonds is driven by changes in

bond spreads, but in this case we need to follow the fate of a fixed portfolio of bonds rather than

tracking typical spreads for a particular grade. This distinction implies that a portfolio of bonds

cannot perfectly hedge the liquidity premium assessed in relation to a particular grade.

The formulae for the assets and liabilities described in the table overleaf are detailed in Appendix B.
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5.1.3. Curve Fitting Methodology – Annuity Case Study
To illustrate the issues involved, we start by approximating the annuity examples, using

polynomials in the discount rate (which we denote by r) and in the maximum lifetime (denoted

by t). There are several different ways to build up polynomials of increasing order. We have

considered the following four ways (Table 13).

5.1.3.1. Least Squares Results
We calculated least squares estimates using a 101-step grid for each of the two risk drivers, that is, a

101 3 101 grid covering max lifetime between 0 and 20 years combined with discount rates

between 0% and 25%. The Chart 10 below shows the minimised root mean square error (RMSE) as

a function of parameter count (maximum 36) for each of our fit families.

Chart 10 shows how the fit improves as the number of coefficients increases. The results show that

the separable formula, with or without the xy terms, quickly gets stuck. Adding higher order

polynomials in just one variable has a negligible impact on the RMSE. Instead, it is necessary to add

sufficiently rich joint powers alongside the univariate powers to achieve convergence.

The chief advantages of the least squares method include:

> It is known to have a unique solution provided the number of sample points exceeds the number

of fitted coefficients.

> Finding that unique involves the relatively straightforward solution of simultaneous linear

equations. In addition to being readily soluble, it is also easy to demonstrate that a proposed

solution satisfies the relevant equations and thus verify that the solution is optimal from a least

square perspective.

> Beyond our particular example, where the liability is defined as the average of Monte Carlo

simulations, there may be computational efficiencies by the use of least squares Monte Carlo

techniques.

Table 13. Possible ways to construct polynomials for curve fitting

Type of

Polynomial Definition

Number of

Coefficients Comments

Linear Constant 1 multiple of

r 1 multiple of t

3 Simplest to fit

Separable of

order p

A polynomial in r plus a

polynomial in t. No term

involves products of r and t

2p 1 1 Some formula-based capital

aggregation methods implicitly

assume separability; we can express

profits (or losses) as a sum of an

interest term and a mortality term

Separable of order

p, plus xy term

A separable polynomial plus a

single term that is a multiple of rt

2p 1 2 Cross term of the form rt allows the

interest sensitivity to become smaller

(less negative) when t is larger

Full order p Terms of the form ratb where

integers a 1 brp

(p 1 1)(p 1 2)/2 Classical definition of polynomial in

order p in two variables

Direct product

order p

Terms of the form ratb where

integers arp and br p

(p 1 1)2 Space of functions as a direct product

of two vector spaces: one consisting of

functions of r (only) and the other

functions of t (only)
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The chief limitation of least squares techniques is the difficulty of converting a RMSE into a bound

in the accuracy of an estimated percentile. The problem is that the RMSE is an average of the errors;

the error in a percentile estimate may be much larger because not all points have an equal impact on

the percentile. Large percentile errors arise if the estimate is sensitive to the fit-for-risk driver values

where the fitted proxy polynomial diverges most from the true function.

5.1.3.2. Regression Diagnostics
Statistical regression packages usually provide additional output, including R2 statistics, parameter

significance tests, confidence intervals and information criteria such as those of Akaike. We might

hope these could provide a scientific basis for including or excluding terms in a polynomial. The

derivation of these tools relies on various assumptions listed below (Table 14).

The standard statistical assumptions clearly do not apply in our example where the fitting is not

even random and the underlying annuity function is not a polynomial. Such statistical tools

overstate the effective number of observations by assuming that each new observation contains an

independent model observation, whereas in our curve fit new observations are still from the same

deterministic curve. The statistically derived intervals are spectacularly too narrow compared with

the true error.
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Chart 10. Root mean square error against parameter count by type of fitting polynomial

Table 14. Assumptions implicit in regression diagnostic tools

Regression Models Our Example

Residuals are independent N(0,s2)

random variables

Residuals arise from the difference between two deterministic

functions

Model definition includes the correct

model

Model is mis-specified: the function we wish to fit is not a

polynomial of any order

Each extra observation is a new random

variable that carries new information

Each extra observation is a sample from the same fitted

function and may carry little information, especially of r and t,

that is close to a previous sample point
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5.1.3.3. Minimax Calculations
We have described curve fitting by regression and the difficulty of translating a RMSE into an error

in percentile estimates.

The situation is more straightforward if we consider the maximum error. If we know that the

maximum error is bounded, for example, by 1% of the liability value (for all risk-driver values),

then we know that our percentile estimates are also accurate to within 1% of the liability value.

In our regression examples, the maximum error is between five and ten times the RMSE, with the

multiples generally increasing for models with more parameters. Note that any attempt to construct

error bounds on the RMSE using probabilistic logic is doomed to failure, as in our cases the

residuals are not generated from any probability distribution.

Performing a least squares fit does not minimise the maximum error. Minimising the maximum

error requires a minimax fit, typically giving a different polynomial than the least squares. The

minimax fit will by construction have a lower maximum error than the least squares fit, but a large

RMSE. The reduction in maximum error is not spectacular; in most of our examples, the reduction

was ,50% of the least squares maximum error, although the available reductions tend to increase

with larger parameter counts. However, the minimax fits are much more difficult to implement

numerically, frequently beset by multiple solutions.

Finally, we note that the stated RMSE is a function of the size of the region over which the fit is

measured. Had we chosen a smaller region, the stated RMSE would typically reduce. However, it

would be wrong to conclude that the corresponding capital numbers have become more accurate, as

the smaller region would then exclude a larger proportion of the risk scenarios over which the

capital requirement is calculated.

5.1.4. Curve Fitting Methodology: Combined Model
We now develop tools for fitting curves to the actuarial formulas in a combined model of all risks.

This can help us to evaluate the extent to which observed RMSE for each asset and liability type

may translate into errors in estimated percentiles.

We fit curves to a series of stress tests. The stress tests are constructed using median values for each

risk driver, as well as high (a-quantile) and low (12a-quantile) values. For example, if a5 0.995

then we would calibrate to the 0.5%-ile, median (50%-ile) and 99.5%-ile for each risk driver.

We look at all combinations of high, median and low for each risk driver. This implies that with nine

risk drivers, we may have to examine 39 5 19,683 stress tests. Thankfully, this is an overestimate, as our

example assets and liabilities depend individually on at most four risk drivers. The maximum number of

stresses is then 34 5 81 risk drivers, in the case of the guaranteed equity bond. The minimum number of

stresses is three, for the risk-free bond and the equity, which depend on only one risk driver.

Having constructed the stress tests, we then fit a polynomial. In each case, we use ordinary least squares

to fit the formula. We consider three fits based on the polynomials considered in the annuity example:

> Linear fit: we estimate assets or liabilities as a constant term plus linear terms in each risk driver.

> Separable quadratic fit: we estimate assets or liabilities as a constant term, plus linear and squared

terms in each risk driver. This formula is still separable, that is, basic own funds is a sum of
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functions, each of which depends only on one risk driver. There is no mechanism for the level of

one risk driver to affect the sensitivity of net assets to another driver.

> Quadratic fit with cross terms: assets and liabilities are a constant term, plus linear and squared

terms in each risk driver, and also products of risk drivers taken two at a time.

We can consider extending these fits to cubic and higher order polynomials. However, we are unable

to investigate such fits in our simple example, at least in the one-dimensional cases (equities and

government bonds), because we have chosen to evaluate only three fitting points that are

insufficient to estimate polynomials of higher than quadratic order.

5.1.5. Risk Driver Distribution
For demonstration purposes we assume that risk drivers have shifted lognormal distributions. We

construct these using formulas of the form:

riskdriver ¼ median þ b
ecZ � 1

c

where b is a positive coefficient, whereas c is positive or negative. If c 5 0 we replace the fraction
ecZ � 1

c by its limiting value Z. This is readily calibrated to quantiles. For example, suppose for some k,

the F(2k) quantile is median 2a and the F(k) quantile is median 1b, we have to solve the equations:

b e�ck � 1
c ¼ �a

b eck � 1
c ¼ b

From this, it immediately follows that

e�ck ¼ e�ck � 1
1� eck ¼

a
b

c ¼ 1
k ln b

a

� �
b ¼ c:ab

b� a

There is a special limiting case when a5b, where c 5 0 and b 5a/k.

Within the firm’s internal models, there is no general rule relating the opening (t 5 0) risk drive

values to their future distribution. However, for simplicity in the current curve fitting tests, we

assume that the opening values are equal to the median.

5.1.6. Some Simulated Results
Chart 11 shows a scatter of the basic own funds (for the whole company) based on fitted

polynomials compared with the ‘‘true’’ result based on the exact formula, for 1,000 simulations. In a

capital calculation, we are interested principally in the bottom left-hand side, which corresponds to

low values of own funds.

Overall, the quadratic with cross terms provides the best overall fit, which is not surprising as it has

the largest parameter count. However, the deviations between the exact and fitted formula are

substantial in places, and furthermore appear to show significant biases – for example, the linear

regression overestimates BOF more often than it underestimates BOF.

This observation may at first seem odd; if the coefficients are estimated by regression, then surely

the average residual should be 0. To resolve this paradox, we need to note that there are many
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different ways to calculate an average. The regression is an average over a small number of selected

stress points, whereas our simulated BOF produces an average over a realistic distribution of risk

drivers. We would not expect these averages to coincide. Indeed, biases in fits are commonly

observed whenever the scenarios used for fitting a proxy model are not the same as those used for

capital calculations.

Further investigations involving the elimination of negative reserves have revealed that

discontinuities or kinks in the formulas need to be modelled as an additional layer. They cannot

be well modelled using polynomial functions, even of very high order.

5.2. Monte Carlo Sampling Error

In this section, we consider two instances of Monte Carlo sampling error:

> That arising from the market-consistent valuation of options and guarantees (complex, path-

dependent, options) by calculation of the discounted mean cash flows over a large number of

randomly simulated scenarios.

> That arising in estimating the SCR, or more generally any quantile, by simulation.

In the particular case of market risk, the market-consistent simulations are likely to come from a

risk-neutral economic scenario generator. The simulations for the SCR are likely to be ‘‘real-world’’

simulations.

In the ideal world assumed, the issue of Monte Carlo sampling is the only ‘‘error’’. That is, we

assume that the internal model has no missing risks and the modelling of the known risks is 100%

accurate (the actual underlying risk driver can be modelled using the chosen risk drivers and the

parameterisation of the risk drivers and loss functions is 100% accurate).

Chart 11. Actual BOF against BOF calculated by proxy formula by type of fitting polynomial
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5.2.1. Market-Consistent Valuation and Monte Carlo Sampling
A market-consistent valuation of a complex, path-dependent liability will typically involve running

a number of risk-neutral scenarios, from an appropriately calibrated economic scenario generator

through a cashflow model. The mean of the guarantee and option cost, across all the simulations, is

the market-consistent value of the guarantees. Furthermore, we can use the standard deviation of

the individual scenario costs to calculate a confidence interval for the mean (i.e. the market-

consistent cost of the guarantees and options in this instance) using the independent and identically

distributed property and the central limit theorem. It is worth noting that estimation of the

confidence interval as shown below applies under some strict conditions, such as the variable in

question being normally distributed and the suitably large number of scenarios:

95%; two sided; confidence interval for mean ¼ m̂ � 1:96
sffiffiffiffiffi
N
p

Various variance reduction techniques can be applied to make the valuation converge more rapidly –

antithetic sampling, control variates, stratified sampling, importance sampling and low-discrepancy

numbers (Sobol, Niederreiter, etc.). When using these techniques, the assumption of independent and

identically distributed scenario outputs may not be valid.

Occasionally, situations arise, associated with sampling error, which can trap the unwary. For

example, consider 1,000 observations from a lognormal distribution whose parameter (the standard

deviation of the log) is b. Each observation is of the form exp(b.Z) for some ZffiN(0,1). When b is

large (and hence the distribution is most skewed) the interval

m̂ � 1:96
ŝffiffiffiffiffi
N
p ; m̂ þ 1:96

ŝffiffiffiffiffi
N
p

� �

is dominated by the term exp(b.Zmax) where Zmax is the largest observation. However, we know

that the true mean is exp(b2/2) and that for large b it is pretty certain that the true mean lies outside

the confidence interval. In this case, it would be much better to recognise the data as lognormal and

take logs of the data and estimate the parameters using analytical formula. The reason for this is

that the above formula for determining confidence interval is based on the assumption that the

variable of interest is normally distributed. Thus, when the distribution followed by the variable is

highly skewed, then the above formula would not be applicable.

In cases such as this it seems useful to have some room to override the standard approach – the

example described here is relevant to out-of-the-money guarantee costs.

5.2.2. Quantile Estimates and Monte Carlo Sampling
It is useful to start by considering the base case of an internal model using real-world simulations of

risk drivers and loss functions. It is desirable to know the sampling error in the SCR estimate that is

obtained from an ordered series of losses from a run of the internal model.

At a naı̈ve and qualitative level, the degree of sampling error can be assessed by examining the

distribution properties of the ranked internal model output. If the losses around the 99.5%

simulation are ‘‘smoothly distributed’’, tightly grouped and lie within the same range, then the

sampling error will be small. Equivalently, we can look at the distribution of the 99.5%-ile

simulation from a repeated sampling of the internal model with different random number sequences
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(but with all other parameters left unchanged). Obviously, we will need to recheck if these

distribution properties apply for each recalibration of the model.

The estimation of quantiles can be considered at a more mathematical level. First, defining a

notation for a quantile as Qa(b.X) where:

> a is a probability between 0 and 1;

> X is a random vector, which might represent profits from different business units or risk types;

> b is a vector of multipliers, reflecting a firm’s exposure to each business or risk type.

The given data take the form of n observations of a random vector X, assumed to be a random

sample from some distribution. For historic data, the assumption of a random sample may be open

to challenge. However, in some applications, we are seeking to estimate percentiles from data that

have been generated from Monte Carlo simulation; in that case, we can be more confident that the

observations truly are independent samples from a common distribution.

The estimation of a quantile is often an intermediate step in a longer calculation. For example, a

firm may wish to understand the sensitivity of a percentile to the selected risk exposures, which

means calculating the sensitivities of the quantile Qa to the exposure vector b. There may be some

form of optimisation involved, for example, finding multipliers to maximise expected profit subject

to constraints on financial strength that might be expressed in terms of extreme quantiles.

In the simplest case, we can directly estimate the quantile from the empirical distribution function –

here we refer to this approach of quantile estimation as direct percentile estimation.

5.2.2.1. Direct Percentile Estimation
To ease notation, we consider the scalar case. Suppose then we have n independent scalar

observations X1, X2, .., Xn.

We can sort this into increasing order, denoting the sorted variables with subscripts in parentheses:

X(1)rX(2)ryrX(n).

The empirical cumulative distribution function is given by

F̂ðkÞ ¼
1

N

XN
i¼1

wfXi � kg ¼
1

N

XN
i¼ 1

wfXðiÞ � kg

This is the average of a series of step functions and is easily seen to be an unbiased estimate of the

true cumulative distribution function. The corresponding right continuous inverse is (for 0r a, 1):

F̂
�1
ðaÞ ¼ X 1 þ Nab cð Þ

where X(i) denotes the ith sample value of X, in increasing order. This provides the most basic

estimate of sample quantiles.

5.2.2.2. Direct Percentiles: Exact Distribution
We can construct the cumulative distribution function of the sorted observations X(r) in the

important special case where the true distribution function F(x) is continuous.
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The exact distribution of the rth observation is a transformation of the b distribution (this is readily

proved by induction):

Prob XðrÞ � x
	 


¼
Gðn þ 1Þ

GðrÞGðn� r þ 1Þ

ZFðxÞ
0

ur� 1ð1� uÞn� rdu

This enables us to construct prediction intervals for specific percentiles; for example, to construct a

95% prediction interval for the 75%-ile, we need to find integers 1r rr srn such that

Prob XðrÞ � F�1ð0:75Þ � XðsÞ
	 


¼
Gðn þ 1Þ

Gðr þ 1ÞGðn� r þ 1Þ

Z0:75

0

ur� 1ð1� uÞn� rdu

�
Gðn þ 1Þ

Gðs þ 1ÞGðn� s þ 1Þ

Z0:75

0

us� 1ð1� uÞn� sdu ¼ 0:95

The confidence interval is then [X(r), X(s)]; the size of the interval follows from the claim above.

If F is continuous, we can restate the result as saying F(X(r)) has a b (r, n 1 12r) distribution. As the

mean of this distribution is r/(n 1 1), the observation X(r) is sometimes taken to be an estimator of

the r/(n 1 1)-quantile. Our inverse CDF method, however, allows X(r) to estimate any quantile

between (r – 1)/n and r/n, a range which of course includes r/(n 1 1).

It is worth noting that in most cases, the solution for r and s, as described above, are not unique.

A unique solution can be found by applying some constraints such as the interval being symmetrical

around the percentile of interest.

5.2.2.3. Direct Percentiles: Approximate Distribution
In practice it is usual to appeal to the central limit theorem and derive a 100. b confidence interval

for the a-quantile from the ordered X(i) (where i goes from 1 to n) is given by an interval

(X(n.a2Y), X(n.a1 Y)) where

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n:að1� aÞ

p
F�1 1 þ b

2

� �

This formula makes no assumptions about the distribution of the X(i). This formula also does not

depend on the number of risk drivers modelled in the internal model (the dimensionality of the

internal model).

Applying this formula to a 95% confidence interval for a 99.5% quantile, where n 5 10,000, an

interval of (X(36), X(64)) is obtained. Of course, the actual interval that this gives will depend on

the distribution of the X(i).

Repeating the above calculation but using n 5 1,000,000 the interval (X(4,861), X(5,139)) is obtained.

As mentioned above, the actual interval that this gives will depend on the distribution of the X(i), but

the 1003 increase in the internal model output has only led to a 103 reduction in the confidence

interval (strictly speaking this is a confidence interval for the SCR from the Monte Carlo error sampling

process – there may well be many other errors that are also present in the SCR estimate).
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These calculations so far have made no assumptions about the true CDF F(x). If the distribution is

known to be of a certain form, then parametric approaches may be preferable. It is instructive to

consider the special case where F(x) is normally distributed.

5.2.2.4. Alternative Percentile Estimates: Normal Distribution
Suppose that the X(i) are known to be drawn from a normal distribution, whose CDF is

FðxÞ ¼ F
x� m
s

� �

Here, F is the standard normal CDF. We might then choose to estimate the a-quantile by

substituting estimated parameters into an exact formula, of the form

Q̂a ¼ m̂ þ ŝF �1ðaÞ

Here, the standard estimates are given as

m̂ ¼ 1
n

Pn
r¼ 1

Xr

ŝ2
¼ 1

n� 1

Pn
r¼ 1

Xr � m̂ð Þ
2

These expressions are of course invariant under permutations of the Xr. In particular, we can write

the estimated quantile in terms of the sorted observations:

Q̂a ¼
Xn

r¼ 1

1

n
þ

F�1ðaÞ
n� 1

XðrÞ � m̂
ŝ

� �
XðrÞ

We can interpret this as a weighted average of the ranked observations, with (for a. 1/2) higher

weights given to the largest observation. In this case, the weights depend on the observations

themselves; however, we could approximate the weights by their expected values (or, more

accurately, approximate F(X(r)) by its expected value based on estimated parameters) to obtain a

new estimated quantile:

Q̂a �
Xn

r¼ 1

1

n
þ

F�1ðaÞ
n� 1

F�1 r

n þ 1

� �� �
XðrÞ

This is now an example of an L-estimate, that is, an estimated quantile that is a linear combination

of the sample quantiles, in which the weights add to 1.

5.2.3. Bias and Sampling Error in Smoothed Percentiles
A sample quantile uses only one observation out of a set of n. The other observations are not totally

correlated with the selected observation. Taking an average of nearby quantiles would therefore

have a smaller variance than a single quantile. However, this would be at the expense of introducing

bias, that is, averaging with nearby percentiles may on average (over many random samples of size

n) produce underestimates or overestimates of the desired quantile.

The sign of any bias, positive or negative, depends on the shape of the true CDF. Where the shape of the

true CDF is known, we can use that knowledge to construct clever weights that reduce variability

without introducing bias.
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There is another reason to use smooth percentiles for applications involving sensitivities or

optimisation. The inverse empirical CDF is a step function, and thus we cannot calculate a

meaningful gradient. This renders sensitivities meaningless and creates multiple local maxima and

minima to thwart any optimisation routine.

A smoothed version, however, could be differentiable, provided that the weights vary smoothly as a

function of the desired probability a. A smoothed version is also naturally easier to optimise. The

extent of smoothing should be chosen carefully, to eliminate spurious local optima without

smoothing out the true optimum of the objective function.

There are three common examples of L-estimates for quantiles:

> logistic Epanechnikov smoothing;

> the Harrel–Davis method;

> hypergeometric Smoothing.

We provide more details on Logistic Epanechnikov smoothing in Appendix section B.5.

5.3. Key Points

This section considers the errors introduced in the pursuit of faster run times, either by introducing a

series of ‘‘proxy’’/‘‘lite’’ models or by the finiteness of a simulation set.

Section 5.1 discusses in detail the ‘‘spanning error’’ in proxy models, concluding with some findings

based on case studies and experiments carried out by the working party. Useful elements for the reader

to take away would be examples and cases where simple models fail to fit the assets and liabilities.

Monte Carlo sampling error is also discussed, together with methods to quantify the error by

estimating a confidence interval around the stated capital result. We also discuss techniques for

using most of the available information to smooth the percentiles.

6. Summary

A summary and recap of the sections within the paper are provided below, before concluding with

some final thoughts.

6.1.1. Judgement Galore!
The salient point being simply that, although capital requirements are extremely sensitive to

judgements made in the process, judgement is a necessary and inescapable part of modelling. To that

end, it is important for the companies to recognise where judgement occurs, and we try and broadly

categorise different areas where judgements can occur, together with some detailed examples. In

particular, the importance of the choice of risk factors to model, choice of framework and choice of

model should not be underestimated.

Given that in many cases expert judgement is inescapable, we take a critical look at current practices of

expert judgement within the industry. Key aspects considered are the scope of expert judgement (it needs

to cover all the categories discussed, in particular choice or risk factors, framework and models) as well

as the importance of choosing independent experts. The paper also highlights that we can perhaps learn

more about the process of gathering expert judgement from other fields.
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6.1.2. What Risk Factors to Model?
The selection of what risk factors to model stochastically is a crucial choice within capital models and

deserves a great deal of attention. We illustrate this by an example where a very large number of

potentially stochastic inputs are compressed to merely 100 risk drivers, and discuss the possible range of

factor-reduction methods at the final stages of the selection, highlighting some potential pitfalls.

We also explain the importance of ‘‘grossing-up’’ for all the risk factors that are not modelled

stochastically, by considering the link between grossing-up methodology and willingness to update

models/incorporate new risks.

6.1.3. How to Allow for Model and Parameter Uncertainty?
Section 4 focused on model and parameter error and considers in details two cases, where

observations are from a given distribution, but there is uncertainty about the parameters (parameter

error) or where one is uncertain about the actual model itself (model error).

We highlighted the important fact that when there is model or parameter uncertainty, the capital

estimation problem itself is ambiguous, going on to discuss three possible definitions of a percentile

where parameters are uncertain. We also provided an extended set of examples, based on different

methods of estimating parameters and based on different possible distributions.

Finally, we discussed different techniques to assess model errors, and introduced the idea of robust

statistics and ambiguity sets, which look at techniques that apply over a range of candidate models,

rather than a single model that is considered to be most plausible, finishing with a caution to

properly allow for model risk before labelling too many events as ‘‘Black Swans’’.

6.1.4. Even More Approximations!
Section 5 considers the further errors introduced in the interests the greater demand for quick results and

faster run times, either by introducing a series of ‘‘proxy’’/‘‘lite’’ models or by running fewer simulations.

We discuss ‘‘spanning error’’ in proxy models, concluding with some findings based on case studies

and experiments carried out by the working party. Useful elements for the reader to take away

would be examples and cases where simple models fail to fit the assets and liabilities.

Monte Carlo sampling error is also discussed, together with methods to quantify the error by

estimating a confidence interval around the stated capital results, as well as possible techniques for

using the most of the available information to smooth the percentiles.

6.2. Concluding Thoughts

In this paper, we set ourselves the task of estimating extreme percentiles of profits for complex

financial institutions given limited data, and models that are at best an approximate representation

of reality.

It might be argued that any attempt to extrapolate from limited data to extreme percentiles is

doomed to failure. For example, Rebonato (2007) derides the use of ‘‘science fiction’’ percentiles.

At the other extreme, there is a risk of professing more belief in our models than is warranted,

a risk exacerbated by tests requiring firms to demonstrate model use to regulators to receive

model approval.
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We have argued that extreme percentiles can be estimated, but clarity is required about the problem

to be solved (e.g. unbiased percentile estimate, confidence interval for a percentile or prediction

intervals). Clarity is also required about the range (or ambiguity set) of mathematical models for

which an approach is required to work.

Available resources usually constrain firms to pick a single internal model for decisions, subject to

stress and scenario testing. However, we should always remain cognisant of the fact that other

models could just as well have been picked; accepting one model does not imply that all others are

rejected. It is very rare to have a solid basis for believing the model we have is the only one.

The regulatory process and regulatory environment often discourages deviations from what is seen

to be best practice among peers. Given an all-pervasive model uncertainty, it is not practical to

explore all alternatives, and it is inevitable that some modelling practices are social constructs,

reflecting cultural aspects as much as statistical influence. We have to learn to live with this: cultural

context is a bad thing only when it masquerades as hard science.

This paper was originally motivated by alarm at the extent to which risk models failed to predict

outcomes in the 2008 financial crisis. We have tried to highlight conceptual pitfalls to avoid, and we

have highlighted specific remedies for model and parameter risks, judgemental aspects and

computational approximations. It is our hope that these techniques will allow actuaries to close the

gap between the risks we capture in our models and those revealed in the wake of financial losses.
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A. Appendix A – Bayesian Methods

This section discusses the use of Bayesian methods and how they might be used to provide a

framework for expert judgement. The Bayesian method is described and two example case studies

are worked through in detail, which is followed by a discussion of possible bias using basing

methods.

A.1. Context of Bayesian Statistics

Bayesian statistical inference differs from the frequentist version because of their different notions of

probability itself.

The frequency interpretation of probability is simply a long-run ratio in a sequence of repeatable

events. It is most suited to statistical inference in the context of an experiment that can be repeated

many times. Coin tosses and balls drawn from urns are tell-tale signs of a frequentist mindset.

The Bayesian or ‘‘epistemic’’ perspective is that probabilities represent a personal assessment, a

‘‘degree of belief’’ about something. Claiming that there is a 50% chance of rain tomorrow is a

typically epistemic statement. Bayesians are prepared to update their beliefs (and thus make

statistical inferences) based on observations from a single performance of an experiment.

These different views lead to fundamentally different procedures of estimation. For further details,

the reader is referred to Suess and Trumbo (2010) for a mathematical treatment and to Howie

(2002) for a historical and sociological one.

A.2. Bayes’ Theorem

Bayes’ theorem (Bayes, 1763) is the basis for Bayesian methods. For an observed event E and a

partition {A1,A2,y,Ak} of the sample space S:

PðAjjEÞ ¼
PðAjÞPðEjAj

�
Pk

i¼ 1 PðAiÞPðEjAiÞ
ðA:1Þ

The general version of Bayes theorem involving data x and a parameter p is shown below:

pðpjxÞ ¼
pðpÞpðxjpÞR
pðpÞpðxjpÞdp

/ pðpÞpðxjpÞ ðA:2Þ

A posterior distribution of p is found from the prior distribution of p and the distribution of the data

x given p. This is the basis for Bayesian methods. An initial prior view, based typically on expert

judgement is updated with some data to give a new view that allows for both the data and expert

judgement. Bayesian methods can be summarised as:

Posterior distribution / Prior � Likelihood function ðA:3Þ

A.3. Calculating the Posterior: Conjugate Priors

To calculate the posterior probability appears to require the calculation of (formula (A.2)). Whereas

the numerator is straightforward to evaluate, the integral in the denominator may be over a large

space and be rather formidable.
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For many years, the application of Bayesian statistics was restricted to the cases in which the

integral in the denominator could be evaluated analytically. The typical case involved cases where

the posterior distribution p(pjx), is from the same family of distributions as the prior distribution,

p(p). The Bayesian updating process then amounts to an updating of the distribution parameters

based on the realised data.

A.4. Normal Distribution with Unknown Mean and Variance

This section presents the conjugate prior for the mean and variance of in the special case when the

data are from a normal distribution. The likelihood function for the normal distribution is

pðxjs2; yÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p exp �

1

2s2
ðx� yÞ2


 �

For several (n) observations:

pðxjs2; yÞ ¼
1

ð
ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

Þ
n exp �

1

2s2

X
i

ðxi � yÞ2
( )

pðxjs2; yÞ / s�n exp �
1

2s2
nðy� �xÞ2 þ

X
i

ðxi � �xÞ
2

 !( )

The conjugate prior for the mean and variance of the normal distribution is the normal inverse

Gamma family, written as NIGamma(d, a, m, v) with distribution function

pðs2; yÞ ¼
ad s2
� ��ðdþ 3=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pvGðdÞ
p exp �

1

s2

y�mð Þ
2

2v
þ a

( )" #

Integrating out y gives the marginal distribution of s2: pðs2Þ / ðs2Þ
�d�1

exp � a
s2

	 

the inverse

Gamma distribution (i.e. s2 , invGam(d, a))

Similarly, integrating out s2 gives the marginal distribution of y:

pðyÞ / 1 þ ðy�mÞ2

2av

� ��ðdþ 1=2Þ
the generalised Student T distribution (i.e. y , T2d (m,av/d))

pðs2; yjxÞ / pðs2; yÞpðxjs2; yÞ

pðs2; yjxÞ ¼
ad s2
� ��ðdþ 3=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pvGðdÞ
p exp �

1

s2

y�mð Þ
2

2v
þ a

( )" #

�
1

ð
ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

Þ
n exp �

1

2s2

X
i

ðxi � yÞ2
( )

pðs2; yjxÞ / s2
� ��ðdþ 3=2þ n=2Þ

exp �
1

2s2

y�mð Þ
2

v
þ 2a þ

X
i

ðxi � yÞ2
( )" #

pðs2; yjxÞ / s2
� ��ðdþ 3=2þ n=2Þ

exp �
Q

2s2

� �
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Q can be rearranged to give

Q¼ 2aþ
X

i

ðxi � �xÞ
2
þ v þ

1

n

� ��1

�x �mð Þ
2
þ v þ

1

n

� �
y� mn
� �2

The posterior distribution is of the form NIGamma(d*, a*, m*, v*) where

dn
¼ dþ n=2

an ¼ a þ
1

2

Xn

i¼ 1

xi� �xð Þ
2
þ v þ

1

n

� ��1

�x �mð Þ
2

( )

mn ¼
m

v
þ n �x

� � 1

v
þ n

� ��1

vn ¼
1

v
þ n

� ��1

Hence, for given priors for s2 and y the posteriors can be found analytically

Prior: p(s2) , invGam(d, a) 5.

Posterior: pðs2jxÞ , invGam(d*, a*)

Prior: p(y) , Student T2d (m, av/d) 5.

Posterior: pðyjxÞ , Student T2d* (m*, (a*)(v*)/(d*))

A practical example of this conjugate prior being used to calibrate to a data set is given in section A.9.

A.5. Calculating the Posterior: Introducing Markov Chain Monte Carlo
(MCMC) Methods

It is well known that Monte Carlo simulation can be used to estimate integrals. If xif g
n
i ¼1 are

independent draws from a distribution with density function fx(x) then, provided E h xð Þð Þ is finite,

as n-N:

1

n

Xn

i¼ 1

hðxiÞ ! EðhðxÞÞ ¼

Z
hðxÞf xðxÞdx

Indeed, taking indicator functions in place of h(	), the distribution of the sample xif g
n
i ¼1 approaches

the distribution function Fx(	) from which samples are taken.

In MCMC techniques, the sample points xif g
n
i ¼ 1 are derived as a sequence from a Markov chain

rather than as independent draws from the desired distribution. A Markov chain, as described below, is

a sequence of random variables where the distribution of each item in the sequence depends on the

previous item in the chain. They are therefore, in general, dependent rather than independent variables,

and the distribution pi of the ith random variable in the chain is not equal to the target distribution p.

Surprisingly, it turns out that in many cases a Markov chain can be set up which is both easy to

simulate and also where the distribution of the items in the sequence approaches an asymptotic
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limit, which is a chosen target distribution p. This limiting distribution p is the stationary

distribution of the Markov chain. In the algorithms discussed below, the Markov chain also satisfies

the conditions required for the Monte Carlo estimator to approach the limit E h xð Þð Þ as n-N, that

is, the same limit applies as if the sample consisted of independent draws.

The remainder of this note sets out the relevant Markov chain theory; the application to Bayesian

techniques, and the most well-known examples of MCMC estimation: the Gibbs sampler and the

Metropolis–Hastings algorithm (MHA).

A.6. The MHA

In its original form, the MHA was set out by Rosenbluth et al. (1953) and then generalised to its

current form by Hastings (1970). Tierney (1994) was influential in popularising MCMC methods in

Bayesian statistics. A recent survey paper by Roberts and Rosenthal (2004) is one possible entry

point for mathematical readers wanting to know more. We found the emphasis on applications and

coding in Suess and Trumbo (2010) to be a good introduction.

MHA effectively provides a recipe for altering one Markov chain to produce another with the

desired stationary distribution. The first Markov chain on a state space X is defined by a density

Q(x; dy) 5 q(x; y)dy, and the alteration is defined by an acceptance function a(x,y) on X � X . This

satisfies 0r a(x,y)r1. At each step, given Xn, sampling from the density Q(Xn; dy) is used to

propose a new point y. The algorithm accepts y as the next point Xn 1 1 with probability a(x; y),

otherwise the proposal is rejected and the process remains in the same place, that is, Xn 1 1 5 Xn.

The acceptance function is defined by

aðx; yÞ ¼ min 1;
pðyÞqðy; xÞ
pðxÞqðx; yÞ

� �
:

The form of the acceptance function ensures that, without any condition on Q, p is a stationary

distribution for the new Markov chain. In most circumstances in practice, for example, when Q

defines a normally distributed random walk on X ; the distribution of the sample converges on p;

and the sample average of h(Xi) converges to E(h) when this exists.

The importance of this algorithm in a Bayesian context arises from the fact that p enters into both

numerator and denominator of a(x; y). The algorithm therefore runs without complaint when p is

only known up to an overall constant – this is often the case for a Bayesian posterior.

A.6.1. The Gibbs Sampler
When the state space X is an open subset of Rd, and the one-dimensional conditional distributions

can be calculated, a special case arises. The Gibbs sampler breaks down the problem of sampling

from a d-dimensional distribution p on X into the simpler problem of sampling from the d one-

dimensional conditional distributions.

For x 2 X, write x�i 2 Rd�1 for the components of x, except the ith. If the conditional one-

dimensional distributions p(xjx2i) are known sufficiently to be sampled from easily, then Gibbs

sampling provides a good approach. At each step in the Markov chain, a particular dimension i is

chosen (this could be randomly; more commonly, the indices are cycled through in order). If the

chain is currently at x, that is, xn 5 x; then xn 1 1 is set equal to x along all dimensions other than i;

and sampling from p( 	 jx2i) gives the value along the ith dimension.
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This can be seen as a special case of the MHA: the proposal distribution q is just defined by p( 	 jx2i)

and, writing pi for the marginal distribution of x2i under p; the ratio appearing in the acceptance

function is

pðyÞqðy; xÞ
pðxÞqðx; yÞ

¼
pðy y�i

�� Þpiðy�iÞpðx y�i

�� Þ

pðx x�ij Þpiðx�iÞpðy x�ij Þ

and this is equal to unity as x2i 5 y2i by construction. The Metropolis–Hastings proposal is

therefore always accepted in this case.

A.7. Digression: Some Markov Chain Theory

Markov chains on a finite state space are well known (e.g. Grimmett & Stirzaker, 1982). Here we

emphasise the definitions and considerations that enable the intuition from a discrete set of states to

carry over to a continuous state space. For a full treatment, Meyn & Tweedie (2009) is a classic

reference.

A.7.1. The Transition Kernel
A homogeneous Markov chain is a stochastic process, a sequence of points xi 2 X where the

position of the next point xi 1 1 depends only on the location of the current point xi. In typical

introductory examples, X is finite, and the Markov chain is defined by a transition matrix

pðy xj Þ 
 Pðxiþ 1 ¼ y xi ¼ xj Þ. A more general state space is required in most MCMC applications –

the probability of xi 1 1 being at a point x may be zero for all xi 1 1, but nonetheless there may be a

well-defined distribution, of the form f(x)dx, for example, which captures the probability structure. In

general, the conditional distribution of xi 1 1 given that xi is given by a transition kernel Pðxi; 	Þ where

Pðx;AÞ ¼ Pðxiþ 1 2 A xi ¼ xÞ
�� . This kernel should satisfy some technical measurability conditions,

but they are broad and pose no practical constraint.

If xi has a distribution pi then the distribution pi 1 1 is given by integration against the transition

kernel:

piþ 1ðAÞ ¼

Z
X

Pðx;AÞpiðdxÞ

Similarly, pnðx;AÞ ¼ P ðxiþ n 2 A xi ¼ xÞ
�� is obtained by iterated integration, for example:

p2ðx;AÞ ¼

Z
y2X

Pðy;AÞPðx;dyÞ:

For example, for the Markov chain arising from the MHA, the transition kernel is

Pðx; dyÞ ¼ qðx; yÞaðx; yÞdy þ bðxÞdxðdyÞ

where dx is a Dirac delta density at x and bðxÞ ¼ 1�
R

qðx;yÞaðx;yÞdy is the probability of staying at

x for one step.

A.7.2. Stationary Distributions and Reversibility
A stationary distribution p is a distribution that is invariant under this operation, that is, if pi 5 p
then pi 1 1 5 p. For applications, it is desirable that the distributions pi converge to a limiting

distribution p, or more simply, Pn(x,A)-p(A) for all A. Such a limiting distribution is necessarily

stationary.
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A useful concept, which enables MCMC algorithms to be constructed, is that of reversibility, also

known as the principle of detailed balance. A Markov chain is reversible relative to a probability

distribution p if for x; y 2 X,

pðdxÞPðx; dyÞ ¼ pðdyÞPðy; dxÞ

As the integral of P(y,dx) over x 2 X is unit Y, integrating both sides givesZ
pðdxÞPðx; dyÞ ¼ pðdyÞ

In other words, p is a stationary distribution for the Markov chain. For the Metropolis–Hastings

Markov chain:

pðdxÞPðx; dyÞ ¼ pðxÞqðx; yÞaðx; yÞdxdy þ pðxÞbðxÞdxðdyÞ

¼ min½pðyÞqðy; xÞ; pðxÞqðx; yÞ� þ pðxÞbðxÞdxðdyÞ

The first term is symmetric in x and y and the second equals p(y)b(y)dy(dx), and thus detailed

balance holds for the MHA. The target distribution p is therefore the stationary distribution, as

required. This calculation explains the form of the acceptance function in the algorithm.

A.8. Bayesian Networks

Bayesian networks provide an explicit description of causal relationships between discrete and

continuous variables. They take the form of a directed graph, where each node defines the

conditional distribution of a (hidden or observable) variable given the predecessor nodes. Rather

than consisting of a single step, Bayesian updating requires inductive application of Bayes theorem

through the directed graph.

Bayesian networks can be difficult to calibrate to real data, as historic correlations are seldom accounted

for by a small number of causal links. They can, however, be useful in eliciting expert views and building

these together into a subjectively parameterised model. There are significant technical obstacles,

including finding a good way to discretise continuous variables for computational purposes, and the

difficulty of incorporating feedback effects (as cycles are generally not permitted in the direct graph).

The recent book by Fenton and Neil (2012) provides an enthusiastic description of Bayesian

networks (and an entertainingly over-the-top denigration of all competing approaches).

A.9. Case Studies

In this section, two case studies are considered. Both look at how Bayesian methods might be used

to calibrate a 1-in-200 equity stress based on a specific data set. The data used in both case studies

are based on the Dimson et al. (2002) study. The data used include updates to the original DMS

data and covers the period 1900–2008. The case studies below are based on logarithmic annual

returns of the UK DMS data set.

A.9.1. Case Study 1
In this case study, the simple case where the data are assumed to have a normal distribution and the

mean (y) and variance (s2) of the data are unknown is considered. The mean and variance

are assumed to be distributed with the Student T and inverse Gamma distribution, respectively.

These assumptions allow formula (2) to have an analytic solution, which allows calculations to be
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calculated in a relatively straightforward manner. Using the conjugate priors described in section

5.3.1, a Bayesian posterior distribution can be constructed that takes into account the expert

judgements used in the prior and the data set used.

The conjugate prior of the normal distribution for unknown mean and variance is the normal-

inverse-gamma (NIGamma) distribution, which has four parameters.

The prior NIGamma(d, a, m, v) has a conjugate posterior distribution NIGamma(d*, a*, m*, v*) where

dn
¼ dþ n=2

an ¼ aþ
1

2

Xn

i¼1

xi � �xð Þ
2
þ v þ

1

n

� ��1

�x �mð Þ
2

( )

mn ¼m
m

v
þ n �x

� � 1

v
þ n

� ��1

vn ¼
1

v
þ n

� ��1

Prior: p(s2) , invGam(d, a) 5 .

Posterior: pðs2jxÞ , invGam(d*, a*)

Prior: p(y) , Student T2d (m, av/d) 5 .

Posterior: pðyjxÞ , Student T2d* (m*, (a*)(v*)/(d*))

A.9.1.1. Prior Distributions
In this case study, the process of parameterising the prior distribution (i.e. prior elicitation) is not

discussed in detail. This can be a complicated process and it is generally more difficult to elicit a

prior for a variance than a mean. In this case study, a prior is presented along with the resulting

posterior distributions.

The prior distribution used is NIGamma(4, 0.15, 0.08, 3), which gives the prior means and

variances for the mean (y) and variance (s2):

E(y) 5 8%

Var(y) 5 15%

E(s2) 5 5%

Var(s2) 5 0.1%

Using the mean estimates of each parameter and noting the underlying data is of log returns, this

prior is consistent with a 99.5th percentile simple return from the normal distribution of

Exp �
ffiffiffiffiffiffiffi
5%
p

F�1 0:995ð Þ
� �

þ 0:08
� �

� 1 ¼ 39:1%

Using the UK DMS data set the posterior distribution is: NIGamma(58.5, 1.992, 0.088, 0.009):

E(y‘x) 5 8.83%

Var(y‘x) 5 0.032%

E(s2‘x) 5 3.46%

Var(s2‘x) 5 0.0021%

R. Frankland et al.

608

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1357321713000524
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 20:21:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1357321713000524
https://www.cambridge.org/core


Using the mean estimates of each parameter from the posterior is consistent with a 99.5th percentile

from the normal distribution of

Exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:46%
p

F�1 0:995ð Þ
� �

þ 0:0883
� �

� 1 ¼ 32:4%

A.9.1.2. Comparison with the Maximum Likelihood Estimate (MLE)

The above results can be compared with frequentist approaches of distribution fitting such as the

MLE. The data set above is calibrated to the normal distribution using the MLE.

The MLE gives estimates of standards errors (s.e.) for the estimate of each parameter that give an

indication of the uncertainty in the parameter calibrations.

E(y) 5 8.8%

s.e.(y) 5 1.8%

E(s) 5 18.4%

s.e.(s) 5 1.2%

Using the mean estimates of each parameter from the MLE is consistent with a 99.5th percentile

from the normal distribution of

Exp �18:4% F�1 0:995ð Þ
� �

þ 0:088
� �

� 1 ¼ 32:0%

which is a very similar result to that of the Bayesian approach.

A.9.2. Case Study 2
In this case study, a possibly more realistic distributional assumption is made for the same purpose

of calibrating a 1-in-200 equity stress as in Case Study 1. The data are assumed to have a generalised

Student T distribution and the three unknown parameters (location, scale and degrees of freedom)

are calibrated using the Bayesian approach. In this case, there is no simple analytic solution

to formula (2) and a simulation approach is required to sample from the posterior distribution.

The simulation approach used is a MCMC using the MHA with Gibbs sampling, as described in

section 5.4.

There are some existing standard packages for running the MHA. WinBUGS is a free software

package specifically designed for this purpose (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/

contents.shtml) and some standard coding approaches have been designed to make producing

Bayesian posteriors relatively simple. WinBUGS aims to make practical MCMC methods available

to applied statisticians, and hence could be an ideal tool. There are some limitations of this package,

for example, the Student T distribution has a minimum degrees of freedom parameter of 2, and it is

not possible to use improper priors in this package. As both of these two features were desired for

this case study, the MHA was written in the statistical package R (also free software http://www.

r-project.org/).

To test the R code produced, it was initially calibrated to the same data set, likelihood function

and priors used in case study 1. One million simulations were run, ignoring the first 100,000

as burn in to give parameter estimates for the posterior distribution in case study 1. The results

were
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E(y‘x) 5 8.84%

Var(y‘x) 5 0.032%

E(s2‘x) 5 3.49%

Var(s2‘x) 5 0.0022%

which are very similar to the analytical answers using the conjugate formulae seen in Case

Study 1.

Applying this approach to the generalised Student T distribution requires prior distributions for the

three distribution parameters (location, scale and degrees of freedom). In the absence of clear expert

judgement, one approach is to express complete uncertainty in the prior distribution for each

parameter. This is done by using an improper prior of: 1/(parameter). This is the approach used in

this case study.

Using 100,000 simulations and discarding the first 1,000 simulations as burn in, the following

posterior and predictive distributions are produced.

Figure A1. Predictive distribution and posterior distribution for location, scale and degree of freedom
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The mean and variance of the posterior for each of these parameters are:

The 99.5th percentile from the predictive distribution is 241.4% in this case.

The 99.5th percentile from using the mean of each posterior distribution is 237.2%.

A.9.2.1. Comparison with the MLE
These results can be compared with the MLE estimates for the same parameters.

The 99.5th percentile using the MLE parameters is 240.9%, converting the log returns into simple

returns.

Again the results in this case are similar to the MLE estimates. Perhaps the main difference is the

level of uncertainty in the degrees of freedom parameter estimate. This is very high and skewed to

the upside in the Bayesian case. It can be seen in the posterior distribution of the degrees of freedom

parameter in Figure A1 that the degrees of freedom parameter is positively skewed.

A.9.2.2. Convergence of the MHA
One issue with the MHA is knowing how many simulations to run before a set of stable parameters

have been produced. In principle the Markov chains should converge to the limiting distribution,

which is the true joint posterior of the model unobservables. There are papers that discuss a

number of diagnostic tests that can be used to test whether suitable convergence has been achieved

(Cowles & Carlin, 1996). For this case study, a simple graphical test was used to observe values of

each parameter in each simulation as plotted below (Figure A2).

The plots in the graph above show that the values of each parameter have reached a stable

distribution and are moving around the sample space of that distribution in each simulation. When

running MHAs that are incorrectly specified, these plots would show the parameters diverging in

one direction rather than randomly moving around one space.

Location Scale d.f.

Mean 0.089117 0.129753 4.509829

Variance 0.000226 0.000248 82.04611

Location Scale d.f.

Mean 0.0919 0.126 3.67

s.e. 0.0145 0.0149 1.32
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B Appendix B – Proxy Model Formulae

This appendix is an annex to section 5. It covers the detailed on and details replicating formulae for

the following assets and liabilities in section 5.1:

> annuities;

> guaranteed annuities;

> term assurance;

> equities;

> cash, government bonds;

> corporate bonds.

It also covers an example of a smoothing algorithm to remove the bias and sampling error in

smoothed percentiles.

Figure A2. Illustrating the stability of the distribution of for location, scale and degree of freedom
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B.1. Annuities: Valuation Formula

Assume a constant rate of mortality 1/T in each future year, expressed as a fraction of the initial

number of lives, until all have died. The proportion of lives in force at time t is

max 1� t
T ; 0

	 

All policyholders have died by time t 5 T.

Thus, the cash flows are (with LCF – liability cash flow per annum before mortality):

LCF ð1�1=TÞ at the end of year 1

LCF ð1�2=TÞ at the end of year 2

We use discount rate 5 risk-free 1 liquidity premium.

The liability (for unit annual cash flow) is

PV ¼ LCF
XintðTÞ

t¼1

1�
t

T

� �
ð1 þ discÞ�t

¼ LCF
1

disc
�

1 þ disc

T:disc2
1�

1

ð1 þ discÞintðTÞ

" #
�

1� intðTÞ=T

disc:ð1 þ discÞintðTÞ

( )

where int(T) is the integer part of T, that is, the largest integer not exceeding T.

Annuities are single premium products. As the premium has already been paid, we do not need to

model it here. There is no lapse risk with annuities.

B.2. Unit Linked with Guarantee: Valuation Formula

We consider a fund with initial value Unit_Fund, invested in risky assets but with a guaranteed

amount Gtee_AMT at maturity. We assume that the annual management charge (AMC) is deducted

annually in advance. Lapses occur during the year, after the AMC is deducted (with

0 , AMC , 1.00). The total technical provision is the unit fund minus the value of future charges

plus the guarantee.

The value of charges is as follows (assuming an integer term TZ1)

Unit Fund
AMC þ ð1�AMCÞð1� lapseÞAMC þ . . .

þAMCð1�AMCÞT� 1
ð1� lapseÞT� 1

$ %

¼ Unit Fund � AMC
1� ð1�AMCÞTð1� lapseÞT

AMC þ lapse�AMC � lapse

The guarantee is assumed to apply only to policies that reach maturity, and is given by the formula

ð1� lapseÞT � BS
Gtee AMT

ð1 þ discÞT
; ð1�AMCÞT � Fund; volatility �

ffiffiffiffi
T
p

 !

Difficult risks and capital models

613

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1357321713000524
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 20:21:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1357321713000524
https://www.cambridge.org/core


Here, the Black–Scholes formula is

BS PVget;PVpay; að Þ ¼ PVget � F
lnðPVget=PVpayÞ

a
þ

a
2

� �

�PVpay � F
lnðPVget=PVpayÞ

a
�

a
2

� �

As with the term assurance, we can consider whether the value of the guarantee is more or less than

the value of charges. However, we have no simple formula for the breakeven rate of AMC. This is

because increasing the charge not only causes a rise in the value of charges (clearly) but also reduces

PVpay in the option formula, leading to a rising guarantee cost because more is taken out of the

fund before the guarantee is met.

Indeed, in some cases, there is no breakeven management charge, as attempts to increase the value

of charges also increase the guarantee cost, with the value of charges never catching up. To avoid

this, we have to insist that:

Unit Fund4 ð1 � lapseÞT=ð1 þ discÞT � Gtee AMT

Equivalently, expressing the guarantee as an annual return Gtee_AMT 5 (11 gtee_ret)T 3Unit_Fund, a

breakeven management charge exists provided the guaranteed return is not too onerous, specifically

1 þ gtee reto ð1 þ discÞ=ð1 � lapseÞ

As with the term assurance, we can investigate this product on two bases:

> Variant 1 permits negative provisions if charges are sufficiently large: technical provisions 5

guarantees 2 charges.

> Variant 2 assumes all policies immediately lapse if provisions were to become negative, so that

technical provisions 5 max{0, guarantees 2 charges}.

B.3. Term Assurance: Valuation Formula

We assume that lapses are a constant proportion of policies in force during the year, whereas

mortality is a constant number of deaths each year (thus, the q-factor increases with age).

We construct the policy count as follows between t21 and t (Table B1).

Table B1. Evolution of the Term Assurance policy count between times t and t21

Event Reduction in Policy Count Policy Count Balance

In force at balance sheet t 2 1 (1 – lapse)t – 1 (1 – Mort (t – 1))

Premiums collected

Deaths from t 2 1 to t (1 2 lapse)t – 1 3 Mort

In force after deaths (1 2 lapse)t – 1 (1 2 Mort 3 t)

Lapses at time t Lapse (1 2 lapse)t – 1 (1 – Mort 3 t)

In force at balance sheet t (1 2 lapse)t (1 2 Mort (t))
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We can then calculate

PVclaims ¼ SA
XT

t¼1

ð1� lapseÞt�1
� mort

ð1 þ discÞt
¼

SA � mort

disc þ lapse
1�

1� lapse

1 þ disc

� �T
( )

and

PVprems ¼ annprem
XT�1

t¼0

ð1� lapseÞt � ð1�mort � tÞ

ð1 þ discÞt

¼
annpremð1 þ discÞ

ðdisc þ lapseÞ2

disc�mort þ lapse � mort þ lapse
	 


�
1�lapse

1 þ disc

� �T

disc�mort þ lapse � mort þ lapse�ðdisc þ lapseÞ � mort � T
	 


2
664

3
775

It is easy to find the breakeven premium at which the value of claims is equal to the value of

premiums; this occurs when:

breakeven annprem

SA

¼

mort

disc þ lapse
1�

1� lapse

1 þ disc

� �T
( )

1 þ disc

ðdisc þ lapseÞ2

disc�mort þ lapse � mort þ lapse
	 


�
1� lapse

1 þ disc

� �T

disc�mort þ lapse � mort þ lapse� ðdisc þ lapseÞ � mort � T
	 


2
64

3
75

We can consider two variants of the valuation formula:

> Variant 1 permits negative provisions if premiums are sufficiently large: technical provisions 5

PVclaims 2 Pvprems.

> Variant 2 assumes all policies immediately lapse if provisions were to become negative, so that

technical provisions 5 max{0, PVclaims 2 Pvprems}

In our example, in the base case, we assume the actual premium is less than the breakeven premium, so that

the value of future benefits exceeds future premiums and the technical provisions are positive under Variant

1. This could reflect the situation of a seasoned policy in which mortality was previously higher. However,

we make the inequality close enough so that, under the downward mortality stress, the value of benefits is

now less than the premiums. This ensures that we obtain different results with Variant 1 and Variant 2.

B.4. Assets

Equities: Responds only to equity stress.

Cash: Unaffected by any stress.

Risk-free bond (term): Affected only by risk-free rate, assuming an annual coupon and term T.

Corporate bond (term): affected by risk-free rate plus credit spread, assuming an annual coupon and term T.
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The formula for the risk free bond and corporate bond is

Market Value ¼ Face Value
1

ð1 þ discÞT
þ coupon

XT

t¼ 1

1

ð1 þ discÞt

( )

¼ Face Value
1

ð1 þ discÞT
þ

coupon

disc
1�

1

ð1 þ discÞT

" #( )

B.5. Epanechnikov Smoothing of Percentiles

Here we look at logistic Epanechnikov smoothing in a bit more detail. The Epanechnikov kernel

function, K(z), and its first derivative are defined by the formula

KðzÞ ¼

0 z � �1
1
2 þ

3
4z�

1
4z

3 �1 � z � 1

1 z � 1

;K0ðzÞ ¼

0 z � �1

3
4 �

3
4z

2 �1 � z � 1

0 z � 1

:

8>><
>>:

8>><
>>:

We also define J(z) to be the cumulative distribution function of the logistic distribution, that is

JðzÞ ¼
1

1 þ e�z

The idea is to start with the empirical inverse CDF, transform the a-axis to (2N,N) using the

logistic CDF, smooth the resulting function using the Epanechnikov kernel and then, finally,

re-transform the a-axis. Putting these together, we have

~F
�1

JðyÞ½ � ¼

Z1
�1

��1K0 ��1z
� �

F̂
�1

Jðy þ zÞ½ �dz

Here, as before, F̂
�1
ðaÞ is the empirical inverse CDF, ~F

�1
ðaÞ is the smoothed inverse CDF and e is a tuning

parameter controlling the amount of smoothing. In the limit of e5 0, there is no smoothing at all; larger

values of e pull more observations into the average. In the other limit as e tends to infinity, the smoothed

inverse CDF corresponds to a point mass at the average of the largest and smallest observations.

We can break the integral down into a series of integrals over each interval for which the empirical

CDF is constant. We can then integrate analytically. This gives the following formula

~F
�1

JðyÞ½ � ¼
Xn

r¼1

ZJ�1 r
nð Þ�y

J�1 r� 1
nð Þ�y

��1K0 ��1z
� �

F̂
�1

Jðy þ zÞ½ �dz

¼
Xn

r¼ 1

XðrÞ

ZJ�1 r
nð Þ�y

J�1 r�1
nð Þ�y

��1K0 ��1z
� �

dz

¼
Xn

r¼ 1

K
J�1 r

n

� �
� y

�

 !
�K

J� 1 rþ 1
n

� �
� y

�

 !" #
XðrÞ

The obvious limiting expressions should be used when the arguments of K are infinite. Although our

construction used smoothing with an Epanechnikov kernel and logistic transformation, all that

really matters are that the functions J and K are valid CDFs. Other distribution functions could

equally well have been used.
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