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Abstract

We develop shock model theory in different scenarios for the M-class of life distributions
introduced by Klar and Müller (2003). We also study the cumulative damage model of
A-Hameed and Proschan (1975) in the context of M-class and establish analogous results.
We obtain moment bounds and explore weak convergence issues within the M-class of
life distributions.
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1. Introduction

Stochastic orders and ageing properties play an important role in reliability theory, engineer-
ing, social and biological sciences, maintenance, risk analysis, biometrics, and other related
fields. A wide variety of stochastic orders have been proposed in the literature; see [24], [25],
and [28] for detailed discussions. Based on these orders, various classes of life distributions
have been introduced to model different ageing scenarios; for example, increasing failure rate
(IFR), increasing failure rate average (IFRA), new better than used (NBU), new better than used
in expectation (NBUE), and harmonic new better than used in expectation (HNBUE). See [4]
and [21] for properties and applications of these ageing concepts.

Among others, two stochastic orders have been proposed based on the Laplace transform
(LT) and the moment generating function (MGF). For convenience, we recapitulate the relevant
definitions.

Definition 1. Let X and Y be two nonnegative random variables with cumulative distribution
functions (CDFs) F and G, respectively. Then X is said to be smaller than Y in

(i) LT order, denoted by X ≤LT Y or F ≤LT G, if

E[e−tX] ≥ E[e−tY ] for all t > 0;
(ii) MGF order, denoted by X ≤MGF Y or F ≤MGF G, if E[et0Y ] is finite for some t0 > 0

and
E[etX] ≤ E[etY ] for all t > 0.

An important class of life distributions related to the LT order was introduced by Klefsjö [18].
This family, popularly known as the L-class, is defined as follows.
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Properties of M distributions 403

Definition 2. Let F be a life distribution with survival function F̄ and finite mean μ. The class
of life distributions for which∫ ∞

0
e−st F̄ (t) dt ≥ μ

1 + sμ
for all s ≥ 0

will be denoted by L. If the reverse inequality holds, we say that F belongs to the L̄-class of
distributions.

The L-class encompasses all the well-known ageing classes such as IFR, IFRA, NBU,
decreasing mean residual life (DMRL), NBUE, HNBUE, and so on. One of the desirable
properties of distributions belonging to positive ageing classes is that the residual performance of
a unit having already survived up to time t is inferior in some stochastic sense to the performance
of a new unit; see [19]. This dictum is obeyed by all the ‘usual’positive ageing classes mentioned
above but not by many of the distributions (for example, lognormal) belonging to the L-class
of life distributions. This, together with the well-known example of Klar [14], raises serious
questions about the viability of the L-property as a reasonable notion of positive ageing.

However, in spite of this ‘deficiency’, the L-class still contains the inverse Gaussian and the
Birnbaum–Saunders distributions which are typical examples of fatigue failure models; see [7].
Although very important from a practical standpoint, these distributions do not find a place in
any of the usual positive ageing classes.

Motivated by the above thinking, Klar and Müller [16] introduced a new class of life
distributions based on the MGF order; the so-called M-class distributions. This family can
be viewed as a substantially larger class of positive ageing distributions since it contains all
HNBUE distributions, does not suffer from the deficiencies of the L-class, and yet manages to
include important life distributions such as the inverse Gaussian and the Birnbaum–Saunders
distributions.

Definition 3. A nonnegative random variable X with CDF F and mean μ = ∫ ∞
0 F̄ (x) dx is

said to belong to the M-class if F ≤MGF G, where G denotes the CDF of an exponential
distribution with mean μ, i.e. X ∈ M-class if and only if

EesX =
∫ ∞

0
est dF(t) ≤ 1

1 − μs
for all 0 ≤ s <

1

μ

or, equivalently, ∫ ∞

0
est F̄ (t) dt ≤ μ

1 − μs
for all 0 ≤ s <

1

μ
.

If the reverse inequality holds, we say that X belongs to the M̄-class.
See Klar and Müller [16] for more details about the M-class of life distributions.

Li [22] proved that the M-class is closed under both convex linear combination and geometric
compounding. Zhang and Li [29] established the closure of this class under a random sum of
independent but nonidentically distributed lifetimes thereby generalizing a result of Klar and
Müller [16]. Klar [15] developed a procedure to test this exponentiality result against M
alternatives. However, shock model theory, which has been extensively developed for the usual
positive ageing classes (see [2], [3], [9], [11], and [17]) is noticeably absent for the M-class.
Further, weak convergence issues which have been dealt with in the context of the IFR, DMRL,
HNBUE, and L families (see [5], [6], [10]), and [26]) remain unexplored for the M-class.
Consequently, in this paper our objective is twofold: to systematically develop shock model
theory for this class and then to investigate weak convergence and related issues.

https://doi.org/10.1017/jpr.2018.26 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.26


404 S. GHOSH AND M. MITRA

In Section 2 we introduce the notion of GM(ḠM) families which are discrete versions of
the M(M̄)-classes and proceed to develop shock model theory in the context of stationary and
nonstationary pure-birth processes. As special cases of our results, we obtain the corresponding
theorems for the homogeneous Poisson process (HPP) and the nonhomogeneous Poisson
process (NHPP). We also investigate the case when the shocks arrive according to a general
counting process. Finally, we prove the corresponding results for the cumulative damage
model of A-Hameed and Proschan [3]. In Section 3 we obtain moment bounds and show that
the M-class distribution is closed under the formation of weak limits. We also establish the
preservation of the MGF order under weak limits. We prove that for the M-class of distributions,
weak convergence implies convergence of the moment sequences to appropriate moments of
the limit distribution. The converse question is also answered in the affirmative.

2. Shock model theory

Consider a device subjected to a sequence of shocks occurring randomly in time according to
a counting process {N(t) : t ≥ 0}. Suppose that the device has a probability P̄k of surviving the
first k shocks, k = 0, 1, 2, 3, . . . , and let T denote the time to failure. Throughout this paper,
we make the blanket assumption that the survival probabilities satisfy the following natural
condition: 1 = P̄0 ≥ P̄1 ≥ P̄2 · · · .

The probability that the device survives beyond time t is given by the survival function

H̄ (t) := P(T > t) =
∞∑

k=0

P(N(t) = k)P̄k. (1)

Shock model theory can be applied to diverse areas such as inventory control, risk analysis,
biometry, and dam theory by simply making suitable substitutions. For example, shock, device
failure, and survival until time t are substituted respectively by claim, bankruptcy, and all claims
met during [0, t] in risk analysis, by demand, shortage, and no shortage during [0, t] in inventory
control; see [3] for details. By knowing that the survival function H̄ (t) belongs to a certain
class of life distributions, it is possible to obtain sharp bounds on the survival function and other
parameters of the distribution. Such knowledge leads to greater precision in estimation results,
appropriate maintenance strategies in reliability contexts, and effective financial policies in risk
analysis.

Reliability shock models are primarily concerned with the following fundamental question:
if the sequence (P̄k)

∞
k=0 possesses a certain discrete ageing property (such as IFR, IFRA, NBU,

NBUE, and so on), does H̄ (t) inherit the corresponding continuous version of the said ageing
property under the transformation (1) in various scenarios (for example, when N(t) is HPP,
NHPP, stationary, or nonstationary pure birth process, and so on).

Esary et al. [11] answered the above question in the affirmative for the IFR, IFRA, NBU,
NBUE, and DMRL classes when N(t) is a HPP. Under some suitable assumptions on the
intensity function �(t), A-Hameed and Proschan [2] proved the same preservation result for
a NHPP. They also considered the situation where shocks arrive according to stationary and
nonstationary pure birth processes and established the preservation result for the above classes;
see [3]. Analogous results for the HNBUE and L classes can be found in [17] and [18].
Later, Abouammoh et al. [1] established such results for the new better than used in failure
rate (NBUFR) and new better than average failure rate (NBAFR) classes of life distributions.
We now proceed to derive the corresponding results in the context of the M-class of distribution.
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To this end, we formally introduce the notion of GM(ḠM) families which are discrete versions
of the M(M̄)-classes. These become highly relevant in our subsequent development of shock
model theory. Suppose that ξ is a positive integer-valued random variable and let P̄k := P(ξ >

k) denote the corresponding survival probabilities. Let 1 = Q̄0 ≥ Q̄1 ≥ Q̄2 ≥ · · · denote
the survival probabilities of the geometric distribution having finite mean μ = ∑∞

k=0P̄k =∑∞
k=0Q̄k , i.e. Q̄k = (1−1/μ)k, k = 0, 1, 2, . . . . (ξ can be thought of as the number of shocks

required to cause failure). Since the discrete counterpart of the exponential distribution is the
geometric distribution, it seems intuitively appealing to say that a discrete distribution with
survival probabilities (P̄k)

∞
k=0 is in the GM-class if and only if

∞∑
k=0

epkP(ξ = k) = ep
∞∑

k=0

epk(P̄k − P̄k+1)

≤ ep
∞∑

k=0

epk

[(
1 − 1

μ

)k

−
(

1 − 1

μ

)k+1]
for all 0 ≤ p < ln

μ

μ − 1
,

which is equivalent to

∞∑
k=0

P̄kepk ≤
∞∑

k=0

(
1 − 1

μ

)k

epk for all 0 ≤ p < ln
μ

μ − 1
.

A simple reparametrization now leads to the following formal definition.

Definition 4. A discrete life distribution with survival probabilities P̄k , k = 0, 1, . . . , and finite
mean μ = ∑∞

k=0P̄k is said to belong to the GM(ḠM) class if and only if

∞∑
k=0

P̄kp
k ≤ [≥] μ

p + (1 − p)μ
for all 1 ≤ p <

μ

μ − 1
.

We are now in a position to develop a shock model theory for pure birth processes.

2.1. Pure birth shock models

Consider a pure birth shock model in which a device is subjected to shocks governed by
a birth process with intensities λk, k = 0, 1, 2, . . . . Further, let Vk+1 denote the interarrival
time between the kth and (k + 1)th shocks. Then Vk+1, k = 0, 1, 2, . . . , are independent and
exponentially distributed with means 1/λk , i.e.

F̄k+1(t) := P(Vk+1 > t) = e−λkt for all t ≥ 0.

The survival function H̄ (t) of the device can then be written as

H̄ (t) =
∞∑

k=0

Sk(t)P̄k (2)

with
Sk(t) := P(N(t) = k), (3)

where N(t) is the pure birth process defined above. We assume that the intensities (λk)
∞
k=0 are

such that the probability of infinitely many shocks in (0, t] is 0 (i.e.
∑∞

k=0Sk(t) = 1), which is
equivalent to the condition

∑∞
k=0λ

−1
k = ∞; see [12, p. 452].

We first need to establish the following theorem which will be essential in proving the main
preservation result of this section.
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Theorem 1. Let α0 = ∑∞
k=0P̄k/λk . Then the survival function H̄ (t) in (2) belongs to the

M(M̄)-class if
∞∑

k=0

P̄kmk(s) ≤ [≥] α0

1 − α0s
for all 0 ≤ s <

1

α0
, (4)

where the mk(s) = ∫ ∞
0 estSk(t) dt are given by

m0(s) = 1

λ0 − s
, mk(s) =

(k−1∏
j=0

λj

λj − s

)
1

λk − s
for k = 1, 2, 3, . . . . (5)

Proof. For k = 0,

∫ ∞

0
estS0(t) dt =

∫ ∞

0
est−λ0t dt = 1

λ0 − s
= m0(s).

Defining Wk = V1 + V2 + · · · + Vk and Gk = F1 � F2 � F3 � · · · � Fk for k ≥ 1, where‘�’
denotes convolution, we have

∫ ∞

0
estSk(t) dt =

∫ ∞

0
estP(N(t) = k) dt

=
∫ ∞

0
est {P(Wk ≤ t) − P(Wk+1 ≤ t)} dt

=
∫ ∞

0
est Ḡk+1(t) dt −

∫ ∞

0
est Ḡk(t) dt

= 1

s

[∫ ∞

0
est dGk+1(t) −

∫ ∞

0
est dGk(t)

]

= 1

s

[ k∏
j=0

λj

λj − s
−

k−1∏
j=0

λj

λj − s

]

=
(k−1∏

j=0

λj

λj − s

)
1

λk − s

= mk(s).

Note that

∫ ∞

0
est H̄ (t) dt =

∫ ∞

0
est

( ∞∑
k=0

Sk(t)P̄k

)
dt =

∞∑
k=0

P̄k

(∫ ∞

0
estSk(t) dt

)
=

∞∑
k=0

P̄kmk(s).

Therefore, noting that α0 = ∑∞
k=0P̄k/λk = ∫ ∞

0 H̄ (t) dt , H̄ (t) will be in the M(M̄)-class if

∞∑
k=0

P̄kmk(s) ≤ [≥] α0

1 − α0s
for all 0 ≤ s <

1

α0
. �

In the next theorem we show how the discrete M property is inherited by the survival function
H̄ (t) defined in (2).
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Theorem 2. If λj ≥ [≤] λ0 for j = 1, 2, . . . and (P̄k/λk)
∞
k=0 is decreasing and in the GM(ḠM)-

class, then H̄ (t) will be in the M(M̄)-class.

Proof. According to Theorem 3.3 of [16], the M(M̄) property is scale invariant. So, without
loss of generality, we can choose λ0 = 1. Then λj ≥ [≤] λ0 implies that

mk(s) ≤ [≥] 1

(1 − s)k+1λk

for k = 0, 1, 2, . . . .

Now, using the definition of the discrete M(M̄) property,

∞∑
k=0

P̄kmk(s) ≤ [≥]
∞∑

k=0

P̄k

(
1

1 − s

)k+1 1

λk

= 1

1 − s

∞∑
k=0

(
1

1 − s

)k
P̄k

λk

≤ [≥] 1

1 − s
· α0

(1 − 1/(1 − s))α0 + 1/(1 − s)

= α0

1 − α0s
.

An application of Theorem 1 completes the proof. �
If all the birth intensities λk are equal to λ then the pure-birth process reduces to a HPP and

thus Theorem 2 leads to the following corollary.

Corollary 1. When shocks arrive according to a HPP, the survival function H̄ (t) possesses the
M(M̄) property if the sequence (P̄k)

∞
k=0 belongs to the GM(ḠM)-class of distribution.

We now consider the nonstationary pure birth shock model of [3] with shocks arrive according
to a Markov process; given that k shocks have occurred in (0, t], the probability of a shock
occurring in (t, t + �t] is λkλ(t)�t + o(�t), while the probability of more than one shock
occurring in (t, t + �t) is o(�t).

Using Remark 1.1 of [3], the survival function H̄ ∗(t) for this shock model is given by

H̄ ∗(t) =
∞∑

k=0

Sk(�(t))P̄k, (6)

where Sk(t) is as defined in (3) and �(t) = ∫ t

0 λ(x) dx.
To prove the preservation result in this more general setup, we first require the following

definition.

Definition 5. A nonnegative function g is defined on [0, ∞) with g(0) = 0 is said to be
star-shaped (anti-star-shaped) if x−1g(x) is increasing (decreasing) on (0, ∞).

Lemma 1. We say that H̄ ∗(t) = H̄ (�(t)) belongs to the M(M̄)-class if H̄ ∈ M(M̄) and �(t)

is star-shaped (anti-star-shaped) for t ≥ 0 with �(0) = 0.

Proof. The proof follows similar arguments to those of Lemma 4.2 of [17]. �
Theorem 3. Let α0 = ∑∞

k=0P̄k/λk and mk(s) be defined as in (5). Then H̄ ∗(t) defined by (6)
belongs to the M(M̄) class if �(t) is star-shaped (anti-star-shaped) and (4) holds.
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Proof. Let H̄ (t) = ∑∞
k=0Sk(t)P̄k with Sk(t) defined as in (3). Since (4) holds, Theorem 1

implies that H̄ (t) ∈ M-class. Now the result follows from Lemma 1 by simply observing that
H̄ ∗(t) = H̄ (�(t)). The proof for the dual class is analogous. �

We are now in a position to prove the main theorem.

Theorem 4. Let α0 = ∑∞
k=0P̄k/λk and mk(s) be defined as in (5). Further, assume that

λj ≥ [≤] λ0 for j = 1, 2, . . . and (P̄k/λk)
∞
k=0 is decreasing and in the GM(ḠM)-class. Then

H̄ (t) defined by (6) belongs to the M(M̄)-class if �(t) is star-shaped (anti-star-shaped).

Proof. From the proof of Theorem 2, it follows that (4) holds. An application of Theorem 3
now completes the proof. �

Here, if all the birth intensities λk are equal to λ then the counting process reduces to an
NHPP and in this case we have the following result as a consequence of Theorem 4.

Corollary 2. When shocks arrive according to a NHPP, the survival function H̄ (t) possesses
the M(M̄) property if (P̄k)

∞
k=0 belongs to the GM(ḠM)-class and �(t) is star-shaped (anti-

star-shaped).

For a further illustration of the above result, consider the delayed Poisson process model
of [17]. Here every shock is delayed by a random amount of time before reaching the device.
Let K(x) be the delay distribution function. This delay can, for instance, be thought of as a
period of incubation in biometry. Now, the probability of k shocks in (0, t] is given by

Pk(t) = exp

(
−λ

∫ t

0
K(x) dx

) {−λ
∫ t

0 K(x) dx}k
k! ;

see [17]. Thus, the intensity function of this nonhomogeneous process is �(t) = λ
∫ t

0 K(x) dx.
As K is increasing, by using a result of Hardy et al. [13, Section 6.3] and arguing as in [17],
we conclude that � is star-shaped. Therefore, from Corollary 2, it follows that the survival
function H̄ (t) with this �(t) has the M property if (P̄k)

∞
k=0 belongs to the GM-class.

2.2. A more general shock model

Here we consider a more general shock model where a counting process {N(t) : t ≥ 0}
governs the arrival of the shocks. Let Uk+1 be the interarrival time between the kth and
(k + 1)th shocks, and Ak := E(Uk+1) for k = 0, 1, 2, . . . . The survival function is given by

S̄(t) =
∞∑

k=0

ak(t)P̄k, (7)

where ak(t) := P(N(t) = k). Such a model has received much attention; see [3] for the NBU
class, [9] for the NBUE class, [17] for the HNBUE class, and [27] for the classes NBUFR,
NBAFR, new better than used in second order, and new better than used in convex ordering.
First, we introduce the following lemma.

Lemma 2. Suppose that the interarrival times Uk, k = 1, 2, 3, . . . , are independent and
belong to the M class. If S̄(t) is the survival function defined in (7) and H̄ (t) is the survival
function defined in (2) with λk = 1/Ak , then

∫ ∞

0
est S̄(t) dt ≤

∫ ∞

0
est H̄ (t) dt.
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Proof. Our approach here is similar to that of Klefsjö [17]. The first part of the inequality
can be written as

∫ ∞

0
est S̄(t) dt =

∫ ∞

0
est

( ∞∑
j=0

( j∑
k=0

ak(t)

)
(P̄j − P̄j+1)

)
dt

=
∞∑

j=0

{∫ ∞

0
estP

(j+1∑
k=1

Uk > t

)
dt

}
(P̄j − P̄j+1). (8)

Since Uk, k = 1, 2, 3, . . . , belong to the M-class and P(Vk > t) = exp(−t/Ak−1),

k = 1, 2, 3, . . . , we have
∫ ∞

0
estP(Uk > t) dt ≤

∫ ∞

0
estP(Vk > t) dt for k = 1, 2, 3, . . . .

Now, using Theorem 2.1 of [29], we obtain

∫ ∞

0
estP

(j+1∑
k=1

Uk > t

)
dt ≤

∫ ∞

0
estP

(j+1∑
k=1

Vk > t

)
dt. (9)

Now using (9) in (8), we have

∫ ∞

0
est S̄(t) dt ≤

∞∑
j=0

{∫ ∞

0
estP

(j+1∑
k=1

Vk > t

)
dt

}
(P̄j − P̄j+1) =

∫ ∞

0
est H̄ (t) dt. �

The corresponding result for the dual class follows by reversing the direction of the ineq-
ualities in the above proof. The next theorem is a consequence of the above lemma and
Theorem 2.

Theorem 5. Suppose that the interarrival times Uk, k = 1, 2, 3, . . . , are independent with
distributions in M(M̄) and E(Uk+1) = Ak, k = 0, 1, 2, . . . . If Ak ≤ [≥] A0, k = 1, 2, 3, . . . ,
and (P̄kAk)

∞
k=0 is decreasing and belongs to the GM(ḠM)-class, then the survival function S̄(t)

belongs to M(M̄)-class.

2.3. A cumulative damage shock model

Suppose that a device is exposed to shocks causing random damages which accumulate
additively. When the accumulated damage exceeds a critical threshold, the device fails.
If there is significant individual variation in the ability to withstand shocks, this threshold
must, of necessity, be regarded as a random variable having a CDF F with F(0) = 0. If the
damages ξ1, ξ2, ξ3, . . . from successive shocks are independent with CDFs K1, K2, K3, . . . and
are further independent of the threshold, the survival probabilities are given by

P̄0 = 1, P̄k =
∫ ∞

0
K1 � K2 � · · · � Kk(x) dF(x) for k = 1, 2, 3, . . . .

See [3], [11], [17], and [18] for earlier work on the cumulative damage model. Esary et al.
[11] proved that the survival probabilities have the discrete NBU property for all choices of life
distributions (Kj )

∞
j=1 with Kj(x) decreasing in j for all x if and only if F is NBU. A-Hameed
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and Proschan [3] and Klefsjö [17] considered a more special choice of the distributions (Kj )
∞
j=1;

namely,

Kj(x) =
∫ x

0

bcj tcj −1

�(cj )
e−bt dt for b, cj > 0.

Then the survival probabilities are given by

P̄k = b

∫ ∞

0
e−bx (bx)Ck−1

�(Ck)
F̄ (x) dx for k = 1, 2, 3 . . .

with Ck = ∑k
j=1cj . In particular, they proved that if Ck = k and F̄ is NBUE (HNBUE), then

the survival probabilities (P̄k)
∞
k=0 have the discrete NBUE (HNBUE) properties. Later, Klefsjö

[18] considered the special case where the random damages are exponentially distributed with
mean 1/s and showed that the survival probabilities (P̄k)

∞
k=0 enjoy the discrete L property if F

belongs to the L-class.
We now establish the appropriate theorem in the context of the M-class of distributions.

Theorem 6. If Ck = k then the survival probabilities (P̄k)
∞
k=0 belong to the GM(ḠM)-class if

and only if F̄ belongs to the M(M̄)-class.

Proof. Suppose that F̄ ∈ M-class. In order to show that (P̄k)
∞
k=0 ∈ GM, we need to verify

that ∞∑
k=0

P̄kp
k ≤ μ

p + μ(1 − p)
for all 1 ≤ p <

μ

μ − 1
(10)

holds, where

μ =
∞∑

k=0

P̄k

= 1 +
∞∑

k=1

P̄k

= 1 +
∞∑

k=1

{
bk

∫ ∞

0
e−bx xk−1

(k − 1)! F̄ (x) dx

}

= 1 + b

∫ ∞

0

{
F̄ (x)e−bx

∞∑
k=1

(bx)k−1

(k − 1)!
}

dx

= 1 + b

∫ ∞

0
F̄ (x) dx

= 1 + bμF . (11)

Now,
∞∑

k=0

P̄kp
k = 1 +

∞∑
k=1

pk

{
bk

∫ ∞

0
e−bx xk−1

(k − 1)! F̄ (x) dx

}

= 1 +
∞∑

k=0

bpk+1
{∫ ∞

0
e−bx (bx)k

k! F̄ (x) dx

}
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= 1 +
∫ ∞

0
bpe−bxF̄ (x)

{ ∞∑
k=0

(pbx)k

k!
}

dx

= 1 + bp

∫ ∞

0
eb(p−1)xF̄ (x) dx. (12)

From the M property of F̄ , we have∫ ∞

0
eb(p−1)xF̄ (x) dx ≤ μF

1 − b(p − 1)μF

for 1 ≤ p < 1 + 1

bμF

.

This together with (12) and the fact that μ = 1 + bμF implies that (10) holds.
The converse follows easily from (11) and (12) and the definitions of the M and GM classes

via the simple reparametrization s = b(p − 1). The proof for the dual class is analogous. �

3. Weak convergence within the M class

Let C be a particular ageing class. In the case of several monotonic ageing classes, it is
known that if Fn ∈ C and Fn → F in law, where F is continuous, then F ∈ C. Basu
and Simons [6] first established this result in the context of the IFR class. Later, Basu and
Bhattacharjee [5] and Chaudhuri [10] proved the same result for the HNBUE and L-classes,
respectively. The same exercise was carried out for the DMRL class by Nanda and Paul [26].
We complete the investigation by settling the question for the M-class.

We first obtain bounds for the moments of an M distribution in terms of the mean. This
will be useful in establishing the main result of this section. Theorem 5.1 of [16] yields the
following explicit reliability bound. If F ∈ M with mean μ then

F̄ (t) ≤ t

μ
exp

(
1 − t

μ

)
for all t > μ. (13)

We use this result to obtain an appropriate moment bound.

Theorem 7. Let F ∈ M-class with mean μ. Then, for r > 0,

μr := E(Xr) ≤ μr(1 + er�(r + 1)),

where e is Euler’s number.

Proof. For r > 0, by (13),

μr ≤ r

[∫ μ

0
xr−1 dx +

∫ ∞

μ

xr−1F̄ (x) dx

]

≤
[
μr + r

μ

∫ ∞

μ

xre(1−x/μ) dx

]

= μr(1 + er�(r + 1)). �
The main result of this section is contained in the following theorem.

Theorem 8. Let {Fn}∞n=1 be a sequence of life distributions belonging to the M-class with
mean μn, and also be the probability law obeyed by the sequence of random variables {Xn}∞n=1.
Suppose that

(i) Fn → F in law, where F is a continuous distribution function;

(ii) the sequence {μn}∞n=1 is bounded.
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Then F ∈ M-class. Further, for every r > 0,

lim
n→∞

∫ ∞

0
xr dFn(x) =

∫ ∞

0
xr dF(x). (14)

To prove the above theorem, we use Theorem 3 of [20] which we state below for convenience.

Theorem 9. (Kozakiewicz [20, Theorem 3].) Let {Fn(x)} be a sequence of distribution func-
tions and let {φn(t)} be the corresponding sequence of MGFs which are all assumed to exist for
|t | < α, where α > 0. For any fixed nonnegative x, let M(x) be the least upper bound of the
sequence {Fn(−x) + 1 − Fn(x)}. The necessary and sufficient conditions for the convergence
of {φn(t)} in the interval |t | < α are

lim
x→∞ M(x)e|t |x = 0, |t | < α, (15)

and the sequence {Fn(x)} converges to a distribution function F(x) at each point of continuity
of F(x).

Further, the MGF of F(x) exists for |t | < α and is equal in this interval to the limit of the
sequence {φn(t)}.

In order to use Theorem 9, we essentially need to verify that condition (15) holds for a
sequence of M distributions with bounded means. To this end, we require the following two
lemmas.

Lemma 3. The following conditions are equivalent:

(i) limx→∞ M(x)e|t |x = 0, |t | < α;
(ii) lim supx→∞ ln M(x)/x ≤ −α.

Proof. (i) This statement implies that for each fixed t � |t | < α, there exists x0 �
M(x)e|t |x < 1 for all x > x0. This, in turn, implies that ln M(x)/x ≤ −|t | for all x > x0
further implying that ln M(x)/x ≤ −α for all x > x0, letting |t | → α. Again, this implies
lim supx→∞ ln M(x)/x ≤ −α.

(ii) This statement implies that for all sufficiently large x, we have M(x) ≤ e−αx , so that for
|t | < α, 0 ≤ M(x)e|t |x ≤ e|t |xe−αx = e−(α−|t |)x . An application of the squeeze lemma now
completes the proof. �
Lemma 4. Let {Fn}∞n=1 be a sequence of M distributions with mean μn. Assume that the
sequence {μn}∞n=1 is bounded. Then

lim sup
x→∞

ln M(x)

x
≤ −α.

Proof. For the sequence of life distributions {Fn}∞n=1 belonging to the M class,

M(x) = sup
n≥1

F̄n(x).

By Theorem 3.1 of [16], we have, for all n ≥ 1,

− lim sup
x→∞

ln F̄n(x)

x
≥ 1

μn

.
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Supposing that μn ≤ B for all n ≥ 1, we obtain

lim sup
x→∞

ln F̄n(x)

x
≤ − 1

μn

≤ −α1, (16)

where α1 = 1/B ≤ 1/μn for all n ≥ 1. Note that

sup
n≥1

lim sup
x→∞

ln F̄n(x)

x
= lim sup

x→∞
ln M(x)

x
. (17)

Now a simple use of (16) in (17) establishes the lemma. �
Proof of Theorem 8. Assumption (i) in conjunction with Lemmas 3 and 4 imply that the

conditions of Theorem 9 (Theorem 3 of [20]) hold. Thus,∫ ∞

0
etx dFn(x) →

∫ ∞

0
etx dF(x) as n → ∞. (18)

Now, by Fatou’s lemma, ∫ ∞

0
F̄ (x) dx ≤ B < ∞.

By Theorem 7, EX2
n ≤ μ2

n(1 + 4e) for all n ≥ 1 and so, for any c > 0,

EX2
n =

∫
X2

n dP ≥ c

∫
{Xn≥c}

Xn dP,

which implies that
∫

{Xn≥c}
Xn dP ≤ EX2

n

c
≤ μ2

n(1 + 4e)

c
≤ B2(1 + 4e)

c
,

which, in turn, implies that {Xn}∞n=1 is uniformly integrable. From a theorem of [8, p. 348], we
have

lim
n→∞

∫ ∞

0
x dFn(x) =

∫ ∞

0
x dF(x). (19)

Thus, as Fn ∈ M, ∫ ∞

0
etx dFn(x) ≤ 1

1 − μnt
, 0 ≤ t <

1

μn

.

Taking limits as n → ∞, from (18) and (19), we have,
∫ ∞

0
etx dF(x) ≤ 1

1 − μt
, 0 ≤ t <

1

μ
.

This completes the proof of the first part of the theorem.
To prove (14) note that E[Xr+1

n ] ≤ μr+1
n [1 + e(r + 1)�(r + 2)] and {μn} is bounded. So,

supn E[Xr+1
n ] < ∞. Therefore, by another result of [8, p. 348], E[Xr ] < ∞ and E[Xr

n] →
E[Xr ] as n → ∞. �
Lemma 5. A distribution function which belongs to the M-class is uniquely determined by its
moment sequence.

Proof. For any distribution belonging to the M-class, by Theorem 7, it follows easily that
the radius of convergence of the power series

∑∞
r=0(u

r/r!)E[Xr ] is 1/μ and, hence, nonnull.
The lemma now follows from a result of Loève [23, p. 217]. �
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In the previous theorem we showed that under certain conditions, weak convergence of a
sequence of M distributions implies convergence of moments of the sequence of the distribution
functions to the corresponding moments of the limiting distribution. The following provides
an affirmative answer to the converse question.

Theorem 10. Suppose {Fn} is a sequence of distribution functions belonging to the M-class
and let F be an M distribution such that, for all integers r ≥ 1,

lim
n→∞

∫ ∞

0
xr dFn(x) =

∫ ∞

0
xr dF(x). (20)

Then Fn → F in law.

Proof. Lemma 5 together with (20) imply that the limiting distribution of every weakly
convergent subsequence of {Fn} happens to be necessarily F , thereby completing the proof.

�
Remark 1. It is interesting to note that MGF order is preserved under the formation of weak
limits. Suppose that {Fn} and {Gn} are two sequences of life distribution functions such that
Fn → F and Gn → G in law. Further, assume that Fn ≤MGF Gn for each n ≥ 1 and both
{Fn} and {Gn} satisfy any one of the conditions of Lemma 3. Then F ≤MGF G.
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