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Three-dimensional interaction between uniform
current and a submerged horizontal cylinder in
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The problem of interaction of a uniform current with a submerged horizontal circular
cylinder in an ice-covered channel is considered. The fluid flow is described by linearized
velocity potential theory and the ice sheet is treated as a thin elastic plate. The potential
due to a source or the Green function satisfying all boundary conditions apart from that on
the body surface is first derived. This can be used to derive the boundary integral equation
for a body of arbitrary shape. It can also be used to obtain the solution due to multipoles
by differentiating the Green function with its position directly. For a transverse circular
cylinder, through distributing multipoles along its centre line, the velocity potential can
be written in an infinite series with unknown coefficients, which can be determined from
the impermeable condition on a body surface. A major feature here is that different from
the free surface problem, or a channel without the ice sheet cover, this problem is fully
three-dimensional because of the constraints along the intersection of the ice sheet with
the channel wall. It has been also confirmed that there is an infinite number of critical
speeds. Whenever the current speed passes a critical value, the force on the body and
wave pattern change rapidly, and two more wave components are generated at the far-field.
Extensive results are provided for hydroelastic waves and hydrodynamic forces when the
ice sheet is under different edge conditions, and the insight of their physical features is
discussed.

Key words: ice sheets, channel flow, wave-structure interactions

1. Introduction

In ocean engineering and naval architecture, it is common to undertake model tests in
a wave/towing tank. It can be expected that if the width of the tank is not sufficiently
larger than the structure dimension of the model or the wavelength, it can greatly affect

† Email address for correspondence: g.wu@ucl.ac.uk

© The Author(s), 2021. Published by Cambridge University Press 928 A4-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

79
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:g.wu@ucl.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.792&domain=pdf
https://doi.org/10.1017/jfm.2021.792


Y.F. Yang, G.X. Wu and K. Ren

the interactions between the fluid flow and the structure. The measured result may not
truly reflect that of the prototype in the real ocean. Furthermore, the tank has its natural
frequencies, at which resonance of the fluid motion can occur. Such a resonance due to
the sidewall effect, on the other hand, does not occur in the ocean. It is then important
to understand how the tank wall affects the desired results. Therefore, there has been
an extensive amount of work on body/flow/tank or channel interactions. By employing
linearized velocity potential theory, Linton (1993) derived the Green function for free
surface wave in a channel. The diffraction/radiation and the forward speed problem of a
submerged sphere in a channel were studied by Wu (1998a,b) where multipole expansion
was applied. In addition to submerged bodies, wave interaction with surface piercing
structures in a channel was also well studied. Linton, Evans & Smith (1992) provided an
analytical solution for wave diffraction and radiation by a vertical circular cylinder using
cylindrical system. Later, Evans & Porter (1997) and Utsunomiya & Eatock Taylor (1999)
solved wave diffraction by multiple cylinders and discussed the effect of a trapped mode
(Ursell 1951). A more recent work by Newman (2017) provided some detailed description
of the trapped mode phenomenon in a channel for various structures, including submerged
bodies and bottom-mounted cylinders with different cross-sections.

In recent years, there has been an increasing interest in the hydrodynamic problems
in polar and other icy water regions. One of the typical features in these regions is the
ice in many different forms, one of which is ice sheet covering water surface over a very
large extent. In the experiment, the ice sheet will meet the tank wall. At their intersection,
the physical constraint of the ice sheet edge, including whether the edge is clamped,
simply supported or free, can significantly affect the result. In fact, it has been shown
in Korobkin, Khabakhpasheva & Papin (2014) and Ren, Wu & Li (2020), that while the
transverse modes of the fluid flow are mathematically orthogonal, they are still completely
coupled. One consequence of this coupling is that unlike the free surface problem, a purely
two-dimensional wave propagating along the channel is impossible when there is an ice
sheet cover. The work by Ren et al. (2020) is mainly for wave propagation without any
structures in its path, although the case of an ice sheet with a crack is considered. Here
we shall consider the problem of a body submerged in a channel below an ice sheet in a
uniform current. This is similar to a submerged body moving forward with constant speed.
Although the problem may seem to be conventional for the free surface flow, when there
is an ice sheet the physics of the fluid flow and the resistance and lift on the body is very
different. The present work aims to shed some light on this.

When there is no channel wall, or for the open ice sheet problem, there has been a large
volume of work on interactions of fluid flow and ice sheets. In mathematical modelling, the
ice sheet is treated as a thin elastic plate and the fluid flow is described by the linearized
velocity potential theory. A review of some early works based on this method can be
found in Squire (2007). Typical three-dimensional works on wave interaction with ice
sheets/floes include those by Fox & Squire (1994) and Balmforth & Craster (1999) for
oblique wave diffraction by a semi-infinite ice sheet, Meylan & Squire (1996) for wave
interaction with a circular ice floe, Bennetts & Williams (2010) for wave diffraction by an
ice floe of arbitrary shapes and by Porter (2019) for wave interaction with a rectangular
ice floe floating on ocean. There are also works on imperfect ice sheets including cracks,
such as Evans & Porter (2003) for hydroelastic waves propagating by a single straight-line
crack and Porter & Evans (2007) for multiple straight-line cracks parallel to each other
and a recent work by Li, Wu & Ren (2020b) for multiple cracks with arbitrary shapes on
ice sheet.

The work mentioned above is mainly about interaction between wave and ice sheet.
In polar engineering, it is also important to consider their interaction with structures.
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For three-dimensional submerged bodies, Das & Mandal (2008) studied wave radiation by
a submerged sphere in a fluid with an ice cover by a multipole expansion method. Sturova
(2013) derived the time domain Green function due to a source undergoing arbitrary
three-dimensional motion in water below an ice sheet with infinite extent, and further
considered the wave radiation by a submerged sphere with a forward speed. For wave
interaction with structures piercing the ice plate or water surface, Brocklehurst, Korobkin
& Părău (2011) investigated the diffraction problem of a hydroelastic wave beneath an
ice sheet by a single bottom-mounted circular cylinder based on the Weber transform.
Later, Dişibüyük, Korobkin & Yılmaz (2020) further extended it to a vertical cylinder of
non-circular cross-section by applying the perturbation method at the mean position of the
section. Hydroelastic wave diffraction problems by multiple vertical cylinders are solved
by Ren, Wu & Ji (2018a). When the ice sheet is not directly in contact with the surface
of the structures, such as structures are located in a polynya or open water confined by
ice sheets, mixed upper surface boundary conditions need to be considered. Ren, Wu & Ji
(2018b) investigated wave diffraction and radiation by a vertical circular cylinder standing
arbitrarily in a circular polynya, while Li, Shi & Wu (2020a) employed a hybrid numerical
method and considered a floating structure of arbitrary shapes in a polynya with various
shapes.

Compared with unbounded sea covered by an ice sheet, the hydrodynamic features in
an ice-covered channel are quite different. Korobkin et al. (2014) studied hydroelastic
waves propagating along a rectangular channel with homogeneous ice cover clamped to the
sidewalls. The velocity potential and ice sheet deflection are first expanded into different
eigenfunctions. Each term in the expression of the ice sheet deflection satisfies the edge
condition and is further expanded into Fourier series used for the velocity potential. The
dispersion relations of the channel can be obtained through finding non-trivial solutions
of the homogeneous linear equations. Based on the procedure of Korobkin et al. (2014),
Shishmarev, Khabakhpasheva & Korobkin (2016) and Khabakhpasheva, Shishmarev &
Korobkin (2019) investigated the hydroelastic waves due to a load moving with a constant
speed along a frozen channel through frequency domain and time domain methods,
respectively. However, their results and conclusion are only for the clamped edges. Ren
et al. (2020) explicitly discussed the merit and weakness of the method in Korobkin et al.
(2014), and then they proposed a more efficient and flexible approach to investigate the
propagation of hydroelastic waves in a channel with an ice cover subject to various edge
constrains at the sidewalls, and also the effect of a longitudinal line crack on the ice.
In their work, both the velocity potential and the fourth transverse-derivative of the ice
deflection are expanded into a series of cosine functions in the transverse direction. The
expression of deflection itself is obtained through integration, which contains a series of
cosine functions and a quartic polynomial with four additional unknown constants. Using
the kinematic and dynamic conditions on the ice sheet, the system of linear equations in
terms of these four constants can be obtained by imposing edge conditions at the channel
wall. Based on this method, the solution procedure is very much simplified, and it is very
convenient to consider different combinations of edge conditions and the effect of the
crack.

In the present work, the interaction of a uniform current with a submerged body in
an ice-covered rectangular channel is considered. The three-dimensional Green function,
or the velocity potential due to a source is first derived. This can then be used to derive
the integral equation over the body surface of arbitrary shapes. In particular, we shall
consider a submerged horizontal circular cylinder with its axis in the transverse direction.
Multipole (Ursell 1949, 1950) is distributed along the centre line. As a result, the velocity

928 A4-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

79
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.792


Y.F. Yang, G.X. Wu and K. Ren

potential can be written explicitly in terms of basic and special functions, involving
integrals and unknown coefficients which can be obtained from the impermeable condition
on the body surface. For the two-dimensional free surface case, the problem of current
passing a submerged cylinder has been considered extensively. Lamb (1932) used an
approximation where the linearized free surface boundary condition is satisfied exactly
but the body surface boundary conditions only approximately. Havelock (1936) solved the
linear problem exactly in the sense the infinite series can be truncated at a sufficiently
large number to achieve the desired accuracy. Tuck (1965) considered the second-order
effects, while Haussling & Coleman (1979), Scullen & Tuck (1995) and Semenov & Wu
(2020) further solved the fully nonlinear problem. However, with the ice sheet, this will
be a fully three-dimensional problem and the flow is much more complex. In particular,
there will be an infinite number of critical speeds and multiwave components at both sides
of the channel. Based on the dispersion relationship, extensive analyses are made for the
physical behaviours of the deflection of the ice cover and the hydrodynamic forces on the
cylinder. Compared with the two-dimensional case, it is found that the confined channel
walls and the constraints at the ice edge have a significant influence on the hydrodynamic
features.

The paper is arranged as follows. The governing equation and boundary conditions for a
submerged horizontal circular cylinder in an ice-covered channel in current is presented in
§ 2. The Green function or potential due to a single source is derived in § 3.1. The multipole
expansion is constructed in § 3.2. The formulae of hydrodynamic forces on the cylinder
and ice deflection are obtained in sections §§ 3.3 and 3.4, respectively. The numerical
procedure is briefly introduced in § 3.5. The numerical results are shown in § 4, followed by
the conclusions in § 5. The expression of some essential coefficients is given in Appendix
A. The symmetry property of the Green function is proved in Appendix B, while the
far-field formula of the resistance is derived in Appendix C.

2. Governing equation and boundary conditions

We consider the problem of a horizontal circular cylinder submerged in an infinitely
long rectangular channel covered by an ice sheet. A sketch of the problem is shown in
figure 1. The channel has half-width b and calm water depth H. The density and thickness
of the homogeneous ice sheet are assumed to be constant and represented by ρi and hi,
respectively, and the density of the water is ρ. A Cartesian coordinate system O-xyz is
defined with the origin located on the central line of the water surface, the x-axis along
the longitudinal direction of the channel and the z-axis pointing upwards. The centre line
of the cylinder is located at x = x0 and z = z0 and its radius is equal to r0.

It is assumed that the fluid is ideal, incompressible, its motion is irrotational and the
linearized velocity potential theory is employed. As discussed in the introduction, due to
the ice sheet and its edge conditions, the problem will be three-dimensional. The total
velocity potential is written as

Φ = −Ux + φ, (2.1)

where U denotes the speed of the uniform current from x = +∞, φ(x, y, z, t) is the
disturbed velocity potential by the cylinder, which satisfies the Laplace equation in the
entire fluid domain,

∇2φ = ∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 , −∞ < x < +∞, −b ≤ y ≤ b, −H ≤ z ≤ 0. (2.2)
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Figure 1. Sketch of the problem: (a) three-dimensional view; (b) a cross-section view of the channel in the
negative x-direction.

The deflection of the ice plate η(x, y, t) should satisfy the Euler–Bernoulli equation on
z = 0,

ρihiηtt + L∇4η = p, z = 0, (2.3)

where L = Eh3
i /[12(1 − ν2)] denotes the flexural rigidity of the ice sheet, E and ν

represent its Young’s modulus and Poisson ratio, respectively. The fluid pressure p on
the right-hand side of (2.3) is the excessive fluid pressure and does not include the weight
of ice. It can be calculated through the linearized Bernoulli equation

p = −ρ
(
∂φ

∂t
− U

∂φ

∂x
+ gη

)
, z = 0, (2.4)

where g is the acceleration due to gravity. The kinematic boundary condition can be
written as (

∂

∂t
− U

∂

∂x

)
η = ∂φ

∂z
, z = 0. (2.5)

For steady flow, ∂/∂t = 0. We have(
L∇4 + ρg

)
η = ρU

∂φ

∂x
, z = 0, (2.6)

−U
∂η

∂x
= ∂φ

∂z
, z = 0, (2.7)

in which (2.6) is obtained by substituting (2.4) into (2.3). The impermeable condition on
the cylinder surface SB can be written as

∂φ

∂n
= Unx, on SB, (2.8)

where n = (nx, 0, nz) is the unit normal vector of SB, which is pointing out of the fluid
domain. Similarly, the impermeable boundary conditions on the rigid sidewalls and bottom
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of the channel can be expressed as

∂φ

∂y
= 0, y = ±b, (2.9)

∂φ

∂z
= 0, z = −H. (2.10)

Different from free surface problems, there are also edge conditions at intersection lines
of the ice sheet with the two sidewalls, or y = ±b, z = 0, which can be written as
(Timoshenko & Woinowsky-Krieger 1959)

η = 0,
∂η

∂y
= 0, clamped edge,

η = 0,
∂2η

∂y2 + ν
∂2η

∂x2 = 0, simply supported edge,

∂2η

∂y2 + ν
∂2η

∂x2 = 0,
∂3η

∂y3 + (2 − ν)
∂3η

∂x2∂y
= 0, free edge,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (2.11)

The radiation condition at far-field x → ±∞ can be written as
∂φ

∂x
= U±(x, y, z), x → ±∞, (2.12)

where U±(x, y, z) represents waves generated by the cylinder. The waves can have multiple
components and the group velocities of the waves at x → +∞ and x → −∞ are larger
and smaller than U, respectively. This will be discussed in detail later.

3. Solution procedures

3.1. The Green function: velocity potential due to a single source
The Green function G(x, y, z, x0, y0, z0) is the velocity potential at point P(x, y, z) due to
a source at P0(x0, y0, z0), which satisfies the following equation:

∇2G = δ(x − x0)δ( y − y0)δ(z − z0), (3.1)

where δ(x) is the Dirac delta function. Here ξ(x, y, x0, y0, z0) is defined as the
wave elevation at point (x, y) induced by the source at P0(x0, y0, z0). Furthermore,
G(x, y, z, x0, y0, z0) and ξ(x, y, x0, y0, z0) also need to satisfy the boundary conditions
(2.6), (2.7) and (2.9)–(2.12).

Performing the Fourier transform for G and ξ in the x-direction

Ĝ =
∫ +∞

−∞
G e−ikx dx

ξ̂ =
∫ +∞

−∞
ξ e−ikx dx

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (3.2)

and applying (3.2) to (3.1), we have

− k2Ĝ + ∂2Ĝ
∂y2 + ∂2Ĝ

∂z2 = δ( y − y0)δ(z − z0) e−ikx0 . (3.3)

Based on the impermeable condition in (2.9), Ĝ can be further expanded into an orthogonal
series of cosine functions in the y-direction. Using the condition in (2.10), the solution of
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(3.3) can be written in the following form:

Ĝ =
+∞∑
n=0

Zn(k, z, x0, y0, z0) cos σn( y + b), (3.4)

where

Zn(k, z, x0, y0, z0)

= − [exp(−Kn|z − z0|)+ exp(−Kn(z + z0 + 2H))] e−ikx0 cos σn( y0 + b)
2(1 + δn0)bKn

+ bn
e−ikx0 cosh Kn(z + H)

cosh KnH
, (3.5)

σn = nπ/2b, Kn = √
k2 + σ 2

n and where δij denotes the Kronecker delta function. The
terms of bn in (3.5) correspond to the general solution of (3.3) when the right-hand side is
zero. Here bn are to be determined by the conditions on the ice sheet. Applying the Fourier
transform to (2.6) and (2.7), we have

(ρg + Lk4)ξ̂ − 2Lk2 ∂
2ξ̂

∂y2 + L
∂4ξ̂

∂y4 = ikρUĜ, (3.6)

−ikUξ̂ = ∂Ĝ
∂z
. (3.7)

We choose to follow the approach taken by Ren et al. (2020), which involves expanding
∂4ξ̂/∂y4 rather than ξ̂ into a cosine series, thus

∂4ξ̂

∂y4 = e−ikx0

+∞∑
n=0

an cos σn( y + b). (3.8)

Then, through integration four times, ξ̂ can be obtained as

ξ̂ = e−ikx0

[
c0 + c1y + c2y2 + c3y3 + a0

24
y4 +

+∞∑
n=1

an

σ 4
n

cos σn( y + b)

]
, (3.9)

where an (n = 0, 1, 2 · · · ) are unknown coefficients and are functions of k, ci (i = 0 ∼
3) are four constants which can be linked to an through edge conditions. It should be
mentioned here that c0, c2 and a2n correspond to symmetric components, while c1, c3 and
a2n+1 correspond to antisymmetric components. Substituting (3.4), (3.5) and (3.9) into
(3.6) and (3.7), we have

(ρg + Lk4)

[
c0 + c1y + c2y2 + c3y3 + a0

24
y4 +

+∞∑
n=1

an

σ 4
n

cos σn( y + b)

]

− 2k2L

[
2c2 + 6c3y + a0

2
y2 −

+∞∑
n=1

an

σ 2
n

cos σn( y + b)

]
+ L

+∞∑
n=0

an cos σn( y + b)

= ikρU
+∞∑
n=0

[
−e−KnH cosh Kn(z0 + H)

(1 + δn0)bKn
cos σn( y0 + b)+ bn

]
cos σn( y + b), (3.10)
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− ikU

[
c0 + c1y + c2y2 + c3y3 + a0

24
y4 +

+∞∑
n=1

an

σ 4
n

cos σn( y + b)

]

=
+∞∑
n=0

[
e−KnH cosh Kn(z0 + H)

(1 + δn0)b
cos σn( y0 + b)+ bnKn tanh KnH

]
cos σn( y + b).

(3.11)

The term y j (j = 0 ∼ 4) can be further expanded into the orthogonal series of cosine
functions as

y j =
+∞∑
n=0

d(j)n cos σn( y + b). (3.12)

Then, (3.10) and (3.11) can be written as

(ρg + Lk4)

[
c0d(0)n + c1d(1)n + c2d(2)n + c3d(3)n + a0

24
d(4)n + (1 − δn0)an

σ 4
n

]
− 2k2L

[
2c2d(0)n + 6c3d(1)n + a0

2
d(2)n − (1 − δn0)an

σ 2
n

]
+ Lan

= ikρU
[
−e−KnH cosh Kn(z0 + H)

(1 + δn0)bKn
cos σn( y0 + b)+ bn

]
, n = 0, 1, 2 · · · (3.13)

− ikU
[

c0d(0)n + c1d(1)n + c2d(2)n + c3d(3)n + a0

24
d(4)n + (1 − δn0)an

σ 4
n

]
=

[
e−KnH cosh Kn(z0 + H)

(1 + δn0)b
cos σn( y0 + b)+ bnKn tanh KnH

]
, n = 0, 1, 2 · · · .

(3.14)

From (3.13) and (3.14), an and bn can be expressed as

an = αn,0c0 + αn,1c1 + αn,2c2 + αn,3c3 + iRn, n = 0, 1, 2 · · · (3.15)

bn = 1
Kn tanh KnH

(
iβn,0c0 + iβn,1c1 + iβn,2c2 + iβn,3c3 + Sn

)
, n = 0, 1, 2 · · ·

(3.16)

where

αn,j = 1
Δn

⎧⎨⎩ d(j)n

[
(ρg + Lk4)Kn tanh KnH − ρk2U2

]
− 4δ2jk2Ld(0)n Kn tanh KnH − 12δ3jk2Ld(1)n Kn tanh KnH

⎫⎬⎭
+ (1 − δn0)γnα0,j, (3.17a)

βn,j = −Uk

[
d(j)n + d(4)n

24
α0,j + (1 − δn0)

σ 4
n

αn,j

]
, j = 0 ∼ 3 (3.17b)
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and

Rn = ρUk cosh Kn(z0 + H) cos σn( y0 + b)
(1 + δn0)bΔn cosh KnH

+ (1 − δn0)γnR0, (3.18a)

Sn = kU

(
d(4)n

24
R0 + 1 − δn0

σ 4
n

Rn

)
− e−KnH cosh Kn(z0 + H) cos σn( y0 + b)

(1 + δn0)b
, (3.18b)

with

Δn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δn0

[
−
(
ρg + Lk4

24
d(4)n − k2Ld(2)n + L

)
Kn tanh KnH + ρk2U2d(4)n

24

]

+ (1 − δn0)

[
−
(
ρg + Lk4

σ 4
n

+ 2k2L
σ 2

n
+ L

)
Kn tanh KnH + ρk2U2

σ 4
n

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

(3.19a)

γn = 1
Δn

[(
ρg + Lk4

24
d(4)n − k2Ld(2)n

)
Kn tanh KnH − ρk2U2d(4)n

24

]
. (3.19b)

If we consider the symmetric or antisymmetric nature of y j (j = 0 ∼ 3), we will have
d(2j+1)

2n = d(2j)
2n+1 = 0 (j = 0, 1). This leads to γ2n+1 = 0 and α2n+1,2j = α2n,2j+1 = 0 (j =

0, 1, n ≥ 0). As a result, an can be further expressed as

a2n = α2n,0c0 + α2n,2c2 + iR2n

a2n+1 = α2n+1,1c1 + α2n+1,3c3 + iR2n+1

}
. (3.20)

It can be seen from (3.20) that a2n depend on two unknown coefficients c0 and c2, while
a2n+1 depend on c1 and c3; bn can be also treated in a similar way. The four unknown
coefficients ci (i = 0 ∼ 3) can be determined from the four edge conditions, including
those in (2.11). As a result, a system of linear equations of the following form can be
established:

[A][C] = [B], (3.21)

where [A] is a 4 × 4 coefficient matrix, [C] is a column containing ci, and [B] is a
known column. For a specific case, this 4 × 4 matrix equation may be further simplified.
If the edge conditions at y = ±b are same, (3.21) may be split into two independent
2 × 2 submatrix equations, one for c0 and c2, and the other for c1 and c3. As a result,
the symmetric and antisymmetric transverse waves in (3.9) become independent to each
other. In general, ci (i = 0 ∼ 3) are fully coupled to each other, which leads a2n and a2n+1
in (3.20) to become coupled. The solution of ci can be written as

ci = −i
+∞∑
m=0

ρUk cosh Km(z0 + H) cos σm( y0 + b)
(1 + δm0)b|A|Δm cosh KmH

c′
m,i, i = 0 ∼ 3, (3.22)

where |A| is the determinant of [A]. The elements of [A] and [B], as well as coefficient
c′

m,i are related to edge conditions, an example of these under clamped–clamped edges are
given in Appendix A.
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Y.F. Yang, G.X. Wu and K. Ren

Once ci (i = 0 ∼ 3), an and bn (n = 0, 1, 2 · · · ) are obtained, then G and ξ can be
obtained through the inverse Fourier transform. Using (Linton & McIver 2001)∫ +∞

−∞
δn0 exp(−KnH)− exp(−Kn|z − z0| + ik(x − x0))

2Kn
dk

= δn0 ln
( r

H

)
− (1 − δn0)K0(σnr), (3.23a)∫ +∞

−∞
δn0 exp(−KnH)− exp(−Kn(z + z0 + 2H)+ ik(x − x0))

2Kn
dk

= δn0 ln
(

r′

H

)
− (1 − δn0)K0(σnr′), (3.23b)

where r =
√
(x − x0)2 + (z − z0)2 and r′ =

√
(x − x0)2 + (z + z0 + 2H)2, Kn denotes

the nth-order modified Bessel function of second kind. We have the Green function

G(x, y, z, x0, y0, z0) =
+∞∑
n=0

Zn(x, z, x0, y0, z0) cos σn( y + b), (3.24)

Zn(x, z, x0, y0, z0) = Zn,1 + Zn,2, (3.25)

and

Zn,1 = 1
4πb

{
δn0

[
ln
( r

H

)
+ ln

(
r′

H

)]
− 2(1 − δn0)

[
K0(σnr)+ K0(σnr′)

]}
× cos σn( y0 + b), (3.26a)

Zn,2 = ρU
2πb

∫
L

+∞∑
m=0

{
kμn,m cosh Km(z0 + H) cos σm( y0 + b)
× [

cosh Kn(z + H) exp(ik(x − x0))− δn0
]}

(1 + δm0)|A|ΔmKn sinh KnH cosh KmH
dk, (3.26b)

where

μn,m =
3∑

j=0

βn,jc′
m,j + δm0|A|Uk

(
d(4)n

24
+ (1 − δn0)γn

σ 4
n

)

+ δnm|A|
[

Uk(1 − δn0)

σ 4
n

− Δn(1 + e−2KnH)

2ρUk

]
. (3.27)

It should be mentioned that a constant term is, respectively, added to Zn,1 and Zn,2
in (3.26) to remove the high-order singularity at k = 0, which will not affect the results
as all the equations for G involve only its spatial derivatives. The term Zn,1 is obtained
based on the derivation in Li, Wu & Ren (2021). There will be singularities in Zn,2 when
|A|(k) = 0. Because |A|(k) is an even function, all its real roots can be represented by
±ks (s = 1 · · · S), with ks > 0. In the case of Ren et al. (2020) for wave propagation
in the channel, each ks corresponds to the dispersion relationship between the wave
frequency and wavenumber. Here, mathematically, each ks corresponds to a singularity
in the integrand of the inverse Fourier transform. Physically, it corresponds to each wave
generated by the source in the channel. The number of singularities can be more than
one, and the value of S depends on the current speed U when other parameters are fixed,

928 A4-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

79
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.792


Current–cylinder interaction in an ice-covered channel

which will be discussed in detail later. The way to treat each singularity will depend on
the group velocity of its corresponding wave. The wave will be at upstream (x = +∞)

or downstream (x = −∞) if its group velocity is larger or smaller than U, respectively.
Based on this, the integration route L in Zn,2 from −∞ to +∞ can be defined as follows.
We may consider the integration of f (k) eikx/(k − ks) along the path L . This can be split
into the principle integration and a contribution from the pole. If the group velocity of the
wave component ks is larger (smaller) than U, L passes over (under) the singularities at
±ks. Thus, the contribution from the pole at k = ks will be −iπf (ks) eiksx or +iπf (ks) eiksx.
If we use (Wehausen & Laitone 1960)

lim
|x|→+∞

P.V.
∫ +∞

−∞
f (k)

k − ks
eikx dk = sgn(x)iπf (ks) eiksx, (3.28)

in the integral in Zn,2, we can find that the radiation condition (2.12) is satisfied.
It may be of interest to see that the Green function is symmetric about the source and

field points, or G(x, y, z, x0, y0, z0) = G(x0, y0, z0, x, y, z), which is shown in Appendix B.

3.2. Multipole expansion for the horizontal circular cylinder
The Green function derived above can be used to convert the governing equation to
an integral equation over the surface of a body with arbitrary shape. For some special
geometries, such as a sphere, the solution may be found through expansion in terms
of the multipole obtained through differentiating the Green function with respect to the
position of the source (see, for example, Wu (1998b)). For a horizontal circular cylinder,
the potential can be expanded into the cosine series as used for G. The governing Laplace
equation in (x, y, z) then becomes the modified Helmholtz equation in (x, z) for a circular
section. Subsequently, the solution of the modified Helmholtz equation can be obtained
from a two-dimensional multipole expansion. To construct that, we may apply a source
distribution ς( y0) along the centre line of the cylinder. This is then expanded into the
cosine series, or ς( y0) = ∑+∞

n=0 Vn cos σn( y0 + b). It will create the following potential:

ϕ =
+∞∑
n=0

Vn

∫ b

−b
G cos σn( y0 + b) dy0, (3.29)

where G is the Green function derived in the previous section. Substituting (3.24) into
(3.29), we obtain

ϕ =
+∞∑
n=0

ϕn cos σn ( y + b), (3.30)

where

ϕn = ϕn,1 + ϕn,2, (3.31)

with

ϕn,1 = Vn

2π

{
δn0

[
ln
( r

H

)
+ ln

(
r′

H

)]
− (1 − δn0)

[
K0(σnr)+ K0(σnr′)

]}
, (3.32a)
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Y.F. Yang, G.X. Wu and K. Ren

ϕn,2 = ρU
2π

×
∫

L

+∞∑
n′=0

Vn′μn,n′k cosh Kn′(z0 + H)
[
cosh Kn(z + H) exp(ik(x − x0))− δn0

]
|A|Δn′Kn sinh KnH cosh Kn′H

dk.

(3.32b)

We may use the operator

(D±)m = − 1
2m−1 (m − 1)!

(
∂

∂z0
± i

∂

∂x0

)m

. (3.33)

This gives (Linton & McIver 2001)

(D±)m ln r = e±imθ

rm , (3.34a)

(D±)m K0 (σnr) = (−1)m σm
n

2m−1 (m − 1)!
e±imθKm (σnr) , (3.34b)

where z − z0 = r cos θ and x − x0 = r sin θ . As mentioned in Li, Wu & Shi (2019),
because ϕ is a real function, we may apply only the operator (D+)m. Using

(D+)m exp(±Knz0 ± ikx0) = − (±1)m(Kn − k)m

2m−1(m − 1)!
exp(±Knz0 ± ikx0), (3.35a)

(D+)m exp(±Knz0 ∓ ikx0) = − (±1)m(Kn + k)m

2m−1(m − 1)!
exp(±Knz0 ∓ ikx0), (3.35b)

as well as (3.34), the velocity potential of the multipole can be expressed as

(ϕ+)m = (D+)m ϕ =
+∞∑
n=0

(ϕ+)mn cos σn( y + b), (3.36)

(ϕ+)mn = (ϕ+)mn,1 + (ϕ+)mn,2 + (ϕ+)mn,3 , (3.37)

where (ϕ+)mn,1 + (ϕ+)mn,2 = (D+)mϕn,1, (ϕ+)mn,3 = (D+)mϕn,2 and can be obtained as

(ϕ+)mn,1 = Vn

2π

[
δn0

eimθ

rm − (1 − δn0)
(−1)mσm

n

2m−1(m − 1)!
eimθKm(σnr)

]
, (3.38a)

(ϕ+)mn,2 = (−1)mVn

2m+1(m − 1)!π

∫ +∞

−∞
(Kn − k)m exp(−Kn(z + z0 + 2H)+ ik(x − x0))

Kn
dk,

(3.38b)

(ϕ+)mn,3 = −ρU
2m+1(m − 1)!π

×
∫

L

+∞∑
n′=0

Vn′μn,n′k cosh Kn(z + H)En′,m(k, z0) exp(ik(x − x0))

|A|Δn′Kn sinh KnH cosh Kn′H
dk, (3.38c)

with

En′,m(k, z0) = (Kn′ + k)m exp(Kn′(z0 + H))+ (−1)m(Kn′ − k)m exp(−Kn′(z0 + H)).

(3.39)
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Current–cylinder interaction in an ice-covered channel

The potential φ due to the cylinder then can be written in a multipole expansion form as

φ = Re

{+∞∑
m=1

rm
0 gm(ϕ+)m

}
. (3.40)

It then satisfies all the boundary conditions met by the Green function and the only
remaining one is that on the cylinder surface. To satisfy the body surface boundary
condition, we may write the potential in the polar coordinate system. Using (Abramowitz
& Stegun 1970)

exp(Kn(z − z0)± ik(x − x0)) =
+∞∑
m=0

Tn,m(r)
[
A±

n,m(k) eimθ + A∓
n,m(k) e−imθ

]

exp(−Kn(z − z0)± ik(x − x0)) =
+∞∑
m=0

(−1)mTn,m(r)
[
A∓

n,m(k) eimθ + A±
n,m(k) e−imθ

]
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(3.41)
where

A+
n,m(k) = δn0km + (1 − δn0)

(
Kn + k
σn

)m

A−
n,m(k) = (1 − δn0) (1 − δm0)

(
σn

Kn + k

)m

Tn,m(r) = δn0
rm

m!
+ (1 − δn0)Im (σnr)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (3.42)

and Im denotes the mth-order modified Bessel function of first kind, we have

φ = Re

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
+∞∑
n=0

+∞∑
m=0

⎡⎢⎢⎢⎢⎢⎣
Qn,mfn,m eimθ + Tn,m

+∞∑
m′=1

fn,m′
(
C+

n,m,m′eimθ + C−
n,m,m′e−imθ

)

+ Tn,m

+∞∑
n′=0

+∞∑
m′=1

fn′,m′
(
D+

n,n′,m,m′eimθ + D−
n,n′,m,m′e−imθ

)
⎤⎥⎥⎥⎥⎥⎦

× cos σn( y + b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

(3.43)
where

Qn,m(r) = (1 − δm0)

2π

[
δn0

(r0

r

)m − (1 − δn0)(−σnr0)
m

2m−1(m − 1)!
Km(σnr)

]
, (3.44a)

C±
n,m,m′ = (−1)m+m′

rm′
0

2m′+1(m′ − 1)!π

∫ +∞

−∞

(Kn − k)m
′
exp(−2Kn(z0 + H))A∓

n,m

Kn
dk, (3.44b)

D±
n,n′,m,m′ = −ρUrm′

0

2m′+2(m′ − 1)!π

×
∫

L

μn,n′k
[
exp(Kn(z0 + H))A±

n,m + (−1)m exp(−Kn(z0 + H))A∓
n,m

]
En′,m′

Δn′ |A|Kn sinh KnH cosh Kn′H
dk.

(3.44c)
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It should be mentioned here that a new unknown coefficient fn,m is defined as fn,m = Vngm.
The impermeable condition on the body surface in (2.8) gives

Q′
n,m(r0)fn,m + T ′

n,m(r0)

+∞∑
m′=1

(
fn,m′C+

n,m,m′+f̄ n,m′ C̄−
n,m,m′

)

+ T ′
n,m(r0)

+∞∑
n′=0

+∞∑
m′=1

(
fn′,m′D+

n,n′,n,m′+f̄ n′,m′D̄−
n,n′,m,m′

)
= −iδn0δm1U, (3.45)

where n = 0, 1, 2 · · · and m = 1, 2, 3 · · · Q′
n,m (T ′

n,m) represents the derivative of Qn,m
(Tn,m) with respect to r, which can be obtained as

Q′
n,m(r) = (1 − δm0)

2π

[
−δn0m

rm
0

rm+1 + (1 − δn0)(−σnr0)
m+1

2m−1(m − 1)!r0
K ′

m(σnr)
]

T ′
n,m(r) = δn0

rm−1

(m − 1)!
+ (1 − δn0)σnI

′
m(σnr)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.46)

After (3.45) is solved, φ can then be obtained.

3.3. Hydrodynamic forces
Once the potential is found, the lift FL and resistance FR on the cylinder can be calculated
through the integration of hydrodynamic pressure over the body surface. Thus, we have

− iFR + FL = −
∫∫

SB

p eiθ dS. (3.47)

The pressure p can be obtained by the Bernoulli equation

p = −1
2ρ∇(φ − Ux) · ∇(φ − Ux). (3.48)

We may notice that the product term is kept here, as it may be small on the ice sheet
but may not be on the body surface. When determining the gradient term in (3.48) in the
cylindrical coordinate system, we may substitute (3.45) into (3.43) and have

∂(φ − Ux)
∂r

∣∣∣∣
r=r0

= 0

∂(φ − Ux)
∂θ

∣∣∣∣
r=r0

= Re

{+∞∑
n=0

+∞∑
m=0

imψn,m eimθ cos σn( y + b)

}

∂(φ − Ux)
∂y

∣∣∣∣
r=r0

= −Re

{+∞∑
n=0

+∞∑
m=0

σnψn,m eimθ sin σn( y + b)

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.49)

where

ψn,m = fn,m

[
Qn,m(r0)− Q′

n,m(r0)
Tn,m(r0)

T ′
n,m(r0)

]
. (3.50)
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Substituting (3.48) and (3.49) into (3.47), we obtain

− iFR + FL = πρb
2r0

+∞∑
n=0

+∞∑
m=0

[
(1 + δn0)m(m + 1)+ (1 − δn0)σ

2
n r2

0

]
ψn,mψ̄n,m+1.

(3.51)
Similar to that in Wu (1995), the resistance can be also obtained by a far-field integral,
which is shown in Appendix C.

3.4. Deflection of the ice sheet
We may use (2.7) to obtain the expression of η, and this gives

η(x, y) = − 1
U

∫
∂φ

∂z
dx + C( y). (3.52)

Substituting (3.36)–(3.40) into (3.52), we have

η = Im

{+∞∑
m=1

+∞∑
n=0

rm
0 ηn,m cos σn( y + b)

}
+ C( y), (3.53)

ηn,m = η(1)n,m + η(2)n,m + η(3)n,m, (3.54)

where

η(1)n,m = fn,m
2m+1(m − 1)!πU

∫ +∞

−∞
(Kn + k)m exp(Knz0 + ik(x − x0))

k
dk, (3.55a)

η(1)n,m = (−1)mfn,m
2m+1(m − 1)!πU

∫ +∞

−∞
(Kn − k)m exp(−Kn(z0 + 2H)+ ik(x − x0))

k
dk,

(3.55b)

η(3)n,m = ρ

2m+1(m − 1)!π

∫
L

+∞∑
n′=0

fn′,mμn,n′En′,m(k, z0) exp(ik(x − x0))

Δn′ |A| cosh Kn′H
dk (3.55c)

and where C( y) in (3.52) is the integration constant. As C( y) is not function of x, we
may determine it at x → +∞. Based on (3.36)–(3.40) and (3.53)–(3.55), the asymptotic
expressions of φ and η at x → +∞ can be written as

φ = Re

⎧⎨⎩
S∑

j=1

φ(j)( y, z) exp(−ikjx)

⎫⎬⎭ + sgn(x)φ(0)( y, z), (3.56)

η = 1
U

Re

⎧⎨⎩
S∑

j=1

1
ikj

∂φ(j)( y, 0)
∂z

exp(−ikjx)

⎫⎬⎭ + C( y), (3.57)

where φ(0) is due to the singularity of the integrand at k = 0 and is related to the ‘blockage
parameter’ (Mei & Chen 1976). It should be noted that the summation in (3.56) and (3.57)
should include only those terms with group velocity larger than U. It can be shown that
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∂φ(0)/∂z = 0 on z = 0 and therefore it does not contribute to η. We may combine (2.6)
and (2.7) to eliminate η, and then use (3.56) in the result. We have[

L
(

k4
j − 2k2

j
∂2

∂y2 + ∂4

∂y4

)
+ ρg

]
∂φ(j)

∂z
− ρU2k2

j φ
(j) = 0,

z = 0, x → +∞, j = 1 ∼ S. (3.58)

Substituting (3.56) and (3.57) into (2.6), and using (3.58), we obtain

L
d4C

dy4 + ρgC = 0. (3.59)

The boundary conditions of C can be established by substituting (3.57) into (2.11) which
is satisfied by the first term on the right-hand side of (3.57). This gives, at y = ±b,

C = 0, Cy = 0, clamped edge

C = 0, Cyy = 0, simply supported edge

Cyy = 0, Cyyy = 0, free edge

⎫⎪⎬⎪⎭ . (3.60)

It can be found that C( y) = 0 under any of these edge conditions.

3.5. Numerical procedure
Although the expression for the potential has been written explicitly, some of the
computations still have to be performed numerically. Taking into account that the integrand
decays exponentially, the integration for k from −∞ to +∞ is truncated at a sufficiently
large value KT and treated as

P.V.
∫ +∞

−∞
F(k) dk = P.V.

∫ +∞

0
[F(k)+ F(−k)] dk ≈ P.V.

∫ KT

0
[F(k)+ F(−k)] dk,

(3.61)

where P.V. indicates the Cauchy principal value. The range (0,KT) is divided into many
small steps and the Gaussian method is used in each step for integration. To deal with
multiple singularities in the integrand, the following numerical procedures are applied.
Assume that F(k) contains n first-order singularities in k ∈ (0,+∞). We may write

F(k) = G(k)∏n
i=1(k − ki)

= G(k)
n∑

i=1

1∏n
j=1(j /= i)(ki − kj)

× 1
k − ki

, (3.62)

its Cauchy principal value can be calculated through

P.V.
∫ +∞

0
F(k) dk =

n∑
i=1

1∏n
j=1(j /= i)(ki − kj)

×
[∫ 2ki

0

G(k)− G(ki)

k − ki
dk +

∫ +∞

2ki

G(k)
k − ki

dk

]
, (3.63)
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Current–cylinder interaction in an ice-covered channel

where G(k) can be calculated by

G(k) = F(k)
n∏

i=1

(k − ki), k /= ki

G(ki) =
n∏

j=1(j /= i)

(ki − kj) lim
k→ki

(k − ki)F(k), i = 1 ∼ n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (3.64)

By doing that, all the singularity effects are eliminated. Although the original one integral
is split into n integrals, it is still more computationally efficient, as the integration step Δk
can be appropriately chosen for each integral. For a single integral of F(k), Δk has to be
very small, especially when some of the singularities are very close to each other.

When determining the residue at the singularities caused by |A|(ks) = 0, the value of
|A|′(ks) needs to be calculated numerically. Here we adopt the method proposed by Li
et al. (2021). Assuming f (k)/(k − ks) = g(k)/|A|(k) = P(k), we have

f (ks) = g(ks)

|A|′(ks)
= lim

k→ks
(k − ks)P(k) ≈ P(ks + Δk)− P(ks − Δk)

2
Δk. (3.65)

4. Numerical results

The typical values of the physical parameters of the ice sheet and the channel are chosen
as

ρi = 917 kg m−3, hi = 0.15 m, E = 4.2 × 109 N m−2, ν = 0.3

ρ = 1000 kg m−3, g = 9.81 m s−2, H = 10, b = 20, r0 = 1 m

}
. (4.1)

The calculations undertaken below are based on these parameters unless otherwise
specified. All the numerical results are presented in the dimensionless form, based on a
characteristic length, the fluid density ρ and acceleration g due to gravity. The depth-based
Froude number is defined as Fn = U/

√
gH.

4.1. Analysis of the dispersion relationship of an ice-covered channel
As discussed after (3.24), there are singularities in the integrand when |A|(k,U) =
|A|(k̂,Fn) = 0 (where k̂ = kH), which are equivalent to the dispersion relationship
and correspond to the waves at infinity. Compared with the two-dimensional case of a
homogeneous ice plate with infinite extent (Li et al. 2019), the dispersion relationship
here is more complicated. The root Fn of the equation at each given k̂ is not unique.
In fact, there is an infinite number of solutions of Fn at a given k̂, we denote these
solutions as Fn(i) (i = 1, 2, 3 · · · ), with Fn(1) < Fn(2) < Fn(3) < · · · . Similar to that in
Khabakhpasheva et al. (2019), the curves Fn(i) against k̂ are shown in figure 2. It can be
seen that for each curve there is a minimum value at k̂ = k̂

(i)
c , which can be called ith-order

critical Froude number and be denoted by Fn(i)c . The value of each Fn(i)c can be found in
figure 2. When Fn < Fn(1)c , there will be no solution in |A|(k̂,Fn) = 0, or there will be
no waves propagating to x = ±∞. When Fn(1)c < Fn < Fn(2)c , there will be two solutions
in |A|(k̂,Fn) = 0. The ones corresponding to k̂ < k̂

(1)
c and k̂ > k̂

(1)
c will lead to waves at

x = −∞ and x = +∞, respectively, because their group velocities are smaller and larger
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k̂c
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10 12

Figure 2. Purely positive solution of |A|(k̂,Fn) = 0 for the clamped–clamped edge condition.

than U, respectively, as in Li et al. (2019). In fact, the non-dimensionalized group velocity
c(s)g can be obtained as

c(s)g = Fn(k̂s)+ k̂s
d

dk̂
Fn(k̂s), (4.2)

where (k̂s,Fn(k̂s)) is an intersection point of Fn with curve k̂ − Fn(i). It can be observed
from figure 2 and (4.2) that when k̂s < k̂

(i)
c (k̂s > k̂

(i)
c ), the slope dFn(k̂s)/dk̂ < 0

(dFn(k̂s)/dk̂ > 0), and the group velocity c(s)g < Fn(k̂s) (c
(s)
g > Fn(k̂s)) and wave will be

at x = −∞ (x = +∞).
As Fn increases, it will reach the second critical point Fn(2)c . Beyond that, there will

be two more solutions in |A|(k̂,Fn) = 0. This leads to two more waves and one each at
x = −∞ and x = +∞. In general, when Fn(i)c < Fn < Fn(i+1)

c , there will be 2i roots in
|A|(k̂,Fn) = 0, and i waves at x = −∞ and x = +∞, respectively. However, the curve
Fn(1)c is different from the others. When k̂ → 0, we can see that limk̂→0 Fn(1) = Fn0 while
limk̂→0 Fn(i) = +∞ (i ≥ 2). Therefore, when Fn > Fn0, corresponding to curve Fn(1),
there will be only one solution in |A|(k̂,Fn) = 0, and there will be 2i − 1 solutions when
Fn(i)c < Fn < Fn(i+1)

c .
As mentioned in § 3.1, the symmetric and antisymmetric transverse waves are

completely independent in the cases of symmetric edges. If we further write |A| as in
(A10), it can be found that all the intersection points on curve Fn(2i−1) (i ≥ 1) in figure 2
are solutions of |AS|(k̂,Fn) = 0 and correspond to a symmetric mode, while those on
curve Fn(2i) are solutions of |AA|(k̂,Fn) = 0 and correspond to an antisymmetric mode.

In the two-dimensional case, there is only one critical Fnc, below which there will be no
wave, and above which will be two waves at x = −∞ and x = +∞, respectively. When
Fn > 1, the wave at the downstream region will disappear but the one at the upstream
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Current–cylinder interaction in an ice-covered channel

region will remain. Here, when there is an infinite number of critical Froude numbers,
Fn(1)c is similar to Fnc in the two-dimensional case, below which there will be no wave.
As Fn increases and passes through each Fn(i) (i = 1, 2, 3 · · · ) each pair of waves will
be created, with one at the downstream and the other at the upstream regions. Here, Fn0
here corresponds to Fn = 1 in the two-dimensional case. When Fn > Fn0, the wave at x =
−∞ due to Fn(1) will disappear, which is similar to the two-dimensional case. However,
different from the two-dimensional case, there will be still waves at the downstream region.

The feature of wave in infinite water depth, or H → +∞, is also investigated, other
parameters in (4.1) are kept the same. For the two-dimensional case, the critical value
Fn = 1 will disappear if H → +∞. There will always be two waves, with one each
at the downstream and upstream regions, respectively, when the current speed is larger
than the critical value. Here, using limH→+∞ tanh KnH = 1, αn,j in (3.17a) can be further
expressed as

αn,j = 1
Δ∞

n

{
d(j)n [(ρg + Lk4)Kn − ρk2U2]

− 4k2Ld(0)n Knδ2j − 12k2Ld(1)n Knδ3j

}
+ (1 − δn0)γ

∞
n α0j, (4.3)

where

Δ∞
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δn0

[
−
(
ρg + Lk4

24
d(4)n − k2Ld(2)n + L

)
Kn + ρk2U2

24
d(4)n

]
+ (1 − δn0)

[
−
(
ρg + Lk4

σ 4
n

+ 2k2L
σ 2

n
+ L

)
Kn + ρk2U2

σ 4
n

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (4.4a)

γ∞
n = 1

Δ∞
n

[(
ρg + Lk4

24
d(4)n − k2Ld(2)n

)
Kn − ρk2U2

24
d(4)n

]
. (4.4b)

If the half-width b is chosen as the characteristic length, two new parameters can be defined
as F̃n = U/

√
gb and k̃ = kb. Substituting (4.3) into (A2), the solution of |A|(k,U) =

|A|(k̃, F̃n) = 0 at H → +∞ can be obtained and are shown in figure 3. Similar to Fn(i)c

in figure 2, the ith-order critical value at k̃ = k̃
(i)
c is defined as F̃n(i)c . It can be seen

that the curve F̃n(1) is different from Fn(1) in figure 2. When k̃ → 0, we can find that
limk̃→0 F̃n(1) = +∞. Therefore, there will always be 2i solutions in |A|(k̃, F̃n) = 0 when

F̃n(i)c < F̃n < F̃n(i+1)
c , which leads to i waves at x = −∞ and x = +∞, respectively.

We may also investigate how the above results vary with the channel width b, ice sheet
thickness hi and various edge constraints while other values in (4.1) remain unchanged.
Here Fn(i)c (i = 1, 2, 3, 4) at different b and hi under clamped–clamped edges is shown
in figure 4. It can be seen from figure 4(a) that all the Fn(i)c decrease when b increases,
and they all tend to the value of Fnc without the tank wall, or the two-dimensional
case (Li et al. 2019). In other words, when b increases, the curves Fn(i) in figure 2 will
gradually move towards each other and approach the curve in the two-dimensional case.
Figure 4(b) shows that at hi = 0 all the Fn(i)c = 0, which is expected as this is a free
surface problem. As hi increases, all the Fn(i)c increase. As hi becomes very large or
L is very large, the ice sheet becomes a rigid plate and there will be no waves, which
means Fn(i)c → +∞. In figures 5(a) and 5(b), Fn(1)c under other edge conditions show
variation trends similar to that in figure 4, apart from the free–free one where Fn(1)c
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(4) = 1.2509

Fnc
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Figure 3. Purely positive solution of |A|(k̃, F̃n) = 0 for clamped–clamped edges at H → +∞.

increases slightly with b. Plots of Fn0 versus with b and hi are given in figures 5(c) and
5(d), respectively. It can be shown that under the free–free condition, Fn0 = 1, which
can be confirmed by substituting k̂ = 0 and Fn = 1 in |A|(k̂,Fn). This is the same as
the two-dimensional case. Under other edge conditions Fn0 is different from 1. It varies
with b in a way similar to that of Fn(1)c . It can be observed that at sufficiently large
b, Fn0 → 1, which is consistent with the two-dimensional case. Also limhi→0 Fn0 = 1,
which is consistent with the free surface problem. Another interesting feature in figure 5
is when all the parameters are fixed, Fn(1)c and Fn0 increase in the following sequence:
free–free, simply supported–free, clamped–free, simply supported–simply supported,
clamped–simply supported and clamped–clamped.

4.2. Deflection of the ice sheet due to an underwater source
Numerical results are first given for the ice sheet deflection ξ induced by a submerged
source. The quiescent water depth H is used as the characteristic length. Here, ξ can be
obtained directly by using inverse Fourier transformation

ξ = 1
2π

∫ +∞

−∞
ξ̂ eikx dk. (4.5)

Substituting (3.7) into (4.5) and using (3.24)–(3.27), we have

ξ = iρ
2πb

×
∫

L

+∞∑
n=0

+∞∑
m=0

λn,m cosh Km(z0 + H) exp(ik(x − x0)) cos σn( y + b) cos σm( y0 + b)
(1 + δm0)Δm|A| cosh KmH

dk,

(4.6)
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Figure 4. Critical Froude number under the clamped–clamped edge condition: (a) Fn(i)c (i = 1 ∼ 4) at
different channel widths; (b) Fn(i)c (i = 1 ∼ 4) at different ice sheet thickness.
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Figure 5. Here Fn(1)c and Fn0 under different edge conditions: (a) Fn(1)c at different channel widths; (b) Fn(1)c
at different ice thickness; (c) Fn0 at different channel widths; (d) Fn0 at different ice thickness. The clamped
edge is denoted by C, the simply supported edge is denoted by SS and the free edge is denoted by F.
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Figure 6. Ice sheet deflection ξ along the y-axis due to a source when the ice sheet is under the
clamped–clamped edge condition: (a) (x0, y0, z0) = (0, 0,−H/5); (b) (x0, y0, z0) = (0,−b/2,−H/5). The
Froude numbers in the figure are in the following order: Fn(1)c = 0.8180 < 0.9 < Fn(2)c = 0.9981 < 1.05 <
Fn(3)c = 1.3177 < 1.4 < Fn(4)c = 1.7682 < 1.8 < Fn(5)c = 2.3230 < 2.4 < Fn(6)c = 2.9600.

where

λn,m =
3∑

j=0

βn,jc′
m,j + δm0|A|Uk

(
d(4)n

24
+ (1 − δn0)γn

σ 4
n

)
+ δnm(1 − δn0)

Uk|A|
σ 4

n
. (4.7)

It should be noted that the infinite series in (4.6) is truncated at n = m = 15 in the
calculation, and the results have been found to have converged.

The ice deflection along the y-axis induced by a source at two different locations under
clamped–clamped edges is shown in figure 6. In figure 6(a), the source is located at
(x0, y0, z0) = (0, 0,−H/5). This corresponds to a symmetric case about y = 0, or only
waves corresponding to even m in (4.6) will exist. As x = 0 and x0 = 0, the principal
integral of ξ in (4.6) is zero. The remaining waves are those components which will
propagate to x = +∞ and x = −∞, respectively. It can be seen from figure 6(a) that the
wave profiles at Fn = 0.9 and Fn = 1.05 are dominated by the first symmetric transverse
mode (σ2), and at Fn = 1.4 and Fn = 1.8 the second symmetric mode (σ4) become
important, further, at Fn = 2.4, the third symmetric mode (σ6) also becomes important. In
general, when Fn(2m−1)

c < Fn < Fn(2m+1)
c (m ≥ 1), the contribution of the mth symmetric

mode (σ2m) to the overall wave profile will be significant. As c1 = c3 = 0 and a2n−1 =
b2n−1 = 0 in (3.5) and (3.9), the singularities corresponding to |AA|(k̂,Fn) = 0 (see
(A 6)) in the solution for these coefficients are no longer relevant. Therefore, the curves of
Fn(2i)(k̂) can be removed from figure 2 in such a case. The transverse wave profiles with
the source located at (x0, y0, z0) = (0,−b/2,−H/5) are shown in figure 6(b), which is an
asymmetric case. In such a case, all the longitudinal wave components of kj (j = 1 ∼ S) in
(4.6) exist, and all the transverse waves of σm will also exist. The overall transverse wave
in this case is asymmetric.

The hydroelastic waves along the x-axis due to a source at (x0, y0, z0) = (0, 0,−H/5)
are given in figure 7. It can be seen from figure 7(a) that there is no wave propagating to
x = ±∞ when Fn < Fn(1)c . The longitudinal wave profile is antisymmetric about x = x0,
which can be confirmed by the sine function in the principal integral of (4.6). As Fn
increases, it can be seen that in figures 7(a), 7(c) and 7(d) that the wave elevation
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Figure 7. Ice sheet deflection ξ along x-axis due to a source located at (x0, y0, z0) = (0, 0,−H/5) when the
ice sheet is under the clamped–clamped edge condition: (a) Fn < Fn(1)c ; (b) Fn(1)c < Fn < Fn0; (c) Fn(2)c <

Fn < Fn(3)c ; (d) Fn(4)c < Fn < Fn(5)c ; where Fn(1)c = 0.8180, Fn(2)c = 0.9981, Fn(3)c = 1.3177, Fn(4)c = 1.7682,
Fn(5)c = 2.3230, Fn0 = 1.1469.

near x = x0 is significantly increased when Fn is near each of Fn(i)c (i = 1, 3, 5 · · · ).
When Fn → Fn0, the smaller root of Fn(1)(k̂) = Fn tends to zero, and the corresponding
wavelength at x = −∞ tends to infinity, which can be observed from figure 7(b). Since
waves corresponding to the roots of Fn(2i) = Fn will not appear in the symmetric
case, there is no wave propagating to x = −∞ when Fn0 < Fn < Fn(3)c . As discussed
in Appendix B, due to the net mass outflow from the source, or, mathematically, the
singularity of function ξ̂ at k = 0, opposite mean wave elevations can be observed at
x → +∞ and x → −∞, which are denoted by ξ̄+∞ and ξ̄−∞, respectively. It is also
interesting to see that ξ̄+∞ > 0 (ξ̄−∞ < 0) when Fn < Fn0, while ξ̄+∞ < 0 (ξ̄−∞ > 0)
when Fn > Fn0. In figure 8, the ice sheet deflection along y = −b/2 generated by a
source located at (x0, y0, z0) = (0,−b/2,−H/5) is plotted. Phenomena similar to those
in figure 7 may be also observed, apart from that waves corresponding to the roots of
Fn(2i) = Fn also appear. In fact, from figures 8(c) and 8(d), we can see clearly the wave
behind the source due to Fn(2) when Fn > Fn(2)c .

4.3. Hydrodynamic forces on a submerged horizontal cylinder
A submerged horizontal cylinder with its centre line located at x0 = 0 and z0 = −H/5
in the current is considered next. The radius of the cylinder r0 is employed as the
characteristic length. For the free surface problem, the two-dimensional steady solution
may no longer be possible within some ranges of the Froude number at a given

928 A4-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

79
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.792


Y.F. Yang, G.X. Wu and K. Ren

–2.5

–5.0

0

(×10–3) (×10–3)
5.0

2.5

–2.5

–5.0

0

5.0

2.5

10 20 30–10–30 –20 0

x/H

ξ/H

x/H

(b)(a)

Fn = 0.7
Fn = 0.8
Fn = 0.81
Fn = 0.817

Fn = 0.92
Fn = 0.95
Fn = 0.97
Fn = 0.998

Fn = 1.25
Fn = 1.31
Fn = 1.315
Fn = 1.317

Fn = 1.07
Fn = 1.1
Fn = 1.11
Fn = 1.12

–5

–10

0

5
(×10–3) (×10–3)

–2

–4

0

4

2

10 20 30–10–30 –20 0 10 20 30–10–30 –20 0

10 20 30–10–30 –20 0

ξ/H

(d)(c)

Figure 8. Ice sheet deflection ξ along y = −b/2 due to a source located at (x0, y0, z0) = (0,−b/2,−H/5)
when the ice sheet is under the clamped–clamped edge condition: (a) Fn < Fn(1)c ; (b) Fn(1)c < Fn < Fn(2)c ;
(c) Fn(2)c < Fn < Fn0; (d) Fn0 < Fn < Fn(3)c ; where Fn(1)c = 0.8180, Fn(2)c = 0.9981, Fn(3)c = 1.3177, Fn0 =
1.1469.

submergence (Haussling & Coleman 1979; Scullen & Tuck 1995; Semenov & Wu 2020).
This is mainly because the steady wave amplitude reaches its limit and may break,
which is reflected by the fact the velocity magnitude at the wave peak tends to zero
(Semenov & Wu 2020). This can occur when the submergence of the circular cylinder
is chosen as |z0|/r0 = 2 for the free surface flow. However, here the problem is quite
different. On the one hand, the covering ice sheet will obviously affect the behaviour of
the waves. More importantly, the case considered here is a three-dimensional one. For
clamped edges as an example, the wave elevation along the edge is in fact zero. Indeed,
it also has been found from the obtained numerical results that the magnitude of the
velocity on the far-field is always positive for the case considered, apart from that near
the critical Froude numbers. This suggests that the linear model is valid apart from when
the Froude number is near one of the critical values. At the critical value, the results
of the linear model become inaccurate, while its prediction for the critical value itself
may be accurate. In such a case, nonlinearity and other effects may need to be taken into
account.

To conduct numerical computations, the infinite series in (3.45) is truncated at
n′ = N and m′ = M. A convergence test is then carried out for N and M through the
hydrodynamic forces on the cylinder when the ice sheet is under the clamped–clamped
edge condition. The far-field formula (C7) is also employed to check the resistance FR
obtained by the near field formula (3.51). The convergence test results are shown in
figure 9. An excellent agreement can be seen between the results obtained by N = 15
and M = 15, and N = 25 and M = 25, which means the convergence has been achieved.
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Figure 9. Convergence study for the hydrodynamic forces on the cylinder when the ice sheet is under the
clamped–clamped edge condition: (a) resistance; (b) lift.

Therefore, N = 15 and M = 15 is applied in the following calculation. We can also
observe that the resistance calculated by (C7) is graphically the same as that from
(3.51). It can be seen from figure 9(a) that FR = 0 when Fn < Fn(1)c , which is similar
to the two-dimensional case considered by Li et al. (2019). As mentioned above, there
is no wave at infinity when Fn < Fn(1)c , which leads to the fact that coefficients Qn,m,
C±

n,m,m′ and D±
n,n′,m,m′ in (3.45) are all real, and correspondingly the solution fn,m should

be imaginary. Together with (3.50), ψn,m is imaginary, then from (3.51), we have
FR = 0.

We then consider the resistance and lift under three different symmetric edge
constraints. The results are provided in figure 10. In figure 10(a), when the Froude number
passes Fn = Fn(i)c (i ≥ 1) or Fn0, the resistance changes rapidly. The number of the wave
components at far-field will also change. In particular the resistance FR is zero initially.
When Fn passes Fn = Fn(1)c , FR jumps up rapidly. As Fn passes Fn0, FR will have a sharp
drop. These are similar to the behaviours of the resistance at Fn = Fnc and Fn = 1 in the
two-dimensional case considered by Li et al. (2019). When Fn continues to increase and
pass Fn(2i−1)

c (i ≥ 2), FR will first increase rapidly and then decrease rapidly, and return
to almost the original trajectory of the curve. In the two-dimensional case, critical values
of Fn(i)c (i > 1) do not exist. For the FL given in figure 10(b), it is non-zero even at small
Fn because the flow is not symmetric about z = z0. The lift near Fn(2i−1)

c (i ≥ 1) and Fn0
have a behaviour similar to that of resistance. At large Fn the lift may become negative
similar to the free surface problem (Wu & Eatock Taylor 1987). It is also interesting
to see from figure 10 that the differences in FR or FL under various edge conditions
are much more obvious in the region near Fn(i)c and Fn0. When Fn passes Fn(2i−1)

c
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Figure 10. Hydrodynamic forces on the cylinder when the ice sheet is under the symmetric edge conditions:
(a) resistance; (b) lift. See figure 5 for legend.
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Figure 11. Hydrodynamic forces on the cylinder when the ice sheet is under the asymmetric edge conditions:
(a) resistance; (b) lift.
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(i > 1), we can see that the jump phenomena of FL and FR in the case of the free–free
edges are not as obvious as those of the clamped–clamped and simply supported–simply
supported edges. The variation of FR and FL against Fn under three asymmetric edges
constraints are shown in figure 11. Behaviours similar to those in figure 10 may be
observed. However, as mentioned in § 4.2, in addition to Fn(2i−1)

c , Fn(2i)
c will also affect

the waves in these asymmetric cases about y = 0. As a result, more sudden changes can
be observed in figure 11.

Computations are then carried out to investigate the effect of the channel width b. A
comparison with the two-dimensional cases given in figure 4 of Li et al. (2019) is also
conducted. It should be noted that apart from that there are channel width b and edge
conditions here, all the physical parameters are chosen as the same as those in figure 4
of Li et al. (2019). The results of clamped–clamped edges are given in figure 12. When
b = 2H, it can be seen that the resistance and lift are significantly different from those
in the two-dimensional case. As b increases, the results tend to those without the tank
wall. When b = 8H, very good agreement can be observed between these two cases.
It ought to be pointed out at large b, for example b = 8H, the critical Froude numbers
Fn(i)c (i ≥ 2) still have some effects. However, the effects are obvious only when Fn
is very close to Fn(i)c , or the sharp variation of the force is almost like a vertical line,
although this line is not included in the figure. In figure 13, the resistance and lift on the
cylinder with the free–free edges are provided. It can be observed that even at small b,
the results are already close to the two-dimensional ones. This suggests that when doing
model tests in an ice-covered tank, the free–free edges may better resemble an unbounded
ocean.

4.4. Deflection of the ice sheet induced by a submerged horizontal cylinder
We may also investigate the deflection of the ice sheet η due to a submerged horizontal
cylinder. The position of the centre line of cylinder is the same as that in § 4.3. In figure 14,
the hydroelastic waves along the x-axis when the ice sheet is under clamped–clamped
edges are plotted. As can be observed, many features of the waves in figure 14 are similar
to those in figure 7, but there are also some differences. In figure 14(a), we can see
that the wave profile for Fn < Fn(1)c is symmetric about x = x0, which can be shown
through (3.53)–(3.55), while this is opposite to that in figure 7(a). As Fn increases, the ice
deflection η at x = 0 reaches a large negative value when Fn is close to Fn(1)c , then it will
rapidly become a positive value after Fn passes the critical point. Similar sudden changes
can be also observed in figures 14(c) and 14(d) when Fn is near Fn(3)c and Fn(5)c . However,
the deflection above the cylinder in figure 14(c) before the critical point is a crest, while it
is a trough in figures 14(a) and 14(d). As discussed previously, the results from the linear
theory might become qualitatively inaccurate near one of the critical Froude numbers and
the nonlinearity and other effects may need to be taken into account. However, this is
only within a very small range. Also the critical Froude numbers predicted from the linear
theory are still valid.

In order to show the influence of edge conditions on the wave profiles, typical wave
patterns under six different edge constraints when Fn(3)c < Fn < Fn(4)c are presented in
figure 15. For waves under symmetric edges given in figures 15(a), 15(c) and 15(e),
there is only one component in the longitudinal wave at the downstream region, while
the waves at the upstream region contain two components. It can be found that the
wave patterns under clamped–clamped and simply supported–simply supported edges are
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Figure 12. Hydrodynamic forces on the cylinder in an ice-covered channel with clamped–clamped edges at
different channel widths: (a) resistance; (b) lift.
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Figure 13. Hydrodynamic forces on the cylinder in an ice-covered channel with free–free edges at different
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Figure 14. Ice sheet deflection η along x-axis due to a submerged horizontal cylinder when the ice sheet is
under clamped–clamped edges: (a) Fn < Fn(1)c ; (b) Fn(1)c < Fn < Fn0; (c) Fn(2)c < Fn < Fn(3)c ; (d) Fn(4)c <

Fn < Fn(5)c ; with Fn(1)c = 0.8180, Fn(2)c = 0.9981, Fn(3)c = 1.3177, Fn(4)c = 1.7682, Fn(5)c = 2.3230, Fn0 =
1.1469.

relatively similar, but the wave pattern under free–free is quite different. In figure 15(e),
we can see that the downstream wave under free–free edges is not as obvious as that
under the other two symmetric edges. Similar phenomena can be also observed from the
transverse waves in figures 15(a), 15(c) and 15(e). From these results, we may infer that an
ice-covered channel with free–free edges is closer to an unbounded region when compared
with those with other edge constraints. For waves under asymmetric edge constraints
shown in figures 15(b), 15(d) and 15( f ). The longitudinal waves at the downstream
region consist of two components, while the waves at the upstream region contains three
components. Compared with the wave profiles under clamped–simply supported edges
shown in figure 15(b), the asymmetry of the transverse waves is more obvious in cases
with a free edge given in figures 15(d) and 15( f ).

5. Conclusions

The interaction of a uniform current with a submerged horizontal circular cylinder in
an ice-covered channel is studied analytically, the solution procedure is applicable to
various edge conditions. The three-dimensional Green function satisfying all boundary
conditions apart from that on the body surface is first derived. By using this, the potential
due to sources distributed along the centre line of the cylinder is obtained, from which
the potentials due to multipoles are constructed directly by differentiating the position of
the centre line. The velocity potential for a submerged circular cylinder is written in terms
of a summation of these multipoles.
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Figure 15. Wave patterns under different edge conditions when Fn(3)c < Fn < Fn(4)c : (a) clamped–clamped
edges, Fn = 1.5 (Fn(3)c = 1.3177 and Fn(4)c = 1.7682); (b) clamped–simply supported edges, Fn = 1.4
(Fn(3)c = 1.2569 and Fn(4)c = 1.6824); (c) simply supported–simply supported edges, Fn = 1.3 (Fn(3)c =
1.2012 and Fn(4)c = 1.6005); (d) clamped-free edges, Fn = 1.3 (Fn(3)c = 1.0962 and Fn(4)c = 1.4454); (e)
free–free edges, Fn = 1.05 (Fn(3)c = 0.9486 and Fn(4)c = 1.1997); ( f ) simply supported–free edges, Fn = 1.1
(Fn(3)c = 1.0561 and Fn(4)c = 1.3782).

From the solution of the Green function, it is confirmed that there is an infinite
number of critical Froude numbers Fn(i)c (i = 1, 2, 3 · · · ) and another one, Fn0, which
corresponds to the case of Fn0 = 1 in the two-dimensional problem where there are only
two critical Froude numbers. This is consistent with what has been noticed in previous
work (Khabakhpasheva et al. 2019). There will be no wave propagating to infinity when
Fn < Fn(1)c . When Fn(i)c < Fn < Fn(i+1)

c and Fn < Fn0, there will be 2i waves, and i
waves are at a downstream region with group velocity smaller than the current speed,
while the other i waves with larger group velocity are at an upstream region. When
Fn(i)c < Fn < Fn(i+1)

c and Fn > Fn0, one downstream wave will disappear, and there will
be i − 1 waves at a downstream region. For infinite water depth, the effect of Fn0 does not
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exist. When F̃n(i)c < Fn < F̃n(i+1)
c , there are always 2i waves, with i waves at x = −∞ and

x = +∞, respectively.
In the cases of symmetric edge constraints, the symmetric and antisymmetric transverse

modes are completely independent. The former corresponds to the roots of Fn = Fn(2i−1)

(i ≥ 1), while the latter corresponds to the solutions of Fn = Fn(2i). If the flow itself is
symmetric about y = 0, the waves due to the roots of Fn = Fn(2i) will not exist. In general,
the symmetric and antisymmetric modes always coexist, and they are fully coupled. When
Fn(i−1)

c < Fn < Fn(i)c (i ≥ 2), the contribution of the ith transverse wave mode to the
overall wave profile will be significant.

The ice sheet deflection due to a submerged horizontal circular cylinder shows that the
hydroelastic wave is symmetric about x = x0 and only exists in the region near the cylinder
when Fn < Fn(1)c . When Fn is near Fn(1)c , there is a sudden change in the wave above
the cylinder, which is similar to that of the two-dimensional case (Li et al. 2019). As Fn
increases, this phenomenon can be also observed near other critical points which do not
exist in the two-dimensional case. The three-dimensional wave pattern also indicates that it
can be greatly affected by the edge conditions. The resistance on the cylinder is zero when
Fn < Fn(1)c , while the lift is non-zero. When Fn increases and passes each critical Froude
number, the forces change very rapidly. Under different edge conditions, the change is very
different.
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Appendix A. Elements of the matrix [A] and columns [B] and [C] under the
clamped–clamped edge condition

Applying the clamped–clamped edge condition shown in (2.11) to ξ , we have

c0 − bc1 + b2c2 − b3c3 + a0

24
b4 +

+∞∑
m=1

am

σ 4
m

= 0

c1 − 2bc2 + 3b2c3 − a0

6
b3 = 0

c0 + bc1 + b2c2 + b3c3 + a0

24
b4 +

+∞∑
m=1

(−1)m
am

σ 4
m

= 0

c1 + 2bc2 + 3b2c3 + a0

6
b3 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A1)
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Substituting (3.15) and (3.18a) into (A1), the coefficients of matrix [A] and column [B]
can then be given as

A0j = δ0j − δ1jb + δ2jb2 − δ3jb3 + α0,j

24
b4 +

+∞∑
m=1

αm,j

σ 4
m

A1j = δ1j − δ2j2b + δ3j3b2 − α0,j

6
b3

A2j = δ0j + δ1jb + δ2jb2 + δ3jb3 + α0,j

24
b4 +

+∞∑
m=1

(−1)m
αm,j

σ 4
m

A3j = δ1j + δ2j2b + δ3j3b2 + α0,j

6
b3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (A2)

Bj = −i
+∞∑
m=0

ρUk cosh Km(z0 + H) cos σm( y0 + b)
(1 + δm0)bΔm cosh KmH

νm,j, j = 0 ∼ 3, (A3)

where

νm,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
δ0j

[
1 − δm0

σ 4
m

+ δm0

(
b4

24
+

+∞∑
l=1

γl

σ 4
l

)]
− δ1jδm0

b3

6

+ δ2j

[
(1 − δm0)(−1)m

σ 4
m

+ δm0

(
b4

24
+

+∞∑
l=1

(−1)lγl

σ 4
l

)]
+ δ3jδm0

b3

6

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (A4)

Based on (A2) and (A3), the solution of ci of (3.21) can be obtained as

ci = −i
+∞∑
m=0

ρUk cosh Km(z0 + H) cos σm( y0 + b)
(1 + δm0)b|A|Δm cosh KmH

c′
m,i, i = 0 ∼ 3, (A5)

where c′
m,i = |A| × cm,i, cm,i is the solution of [A][Cm] = [νm], [νm] is a known column

containing coefficients νm,i (i = 0 ∼ 3), [Cm] is an unknown column containing cm,i.
Substituting (3.20) into (A1), the matrix equation (3.21) can be further split into two

2 × 2 submatrices, which can be written as

[AS]
[

c0
c2

]
= [BS] and [AA]

[
c1
c3

]
= [BA], (A6a,b)

or symmetric and antisymmetric modes are fully uncoupled. The elements of matrices
[AS], [AA] and columns [BS], [BA] can be expressed as

AS
0j = δ0j + δ1jb2 + α0,2j

24
b4 +

+∞∑
m=1

α2m,2j

σ 4
2m

AS
1j = 2δ1jb + α0,2j

6
b3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A7a)

and

AA
0j = δ0jb + δ1jb3 +

+∞∑
m=1

α2m−1,2j+1

σ 4
2m−1

AA
1j = δ0j + 3δ1jb2

⎫⎪⎪⎬⎪⎪⎭ (A7b)

928 A4-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

79
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.792


Current–cylinder interaction in an ice-covered channel

and

BS
j = −i

+∞∑
m=0

ρUk(−1)m cosh K2m(z0 + H) cos σ2my0

(1 + δm0)bΔ2m cosh K2mH
νS

m,j

BA
j = i

+∞∑
m=0

ρUk(−1)m cosh K2m+1(z0 + H) sin σ2m+1y0

bΔ2m+1 cosh K2m+1H
νA

m,j

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, j = 0, 1 (A8)

with

νS
m,j = δ0j

[
1 − δm0

σ 4
2m

+ δm0

(
b4

24
+

+∞∑
l=1

γ2l

σ 4
2l

)]
+ δ1jδm0

b3

6
and νA

m,j = δ0j

σ 4
2m+1

.

(A9a,b)
Here |A| can be further obtained as

|A| = 4|AS||AA|. (A10)

Appendix B. Symmetry property of the Green function

Let G0 = G(x, y, z, x0, y0, z0) and G1 = G(x, y, z, x1, y1, z1), and correspondingly, ξ0 =
ξ(x, y, x0, y0, z0) and ξ1 = ξ(x, y, x1, y1, z1). At x → +∞, the Green function and the
wave elevation can be expressed as

G0 = Re

⎧⎨⎩
S∑

j=0

G(j)0 ( y, z)
kj

exp(−ikj(x − x0))

⎫⎬⎭ and

G1 = Re

{ S∑
l=0

G(l)1 ( y, z)
kl

exp(−ikl(x − x1))

}
, (B1a,b)

ξ0 = Re

⎧⎨⎩
S∑

j=0

ξ
(j)
0 ( y) exp(−ikj(x − x0))

⎫⎬⎭ and

ξ1 = Re

{ S∑
l=0

ξ
(l)
1 ( y) exp(−ikl(x − x1))

}
, (B2a,b)

where k0 → 0 and kj (j = 1 ∼ S) denote the wavenumber of the component j, and the
summation contains only those wave components with group velocity larger than U. The
terms of j = 0 in (B1a,b) are related to the ‘blockage parameter’, as discussed, for example,
in Newman (1969) and Mei & Chen (1976) in the two-dimensional case. However, for
a submerged body, there should be no net flow being created. Therefore, the ‘blockage
parameter’ is a constant. Its derivative will be zero and no flow will be created by the
constant. Equation (B1a,b) is due to a source which does generate flow into the fluid
domain. This will continue at infinity, which is reflected by the terms of j = 0 of (B1a,b).

Although G and ξ involve only the real part, we may use the whole complex function
here. Substituting (B1a,b) and (B2a,b) into (2.6) and (2.7), the boundary conditions of
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G(j)0 and ξ (j)0 on ice sheet can be established as

i

[
(Lk4

j + ρg)ξ (j)0 − 2Lk2
j

d2ξ
(j)
0

dy2 + L
d4ξ

(j)
0

dy4

]
= ρUG(j)0 , j = 0 ∼ S, z = 0, (B3)

ik2
j Uξ (j)0 = ∂G(j)0

∂z
, j = 0 ∼ S, z = 0. (B4)

A similar procedure can be adopted at x → −∞. Applying Green’s second identity, we
have

G(x1, y1, z1, x0, y0, z0)− G(x0, y0, z0, x1, y1, z1) =
‹

S

(
G0
∂G1

∂n
− G1

∂G0

∂n

)
dS, (B5)

where S is comprised of the seabed SH , two vertical channel walls Sw, ice sheet SI and
two vertical surfaces S±∞ at x → ±∞, respectively. As ∂G0/∂n and ∂G1/∂n are zero on
SH and Sw, only the integrals over SI and S±∞ need to be kept.

For the integral at SI , using (2.6), (2.7) and integration by parts, this gives

II =
∫∫

SI

(
G0
∂G1

∂z
− G1

∂G0

∂z

)
dS

= −U
∫ b

−b
(G0ξ1 − G1ξ0)|x→+∞

x→−∞ dy + L
ρ

∫∫
SI

(ξ1∇4ξ0 − ξ0∇4ξ1) dS. (B6)

Employing (A.3) in Ren et al. (2018b), II can be written as

II = −U
∫ b

−b
(G0ξ1 − G1ξ0)|x→+∞

x→−∞ dy

+ L
ρ

∮
T

(
ξ1
∂

∂n
∇2ξ0 − ∂ξ1

∂n
∇2ξ0 − ξ0

∂

∂n
∇2ξ1 + ∂ξ0

∂n
∇2ξ1

)
dl, (B7)

where T is comprised of the lines x = ±∞ and y = ±b. Using (B1a,b)–(B3) and
integrating by parts again, II can be further written as

II =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iL
ρ

S∑
j=0

S∑
l=0

exp(−i[kj(x − x0)+ kl(x − x1)])

×

⎡⎢⎣
(
ξ
(l)
1y ξ

(j)
0yy/kj − ξ

(j)
0y ξ

(l)
1yy/kl

)
−

(
ξ
(l)
1 ξ

(j)
0yyy/kj − ξ

(j)
0 ξ

(l)
1yyy/kl

)
⎤⎥⎦
∣∣∣∣∣∣∣
y=b

y=−b

∣∣∣∣∣∣∣
x→+∞

x→−∞

+ L
ρ

∫ +∞

−∞

[ (
ξ1ξ0yyy − ξ0ξ1yyy

) − (
ξ1yξ0yy − ξ0yξ1yy

)
− 2

(
ξ1xξ0xy − ξ0xξ1xy

) ]∣∣∣∣∣
y=b

y=−b

dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (B8)

Invoking the edge conditions in (2.11), it can be shown II = 0 for any of these edge
constraints.
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For the integral over S±∞, we can consider S+∞ as an example, as the integral over S−∞
can be done in a similar way. Substituting (B1a,b) into the integral at S+∞, we have

I+∞ =
∫∫

S+∞

(
G0
∂G1

∂x
− G1

∂G0

∂x

)
dS

=
S∑

j=0

S∑
l=0

exp(−i[kj(x − x0)+ kl(x − x1)])
∫∫

S+∞

(
1
kl

− 1
kj

)
G(j)0 G(l)1 dS. (B9)

Since G0 and G1 is governed by the Laplace equation at x → +∞, we have

∇2
yzG

(j)
0 = k2

j G(j)0

∇2
yzG

(l)
1 = k2

j G(l)1

⎫⎬⎭ , (B10)

where ∇2
yz = ∂2/∂y2 + ∂2/∂z2 denotes the Laplace operator on the O − yz plane.

Substituting (B10) into (B9) and applying Green’s second identity, we obtain

I+∞ = i
S∑

j=0

S∑
l=0

exp(−i[kj(x − x0)+ kl(x − x1)])
kjkl(kj + kl)

∫∫
S+∞

(
G(l)1 ∇2

yzG
(j)
0 − G(j)0 ∇2

yzG
(l)
1

)
dS

= i
S∑

j=0

S∑
l=0

exp(−i[kj(x − x0)+ kl(x − x1)])
kjkl(kj + kl)

∮
L+∞

(
G(l)1

∂G(j)0
∂n

− G(j)0
∂G(l)1
∂n

)
dS,

(B11)

where L+∞ is comprised of lines y = ±b, z = 0 and z = −H. Applying (2.9), (2.10), (B3)
and (B4), we have

I+∞ = iL
ρ

S∑
j=0

S∑
l=0

exp(−i[kj(x − x0)+ kl(x − x1)])
kl + kj

×
∫ +b

−b

⎡⎢⎣ 2kjkl

(
ξ
(j)
0 ξ

(l)
1yy − ξ

(l)
1 ξ

(j)
0yy

)
−

(
kjξ

(j)
0 ξ

(l)
1yyyy/kl − klξ

(l)
1 ξ

(j)
0yyyy/kj

)
⎤⎥⎦ dy. (B12)

Using integration by parts and edge conditions in (2.11), we have I+∞ = 0, similarly
I−∞ = 0. This means that the integral at right-hand side of (B5) is equal to 0, which
gives

G (x1, y1, z1, x0, y0, z0) = G (x0, y0, z0, x1, y1, z1) . (B13)

Appendix C. Far-field formula of the resistance

The formula of the resistance can be written as (Wu 1995)

FR = −1
2
ρ

∫∫
SB

(
φx
∂φ

∂n
− φ

∂φx

∂n

)
dS. (C1)

Using Green’s second identity, it can be converted to

FR = 1
2
ρ

∫∫
SI+S±∞

(
φx
∂φ

∂n
− φ

∂φx

∂n

)
dS. (C2)
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It is noted that the integral in (C2) can be treated in a similar way as shown in Appendix B.
This gives

FR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
ρ

∫ 0

−H
dz

∫ b

−b

(
∂φ

∂x
∂φ

∂x
− φ

∂2φ

∂x2

)∣∣∣∣x→+∞

x→−∞
dy

− 1
2
ρU

∫ b

−b

(
η
∂φ

∂x
− φ

∂η

∂x

)∣∣∣∣x→+∞

x→−∞

∣∣∣∣∣
z=0

dy

+ L
2

∫ b

−b

[(
η
∂4η

∂x4 − ∂η

∂x
∂3η

∂x3

)
−

(
∂η

∂x
∂3η

∂x3 − ∂2η

∂x2
∂2η

∂x2

)]∣∣∣∣x→+∞

x→−∞
dy

+ L
U

∫ b

−b

(
η
∂4φ

∂x3∂z
+ η

∂φ

∂x∂z3 − ∂η

∂x
∂3φ

∂x2∂z
− ∂η

∂x
∂φ

∂z3

)∣∣∣∣x→+∞

x→−∞
dy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C3)

Based on (3.40) and (3.53), the asymptotic expression of φ and η at x → +∞ can be
written as

φ = Re

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S∑

s=1

+∞∑
n=0

χs

[
B(1)

s,n exp(iks(x − x0))+ B(2)
s,n exp(−iks(x − x0))

]
×ks cosh Kn,s(z + H) cos σn( y + b)

Kn,s sinh Kn,sH

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
+ sgn(x)φ(0), (C4)

η = − 1
U

Im

{ S∑
s=1

+∞∑
n=0

χs[B(1)
s,n exp(iks(x − x0))

− B(2)
s,n exp(−iks(x − x0))] cos σn( y + b)

}
, (C5)

where

B(1)
s,n = −iρU

+∞∑
n′=0

+∞∑
m=1

rm
0 fn′,mτn,n′(ks)En′,m(ks, z0)

2m(m − 1)!Δn′(ks)|A|′(ks) cosh Kn′,sH

B(2)
s,n = iρU

+∞∑
n′=0

+∞∑
m=1

rm
0 fn′,mτn,n′(ks)En′,m(−ks, z0)

2m(m − 1)!Δn′(ks)|A|′(ks) cosh Kn′,sH

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(C6)

and where Kn,s = √
k2

s + σ 2
n , τn,n′(k) = ∑3

j=0 βn,jc′
n′,j, and the summation of s contains

only those wave components with group velocity larger than U. Here χs is related to the
integration path L in (3.38c) and (3.55c), when L passes over (under) the singularity
at ks, the corresponding wave component will propagate to x = +∞ (x = −∞), and
χs = −1 (χs = +1). Therefore, χs = −1 in (C4) and (C5). Similar procedure can be also
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adopted at x → −∞. Substituting (C4) and (C5) into (C3), we have

FR = − b
4U2

S∑
s=1

+∞∑
n=0

(1 + δn0)χs

∣∣∣B(1)
s,n + B̄(2)

s,n

∣∣∣2

×

⎡⎢⎢⎣
ρU2k2

s
(
H + sinh 2Kn,sH/2Kn,s

)
− ρU2Kn,s sinh 2Kn,sH

+ 4LK4
n,s sinh2 Kn,sH

⎤⎥⎥⎦ . (C7)

It should be noted that the summation of s in (C7) contains all the wave components.
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