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Abstract
We show that the diameter of a uniformly drawn spanning tree of a simple connected graph on n vertices
with minimal degree linear in n is typically of order

√
n. A byproduct of our proof, which is of independent

interest, is that on such graphs the Cheeger constant and the spectral gap are comparable.
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1. Introduction
The uniform spanning tree of a finite connected graph G, denoted by UST(G), is a uniformly
chosen random spanning tree of G. The main result of this paper is that the diameter of the UST,
i.e., the largest distance between two vertices of the UST, on graphs with linear minimal degree
grows like the square root of the number of vertices with high probability.

When G is the complete graph on n vertices, Kn, much more is known. A classical result
of Szekeres [18] (see also [9]) explicitly provides the limiting distribution of the diameter
of UST(Kn) scaled by n−1/2. This was greatly extended by the influential work of Aldous
[1–3] and Le Gall [12,13] who proved that UST(Kn), viewed as a random metric space
and scaled by n−1/2, converges in distribution with respect to the Gromov-Hausdorff dis-
tance to a canonical random compact metric space known as the Continuum Random
Tree [1].

The UST is a critical statistical physics model, hence it is expected that as long as the base graph
G is ‘high dimensional’, UST(G) should have a similar geometry to that of UST(Kn). This high
dimensionality condition is typically some good isoperimetric condition. This has been pursued
in [16] where the authors show that the diameter of UST(G) is of order

√
n for a large class of

high dimensional graphs including, for example, Z5
n, the hypercube {0, 1}n and regular expanders.

The dense graphs we study in this paper, however, can be very far from being high dimensional.
For instance, two cliques on n/2 vertices connected by an edge will have the worst isoperimetric
inequality, yet the diameter of its UST is still of order

√
n. We now state our main result. For

a connected graph H we write diam(H) for the maximal graph distance in H between any two
vertices.
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Theorem 1.1. For any ε, δ ∈ (0, 1) there exists C = C(δ, ε) ∈ (1,∞) such that if G is a connected
simple graph on n vertices with minimal degree at least δn, then,

P
(
C−1√n≤ diam(UST(G))≤ C

√
n
)≥ 1− ε,

The main tool we use is a decomposition theorem (Lemma 2.2) which can be thought of as
Szemerédi-type Regularity Lemma allowing to partition the vertices of G into O(1) sets such that
the induced graph on each set satisfies a sufficiently strong isoperimetric inequality and such that
the number of edges connecting two such sets is sufficiently small. This partition is then used to
study the behaviour of the loop-erased random walk on Gwhich in turn provides estimates on the
UST via Wilson’s algorithm (Section 1.1).

It turns out that one can get significant mileage in the study of the random walk using such
a decomposition theorem. One such estimate, which we believe is of independent interest, is an
improvement to Cheeger’s inequality on graphs of linear minimal degree. This improved inequal-
ity shows that on such graphs the Cheeger constant and the spectral gap are comparable. Denote
by P the transition matrix of the simple random walk on G, and let π(v)= deg(v)/2|E(G)| denote
its stationary distribution. Since P is self-adjoint in L2(π) it has n real eigenvalues in [− 1, 1]
denoted by

1= λ1 ≥ λ2 ≥ ...≥ λn ≥ −1.
A classical highly useful inequality proved by Alon-Milman [4, 5], Lawler-Sokal [11] and Jerrum-
Sinclair [7] known as Cheeger’s inequality relates the spectral gap γ (G) := 1− λ2 of P with its
isoperimetric constant (also known as Cheeger’s constant). More precisely, for a set of vertices S
ofGwe denote its volume by Vol(S)=∑

v∈S deg(v) and its edge boundary by ∂S= {(u, v) ∈ E(G) |
u ∈ S, v /∈ S}. We define the Cheeger constant as

�(G) := min
S,π(S)≤1/2

|∂S|
Vol(S)

Cheeger’s inequality states that

�(G)2/2≤ γ (G)≤ 2�(G). (1)
When G is a simple graph of linear minimal degree we can improve the lower bound in Cheeger’s
inequality to match the order of the upper bound.

Theorem 1.2. For any δ ∈ (0, 1) there exists a constant c(δ)> 0 such that the following holds. Let
G= (V , E) be a simple graph on n vertices with minimal degree at least δn and Cheeger constant
�(G), then

γ (G)≥ c(δ)�(G) .

Remark 1.3. Our proof gives c(δ)= δ19/234 but we have not tried to optimize this constant.

Remark 1.4. After posting this paper we learned from Majid Farhadi, Suprovat Ghoshal, Anand
Louis, and Prasad Tetali of an alternate proof of Theorem 1.2, which gives c(δ)= 	(δ). Since the
proofs are completely different we believe there is value in presenting both. We emphasize that
our proof of Theorem 1.2 is just a byproduct of the tools we develop to prove our main result
Theorem 1.1 and is also quite short given these tools. It is presented in Section 2.3.

The alternate proof follows from Theorem 1 of [10]. In our notation, it states that there exists
a universal constant C > 0 such that for all k≤ n,

�(G)≤ Ckγ (G)√
1− λk

. (2)

To obtain Theorem 1.2 from (2), observe that when the minimal degree of G is at least δn, each
diagonal term of P2 is bounded from above by 1/(δn) and therefore the trace of P2 is bounded
from above by 1/δ. Since the trace of P2 equals the sum of squares of the eigenvalues of P, we have
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that at most 4/δ eigenvalues of P are larger than 1/2. Hence, λ	4/δ
 ≤ 1/2. Plugging this into (2)
and rearranging gives

γ (G)≥ c′δ�(G)
for some c′ > 0.

1.1 Preliminaries
For a finite graph G= (V , E) and a vertex v ∈V we denote by degG(v) its degree. When U ⊆V we
will write degG(v,U) for the number of edges between v and U and G[U] for the subgraph of G
induced by U. We will sometimes omit the subscript when it is obvious to which G we refer. A
network (G, w) is a connected graph G= (V , E) endowed with a non-negative function w : E→
[0,∞) on its edges. The simple randomwalk {Xt}∞t=0 onG is theMarkov chain on the state spaceV
that at each step moves along a uniformly chosen edge incident to it. Similarly, the simple random
walk on a network (G, w) is the Markov chain such that the transition probability from v to u
is proportional to w ({v, u}). In order to avoid issues of parity, we will sometimes consider the
lazy random walk. Formally, at each step, with probability 1/2 the walker stays put and otherwise
chooses a neighbour uniformly (or proportionally to w({v, ·}). We will often consider random
walks with different starting distributions. When μ is a probability measure on V , we will use the
notation Pμ for the probability measure conditioned on X0 ∼ μ. We will also use Pv for the walk
conditioned on X0 = v. Also, for a non-negative integer t ≥ 0 and two vertices v, u ∈V we write
pt(v, u) for Pv(Xt = u). For any a, b ∈ [0,∞), we writeX[a, b] for 〈Xi〉i∈I where I = [	a
, ⌊b⌋]∩N.
Similarly, we write X[a, b) if we wish to exclude b from I.

We will frequently use some facts about the mixing time of the random walk on G which we
now define. The total variation distance between two probability measures μ, ν on V is

dTV(μ, ν) := 1
2
∑
u∈V

|μ(v)− ν(v)|.

For every ε ∈ (0, 1/2), the ε-mixing time of G is defined by

tGmix(ε) := max
v∈V min

{
t ≥ 0 : ‖pt(v, ·)− π( · )‖TV < ε

}
,

where π(v)= deg(V)/2|E|, the stationary distribution of the random walk on G. To avoid issues
of periodicity we emphasize that in this paper the quantity tGmix(ε) is defined only for the lazy
random walk. We liberally vary the choice of ε throughout the proof; this changes the mixing
time by at most a multiplicative constant. Indeed, for every ε < 1/4 and any integer, we have (see,
[14, equations (4.34) and (4.32)])

tGmix(ε)≤ log2(ε
−1)tmix(1/4) and tGmix(ε

k)≤ ktmix(ε/2). (3)
The uniform spanning tree (UST) of G is the uniformmeasure over the set of all spanning trees

of G. More generally, when (G, w) is a finite network, we denote by UST(G) the weighted uniform
spanning tree. That is, the probability measure supported on spanning trees of G that assigns
to each such tree T a measure proportional to

∏
e∈T w(e). We briefly describe here some useful

properties of the UST involving sampling, conditioning and stochastic domination and refer the
reader to [15, Chapter 4] for a comprehensive overview.

Our analysis of the UST will rely on Wilson’s algorithm [19] for efficiently sampling the UST.
This popular algorithm is frequently used not just to sample but rather to prove theorems about
the UST, see [15]. LetG= (V , E) be a finite connected graph. A walk of length L onG is a sequence
of vertices (X0, . . . , XL) such that (Xi, Xi+1) ∈ E for every 0≤ i< L. Given such a walk X, its loop
erasure LE(X) is a sequence of vertices defined as follows. We put LE(X)0 = X0 and inductively,
for every i> 0 and given LE(X)[0, i− 1], define si := max{t ≤ L | Xt = LE(X)i−1}. If si = L, the
loop-erased random walk of X is (LE(X)0, . . . , LE(X)i−1). Otherwise, let LE(X)i = Xsi+1. In words,
we walk along (X0, . . . , XL) and erase the loops as they are formed. Given two vertices v, u the
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loop-erased random walk from v to u is defined to be LE(X) where X is the simple random walk
started at v and terminated upon when hitting u. In a similar fashion we define the loop-erased
random walk from a vertex v to a subset of vertices U. Wilson’s algorithm works as follows.
Choose any ordering (v1, . . . , vn) of the vertices of G and let T1 be the empty tree containing v1
and no edges. At each step i> 1, run a loop-erased random walk from vi to Ti−1 let Ti be the
union of this loop-erased random walk and Ti−1. This process terminates after going through
all vertices and results a spanning tree Tn. A remarkable theorem of Wilson [19], that we use
throughout this paper, states that Tn is distributed as UST(G).

Next, it is very simple to prove that conditioning on the existence or absence of edges in theUST
results in a UST on the graph obtained from G by contracting or erasing those edges, respectively.

Lemma 1.5. [15, Section 4.2] Let (G, w) be a network and let e be an edge of G. The UST of (G, w)
conditioned to contain e is distributed as the union of e with the UST of the network obtained from
G by contracting the edge e to a single vertex.

Lastly, we recall a few highly useful corollaries to a result of Feder and Mihail [6]. Given two
probability measures μ1 and μ2 on 2E, we say that μ1 is stochastically dominated by μ2 if there
exists a probability measure μ on 2E × 2E with marginals μ1 and μ2 which is supported on

{(T1, T2) ∈ 2E × 2E | T1 ⊆ T2}.
Lemma 1.6. [15, Lemma 10.3] Let G be a connected subgraph of a finite connected graph H.
Then, UST(H)∩ E(G) is stochastically dominated by UST(G) when both are viewed as probability
measures on 2E(G).

This lemma can be further generalized to our needs. We say that a network (G, w) is a sub-
network of (H, w′) if V(G)⊆V(H) and for every edge (v, u) with w(v, u) �= 0 we have w(v, u)=
w′(v, u). The same proof of [15, Lemma 10.3] yields a more general statement.

Lemma 1.7. Let (G,w) be a subnetwork of a finite network (H, w′). Then, UST(H)∩ E(G) is
stochastically dominated by UST(G) when both are viewed as probability measures on 2E(G).

Given a networkG and a subset of vertices Awe write G/A for the network obtained fromG by
contracting the vertices of A to a single vertex and keeping all edges. The following is well known
and can be obtained by a similar argument to the proof of [15, Lemma 10.3].

Lemma1.8. Let (G, w) be a finite network and let A⊆ B be two sets of vertices of G. Then,UST(G/A)
stochastically dominates UST(G/B).

1.2 Proof outline and organization
It is easier to bound the diameter of the UST after conditioning on a long path in it. Indeed, a
key lemma from [16] (see Lemma 4.1) roughly states that if a vertex set W ⊂V is sufficiently
spread out in the sense that the random walk is unlikely to avoid it, then one can upper bound
the probability that the diameter of UST(G/W) is much larger than |W|, where G/W is the graph
obtained from G by identifying W to a single vertex. When G, say, is a regular expander (or any
other ‘high dimensional’ graph) the approach in [16] is to takeW to be the vertices on the unique
path in UST(G) between two independently drawn uniform vertices of G. The expansion property
is then used to show that this set has size �(

√
n) and is sufficiently spread out, so Lemma 4.1

implies that UST(G/W) has diameter �(
√
n).

The high level approach in this paper is to use our decomposition theorem (Lemma 2.2, proved
in Section 2) and partition the graph into O(1) sets so that with high probability the UST path
between two random vertices in each set remains within the set, is of size�(

√
n) and is sufficiently

spread out within the set. Formalizing and proving this is performed in Section 3. In Section 4 we
take the union of these O(1) paths to be our setW and apply Lemma 4.1 from [16] to obtain that
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UST(G/W) has diameter roughly of order
√
n from which we deduce the desired upper bound on

the diameter of UST(G).

2. Decomposition of linear minimal degree graphs
In this section we prove that any finite connected graph G= (V , E) on n vertices with linear mini-
mal degree can be decomposed into k sets, each of them linear in the number of vertices, such that
a random walk typically mixes inside every such set before leaving it. Hence, when considering
short times, roughly

√
n steps of the walk, a random walk on the graph can be approximated well

by a random walk on one of its sets in this decomposition. We will denote a partition of V by P
and sometimes more explicitly by V =V1 � . . . �Vk. We write [k] for the set {1, . . . , k}.
Definition 2.1. Let ε ∈ (0, 1), δ ∈ (0, 1] and β > 0 be fixed and let G= (V , E) be a graph on n
vertices with minimal degree at least δn. We say that a partition V =V1 � . . . �Vk is an (ε, δ, β)-
good decomposition if there exists some θ ∈ [ε11·22/δ , ε] such that the following conditions are
satisfied.

1. The number of sets in the decomposition, denoted by k, satisfies k≤ 2/δ.
2. For every i ∈ [k] we have |Vi| ≥ δn

2 .

3. For every i ∈ [k], the spectral gap of G[Vi] is at least δ15θβ
231n2 .

4. For every i ∈ [k] and each v ∈Vi we have that deg(v,Vi)≥ δ4n
40 .

5. For every i ∈ [k] we have |E(Vi,V \Vi)| ≤ ε9θ2β .

The majority of this section is devoted to proving the following decomposition lemma which will
be key in the proof of Theorem 1.1.

Lemma 2.2. For every δ > 0, there exists a constant c= c(δ)> 0 such that the following holds.
For every ε ∈ (0, c), every β ∈ (0, 240n2/(εδ4)) and any simple graph G= (V , E) on n vertices with
minimal degree at least δn there exists an (ε, δ, β)-good decomposition of G.

We remark that the proof of Theorem 1.2 does not use this lemma, rather a simpler
decomposition lemma, Lemma 2.11, which is also the first step in the proof of Lemma 2.2.

2.1 Preliminary estimates on the spectral gap
In this subsection we prove the following lemma allowing us to lower bound the spectral gap of a
decomposable graph.

Definition 2.3. Given a partitionP of V, denoted byV =V1 � . . . �Vk, and some c> 0, we define
the graph H(P , c) as follows. The vertices of H(P , c) are [k] where each vertex i ∈ [k] represents a
set Vi of P and we join an edge (i, j) if |E(Vi,Vj)| > c.

Lemma 2.4. Let G= (V , E) be a simple graph on n vertices. Let P be a partition of V denoted by
V =V1 � . . . �Vk. Assume that there exists a, b, c> 0 such that the following conditions hold.

• For every i ∈ [k], the spectral gap of G[Vi] is larger than a,
• For every i ∈ [k] and every v ∈Vi we have deg(v,Vi)≥ b,
• The graph H(P , c) is connected.

Then, the spectral gap of G is at leastmin
{
a, abc

6kn3

}
.
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Lemma 2.4 is an application of the main result of [8] together with some quick estimates involving
the Dirichlet form (see [14, Chapter 13] for further reading on the Dirichlet form). In the rest of this
subsection we cite and prove these necessary background results, then prove the lemma. Since the
proof digresses from the main ideas of this paper, the reader may want to take this lemma as a ‘black
box’ and skip reading its proof. We will typically use this Lemma when a is roughly a constant, b is
of order n and c is of order �(G)n2.

Let (G, w) be a network where G= (V , E) with a partition of its vertex set V =V1 � . . . �Vk.
Let π be the stationary measure of the simple (or lazy) random walk on (G, w). For such a net-
work with a partition of its vertex set to k sets, we define the distribution π on [k] by setting
π(i)=∑

v∈Vi π(v). The projection chain is a Markov chain on [k] with the following transition
probabilities

Pi,j = 1
π(i)

∑
v∈Vi,u∈Vj

π(v)P(v, u). (4)

Note that π is the stationary distribution of this chain. Furthermore, we define k restriction chains,
to which we will also refer as the restriction walks. For every i ∈ [k], this restriction walk is a
Markov chain on Vi with transition probabilities

Pi(x, y)=
{
P(x, y) x �= y,

1−∑
w∈Vi\{x} P(x,w) x= y.

We are now ready to state a weaker version of [8, Theorem 1] which will be useful later.We remark
that our version follows easily from [8, Theorem 1] by applying trivial upper bounds to the spectral
gap of the projection chain and to the probability to move from one set in the decomposition to
another one.

Theorem 2.5. ([8, Theorem 1]) Let (G, w) be a network where G= (V , E) and let V =V1 � . . . �
Vk be a partition of its vertex set. Denote by γ̄ the spectral gap of the projection chain associated with
it and for every i ∈ [k] let γi be the spectral gap of the restriction walk on Vi. Then, the spectral gap
γ of the random walk on (G, w) satisfies

γ ≥min
i

γ̄ γi
6

.

For an irreducible Markov chain on a finite state space 	 with transition matrix P, stationary
distribution π and a function f :	 →R, we denote

EP
π (f ) :=

1
2

∑
x,y∈	

π(x)P(x, y)(f (x)− f (y))2.

The following lemma which we will not prove is helpful in estimating spectral gaps of networks
which are obtained by a small perturbation of another network.

Lemma 2.6. ([14, Lemma 13.8]) Let P0 and P1 be transition matrices with stationary distributions
π0 and π1 over the same finite state space 	. Let γ 0 and γ 1 be their spectral gaps, respectively. If
there exists α > 0 such that for all functions f :	 →R we have EP1

π1 (f )≤ αEP0
π0 (f ), then

γ 1 ≤
(
max
ω∈	

π0(ω)
π1(ω)

)
αγ 0.

Claim 2.7. Let G= (V , E) and let W0 = (G,w0) and W1 = (G,w1) be two networks such that
there exists a vertex v ∈V such that w0

v,v <w1
v,v and for every other edge (u,w) �= (v, v) we have
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w0
u,w =w1

u,w. Denote by γ 0 and γ 1 the spectral gaps corresponding to W0 and W1, respectively.
Then, γ 1 ≤ γ 0.

Proof For i ∈ {0, 1}, we let Pi be the transition matrix corresponding toWi. We denote

wi
u =

∑
e�u

wi
e, Zi =

∑
u∈V

wi
u.

We also denote by π i the stationary distribution ofWi and recall that π i(u)=wi
u/Zi. We will now

use Lemma 2.6 to show that γ 1 ≤ γ 0. A simple calculation shows that for every f

EP1
π1 (f )= 1

2
∑
u,v∈V

w1
u,v
Z1

(f (u)− f (v))2 = Z0
Z1

EP0
π0 (f ). (5)

Also, we write ε =w1
vv −w0

vv > 0. Then, for every u ∈V we have

π0(u)
π1(u)

=
w0
u

Z0
w1
u

Z1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z1
Z0

u �= v

Z1
Z0

· w0
v

w0
v + ε

u= v
.

Hence, in any case π0(u)/π1(u)≤ Z1/Z0. By (5), we can use Lemma 2.6 with α = Z0/Z1. We thus
get that γ 1 ≤ γ 0. �

As mentioned in the last subsection, if P is a transition matrix of some random walk and Q is
the transition matrix of its lazy version, then Q= 1

2 (I + P) and hence γ (Q)= 1
2γ (P). Similarly, if

X is a random walk with transition P and Y is an α-lazy random version of X, that is, at each step
the walker stays put with probability α and otherwise chooses its next step according to P, then
Q= αI + (1− α)P. Hence, γ (Q)= (1− α)γ (P).

We can further generalize this. For every v ∈V , let pv ∈ [0, 1). We call (pv)v∈V the lazy vector.
Let X be some randomwalk onV with transition matrix P and let Y be the following randomwalk
on V . At each step, if the walker is at some u ∈V , it stays put with probability pu and otherwise
chooses its next step according to P. The next claim shows that we can lower bound the spectral
gap associated with this random walk.

Claim 2.8. Let P be a transition matrix of a random walk X on a finite connected graph G with
spectral gap γ (P). Let α ∈ (0, 1) and let (pv)v∈V ∈ [0, α)V be a vector which we call the lazy vector.
Let Y be the following random walk on G. If Yt = v, stay put with probability pv. Otherwise, choose
Xt+1 according to P. Let Q be the transition matrix of Y. Then, γ (Q)≥ (1− α)γ (P).

Proof Let (G,wα) be the network associated with the graph G such that wα
uv = 1 if (u, v) ∈ E and

wα
vv = βv where βv satisfies βv

deg(v)+βv
= α. If P is the transition matrix of the simple random walk

on G, then Q := αI + (1− α)P is the transition matrix corresponding to (G,wα). Note that the
spectral gap of Q satisfies γ (Q)= (1− α)γ (P). Let (pv)v∈V be the lazy vector with all values non-
negative and smaller than α. The randomwalk that stays put at some u ∈V with probability pu and
jumps according to P otherwise can be seen as a random walk on a network (G,wp) which can be
constructed from (G,wα) by going iteratively over all vertices v ∈V and decreasing the weight of
wα
vv at each step according to pv. By Claim 2.7, at each step the spectral gap can be only increased.

Hence, the spectral gap of the walk corresponding to (G,wp) is larger than γ (Q)= (1− α)γ (P),
as required. �

Another canonical method of bounding the spectral gap from below is the path method.

Claim 2.9. (The path method, see [14, Corollary 13.21]) Let P be a transition matrix of a Markov
chain on a finite state space 	 with stationary distribution π and spectral gap γ . For every x, y ∈ 	,
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denote Q(x, y)= π(x)P(x, y). Let {ϕx,y}x,y∈	 be a collection of paths in 	 from x to y such that every
path ϕx,y is a path from x to y with Q(e)> 0 for every e ∈ ϕx,y. Denote

B := max
e

1
Q(e)

∑
ϕx,y�e

π(x)π(y)|ϕx,y|.

Then, γ ≥ B−1.

Proof of Lemma 2.4. When k= 1, this is trivial and the spectral gap of G is at least a. We assume
henceforth that k≥ 2 and we consider the projection and restriction chains associated with the
decomposition of V to sets of P as described earlier in this section. Let i ∈ [k] and consider the
restriction chain associated with Vi, a set ofP . By our assumption, we have that the spectral gap of
G[Vi] is at least a. However, the restriction walk on Vi is different from the simple random walk
on G[Vi], as it is obtained from it by adding self loops for every edge that exits Vi. For every v ∈V
we denote by pv the probability to move from v to itself in the restriction chain. Since every v ∈Vi
has deg(v,Vi)≥ b, we have that pv ≤ (1− b

n ). We thus have by Claim 2.8 that γi, the spectral gap
of the restriction chain, satisfies γi ≥ ab

n .
We turn to the projection chain, which is a Markov chain on the state space [k] with stationary

distribution π and transition matrix P as in (4). We will use Claim 2.9 to bound the spectral gap
associated with it from below. For every edge e= (l,m) ∈H(P , c), we denote Q(e)= π(l)P(l,m).
We denote by P the transition matrix of the original simple random walk. By the definition in (4),
we have

Q(e)= π(l) · 1
π(l)

∑
u∈Vl ,v∈Vm

π(u)P(u, v)=
∑
u∈Vl

|E(u,Vm)|
2|E| ≥ |E(Vl,Vm)|

n2
≥ c

n2
.

Since the graph H(P , c) is connected, for every x, y ∈ [k] we can choose a path ϕx,y connecting
x and y such that every edge in this path has Q(e)≥ c/n2. We choose such paths for every x, y
arbitrarily. We obtain that for every edge e which belongs to any path in this choice (ϕx,y)x,y∈[k]
we have

1
Q(e)

∑
ϕx,y�e

π(x)π(y)|ϕx,y| ≤ kn2

c
∑

ϕx,y�e
π(x)π(y)≤ kn2

c
.

Hence, by Claim 2.9, the spectral gap of the projection chain γ is at least c/kn2. Using Theorem
2.5, we conclude

γ ≥min
i∈[k]

γ γi
6

≥ abc
6kn3

.
�

2.2 Primary decomposition

Definition 2.10. Let G= (V , E) be a graph on n vertices with minimal degree at least δn. A
δ-primary decomposition of G is a partition of its vertices V =V1 � . . . �Vk which has the
following properties.

1. The number of sets in the decomposition, denoted by k, satisfies k≤ 2/δ.
2. For every i ∈ [k], we have |Vi| ≥ δn

2 .

3. For every i ∈ [k] and each v ∈Vi we have that deg(v,Vi)≥ δ4n
40 .

4. For every i ∈ [k], the spectral gap of G[Vi] is at least δ10

222 .
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Lemma 2.11. Let G= (V , E) be a simple graph on n vertices with minimal degree at least δn. Then,
there exists a δ-primary decomposition of G.

Proof We build the decomposition inductively each time refining the partition of V . We begin
with the trivial partition {V}. At each step, if there is a subset W in the partition that can be
further partitioned W =W1 �W2 such that |E(W1,W2)| ≤ δ3

20 |W1||W2|, then we refine the par-
tition by replacing W with W1,W2. We call the edges E(W1,W2) in each such refinement step
negligible. The choice ofW andW1,W2 is not necessarily unique and at each step we choose arbi-
trarily among all possibilities. Since the graph is finite this process must stop and we denote the
final decomposition by V =U1 � . . . �U�, where edges between any pairUi andUj are negligible.
The sum of |W1||W2|, described above, over each of the � refinement steps is no more than the

cardinality of pairs of vertices, hence, the number of negligible edges is at most δ3

20

(n
2

)
.

We call a vertex bad if the number of negligible edges touching it is larger than δn/2. Our
bound on the number of negligible edges implies that there are no more than δ2n/10 bad vertices.
Every vertex which is not bad is called good. If a set Ui in the partition contains a good vertex
we call it a good set, otherwise, a bad set. Since the minimal degree in the graph is larger than
δn, every good vertex v touches at least δn/2 edges that are not negligible; the corresponding
neighbours must be in the same set of the partition as v. Hence each good set is of size at least
δn/2 and so their number is at most 2/δ. We call bad vertices belonging to bad sets evil. To obtain
our primary decomposition, we remove all bad sets from the partition and redistribute the evil
vertices among the good sets as follows. Assume without loss of generality that the good sets of
the partition are U1, . . . ,Uk where k≤ �. Let v ∈V \ ∪k

i=1Ui be an evil vertex. Since the number
of good neighbours of v is at least δn− δ2n/10 and k≤ 2/δ, there exists some i ∈ [k] for which
d(v,Ui)≥ δ2n/3. We add v to one such set chosen arbitrarily.

We denote the resulting decomposition by V =V1 � . . . �Vk (with Ui ⊂Vi for all i ∈ [k])
and argue that it satisfies the desired conditions of Definition 2.10. Conditions (1) and (2) are
immediate. To see that condition (3) is satisfied, let i ∈ [k] and let v ∈Vi. If v is good, then
deg(v,Vi)≥ δn/2. If v is bad but not evil, then |E({v},Ui)| ≥ δ3

20 |Ui| ≥ δ4n/40 since otherwise
we would have partitioned Ui to {v} and Ui \ {v}. If v is evil, then it was added to Vi since
d(v,Ui)≥ δ2n/3.

It remains to prove condition (4). Due to Cheeger’s inequality (see equation (1)), it is enough
to show that for every i ∈ [k]

�(G[Vi])≥ δ5

1200
. (6)

Fix i ∈ [k]. We slightly abuse notation and write Vol and π for the volume and stationary
measures on G[Vi] respectively, that is, for any S⊂Vi we have Vol(S)=∑

s∈S deg(s,Vi) and
π(S)=Vol(S)/Vol(Vi). Let X ⊂Vi be a subset with π(X)≤ 1/2. If at least half of the vertices
of X are evil, then its size is at most twice the number of bad vertices, i.e. |X| ≤ δ2n/5. Each evil
vertex of X has at least δ2n/3− δ2n/5 of its neighbours in Vi outside X. Hence,

|∂X|
Vol(X)

≥
2δ2n
15 · |X|

2
n|X| = δ2

15
.

Suppose otherwise that at least half of the vertices of X are non-evil. Denote the set of non-evil
vertices of X by R and let T be the other non-evil vertices of Vi. Note that R � T =Ui. The num-
ber of edges between them is at least δ3

20 |R||T|, since otherwise Ui would have been partitioned
further. Thus,
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|∂X|
Vol(X)

≥ |E(R, T)|
Vol(X)

≥
δ3

20 |R||T|
Vol(X)

≥
δ3

20 |T||X|
2n|X| ≥ δ3|T|

40n
. (7)

It remains to lower bound |T|. Denote by Gi and Bi the sets of good and bad vertices of Vi,
respectively. We have that |Gi| ≥ δn/2− δ2n/10. Each vertex v ∈Gi has deg(v,Vi)≥ δn/2 hence
Vol(Gi)≥ δ2n2/5. On the other hand, since the total number of bad vertices is at most δ2n/10
we have Vol(Bi)≤ δ2n2/10. We deduce that π(Gi)≥ 2/3. Since π(Vi \ X)≥ 1/2, we have that
π(T)≥ π(Gi ∩ (Vi \ X))≥ 1/6. We bound Vol(T)≤ |T|n and Vol(Vi)≥Vol(Gi)≥ δ2n2/5 which
with the last estimate gives |T| ≥ δ2n/30. We plug this into (7) to obtain that |∂X|

Vol(X) ≥ δ5

1200 , as
required. �

2.3 The Cheeger constant and spectral gap are comparable on graphs with linear degree

Proof of Theorem 1.2. For brevity we denote �(G)= r. By Lemma 2.11, there exists a δ-
primary decomposition P of G, also denoted by V =V1 � . . . �Vk. We claim that the graph
H(P , rδ2n2/2k2) is connected. Indeed, assume to the contrary that it is not connected and let
S⊆ [k], S �= [k], be a connected component in this graph. LetVS := ∪i∈S Vi be the set correspond-
ing to S in G. We may assume that π(VS)≤ 1/2 (otherwise, we will take one of the connected
components of V[k]\S). Since P is δ-primary and �(G)= r, we have that

|∂VS| ≥ rVol(VS)≥ rδ2n2/2.

Hence, we can find a component Vj ⊆ (V \VS) and a component Vi ⊆VS with |E(Vi,Vj)| ≥
rδ2n2/2k2, contradicting the assumption that S is a connected component of H(P , rδ2n2/2k2).
We can therefore apply Lemma 2.4 and obtain that Theorem 1.2 holds with the constant δ19

234 (note
that δ ≤ 1 so the minimum in the conclusion of Lemma 2.4 is attained in the second item).

2.4 Coarsening
Given two partitions P and P ′, we say that P is a coarsening of P ′ if every set in P is a union of
sets in P ′. Suppose that G= (V , E) has minimal degree at least δn. Let P be a partition denoted by
V =V1 � . . . �Vk, and let P ′ be a partition V =V ′

1 � . . . �V ′
� such that P is a coarsening of P ′.

For each i ∈ [k] we write Pi for the partition of Vi into sets of P ′.
Definition 2.12. For ε, α ∈ (0, 1) and β > 0 we say that P is an (ε, α, β)-good coarsening of a

partition containing � sets P ′, if there exists some θ ∈
[
ε
(

εα
�2

)2�

, ε
]
for which the following

conditions are satisfied.

1. For every i ∈ [k] we have that H(Pi, θβ) is connected (H is defined in Definition 2.3).
2. For every i ∈ [k] we have |E(Vi,V \Vi)| ≤ θ2βα.

Lemma 2.13. For any ε, α ∈ (0, 1) and any β > 0, if G= (V , E) is a finite graph andP ′ is a partition
of V containing � sets, then there exists an (ε, α, β)-good coarsening of P ′.
Proof. Let ε > 0. We will construct P , an (ε, α, β)-good coarsening of P ′, which will satisfy con-
ditions (1) and (2) of Definition 2.12 with some parameter θ . At first, if P ′ satisfies condition (2)
with ε playing the role of θ , then P ′ is an (ε, α, β) good coarsening of itself. Otherwise, we build
recursively a finite sequence of length at most � of coarsenings 〈Pi〉 ofP ′ and parameters 〈θi〉, such
that Pi satisfies condition (1) with θi. We set P1 :=P ′ and θ1 = ε.
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At step m> 1, we are given with Pm−1 and θm−1 such that Pm−1 satisfies condition (1) with
parameter θm−1. If Pm−1 also satisfies condition (2) with θm−1, then Pm−1 is an (ε, α, β) good
coarsening and we halt the process, denoting P :=Pm−1 and θ := θm−1. Otherwise, there exists a
set U in the partition Pm−1 which has |E(U,V \U)| ≥ θ2m−1αβ . Since there are � sets in P ′, there
exists at least one pair of setsW1 ⊆U andW2 ⊆V \U, both are sets of the partition P ′, such that
|E(W1,W2)| ≥ θ2m−1αβ/�2. We denote

θm = α

�2
θ2m−1 (8)

and form Pm by replacing U and the set containing W2 in Pm−1 with their union. We note that
since we assumed that Pm−1 is a coarsening of P ′ and satisfies condition (1) with θm−1, then Pm
is also a coarsening of P ′ which satisfies condition (1) with θm.

Eventually, since the number of sets in P ′ is �, this process halts within at most � steps and we
obtain an (ε, α, β) good coarsening P and θ , a parameter satisfying θ ≥ θ�, with which conditions
(1) and (2) are satisfied. Solving (8) with initial condition θ1 = ε, we obtain

θm = ε
(εα

�2

)2m−1−1
.

Therefore, we have

θ ≥ θ� ≥ ε
(εα

�2

)2�−1−1 ≥ ε
(εα

�2

)2�

,

as required. �

2.5 Proof of Lemma 2.2
To prove Lemma 2.2 we will show that with the right choice of α an (ε, α, β)-good coarsening of
a δ-primary decomposition is in fact a (ε, δ, β)-good decomposition.

Proof of Lemma 2.2. Let G= (V , E) be a graph on n vertices with minimal degree at least δn, let
ε > 0 and let 0< β ≤ 240n2/(εδ4). By Lemma 2.11, there exists a δ-primary decomposition of V .
We denote this decomposition by P ′. By Lemma 2.13, we obtain that there exists an (ε, ε9, β)-
good coarsening of P ′, denoted by P . We also denote this coarsening explicitly by V =V1 � . . . �
Vk and we let θ be the parameter from Lemma 2.13 to which the coarsening corresponds.

We claim that P is indeed an (ε, δ, β)-good decomposition satisfying conditions (3) and (5)
of Definition 2.1 with this θ . We first note that for ε > 0 small enough and by the properties of a
good coarsening

ε11·22/δ ≤ ε

(
ε10δ2

4

)22/δ

≤ θ ≤ ε.

Conditions (1), (2) and (4) of Definition 2.1 are immediate for every coarsening of a δ-primary
decomposition. Condition (5) is satisfied by condition (2) of the coarsening in Definition 2.12.
We are then left with verifying that condition (3) of Definition 2.1 holds. To this end, we let Vi
be some set in P and Vi =Vi,1 � . . . �Vi,�i be its partition to �i sets of P ′ which we denote by Pi.
Note that for every j ∈ [�i] and for every v ∈Vi,j we have deg(v,Vi,j)≥ δ4n/40. Also, by condition
(4) of the primary decomposition, Definition 2.10, we have that the spectral gap corresponding
to G[Vi,j] is at least δ10/222. Finally, by the properties of the coarsening, the graph H(Pi, θβ) is
connected. Hence, denoting γ (G[Vi]) for the spectral gap of G[Vi] and using Lemma 2.4 we get
that

γ (G[Vi])≥min
{

δ10

222
,

δ4n
40

· δ10

222
· θβ · 1

6�in3

}
. (9)
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Since θ ≤ ε and β ≤ 240n2/(εδ4) and �i ≥ 1 we learn that the minimum above is attained in the
second term. As P is a coarsening of a δ-primary decomposition, we have that �i ≤ 2/δ, hence,

γ (G[Vi])≥ δ4n
40

· δ10

222
· θβ · 1

6�in3
≥ δ15θβ

231n2

and we deduce that condition (3) of Definition 2.1 holds. �

3. Randomwalks and Wilson’s algorithm on decomposed graphs
In the rest of this paper we take β = n3/2 in the decomposition of Section 2. The main goal of this
section is to prove the following estimate.

Theorem 3.1. For any δ ∈ (0, 1] there exists C = C(δ)< ∞ such that the following holds. Let G=
(V , E) be a connected simple graph on n vertices with minimal degree at least δn and ε > 0. Denote
by V =V1 � . . . �Vk an (ε, δ, n1.5)-good decomposition of G with parameter θ (as guaranteed to
exist by Lemma 2.2). Then for every i ∈ [k] there are two vertices vi1, v

i
2 ∈Vi such that if T is a

uniform spanning tree of G and ϕ is the unique path between vi1 and v
i
2 in T , then

P

(
ε8θ

√
n≤ |ϕ| ≤

√
n

θε8
and ϕ ⊆Vi

)
≥ 1− Cε2.

In Section 3.1 we prove a couple of preliminary useful random walk estimates on graphs with
linear minimal degree that do not involve the decomposition. In Section 3.2, we show that a
random walk on G stays inside one set of the decomposition for at least

√
n steps with high prob-

ability; since the spectral gap of each set in the decomposition is at least of order n−1/2 and the
induced graph on the set has linear minimal degree, the random walk is mixed in this set (even
though the mixing time of Gmay be much larger than

√
n). We use this estimate in Section 3.3 to

prove the aforementioned Theorem 3.1.

3.1 Preliminary randomwalk estimates
It is a classical fact that the mixing time of the random walk on a connected graph G is always
O(γ −1 log n) where n is the number of vertices and γ = γ (G) is the spectral gap, see for instance
[14, Theorem 12.4]. This estimate is sharp as is seen on bounded degree expander graphs where
the gap is	(1) but at least	( log n) steps are needed for the walker to be able to reach themajority
of the graph. However, when the minimal degree is linear, after a single step the location is already
spread on a set of linear size and this estimate can be improved.

Lemma 3.2. For any δ ∈ (0, 1] there exists a constant C = C(δ)< ∞ such that the following holds.
For any simple graph G on n vertices with minimal degree at least δn and any ε ∈ (0, 1) we have

tGmix(ε)≤ C log (1/ε)
(
γ −1(G)+ log (n)

)
.

Proof Let P be the transition matrix of the lazy random walk on G. Recall that P is a self-
adjoint operator P : L2(π)→ L2(π) where π(v)= degG(v)/2|E(G)| is the stationary distribution.
We denote the eigenvalues of P by 1= λ1 ≥ . . . ≥ λn ≥ 0 and γ (P)= 1− λ2 and by 1 the all 1 vec-
tor which is the eigenvalue corresponding to the eigenvalue 1. Let μ be any probability measure
on V and write f for the vector f (v)= μ(v)/π(v). We have that f − 1 is orthogonal to 1 and for
any integer t ≥ 1 we have that π(v)Pf (v)= Pμ(Xt = ·) so in particular Ptf − 1 is orthogonal to 1.
Hence ∥∥Ptf − 1

∥∥
2 = ∥∥Pt (f − 1

)∥∥
2 ≤ λt2

∥∥f − 1
∥∥
2 . (10)
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We rewrite this as ∥∥∥∥Pμ(Xt = ·)
π( · ) − 1

∥∥∥∥
2
≤ λt2

∥∥f − 1
∥∥
2 .

We now claim that for any v ∈V and every u ∈V we have that

Pv(X	log2(n)
 = u)≤ 2
δn

.

Indeed, if the random walker made a non-lazy step at some time in {1, . . . , ⌈log2(n)⌉}, then the
probability to be at any vertex u at time

⌈
log2(n)

⌉
is bounded by 1/(δn). On the other hand, the

probability of staying put
⌈
log2(n)

⌉
steps is at most 1

n . Since
δ
n ≤ π( · )≤ 1

δn it follows that∥∥∥∥∥
Pv(X	log2(n)
 = ·)

π( · ) − 1

∥∥∥∥∥
2

2

≤ 2
δ2

. (11)

Using (10) and (11), for t = ⌈
log2(n)

⌉+ log (
√
2/εδ)γ −1 and every v ∈V we have∥∥∥∥Pv(Xt = ·)

π( · ) − 1
∥∥∥∥
2
≤ λ

t−	log2(n)

2

∥∥∥∥∥
Pv(X	log2(n)
 = ·)

π( · ) − 1

∥∥∥∥∥
2

≤
√
2

δ
(1− γ )t−	log2(n)
 ≤ ε.

By [14, Lemma 12.18] we have that

2‖pt(v, ·)− π( · )‖dTV ≤
∥∥∥∥Pv(Xt = ·)

π( · ) − 1
∥∥∥∥
2
≤ ε ,

concluding our proof. �
Claim 3.3. For any δ > 0 there exists c= c(δ)> 0 such that the following holds. For any ε ∈ (0, c),
any simple graph G= (V , E) on n≥ ε−2 vertices with minimal degree at least δn, any U ⊂V with
|U| ≥ ε

√
n and any vertex v ∈G

Pv(X[0, 2(tGmix(ε/2)+
⌊√

n
⌋
)]∩U =∅)≤ 1− εδ

4
,

where X is the simple random walk on G.

Remark 3.4. We emphasize a potentially confusing point: tmix is defined in terms of the lazy
random walk, but in this claim, as well as the rest of this paper, we study the non-lazy random
walk running for times depending on tmix.

Proof. We prove this for the lazy simple randomwalk and trivially it follows for the usual random
walk.Without loss of generality wemay assume that |U| = ⌈

ε
√
n
⌉
, otherwise wemay take a subset

of U of that size. By equation (3) we have that 2(tGmix(ε/2)+
⌊√

n
⌋
)≥ tGmix(ε

2)+ ⌊√
n
⌋
so it is

then enough to bound from below the probability that X hits U within tGmix(ε
2)+ ⌊√

n
⌋
steps.

Recall that

P(Z > 0)≥ E
2[Z]

E[Z2]
, (12)

for any non-negative random variable Z. Let Y be a lazy random walk starting from the stationary
distribution and define Z = |{t ∈ [0,

⌊√
n
⌋
] | Yt ∈U}|. We will use (12) to bound P(Z > 0) from

below. Since |U| ≥ ε
√
n and theminimal degree is δn, we have thatπ(U)≥ εδn−1/2 and soE[Z]=

(
⌊√

n
⌋+ 1)π(U)≥ εδ.

To bound E[Z2], let t < r be two positive integers. If Yt ∈U, there is a probability of 2−(r−t)

that the walker made r − t lazy steps and then Yr = Yt . Else, since the minimal degree is at least
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δn, the probability that Yr ∈U is bounded by |U|/(δn). Therefore,

P(Yt ∈U, Yr ∈U)≤ P(Yt ∈U) ·
( |U|

δn
+ 1

2r−t

)
= π(U) ·

( |U|
δn

+ 1
2r−t

)
.

Hence, by summing over all t ≤ r ≤ ⌊√
n
⌋

E[Z2]=
�√

n�∑
t=0

P(Yt ∈U)+ 2
�√

n�∑
t=0

�√
n�∑

r=t+1
P(Yt ∈U, Yr ∈U)

≤E[Z]+ 2
(⌊√

n
⌋+ 1
2

)
π(U)|U|

δn
+ 2

�√
n�∑

t=0
π(U)

�√
n�∑

r=t+1

1
2r−t .

Since E[Z]= (⌊√
n
⌋+ 1

)
π(U) we upper bound the last term of the right-hand side by 2E[Z].

For the middle term we write

2
(⌊√

n
⌋+ 1
2

)
π(U)|U|

δn
≤ (

⌊√
n
⌋+ 1) · π(U)|U|

δ
√
n

≤E[Z]
(

ε
√
n+ 1

δ
√
n

)
≤ 1

2
E[Z],

where the last inequality holds for ε small enough. Therefore, for ε small enough we have that
E[Z2]≤ 7

2E[Z] and thus by (12)

P(Z > 0)≥ 2E[Z]
7

≥ 2εδ
7

.

By the definition of tGmix(ε
2), if X is a random walk starting from some v ∈V , we have that

dTV(Xtmix(ε2), π)≤ ε2. Therefore, we can couple the walk X starting from time tGmix(ε
2) with an

independent randomwalk Y starting from the stationary distribution such that the walks coincide
with probability larger than 1− ε2. We thus obtain that for ε small enough

Pv(X[tGmix(ε
2), tGmix(ε

2)+ ⌊√
n
⌋
]∩U �=∅)≥ εδ/3.5− ε2 ≥ εδ/4. �

3.2 Randomwalks of length
√
n stay in the same set of the decomposition

Wenow show that with high probability the randomwalker on a graph with linearminimal degree
will stay in the same set of its (ε, δ, n1.5)-good decomposition that it walked to in its first step.

Lemma 3.5. Let δ ∈ (0, 1], ε > 0 andG= (V , E) be a simple graph on n vertices withminimal degree
at least δn. Also let V =V1 � . . . �Vk be an (ε, δ, n1.5)-good decomposition of G with parameter θ

(as guaranteed to exist by Lemma 2.2). Then for any C > 0 and any i ∈ [k]

Pv
(∃t ∈ [

1, C
√
n
]
: Xt ∈Vi, Xt+1 /∈Vi

)≤ Cθ2ε9

δ2
, (13)

where X is the simple random walk on G. Furthermore, for any i ∈ [k] there exists a set Vi′ ⊆Vi
satisfying |Vi′| ≥ δ4n/80 such that for every v ∈Vi′

Pv
(
X
[
0, C

√
n
]⊆Vi

)≥ 1− 80Cθ2ε9

δ6
. (14)

Proof. Let i ∈ [k] and let θ be the parameter from the (ε, δ, n1.5)-good decompositionP . For every
t ≥ 1, we have

P(Xt ∈Vi, Xt+1 �∈Vi)≤
∑
w∈Vi

P(Xt =w) · p(w,Vc
i )≤

∑
w∈Vi

1
δn

|E(w,Vc
i )|

δn
= |E(Vi,Vc

i )|
δ2n2

.
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Hence by taking the union over t ∈ [1, C
√
n] and using condition (5) of a (ε, δ, n1.5)-good decom-

position (Definition 2.1) we immediately obtain (13). To prove (14) let C > 0 and fix some v ∈Vi.
By condition (4) of Definition 2.1, we have that deg(v,Vi)≥ δ4n/40. By (13) we have

Pv(X1 ∈Vi and X
[
1, C

√
n+ 1

] �⊆Vi)≤ Cθ2ε9

δ2
.

Yet on the other hand,

Pv(X1 ∈Vi and X[1, C
√
n] �⊆Vi)≥ 1

n
∑

u∼v,u∈Vi

Pu
(
X[0, C

√
n] �⊆Vi

)
.

Thus the number of u ∈Vi with u∼ v satisfying

Pu
(
X[0, C

√
n] �⊆Vi

)≥ 80Cθ2ε9

δ6
.

cannot be larger than δ4n/80. Since deg(v,Vi)≥ δ4n/40 we conclude the proof of (14). �

3.3 LERWs andWilson’s Algorithm on the decomposed graph
We now proceed to the proof of Theorem 3.1. In the rest of this section we assume that δ ∈ (0, 1]
and ε > 0 are given, thatG= (V , E) is a connected simple graph on n vertices withminimal degree
δn and that V =V1 � . . . �Vk is an (ε, δ, n1.5)-good decomposition with parameter θ as guaran-
teed to exist by Lemma 2.2. Lastly, note that if

√
n≤ 1/(θε8), then Theorem 3.1 is trivial, so we

assume the contrary.
As described in Section 1.1, the UST path between two vertices of G is distributed as the LERW

between them. A recurring problem in analysing the UST is that the random walk path between
two verticesmay bemuch longer than its loop erasure, meaning thatmost of the randomwalk path
is erased during the loop erasure. To overcome this obstacle we use the following idea which goes
back to Wilson [19] and was used extensively by Peres and Revelle [17]. Let Gρ be the network
obtained from G= (V , E) by adding a vertex ρ, connecting it to each v ∈V and assigning edge
weights

w(v, ρ)= θε4 degG(v)√
n− θε4

.

for any v ∈V . An immediate calculation shows that with these edge weights the probability that
the random walk starting from any v ∈V moves to ρ in the first step is θε4n−1/2 and so τρ is a
geometric random variable with expectation

√
n/θε4. Furthermore, if X is a simple random walk

on this network, then conditioned on τρ =m, we have that X[0,m− 1] is distributed like a simple
randomwalk onG of lengthm− 1. Thus, inGρ , the randomwalk typically takes

√
n steps to hit ρ.

It turns out that a positive fraction of such a walk survives the loop erasure with high probability,
and is hence easier to analyse. To deduce information about the LERW in G rather than Gρ we use
Lemma 1.7 stating that UST(G) stochastically dominates UST(Gρ)∩ E(G). Hence, if v1 and v2 are
two distinct vertices and ϕ and ϕ′ are the unique paths between them in UST(G) and UST(Gρ),
respectively, then

dTV(ϕ, ϕ′)≤ P(ρ ∈ ϕ′). (15)

The proof strategy of Theorem 3.1 is as follows. Fix some i ∈ [k] and two vertices v1, v2 in
Vi which we will choose according to (14). We run Wilson’s algorithm (see Section 1.1) on Gρ

where the first three vertices in the ordering of the vertices of Gρ are (ρ, v1, v2). We will first show
that with high probability the random walk from v1 to ρ stays within Vi except for the last step
(Claim 3.6) and that the length of its loop erasure is at least ε

√
n (Claim 3.7); it is also unlikely to
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contain v2. Next (Lemma 3.8) we show that conditioned on this first LERW, with high probability
the second LERW starting at v2 hits the first LERW in a vertex different than ρ and stays in Vi until
that visit. We will also show there that the second LERW is typically longer than ε8θ

√
n. This gives

a lower bound on |ϕ′| and by (15) a lower bound for |ϕ| is obtained.
Claim 3.6. For any i ∈ [k] there exists a set V ′i ⊆Vi with |V ′i| ≥ δ4n/80 such that for every v ∈Vi′,
a simple random walk on Gρ starting from v satisfies

Pv(τρ < τV\Vi)≥ 1− Bε2,
for some B= B(δ)< ∞.

Proof. Apply Lemma 3.5 with C = 1/θε6 to obtain a set V ′i such that for every v ∈Vi′, if Y is a
simple random walk on the graph G, then

Pv(Y[0,
√
n/θε6]⊆Vi)≥ 1− 80θε3

δ6
≥ 1− Bε3. (16)

Also, for a random walk X on Gρ we have Evτρ = √
n/θε4 and thus Markov’s inequality gives

Pv(τρ ≤ √
n/θε6)≥ 1− ε2 (17)

Let X be a random walk on Gρ . Conditioned on τρ the random path X[0, τρ − 1] has
the distribution of a random walk on G. Hence combining (16) and (17) yields the
desired result. �
Claim 3.7. For any i ∈ [k] there exists a set V ′i ⊆Vi with |V ′i| ≥ δ4n/80 such that for every v ∈Vi′
if X is a simple random walk on Gρ starting at v and stopped when hitting ρ, then

Pv(|LE(X)| ≥ ε
√
n and LE(X)⊆Vi ∪ {ρ})≥ 1− Cε2,

for some C = C(δ)< ∞.

Proof. As in the previous proof, for every v ∈Vi we have that P(τρ >
√
n)≥ 1− ε4. We condition

on this event on τρ and on the first τρ − ε
√
n steps of the random walk. Let us assume first that

|LE(X[0, τρ − ε
√
n))| ≥ ε

√
n.

In this case we denote byU the first ε
√
n vertices of LE(X[0, τρ − ε

√
n)). As before, conditioned on

τρ the walk X[0, τρ − 1] is distributed as an unconditional random walk. By the Markov property,
the random walk at times [τρ − ε

√
n, τρ) is distributed as an unconditional random walk on the

graph G. Hence, since the minimal degree of G is at least δn, the probability that Xt ∈U for some
t ∈ [τρ − ε

√
n, τρ] is at most ε2/δ. If this does not occur, then the set U survives the loop erasure.

It follows that
P
(|LE (X[0, τρ − ε

√
n]
) | ≥ ε

√
n and |LE(X)| ≤ ε

√
n
)≤ ε4 + ε2/δ ≤ Cε2,

for some C = 1+ δ−1. In the second case |LE(X[0, τρ − ε
√
n))| ≤ ε

√
n. In this case the last ε

√
n

steps of X will survive the loop erasure high probability. Indeed, by Markov’s inequality and since
the degrees are at least δn we deduce that the walk X[τρ − ε

√
n, τρ] has no loops with probability

at least 1− ε2/δ. By the same reasoning, the walk X[τρ − ε
√
n, τρ] does not visit |LE(X[0, τρ −

ε
√
n))| with probability at least 1− ε2/δ. On these two events LE(X) contains X[τρ − ε

√
n, τρ]. It

follows that
P(|LE(X[0, τρ − ε

√
n))| ≤ ε

√
n and |LE(X)| ≤ ε

√
n)≤ ε4 + 2ε2/δ ≤ Cε2,

for some C = 1+ 2δ−1. Combining the last two inequalities and using Claim 3.6 finishes
the proof. �
Lemma 3.8. For any i ∈ [k] there exist two distinct vertices v1, v2 ∈Vi such that the following holds.
Let X be a simple random walk in Gρ starting at v1 and stopped when hitting ρ, and conditioned
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on X, let Y be an independent simple random walk on Gρ starting at v2 and stopped when hitting
LE(X). Then,

P
(
YτLE(X) �= ρ and |LE(Y)| ≥ ε8θ

√
n and LE(Y)⊆Vi)

)≥ 1− Cε2, (18)
for some C = C(δ)< ∞.

Proof. We apply Claim 3.7 to obtain the set Vi′ and take v1, v2 to be any two distinct vertices of
Vi′. Let Z be simple random walk on G[Vi] starting at v2 independent of X (note that unlike Y ,
the random walk Z does not leave Vi and does not visit ρ). By Lemma 3.2 and condition (3) of an
(ε, δ, n1.5)-good decomposition (Definition 2.1) we have that for some C = C(δ)

tG[Vi]
mix (ε/2)+ ⌊√

n
⌋≤ C log (1/ε)

√
n

θ
.

Fix a constant
A= ⌈

320 log(1/ε)/εδ4
⌉
,

so that by the last estimate, and since v2 ∈Vi′ the assertion of Lemma 3.5 implies that

Pv2

(
Y
[
0, 2A(tG[Vi]

mix (ε/2)+ ⌊√
n
⌋
)
]
⊆Vi

)
≥ Pv2

(
Y
[
0,

2AC log (1/ε)
√
n

θ

]
⊆Vi

)

≥ 1− 160ACθε8

δ6
− P

(
τρ ≤ 2AC log (1/ε)

√
n

θ

)
≥ 1− Cε2, (19)

for some C = C(δ). Thus we learn that with probability larger than 1− Cε2 we can couple Y and
Z such that Yt = Zt for all t ≤ 2A(tG[Vi]

mix (ε/2)+ ⌊√
n
⌋
). Now, since v1 ∈Vi′ the assertion of Claim

3.7 states that with probability at least 1− Cε2 we have that |LE(X)| ≥ ε
√
n and LE(X)⊆Vi ∪ {ρ}.

The minimal degree in G[Vi] is at least δ4n/40 and δn/2≤ |Vi| ≤ n, allowing us to apply Claim
3.3 A times together with the previous estimate to obtain that

Pv2 (Z[0, 2A(t
G[Vi]
mix (ε/2)+ ⌊√

n
⌋
)]∩ LE(X)=∅)≤

(
1− εδ4

160

)A
+ Cε2 ≤ (C + 1)ε2,

by our choice of A. This together with the coupling of Y and Z and (19) gives

P
(
YτLE(X) �= ρ and LE(Y)⊂Vi

)≥ 1− Cε2.
We are left with bounding |LE(Y)| from below. We will show that with large probability

Y[0, ε8θ
√
n)⊆ LE(Y). Indeed, since Ev1τρ = √

n/θε4 we have that |LE(X)| ≤ √
n/θε6 with prob-

ability at least 1− ε2. Furthermore, since v1 �= v2 and the degree is at least δn we have that
v2 �∈ LE(X) with probability at least 1− ε2 − δ−1n−1/2/θε6 ≥ 1− Cε2. Hence

P(Y[0, ε8θ
√
n)∩ LE(X) �=∅)≤ ε8θ

√
n
√
n/θε6

δn
+ Cε2 ≤ Cε2. (20)

Furthermore, since the degree is at least δn, the union bound gives that

P(Y[0, ε8θ
√
n)∩ Y[ε8θ

√
n,

√
n/θε6) �=∅)≤ ε2

δ
. (21)

Since τρ ≥ √
n/θε6 occurs with probability at most ε2, we deduce by (20), (21) that

P
(
LE(Y[0, ε8θ

√
n))⊆ LE(Y)

)≥ 1− Cε2.
for some C = C(δ)< ∞. Lastly, again by the linear minimal degree and the union bound, the
probability that there is a repeating vertex in Y[0, ε8θ

√
n) is at most ε16θ2/δ; when this does not

occur Y[0, ε8θ
√
n)= LE(Y[0, ε8θ

√
n)), concluding our proof. �
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Proof of Lemma 3.1. If θε8 ≤ 1/
√
n, the claim is trivial. We assume the converse is true, and we

take the vertices vi1 and vi2 from Lemma 3.8. We denote by ϕ and ϕ′ the paths between them in
UST(G) and UST(Gρ), respectively. As mentioned in the beginning of this subsection, we couple
UST(G) and UST(Gρ) such that UST(Gρ)∩ E(G)⊆ UST(G). We use (15) and recall that under this
coupling, if ρ /∈ ϕ′, then ϕ = ϕ′. Hence it suffices to show that

P

(
ε8θ

√
n≤ |ϕ′| ≤

√
n

θε8
and ϕ′ ⊆Vi and ρ /∈ ϕ′

)
≥ 1− Cε2,

for some C = C(δ). By Wilson’s algorithm, we can sample ϕ′ by sampling LE(X), a LERW from
vi1 to ρ and then sampling LE(Y), another LERW from vi2 to LE(X). The path between vi1 and
vi2 in LE(X)∪ LE(Y) is distributed as the path between vi1 and vi2 in UST(Gρ). By Lemma 3.8
and Claim 3.7, this path is contained in Vi and does not contain ρ with probability larger than
1− Cε2. By construction |ϕ′| ≥ |LE(Y)| hence Lemma 3.8 gives the required lower bound on |ϕ′|.
Finally, as the length of LE(X) and LE(Y) is bounded by two independent random variables with
the distribution of τρ , by Markov’s inequality

P

(
|LE(X)| + |LE(Y)| ≥

√
n

θε8

)
≤ 1− Cε4,

concluding the proof. �

4. Proof of main theorem
In [16], the following strategy was used to show that the diameter grows like

√
n. First, a small

part of the UST is sampled. This part contains roughly
√
n vertices (in [16], it is simply a path

between two vertices). Then, it is shown that this part of the UST is difficult to avoid in the sense
that random walks starting from any vertex of the graph will hit it with positive probability within
roughly

√
n steps. To formalize and quantify this we first define

ptW(v, v)= Pv(Xt = v, τW > t),
for anyW ⊂V . Next we define theW-bubble sum by

BW(G)=
∞∑
t=0

(t + 1) sup
v∈G

ptW(v, v).

If the setW is difficult to avoid, then the ptW(v, v) decays fast with t and thus BW(G) is small. It is
shown in [16] that if BW(G) is small, then the diameter of UST(G/W) cannot be too large:

Lemma 4.1. ([16, Lemma 3.13]) Let G= (V , E) be a connected graph, let D= maxv deg(v)
minv deg(v) and let W

be a non-empty vertex set. Let TW be a UST on the graph G/W. Then

P(diam(TW)≥ �)≤ C3|W|
�

,

for C3 = 138420 ·D4BW(G)3 log (192DBW(G)).

In our context, we will take W to be the union of k paths in the UST drawn according
to an (ε, δ, n1.5)-good decomposition. In the next few claims, using the results we obtained in
Section 3.3, we will show that with high probability BW(G)=O(1), after which we will prove
Theorem 1.1.

Lemma 4.2. For any δ > 0 there exists b(δ)> 0 such that for any ε ∈ (0, b) there exists C =
C(ε, δ)< ∞ and c= c(ε, δ)> 0 such that the following holds. Let G= (V , E) be a connected sim-
ple graph on n vertices with minimal degree at least δn and ε > 0. Denote by V =V1 � . . . �Vk an
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(ε, δ, n1.5)-good decomposition of G with parameter θ (as guaranteed to exist by Lemma 2.2). Then,
for every set W that satisfies |W ∩Vi| ≥ ε8θ

√
n for every i ∈ [k], we have that

∞∑
t=1

(t + 1) sup
v∈G

ptW(v, v)≤ C.

Proof. Let W be such a set and fix v ∈V . We will first show that
Pv

(
X
[
0, C

√
n
]∩W �=∅

)≥ c. (22)

for some C,c depending on ε and δ. There exists at least one component Vi in the decomposition
such that Pv(X1 ∈Vi)≥ 1/k (note that v does not necessarily belong to Vi). Let Y be a random
walk on G[Vi] starting from some u ∈Vi. By condition (4) of an (ε, δ, n1.5)-good decomposition
(Definition 2.1), the minimal degree of G[Vi] is at least δ4n/40. We apply Claim 3.3 to the graph
G[Vi], with ε8θ playing the role of ε in the claim, to obtain that for every u ∈Vi

Pu
(
Y
[
0, 2

(
tG[Vi]
mix (ε8θ)+ ⌊√

n
⌋)]∩W �=∅

)
≥ ε8θδ4

160
. (23)

By definition of an (ε, δ, n1.5)-good decomposition (Definition 2.1) we have θ ≥ ε11·22/δ . Hence by
(3), Lemma 3.2 and condition (3) of Definition 2.1 we get

tG[Vi]
mix (ε8θ)+ ⌊√

n
⌋≤ (8+ 11 · 22/δ)(tG[Vi]

mix (ε/2))+ ⌊√
n
⌋≤ B log (1/ε)

√
n

θ
, (24)

for some B= B(δ). By Lemma 3.5

P

(
X1 ∈Vi and ∃t ≤ 2(tG[Vi]

mix (ε8θ)+ ⌊√
n
⌋
) with Xt /∈Vi

)
≤ 2Bθ log (1/ε)ε9

δ2
. (25)

Hence, conditioned on X1 ∈Vi, if we set Y0 = X1 then we can couple these two walks such that
Yt = Xt+1 for all t ≤ 2(tG[Vi]

mix (ε8θ)+ ⌊√
n
⌋
) with failure probability bounded by the right-hand

side of (25). This and (23) imply that

Pv
(
X[0, 2(tG[Vi]

mix (ε8θ)+ ⌊√
n
⌋
)]∩W �=∅

)
≥ 1

k

(ε8θδ4

160
− 2Bθ log(1/ε)ε9

δ2

)
.

Plugging in (23) and (25) we obtain that the right-hand side is bounded from below by

1
k

(
ε8θδ4

160
− 2Bθ log(1/ε)ε9

δ2

)
,

which is lower bounded by some c= c(ε, δ). Now (22) follows by (24) and taking C = B log (1/ε)
θ

.
Now by (22) and the Markov property, for any positive integer m and any t ∈ [mC

√
n, (m+

1)C
√
n] we have

ptW(v, v)≤ (1− c)m

δn
,

where the denominator accounts for the last step returning to v. We conclude that

BW(G)=
∞∑
t=0

(t + 1)ptW(v, v)≤
∞∑

m=0

(m+1)C
√
n∑

t=mC
√
n

((m+ 1)C
√
n)
(1− c)m

δn

≤ C2

δ

∞∑
m=0

(m+ 1) (1− c)m ,

and this concludes our proof since the infinite sum above converges. �
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Proof of Theorem 1.1. Let ε > 0 and let G= (V , E) be a connected simple graph on n vertices
with minimal degree at least δn. By Lemma 2.2, there exists an (ε, δ, n1.5) good decomposition
of G, denoted by V =V1 � . . . �Vk. By Theorem 3.1 there exist some C′ = C′(δ) and k pairs of
distinct vertices vi1, v

i
2 ∈Vi, such that if ϕi is the random path between vi1 and v

i
2 in UST(G), then

P

(
∀i ∈ [k]:ε8θ

√
n≤ |ϕi| ≤

√
n

θε8
and ϕi ⊆Vi

)
≥ 1− C′kε2. (26)

We condition on this event and on the collection of paths (ϕi)i∈[k] and denote by W the set of
vertices of (ϕi)i∈[k]. Let H be the graph obtained from G by contracting each ϕi into a single
vertex. Then Lemma 1.5 implies that UST(H)∪ {ϕi}i∈[k] has the distribution of UST(G). Hence
diam(UST(G))≤ diam(UST(H))+ |W|. Denote also by TW the UST on G/W. By Lemma 1.8, we
have that UST(H) stochastically dominates TW := UST(G/W) (when viewed as random subsets of
E(G)) hence there is a coupling such that TW ⊆ UST(H) and since H has k− 1 vertices more than
G/W we deduce that UST(H) is a union of TW and at most k− 1 more edges. Hence the diameter
of UST(H)) is at most k− 1 times the diameter of TW . We conclude that

diam(UST(G))≤ (k− 1)diam(TW)+ |W| ,
Now, Lemma 4.2 implies that the set W has BW(G)≤ C for some C = C(ε, δ) so that

Lemma 4.1 gives

P(diam(TW)≥ �)≤ C3|W|
�

, (27)

for C3 = C3(ε, δ) and any � ≥ 1. Hence under our conditioning we have that for any A> k/θε8

P(UST(G)≥A
√
n)≤ P

(
diam(TW)≥ (A− k/θε8)

√
n/(k− 1)

)
≤ C3k(k− 1)

θε8(A− k/θε8)
,

which together with (26) concludes the proof. �
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