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Abstract
This paper investigates the issue of stochastic comparison of multi-active redundancies at the component level
versus the system level. Based on the assumption that all components are statistically dependent, in the case of
complete matching and nonmatching spares, we present some interesting comparison results in the sense of the
hazard rate, reversed hazard rate and likelihood ratio orders, respectively. And we also obtain two comparison
results between relative agings of resulting systems at the component level and the system level. Several numerical
examples are provided to illustrate the theoretical results.

1. Introduction

In the field of reliability research, redundancy allocation is widely used to improve the reliability of a
system. In general, there is a important type of redundancy known as active redundancy commonly used
in reliability engineering and system security. Active redundancy means that spares have been attached
in parallel to components of system and they start functioning at the same time as original components.
The research of this topic is mainly divided into two levels: active redundancy at the component level
(ARCL) and at the system level (ARSL). In the former case, the main problem is where to allocate
active spares in a system to improve the reliability; see, for example, Boland et al. [6], Li and Ding
[25], Li et al. [27], Zhao et al. [52], Zhuang and Li [54], You et al. [48], Fang and Li [12,13], Chen
et al. [8], Yan and Luo [43], You and Li [47], Zhang [49], Ling et al. [28], Yan et al. [45], Kim [21],
Navarro et al. [36] and Zhang et al. [51]. In the later case, Barlow and Proschan [1] first proposed a well-
known BP principle that ARCL is more reliable ARSL in the sense of usual stochastic ordering for the
coherent system with independent components. Over the past few decades, more and more researchers
have been digging into the related problems, including whether the BP principle still holds for other
stronger stochastic orders, and what effect of dependence among components on BP principle. This
study can be divided into three aspects: (1) complete matching, in which all spares and components are
identical; (2) matching, in which only the coupled spares and the original components are identical and
(3) nonmatching, none of coupled spares has the same distribution as the original components. Based
on the assumption that among original components, among spares, and spares and original components
are all independent, for complete matching, Boland and El-Neweihi [5], Singh and Singh [41] and Gupta
and Nanda [15] have extended the BP principle to the (reversed) hazard rate order and the likelihood
ratio order. For matching case, Misra et al. [30], Hazra and Nanda [17] and the references therein devoted
to enhance the BP principle to the (reversed) hazard rate order, the likelihood ratio order, and some
shifted stochastic orders. However, due to the complexity of distribution theory, there are few results
for the case of nonmatching. Misra et al. [30] established the BP principle in the sense of the reversed
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hazard rate order for coherent system with independent identical distributed (i.i.d.) components. Hazra
and Nanda [17] and Kuiti et al. [24] showed that the BP principle holds in the reversed hazard rate order
and the stochastic precedence order for 𝑘-out-of-𝑛 system with i.i.d. components.

In the past years, under the assumptions that spares are dependent identical distributed (d.i.d.) and
independent of original components, some scholars have devoted to study the BP principles of systems
with d.i.d. original components. For example, in the case of matching and nonmatching, Gupta and
Kumar [14] firstly gave some sufficient or necessary conditions to compare ARCL and ARSL in sense
of the likelihood ratio, (reversed) hazard rate, and usual stochastic orders for a general coherent system.
Furthermore, for the case of complete matching and nonmatching, based on the framework of possibly
heterogeneous multiple redundancy hypothesis, Zhang et al. [50] further employed various stochastic
orders to study this topic. Recently, based on the work of Zhang et al. [50], for the case of matching
and nonmatching, Yan and Wang [44] extended the BP principle from d.i.d. original components to
dependent nonidentical distributed (d.n.i.d.) components. For more research of the BP principle, refer
to Boland and El-Neweihi [5], Brito et al. [7], Nanda and Kamal [31], Zhao et al. [53], Da and Ding [9]
and Kuiti et al. [23], among others.

The above results obtained in the literature are carried out under the assumption that spares and
original components are independent. However, in practice, affected by the common stress level, all
spares and components in a resulting system by ARCL or ARSL may be dependent. Recent years, the
research of this issue are lot of attention. Kotz et al. [22] studied bounds for the mean lifetime of the
system of a original component and one active redundancy component having positively or negatively
dependent lifetimes. For series and parallel systems with one redundancy component, Belzunce et al.
[3,4] investigated the optimal allocation policy under the assumption that the redundancy component
and the original component are dependent. Jeddi and Doostparast [19] employed to study the optimal
allocation policy in engineering systems with dependent component lifetime. Recently, Torrado et al. [42]
studies the effect of redundancies on the reliability of coherent systems formed by modules, including
active redundancy at components’ level versus redundancies at modules’ level. In particularly, under
the assumption of dependent components within the modules and dependent modules, they compare
the reliability functions of systems formed by possibly dependent modules consisting of heterogeneous
components with redundancies at components’ or modules’ levels.

In addition, researcher often come across the following question: how to measure if one system is
aging faster than other systems as time progress, like different brands of mobile phones and different
engines made by different companies, the most effective way is relative aging. Relative aging includes
aging faster orders in the hazard and reversed hazard rates. Kalashnikov and Rachev [20] provided the
notion of aging faster orders in the hazard rate, based on the monotonicity of two hazard rate ratios,
and Sengupta and Deshpande [39] further proposed the notion of aging faster orders in the reversed
hazard rate, based on the monotonicity of two reversed hazard rate ratios. Afterward, Belzunce et al.
[2], Misra and Francis [29], Li and Li [26], Ding et al. [11] and Ding and Zhang [10] made further
efforts to enrich those existing results in the literature. Few articles were considered relative agings of
resulting systems at the component level and the system level. Hazra and Misra [16] not only provided
some sufficient conditions for one coherent system to dominate another and a used coherent system
and a coherent system made out of used components are compared with respect to aging faster orders,
but also, under the assumption that original and redundant components are independent, investigated
whether ARCL is more effective than ARSL with respect to aging faster orders in the case of complete
matching, however, this work does not take into account the dependence between components and
spares.

To sum up, the work of Zhang et al. [50], Hazra and Misra [16] and Yan and Wang [44] were derived
within the context of independence between spares and original components. As a follow-up, the current
article further investigates the case that the vector of the spare lifetimes and the vector of the original
component lifetimes are dependent. In this framework, we consider the issue of stochastic comparison
of multi-active complete matching and nonmatching spares redundancies at the component level versus
the system level, respectively. In particularly, we present some interesting comparison results in the
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sense of various stochastic orders, and we also obtain two comparison results between relative agings
of resulting systems at the component level and the system level, and thus we effectively extended the
corresponding conclusions in Zhang et al. [50] and Hazra and Misra [16] and further efforts to enrich
those existing results in the literature.

The rest of this paper is organized as follows. Section 2 introduces some preliminaries. Section 3
gives sufficient conditions under which the lifetimes of ARCL and ARSL can be compared by means of
some stochastic orders and some numerical examples are provided to illustrate the theoretical results.
In Section 4, according to editor suggestion, we present an application in engineering. Finally, Section
5 concludes this study. According to the reviewer’s suggestion, all proofs are delegated to the Appendix
for ease of presentation.

2. Preliminaries

Throughout the article, increasing and decreasing mean nondecreasing and nonincreasing, respectively.
Furthermore, the notion “𝑎 sgn

= 𝑏” means that “ 𝑎” and “𝑏” have the same sign, “=st” means equality
in distribution, and the symbols “∨” and “∧” mean the maximum and the minimum, respectively.
It is also assumed that random variables mentioned in this paper are nonnegative and absolutely
continuous.

Before proceeding to the main results, let us first recall concepts of stochastic orders, relative aging,
copula, distorted distribution and the notion of coherent system, which will be used in the sequel.

For a nonnegative random variable 𝑋 , denote the distribution function, the survival function, the
density function, the hazard rate function and the reversed hazard rate function of 𝑋 by 𝐹𝑋 , �̄�𝑋 , 𝑓𝑋 , ℎ𝑋
and ℎ̃𝑋 , respectively.

Definition 1. For two random variables 𝑋 and 𝑌 , 𝑋 is said to be smaller than 𝑌 in the

(i) usual stochastic order (denoted by 𝑋 ≤st 𝑌 ) if �̄�𝑋 (𝑡) ≤ �̄�𝑌 (𝑡) for all 𝑡 ∈ (0,∞);
(ii) hazard rate order (denoted by 𝑋 ≤hr 𝑌 ) if �̄�𝑌 (𝑡)/�̄�𝑋 (𝑡) is increasing in 𝑡 ∈ (0,∞) or, equivalently,

if ℎ𝑋 (𝑡) ≥ ℎ𝑌 (𝑡);
(iii) reversed hazard rate order (denoted by 𝑋 ≤rh 𝑌 ) if 𝐹𝑌 (𝑡)/𝐹𝑋 (𝑡) is increasing in 𝑡 ∈ (0,∞) or,

equivalently, ℎ̃𝑋 (𝑡) ≤ ℎ̃𝑌 (𝑡);
(iv) likelihood ratio order (denoted by 𝑋 ≤lr 𝑌 ) if 𝑓𝑌 (𝑡)/ 𝑓𝑋 (𝑡) is increasing in 𝑡 ∈ (0,∞).

Definition 2. For two random variables 𝑋 and 𝑌 , 𝑋 is said to be aging faster than 𝑌 in

(i) the hazard rate (denoted by 𝑋 ≺𝑐 𝑌 ) if ℎ𝑋 (𝑡)/ℎ𝑌 (𝑡) is increasing on (0, +∞) [20];
(ii) the reversed hazard rate (denoted by 𝑋 ≺𝑏 𝑌 ) if ℎ̃𝑌 (𝑡)/ℎ̃𝑋 (𝑡) is increasing on (0, +∞) [38].

The following implications are well known (see Theorem 1.C.4. in [40])

(i) 𝑋 ≤lr 𝑌 ⇒ 𝑋 ≤hr (≤rh)𝑌 ⇒ 𝑋 ≤st 𝑌 ;
(ii) 𝑋 ≺𝑐 𝑌 + 𝑋 ≥hr 𝑌 ⇒ 𝑋 ≥lr 𝑌 ;
(iii) 𝑋 ≺𝑏 𝑌 + 𝑋 ≤rh 𝑌 ⇒ 𝑋 ≤lr 𝑌 .

For more details of stochastic orders and their applications, refer to Shaked and Shantikumar [40].

Definition 3. A copula is a function 𝐶 : 𝐼𝑛 → 𝐼 with the following properties:

(i) 𝐶 (𝑣1, 𝑣2 . . . 𝑣𝑛) is increasing in 𝑣𝑖 , 𝑖 = 1, 2, . . . , 𝑛,
(ii) 𝐶 (1, . . . , 1, 𝑣𝑖 , 1, . . . 1) = 𝑣𝑖 , for all 𝑖 = 1, 2, . . . , 𝑛,
(iii) 𝐶 (0, . . . , 0) = 0 and 𝐶 (1, . . . , 1) = 1, and
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(iv) for any 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑦1, 𝑦2, . . . , 𝑦𝑛, if 𝑥 𝑗 ≤ 𝑦 𝑗 , 𝑗 = 1, 2, . . . , 𝑛, then

2∑
𝑖1=1

2∑
𝑖2=1

· · ·

2∑
𝑖𝑛=1

(−1)𝑖1+𝑖2+···+𝑖𝑛𝐶 (𝑣1𝑖1 , 𝑢2𝑖2 , . . . , 𝑣𝑛𝑖𝑛 ),

where 𝑣 𝑗1 = 𝑥 𝑗 , 𝑣 𝑗2 = 𝑦 𝑗 , 𝑗 = 1, 2, . . . , 𝑛.

The following Lemma is very useful in sequel.

Lemma 1 ([37. )] Let 𝐶 : 𝐼𝑛 → 𝐼 be a copula. Then, for any 𝑣 𝑗 ∈ [0, 1], 𝑗 = 1, 2, . . . , 𝑛, the
partial derivative 𝜕𝐶 (𝑣1, 𝑣2, . . . , 𝑣𝑛)/𝜕𝑣𝑖 exits for almost all 𝑣𝑖 (𝑖 ≠ 𝑗 = 1, 2, . . . , 𝑛), and for such
𝑣𝑖 (𝑖 = 1, 2, . . . , 𝑛),

0 ≤
𝜕𝐶 (𝑣1, 𝑣2, . . . , 𝑣𝑛)

𝜕𝑣𝑖
≤ 1. (1)

In particular, when 𝑣1 = 𝑣2 = · · · = 𝑣𝑛 = 𝑣, denote 𝛽𝑛 (𝑣) = 𝐶 (𝑣, 𝑣, . . . , 𝑣), for all 𝑣 ∈ (0, 1). For
more details of copula, refer to Nelsen [37].

A system is called a coherent system, if the system structure function is increasing in each component
and all components in the system are relevant. In other words, an improvement of a component cannot
lead to a deterioration in the performance of the system.

For a general coherent system with 𝑛 dependent heterogeneous components having lifetimes
𝑋1, . . . , 𝑋𝑛, let X = (𝑋1, . . . , 𝑋𝑛), and denote 𝐹, �̄� and 𝑓 the distribution function, the survival function
and the density function of 𝑋𝑖 (𝑖 = 1, 2, . . . , 𝑛), respectively. Then, the joint distribution function of X
can be expressed as

𝐻 (𝑥1, . . . , 𝑥𝑛) = 𝑃(𝑋1 ≤ 𝑥1, . . . , 𝑋𝑛 ≤ 𝑥𝑛) = 𝐶 (𝐹 (𝑥1), . . . , 𝐹 (𝑥𝑛)), (2)

where 𝐶 is a copula of 𝑋1, . . . , 𝑋𝑛. Denote 𝜏(X) the lifetime of the coherent system. Then, according
to Navarro et al. [34], the survival function of 𝜏(X) is

�̄�𝜏 (X) (𝑥) = 𝑃(𝜏(X) > 𝑥) = 𝑞(�̄� (𝑥)), 𝑥 ≥ 0, (3)

where 𝑞 : [0, 1] ↦→ [0, 1] is the distortion function of the system, which is increasing continuous and
satisfies 𝑞(0) = 0, and 𝑞(1) = 1, and depends only on the structure function of the system and the
survival copula of components.

For more details about distorted distribution, refer to Navarro and Durante [32] and Navarro et al.
[32].

3. Main results

3.1. System description

Consider a coherent system SO composed of 𝑛 d.i.d. components C1, C2, . . . , C𝑛. Denote 𝑋𝑖 the ran-
dom lifetime of C𝑖 (𝑖 = 1, 2, . . . , 𝑛), and 𝐹1 the 𝑋 ′

𝑖 s common distribution function. For 𝑚𝑛 dependent
spares 𝑅11, 𝑅12, . . . , 𝑅1𝑛; 𝑅21, 𝑅22, . . . , 𝑅2𝑛; . . . ; 𝑅𝑚1, 𝑅𝑚2, . . . , 𝑅𝑚𝑛, denote 𝑌 𝑗1, 𝑌 𝑗2, . . . , 𝑌 𝑗𝑛 the ran-
dom lifetimes of spares 𝑅 𝑗1, 𝑅 𝑗2, . . . , 𝑅 𝑗𝑛, respectively ( 𝑗 = 1, 2, . . . , 𝑚). Suppose that𝑌 𝑗1, 𝑌 𝑗2, . . . , 𝑌 𝑗𝑛

have the common distribution function 𝐹𝑗+1 ( 𝑗 = 1, 2, . . . , 𝑚). To improve the reliability of the coher-
ent system, we can implement ARCL or ARSL for the system. For ARCL, we first allocate the spares
𝑅1𝑖 , 𝑅2𝑖 , . . . , 𝑅𝑚𝑖 to component C𝑖 by active redundancy and form a subsystem with lifetime

SP𝑖 = 𝑋𝑖 ∨ 𝑌1𝑖 ∨ · · · ∨ 𝑌𝑚𝑖 , 𝑖 = 1, 2, . . . , 𝑛.
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And then SP1, SP2, . . . , SP𝑛 can result in a new system having the same structure with the original
system. Suppose that the lifetime of the coherent system SO is 𝜏(𝑋1, 𝑋2, . . . , 𝑋𝑛), and thus the lifetime
of the resulting system at ARCL can be expressed as

𝜏ARCL = 𝜏(SP1, SP2, . . . , SP𝑛)

= 𝜏(𝑋1 ∨ 𝑌11 ∨ · · · ∨ 𝑌𝑚1, 𝑋2 ∨ 𝑌12 ∨ · · · ∨ 𝑌𝑚2, . . . , 𝑋𝑛 ∨ 𝑌1𝑛 ∨ · · · ∨ 𝑌𝑚𝑛). (4)

For ARSL, by copying the original coherent system structure, for any 𝑗 ( 𝑗 = 1, 2, . . . , 𝑚),
we can obtain a coherent subsystem SQ 𝑗 composed of spares 𝑅 𝑗1, 𝑅 𝑗2, . . . , 𝑅 𝑗𝑛, and further form
the parallel system of SO, SQ1, SQ2, . . . , SQ𝑚. Consider that the lifetime of the system SQ 𝑗 is
𝜏(𝑌 𝑗1, 𝑌 𝑗2, . . . , 𝑌 𝑗𝑛) ( 𝑗 = 1, 2, . . . , 𝑚), then the lifetime of the resulting system at ARSL can be written as

𝜏ARSL = ∨{𝜏(𝑋1, 𝑋2, . . . , 𝑋𝑛), 𝜏(𝑌11, 𝑌12, . . . , 𝑌1𝑛), . . . , 𝜏(𝑌𝑚1, 𝑌𝑚2, . . . , 𝑌𝑚𝑛)}. (5)

Affected by the common stress level, all spares and components in a resulting system by
ARCL or ARSL may be dependent. For simplicity, throughout the paper, we always suppose that
SP1, SP2, . . . , SP𝑛; 𝑌 𝑗1, 𝑌 𝑗2, . . . , 𝑌 𝑗𝑛 ( 𝑗 = 1, 2, . . . , 𝑚) and 𝑋1, 𝑋2, . . . , 𝑋𝑛 have the common copula 𝐶 ′,
and 𝑋𝑖 , 𝑌1𝑖 , 𝑌2𝑖 , . . . , 𝑌𝑚𝑖 (𝑖 = 1, 2, . . . , 𝑛) and SO, SQ1, SQ2, . . . , SQ𝑚 also have the common copula 𝐶.
Then, in the case of noncomplete matching, the survival functions of ARCL and ARSL can be expressed
as

�̄�ARCL (𝑢1, 𝑢2, . . . , 𝑢𝑚+1) = 𝑃(𝜏ARCL > 𝑡) = 𝑞(1 − 𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑚+1))

and

�̄�ARSL (𝑢1, 𝑢2, . . . , 𝑢𝑚+1)

= 𝑃(𝜏ARSL > 𝑡) = 1 − 𝐶 (1 − 𝑞(1 − 𝑢1), 1 − 𝑞(1 − 𝑢2), . . . , 1 − 𝑞(1 − 𝑢𝑚+1)),

respectively. Where the distortion function 𝑞 depend on the system structure and copula 𝐶 ′. In the
complete matching case, note that 𝑢1 = 𝑢2 = · · · = 𝑢𝑚+1 = 𝑢, hence the survival functions of ARCL and
ARSL are given by

�̄�ARCL(𝑢) = 𝑞(1 − 𝛽𝑚+1 (𝑢))

and
�̄�ARSL (𝑢) = 1 − 𝛽𝑚+1(1 − 𝑞(1 − 𝑢)),

respectively.
From convenience, for a differentiable function 𝑓 , define

𝐾 𝑓 (𝑥) =
𝑥 𝑓 ′(𝑥)

𝑓 (𝑥)
, 𝐿 𝑓 (𝑥) =

(1 − 𝑥) 𝑓 ′(𝑥)

1 − 𝑓 (𝑥)
.

3.2. Complete matching case

In this subsection, we discuss the case of coherent system with d.i.d. components and multiple spares.
For the coherent system with d.i.d. components and spares, within independence between spares and
original components, assuming that 𝑞(2𝑝 − 𝑝2) ≥ 2𝑞(𝑝) − (𝑞(𝑝))2, Gupta and Kumar [14] proved that

𝜏ARCL ≥st 𝜏ARSL, (6)

which means that ARCL is better than ARSL in the sense of the usual stochastic ordering for a coherent
system. However, the spares and original components may be dependent. Therefore, the independence
between spares and original components assumption in Eq. (6) seems unreasonable in some practical
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scenarios. Next, we firstly provide a sufficient condition to show that ARCL is superior to ARSL in the
sense of the usual stochastic ordering under the assumption of dependence between spares and original
components.

Theorem 1. It holds that 𝜏ARCL ≥st 𝜏ARSL, if and only if

𝑞(1 − 𝛽𝑚+1 (𝑢)) + 𝛽𝑚+1 (1 − 𝑞(1 − 𝑢)) ≥ 1, for all 𝑢 ∈ (0, 1). (7)

It should be mentioned that Eq. (6) is just the special case of Theorem 1 if 𝑚 = 1 and 𝛽2(𝑢) = 𝑢2.
The following example illustrates that under the condition of Theorem 1, 𝜏ARCL ≥hr 𝜏ARSL or

𝜏ARCL ≥rh 𝜏ARSL not necessarily holds.

Example 1. Consider a coherent system 𝑇 = ∧{𝑋1,∨{𝑋2, 𝑋3}} with identical distributed components
𝑋1, 𝑋2 and 𝑋3 having Clayton-Oakes (CO) copula

𝐶 ′(𝑣1, 𝑣2, 𝑣3) =

(
3∑
𝑖=1

𝑣1−𝜃1
𝑖 − 2

)1/(1−𝜃1)

, 𝑣𝑖 ∈ [0, 1], (8)

where 𝜃1 > 1 is a fixed number. Let𝑌11,𝑌12 and𝑌13 be lifetimes of d.i.d. spares having common survival
function and copula (8). Furthermore, suppose

𝐶 (𝑣1, 𝑣2) =
𝑣1𝑣2

1 − 𝜃2(1 − 𝑣1)(1 − 𝑣2)
, 𝑣𝑖 ∈ [0, 1],

where 𝜃2 ∈ [−1, 1] is a fixed number. Obvious that, 𝑚 = 1, and taking 𝜃1 = 2, 𝜃2 = 1/2 then

𝛽2(𝑢) =
2𝑢2

2 − (1 − 𝑢)2 ,

and the reliability function of this system can be expressed as

𝑞(1 − 𝑢) =
2 − 2𝑢
1 + 𝑢

−
1 − 𝑢

1 + 2𝑢
,

and for any 𝑢 ∈ [0, 1], it follows from

𝑞(1 − 𝛽3(𝑢)) + 𝛽3(1 − 𝑞(1 − 𝑢)) − 1 =
8(𝑢 − 1)2𝑢3(21𝑢3 + 19𝑢2 + 7𝑢 + 1)

(𝑢 + 1)2(3𝑢2 + 2𝑢 + 1)(−𝑢4 + 36𝑢3 + 28𝑢2 + 8𝑢 + 1)
sgn
= −𝑢4 + 36𝑢3 + 28𝑢2 + 8𝑢 + 1
= 28 + 36𝑢 − 𝑢2 ≥ 0,

and thus, the condition (7) is satisfied. But Figure 1 shows neither 𝜏ARCL ≥hr 𝜏ARSL nor 𝜏ARCL ≥rh 𝜏ARSL
holds.

Assuming the independence of spares and original components and the framework of multiple
redundancies case, under conditions 𝑣𝑞′(𝑣)/𝑞(𝑣) is decreasing in 𝑣 ∈ (0, 1) and 𝑞(𝑣) ≤ 𝑣, Zhang et al.
[50] proved that

𝜏ARCL ≥hr 𝜏ARSL. (9)

Similarly, the independence between spares and original components assumption in Eq. (9) seems
unreasonable in some practical scenarios. Next, we extend corresponding result to the hypothesis of
dependence between spares and original components.
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Figure 1. Plots of functions �̄�ARCL/�̄�ARSL and 𝐹ARCL/𝐹ARSL.

Theorem 2. If

(1) 𝐾𝑞 (1 − 𝑢) is increasing in 𝑢 ∈ (0, 1),
(2) 𝐿𝛽𝑚+1 (𝑢) is increasing in 𝑢 ∈ (0, 1) and
(3) 𝑞(1 − 𝑢) ≤ 1 − 𝑢 for all 𝑢 ∈ (0, 1),

then

𝜏ARCL ≥hr 𝜏ARSL.

Remark 1. When spares and original components are independent, we have 𝛽𝑚+1(𝑢) = 𝑢𝑚+1, it is
obvious that 𝐿𝛽𝑚+1 (𝑢) is increasing in 𝑢 ∈ (0, 1) and 𝑣 = 1 − 𝑢, Eq. (9) is just the special case of
Theorem 2. Theorem 2 also generalizes Theorem 2 of Gupta and Kumar [14] to the case of dependence
of spares and components.

The next numerical example serves as a practical support for the condition required in Theorem 2.

Example 2. Consider a coherent system 𝑇 = ∧{𝑋1, 𝑋2, 𝑋3, 𝑋4} with identical distributed components
𝑋1, 𝑋2, 𝑋3, 𝑋4 having Gumbel–Barnett copula 𝐶 ′.

𝐶 ′(𝑣1, 𝑣2, 𝑣3, 𝑣4) =

(
4∏

1=1
𝑣𝑖

)
𝑒−𝜃1

∏4
1=1 log 𝑣𝑖 , 𝑣𝑖 ∈ [0, 1], (10)

where 𝜃1 > 0. Let 𝑌 𝑗1, 𝑌 𝑗2, 𝑌 𝑗3, 𝑌 𝑗4 ( 𝑗 = 1, 2) be lifetimes of d.i.d. spares having common survival
function and copula (10). Furthermore, suppose

𝐶 (𝑣1, 𝑣2, 𝑣3) =
3∏
𝑖=1

𝑣𝑖 + 𝜃2

3∏
𝑖=1

𝑣𝑖 (1 − 𝑣𝑖), 𝑣𝑖 ∈ [0, 1], (11)

where 𝜃2 ∈ [−1, 1] is a fixed number. Obvious that, 𝑚 = 2, then,

𝛽3(𝑢) = 𝑢3(1 + 𝜃2(1 − 𝑢)3),

and the reliability function of this system can be expressed as

𝑞(1 − 𝑢) = (1 − 𝑢)4𝑒−𝜃1 (log(1−𝑢))4
,
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and

𝐾𝑞 (1 − 𝑢) =
(1 − 𝑢)𝑞′(1 − 𝑢)

𝑞(1 − 𝑢)
= 4 − 4𝜃1 (log(1 − 𝑢))4,

𝐿𝛽3 (𝑢) =
(1 − 𝑢)𝛽3

′(𝑢)

1 − 𝛽3(𝑢)
=

3𝑢2(𝜃2 (1 − 2𝑢)(1 − 𝑢)2 + 1)
−𝜃2𝑢5 + 2𝜃2𝑢4 − 𝜃2𝑢3 + 𝑢2 + 𝑢 + 1

. (12)

According to Example 3.13 of Zhang et al. [50], we know that 𝐾𝑞 (1 − 𝑢) is increasing in 𝑢, and
𝑞(1 − 𝑢) ≤ 1 − 𝑢, for all 𝑢 ∈ (0, 1). It can be verified that the condition (2) in Theorem 2 is satisfied
(Appendix A.3). Thus, 𝜏ARCL ≥hr 𝜏ARSL holds.

The following Theorem 3 gives the reversed hazard rate ordering between 𝜏ARCL and 𝜏ARSL.

Theorem 3. If

(1) 𝐾𝛽𝑚+1 (𝑢) is decreasing in 𝑢 ∈ (0, 1),
(2) 𝐿𝑞 (1 − 𝑢) is decreasing in 𝑢 ∈ (0, 1) and
(3) 𝑞(1 − 𝑢) ≤ 1 − 𝑢 for all 𝑢 ∈ (0, 1),

then
𝜏ARCL ≥rh 𝜏ARSL.

The proof could be completed along the same lines as in Theorem 6, and is hence omitted.
The next numerical example serves as a practical support for the condition required in Theorem 3.

Example 3. Consider a coherent system 𝑇 = ∧{𝑋1, 𝑋2} with identical distributed components 𝑋1 and
𝑋2, which have Archimedean copula (see Table 4.1 in [37])

𝐶 ′(𝑣1, 𝑣2) = max
{

𝜃2𝑣1𝑣2 − (1 − 𝑣1)(1 − 𝑣2)

𝜃2 − (𝜃 − 1)2(1 − 𝑣1)(1 − 𝑣2)
, 0

}
, 𝑣1, 𝑣2 ∈ [0, 1], (13)

where 𝜃 ∈ [1,∞] is a fixed number. Let 𝑌11, 𝑌12 be lifetimes of d.i.d. spares having common survival
function and copula (13). Furthermore, suppose 𝐶 = 𝐶 ′. It is obvious that 𝑚 = 1, for all 𝜃 ∈ [1,∞], we
have

𝐹ARCL(𝑢) = 1 − 𝑞(1 − 𝛽2(𝑢)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ 𝑢 ≤
1

1 + 𝜃
,

2𝜃 (𝜃𝑢 + 𝑢 − 1)
2𝜃2 + 𝜃 (𝑢 − 2) + 1 − 𝑢

,
1

1 + 𝜃
≤ 𝑢 <

1 + 2𝜃2

1 + 𝜃 + 2𝜃2 ,

1,
1 + 2𝜃2

1 + 𝜃 + 2𝜃2 ≤ 𝑢 < 1,

𝐹ARSL(𝑢) = 𝛽2(1 − 𝑞(1 − 𝑢)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ 𝑢 ≤
𝜃

1 + 𝜃 + 𝜃2 ,

2𝜃2𝑢 + 𝜃 (𝑢 − 1) + 𝑢

2𝜃2 − 𝜃 (𝑢 + 1) + 𝑢
,

𝜃

1 + 𝜃 + 𝜃2 ≤ 𝑢 <
𝜃

1 + 𝜃
,

1,
𝜃

1 + 𝜃
≤ 𝑢 < 1,

𝐿𝑞 (1 − 𝑢) =
𝑢𝑞′(1 − 𝑢)

1 − 𝑞(1 − 𝑢)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜃

𝜃 + (𝜃 − 1)𝑢
, 0 ≤ 𝑢 ≤

𝜃

1 + 𝜃
,

0,
𝜃

1 + 𝜃
< 𝑢 ≤ 1,

𝐾𝛽2 (𝑢) =
𝑢𝛽2

′(𝑢)

𝛽2(𝑢)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 0 ≤ 𝑢 <

1
1 + 𝜃

,

2𝜃2𝑢

[1 − 2𝜃 − (1 − 𝜃)𝑢] [1 − (1 + 𝜃)𝑢]
,

1
1 + 𝜃

≤ 𝑢 ≤ 1,
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and

Λ(𝑢) =
𝐹ARCL (𝑢)

𝐹ARSL(𝑢)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ 𝑢 <
1

1 + 𝜃
,

2𝜃 (2𝜃2 − 𝜃𝑢 + 𝑢 − 𝜃)(𝜃𝑢 + 𝑢 − 1)
(1 − 2𝜃 + 2𝜃2 − 𝑢 + 𝜃𝑢)(2𝜃2𝑢 + 𝜃𝑢 + 𝑢 − 𝜃)

,
1

1 + 𝜃
≤ 𝑢 <

𝜃

1 + 𝜃
,

1 − 𝑞(1 − 𝛽2(𝑢)),
𝜃

1 + 𝜃
≤ 𝑢 ≤

1 + 2𝜃2

1 + 𝜃 + 2𝜃2 ,

1,
1 + 2𝜃2

1 + 𝜃 + 2𝜃2 ≤ 𝑢 ≤ 1.

(14)

For any 𝜃 ∈ [1, 3.2], to prove Λ(𝑢) is increasing in 𝑢 ∈ [0, 1], we just need to prove that Λ(𝑢) is
increasing in 𝑢 ∈ [1/(1 + 𝜃), 𝜃/(1 + 𝜃)]. It is obvious that 𝐿𝑞 (1 − 𝑢) is nonnegative and increasing in
(1 − 𝑢) ∈ [1/(1 + 𝜃), 𝜃/(1 + 𝜃)]. By Theorem 3, it is sufficient to show that 𝐾𝛽2 (𝑢) is decreasing in
𝑢 ∈ [1/(1 + 𝜃), 𝜃/(1 + 𝜃)]. Denote

𝑤2 (𝑢) =
2𝜃2𝑢

[1 − 2𝜃 − (1 − 𝜃)𝑢] [1 − (1 + 𝜃)𝑢]
,

1
1 + 𝜃

≤ 𝑢 ≤
𝜃

1 + 𝜃
.

Note that
𝑤 ′

2 (𝑢)
sgn
= (𝜃2 − 1)𝑢2 + 1 − 2𝜃,

and 𝑤′
2(0) < 0, 𝑤′

2(
√
(2𝜃 − 1)/(𝜃2 − 1)) = 0. It can be verified that 𝜃 ∈ [1, 3.2] implies

0 <
1

1 + 𝜃
<

𝜃

1 + 𝜃
<

√
2𝜃 − 1
𝜃2 − 1

,

which confirms 𝑤′
2 (𝑢) is negative in 𝑢 ∈ [1/(1 + 𝜃), 𝜃/(1 + 𝜃)]. And thus, 𝐾𝛽2 (𝑢) is decreasing in

𝑢 ∈ [1/(1 + 𝜃), 𝜃/(1 + 𝜃)].
When 𝜃 = 3.3, 8, 100, Figure 2(a), (c) and (e) illustrates that the condition (1) of Theorem 3 cannot

be satisfied, respectively, and corresponding Figure 2(b), (d) and (f) negates the result of Theorem 3,
respectively. It seems that the condition (1) in Theorem 3 be a necessary condition. Unfortunately, we
cannot give a mathematical validation.

Remark 2. An insightful reviewer pointed out, whether the conditions of Theorem 3 can be satisfied by
the copula in Example 3 for all 𝜃 ∈ [1,∞]. Unfortunately, we give a negative answer as above.

The following example shows that the condition of Theorem 2 do not necessarily imply 𝜏ARCL ≺𝑐

𝜏ARSL and 𝜏ARCL ≥lr 𝜏ARSL. And thus, the following Theorem 4 gives some condition to strength from
𝜏ARCL ≥hr 𝜏ARSL to 𝜏ARCL ≺𝑐 𝜏ARSL and 𝜏ARCL ≥lr 𝜏ARSL.

Example 4. Consider a coherent system 𝑇 = ∧{𝑋1,∨{𝑋2, 𝑋3}} with identical distributed components
𝑋1, 𝑋2, 𝑋3 having Farlie–Gumbel–Morgenstern (FGM) copula 𝐶 (11). Let 𝑌 𝑗1, 𝑌 𝑗2, 𝑌 𝑗3 ( 𝑗 = 1, 2) be
lifetimes of d.i.d. spares having common copula (11). Furthermore, suppose 𝐶 = 𝐶 ′. It is obvious that
𝑚 = 2, for all 𝜃 ∈ [1,∞], we have

𝛽3(𝑢) = 𝑢3(1 + 𝜃 (1 − 𝑢)3),

and the reliability function of this system can be expressed as

𝑞(1 − 𝑢) = 2(1 − 𝑢)2 − (1 − 𝑢)3 − 𝜃𝑢3(1 − 𝑢)3,
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Figure 2. For 𝜃 = 3.3, 8, 100, (a)–(c) and (e) plots of the function 𝐾𝛽2 (𝑢), respectively, and (b)–(d)
and (f) plots of the function Λ′(𝑢).

and

𝐾𝑞 (1 − 𝑢) =
(1 − 𝑢)𝑞′(1 − 𝑢)

𝑞(1 − 𝑢)
=

6𝜃𝑢4 − 9𝜃𝑢3 + 3𝜃𝑢2 + 3𝑢 + 1
𝜃𝑢4 − 𝜃𝑢3 + 𝑢 + 1

,

𝐿𝛽3 (𝑢) =
(1 − 𝑢)𝛽3

′(𝑢)

1 − 𝛽3(𝑢)
=

3𝑢2(𝜃 (1 − 2𝑢)(1 − 𝑢)2 + 1)
−𝜃𝑢5 + 2𝜃𝑢4 − 𝜃𝑢3 + 𝑢2 + 𝑢 + 1

.

It is obvious that 𝐾𝑞 (1 − 𝑢) is increasing in 𝑢, and 𝑞(1 − 𝑢) ≤ 1 − 𝑢, for all 𝑢 ∈ (0, 1) (see Example
3.14 of Zhang et al. [50]). According to Example 2, it is obvious that 𝐿𝛽3 (𝑢) is increasing in 𝑢 ∈ (0, 1).
Thus, 𝜏ARCL ≥hr 𝜏ARSL holds. Figure 3 illustrates that the relative hazard rate ordering and the likelihood
rate ordering do not hold.
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Figure 3. For 𝜃 = −1, plots of functions 𝑓ARCL/ 𝑓ARSL, ℎARCL/ℎARSL and �̄�ARCL/�̄�ARSL.

For the case of complete matching redundancies, when original components independent of spares,
suppose that (

(1 − 𝑞(𝑝))𝑚𝑞′(𝑝)

1 − (1 − 𝑞(𝑝))𝑚+1

) (
𝑞(1 − (1 − 𝑝)𝑚+1)

(1 − 𝑝)𝑚𝑞′(1 − (1 − 𝑝)𝑚+1)

)
is increasing in 𝑝 ∈ (0, 1), Hazra and Misra [16] proved that

𝜏ARCL ≺𝑐 𝜏ARSL, (15)

and under the conditions that 𝑝𝑅′(𝑝)/𝑅(𝑝) is decreasing and positive for all 𝑝 ∈ (0, 1), where 𝑅(𝑝) =
𝐿𝑞 (𝑝), they also prove that

𝜏ARCL 𝑏 𝜏ARSL. (16)

To make Eqs. (15) and (16) more reasonable in some practical scenarios. Next, we promote the
corresponding result in Theorems 4 and 5 to the hypothesis of dependence between spares and original
components, respectively.

Theorem 4. If

(1) 𝑢𝐾 ′
𝑞 (1 − 𝑢)/𝐾𝑞 (1 − 𝑢) is nonpositive and increasing in 𝑢 ∈ (0, 1),

(2) 𝑢𝐿 ′
𝛽𝑚+1

(𝑢)/𝐿𝛽𝑚+1 (𝑢) is positive and decreasing in 𝑢 ∈ (0, 1) and
(3) 1 − 𝑞(1 − 𝑢) ≥ 𝑢𝑞′(1 − 𝑢), for all 𝑢 ∈ (0, 1),

then
𝜏ARCL ≺𝑐 𝜏ARSL

and
𝜏ARCL ≥lr 𝜏ARSL.

It should be noted that Eq. (15) is just the special case of Theorem 4 if 𝛽𝑚+1 (𝑢) = 𝑢𝑚+1 and 𝑝 = 1−𝑢.
The next numerical example serves as a practical support for the condition required in Theorem 4.

Example 5. Consider a coherent system 𝑇 = ∧{𝑋1, 𝑋2, 𝑋3, 𝑋4} with identical distributed components
𝑋1, 𝑋2, 𝑋3 and 𝑋4 having Gumbel–Barnett copula copula 𝐶 ′ (10). Let 𝑌 𝑗1, 𝑌 𝑗2, 𝑌 𝑗3, 𝑌 𝑗4 ( 𝑗 = 1, 2, 3)
be lifetimes of d.i.d. spares having common survival function and copula (10). Specifically, we assume
𝐶 = 𝐶 ′. It is obvious that 𝑚 = 3, then, the reliability function of this system can be represented as

𝑞(1 − 𝑢) = (1 − 𝑢)4𝑒−𝜃 log4 (1−𝑢) .
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Figure 4. (a) Plots of the function 𝑢𝐾 ′
𝑞 (1 − 𝑢)/𝐾𝑞 (1 − 𝑢), (b) plots of the function 𝑢𝐿 ′

𝛽𝑚+1
(𝑢)/𝐿𝛽𝑚+1 (𝑢),

(c) plots of the function 𝛽4(𝑢) − 𝑢𝛽4
′(𝑢) and (d) plots of the function 1 − 𝑞(𝑢) − (1 − 𝑢)𝑞′(𝑢).

Clearly,

𝛽4(𝑢) = 𝑢4𝑒−𝜃 log4 (𝑢) .

𝛽4(𝑢) − 𝑢𝛽4
′(𝑢) = 𝑢4𝑒−𝜃 log4 (𝑢) [4𝜃 log3(𝑢) − 3],

1 − 𝑞(𝑢) − (1 − 𝑢)𝑞′(𝑢) = 𝑒−𝜃 log4 (𝑢) [−4𝜃 (𝑢 − 1)𝑢3 log3(𝑢) + 𝑒𝜃 log4 (𝑢) + (3𝑢 − 4)𝑢3],

and

𝐾𝑞 (1 − 𝑢) = 4 − 4𝜃 log3(1 − 𝑢), 𝐿𝛽4 (𝑢) =
4(𝑢 − 1)𝑢3 [𝜃 log3(𝑢) − 1]

𝑒𝑎 log4 (𝑢) − 𝑢4
,

𝑢𝐾 ′
𝑞 (1 − 𝑢)

𝐾𝑞 (1 − 𝑢)
= −

3𝜃𝑢 log2(1 − 𝑢)

(𝑢 − 1) [𝜃 log3(1 − 𝑢) − 1]
,

𝑢𝐿 ′
𝛽4
(𝑢)

𝐿𝛽4 (𝑢)
=

4𝜃2(𝑢 − 1) log6(𝑢)𝑒𝜃 log4 (𝑢) + 𝜃 log3(𝑢) [(7 − 8𝑢)𝑒𝜃 log4 (𝑢) + 𝑢4]

(𝑢 − 1) [𝑢4 − 𝑒𝜃 log4 (𝑢) ] [𝜃 log3(𝑢) − 1]

+
3𝜃 (𝑢 − 1) log2(𝑢) [𝑢4 − 𝑒𝜃 log4 (𝑢) ] + (4𝑢 − 3)𝑒𝜃 log4 (𝑢) − 𝑢4

(𝑢 − 1) [𝑢4 − 𝑒𝜃 log4 (𝑢) ] [𝜃 log3(𝑢) − 1]
.

Let 𝜃 = 0.1, 0.2, 0.5, 1, 2, Figure 4(a) and (b) shows that all 𝑢𝐾 ′
𝑞 (𝑢)/𝐾𝑞 (𝑢) are nonpositive and

decreasing in 𝑢 ∈ (0, 1), and all 𝑢𝐿 ′
𝛽4
(𝑢)/𝐿𝛽4 (𝑢) are positive and decreasing in 𝑢 ∈ (0, 1). Figure 4(c)

and (d) shows that all 𝛽4(𝑢) ≤ 𝑢𝛽′
4(𝑢) and 1 − 𝑞(𝑢) ≥ (1 − 𝑢)𝑞′(𝑢), for all 𝑢 ∈ (0, 1). Figure 5 shows

that all 𝑓ARCL/ 𝑓ARSL are increasing in 𝑢 ∈ (0, 1). And thus, 𝜏ARCL ≺𝑐 𝜏ARSL and 𝜏ARCL ≥lr 𝜏ARSL hold.
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Figure 5. Plots of the function 𝑓ARCL(𝑢)/ 𝑓ARSL(𝑢).

Figure 6. For 𝜃 = 1.6, (a) plot of the function 𝑓ARCL/ 𝑓ARSL and (b) plot of the function ℎARCL/ℎARSL.

Under the setup of Example 3, taking 𝜃 = 1.6. Figure 6(a) and (b) illustrates that neither 𝜏ARCL 𝑏

𝜏ARSL nor 𝜏ARCL ≥lr 𝜏ARSL holds. The following Theorem 5 gives the likelihood ordering and aging
faster ordering in terms of the reversed hazard rate between the component and system levels under the
framework of complete matching redundancies.

Theorem 5. If

(1) (1 − 𝑢)𝐾 ′
𝛽𝑚+1

(𝑢)/𝐾𝛽𝑚+1 (𝑢) is nonpostive decreasing in 𝑢 ∈ (0, 1),
(2) (1 − 𝑢)𝐿 ′

𝑞 (1 − 𝑢)/𝐿𝑞 (1 − 𝑢) is nonnegative increasing in 𝑢 ∈ (0, 1) and
(3) 𝑞(1 − 𝑢) ≤ min{1 − 𝑢, (1 − 𝑢)𝑞′(1 − 𝑢)}, for all 𝑢 ∈ (0, 1),

then

𝜏ARCL 𝑏 𝜏ARSL,

and

𝜏ARCL ≥lr 𝜏ARSL.

Remark 3. For the case of complete matching redundancies, when original components independent
of spares, then 𝛽𝑚+1 (𝑢) = 𝑢𝑚+1. It should be noted that Eq. (16) is just the special case of Theorem 5 if
𝛽𝑚+1 (𝑢) = 𝑢𝑚+1 and 𝑝 = 1 − 𝑢.

https://doi.org/10.1017/S0269964821000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000401


1288 R. Yan et al.

3.3. Nonmatching case

For the coherent system with d.i.d. components and spares, suppose that spares and original components
are independent, in the nonmatching case, under conditions ((1 − 𝑝)𝑞′(𝑝))/(1 − 𝑞(𝑝)) is increasing in
𝑝 ∈ (0, 1), Zhang et al. [50] proved that

𝜏ARCL ≥rh 𝜏ARSL. (17)

The following theorem generalizes Eq. (17) to the coherent systems with dependence of spares and
original components in the case of the reversed hazard rate ordering. It incorporates or generalizes
many known results in the literature. For more details, refer to Theorem 3.2 of Gupta and Nanda [15],
Theorem 3.1 of Misra et al. [30], Theorem 3 of Gupta and Kumar [14] and Theorem 3.4 of Zhang et al.
[50]. For convenience, denote

𝛼𝐶
𝑗 (𝑣1, 𝑣2, . . . , 𝑣𝑚+1) =

𝑣 𝑗𝜕𝐶 (𝑣1, 𝑣2, . . . , 𝑣𝑚+1)/𝜕𝑣 𝑗

𝐶 (𝑣1, 𝑣2, . . . , 𝑣𝑚+1)
, 𝑗 = 1, 2, . . . , 𝑚 + 1

Theorem 6. If

(1) 𝛼𝐶
𝑗 (𝑣1, 𝑣2, . . . , 𝑣𝑚+1) is decreasing in 𝑣 𝑗 ∈ (0, 1), for all 𝑗 = 1, 2, . . . , 𝑚 + 1,

(2) 𝐿𝑞 (1 − 𝑢) is decreasing in 𝑢 ∈ (0, 1) and
(3) 𝑞(1 − 𝑢) ≤ 1 − 𝑢 for all 𝑢 ∈ (0, 1),

then
𝜏ARCL ≥rh 𝜏ARSL.

One natural question arises that whether the hazard rate ordering, aging faster ordering in terms of
the reversed hazard rate and the hazard rate hold between 𝜏ARCL and 𝜏ARSL for the nonmatching case.
Unfortunately, Counterexample 1 gives a negative answer even for the independent case.

Counterexample 3.1. For a coherent systems 𝑇 = ∧{𝑋1, 𝑋2} with i.i.d. components 𝑋1 and 𝑋2 having
exponential lifetimes with parameters 𝜆 = 2. Let 𝑌1 and 𝑌2 be lifetimes of two i.i.d. spares having
exponential lifetimes with parameters 𝜆 = 1. We have

𝐹ARCL (1 − 𝑒−𝑥 , 1 − 𝑒−2𝑥) = 1 − (1 − (1 − 𝑒−2𝑥)(1 − 𝑒−𝑥))2

and
𝐹ARSL (1 − 𝑒−𝑥 , 1 − 𝑒−2𝑥) = (1 − 𝑒−4𝑥)(1 − 𝑒−2𝑥).

And it holds that

ℎ̃ARCL(1 − 𝑒−𝑥 , 1 − 𝑒−2𝑥) =
2(𝑒𝑥 + 3)(𝑒𝑥 + 𝑒2𝑥 − 1)

1 − 𝑒𝑥 − 2𝑒2𝑥 + 𝑒4𝑥 + 𝑒5𝑥 ,

ℎARCL(1 − 𝑒−𝑥 , 1 − 𝑒−2𝑥) =
2(𝑒−𝑥 (1 − 𝑒−2𝑥) + 2𝑒−2𝑥 (1 − 𝑒−𝑥))

1 − (1 − 𝑒−2𝑥)(1 − 𝑒−𝑥)
,

ℎ̃ARSL(1 − 𝑒−𝑥 , 1 − 𝑒−2𝑥) =
2(𝑒2𝑥 + 3)
𝑒4𝑥 − 1

,

ℎARSL(1 − 𝑒−𝑥 , 1 − 𝑒−2𝑥) =
2𝑒−2𝑥 (1 − 𝑒−4𝑥) + 4𝑒−4𝑥 (1 − 𝑒−2𝑥)

1 − (1 − 𝑒−4𝑥)(1 − 𝑒−2𝑥)
.

From Figure 7(a), (b) and (c), it obviously can be seen that ℎ̃ARCL/ℎ̃ARSL, �̄�ARCL/�̄�ARSL and
ℎARCL/ℎARSL are all not monotone on (0,∞), which mean 𝜏ARCL 𝑏 𝜏ARSL, 𝜏ARCL 𝑐 𝜏ARSL and
𝜏ARCL ≥hr 𝜏ARSL are all invalid.
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Figure 7. (a) Plot of the function ℎ̃ARCL/ℎ̃ARSL, (b) plot of the function �̄�ARCL/�̄�ARSL and (c) plot of the
function ℎARCL/ℎARSL.

4. Application

From a practical point of view, modern systems, such as the new energy vehicles industry, respond to the
requirements of safe and stable operation; it is hoped that the probability of the running interruption of the
core components can be reduced. A possible component level versus system level at active redundancies
for coherent systems with dependent components application scenarios are provided below for practical
use and reference for future research.

As the power source and energy carrier of new energy vehicles, power battery is a key component.
However, the backwardness of power battery-related technologies seriously restricts the development
of electric vehicles, which are mainly manifested in poor endurance, short service life and unstable
safety. In pure electric vehicles and grid energy storage applications, single batteries are connected
in series to meet voltage requirements and in parallel to meet capacity requirements. Series and par-
allel connections often exist simultaneously. Among them, the battery used in the Beĳing Olympic
Games and the Shanghai World Expo for pure electric buses adopts a parallel-series connection, and
the grid battery energy storage often adopts a series-parallel connection. Therefore, the battery forma-
tion mode is an extremely active research field in the lithium-ion battery management system, and the
quality of its evaluation method largely determines the overall performance of the battery management
system. As shown in Figure 8(a) and (b), we will explore the performance of the series-parallel bat-
tery group and the parallel-series battery group. To solve the above problems, we give the following
assumptions:

(1) Suppose we have 12 batteries 𝐵11, 𝐵12, 𝐵13, 𝐵14, 𝐵21, 𝐵22, 𝐵23, 𝐵24, 𝐵31, 𝐵32, 𝐵33, 𝐵34, which are
made in the same batch and the same manufacturer.
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Figure 8. (a) Series-parallel battery group and (b) parallel-series battery group.

(2) It is assumed that the failure data of a single battery has been obtained through the durability test,
and the lifetime distribution of battery can be estimated from the failure data, let us assume a
Weibull distribution;

(3) Considering the influence of the environment and stress level of the battery group, it is assumed
that the batteries that make up the battery group are interdependent, and the dependency is
described by copula.

(4) According to Section 3.1, suppose that

𝐶 ′(𝑣1, 𝑣2, 𝑣3, 𝑣4) =

(
4∏

1=1
𝑣𝑖

)
𝑒−𝜃1

∏4
1=1 log 𝑣𝑖 , 𝑣𝑖 ∈ [0, 1]

and

𝐶 (𝑣1, 𝑣2, 𝑣3) =
3∏
𝑖=1

𝑣𝑖 + 𝜃2

3∏
𝑖=1

𝑣𝑖 (1 − 𝑣𝑖), 𝑣𝑖 ∈ [0, 1] .

Next, we will use the work of this article to explore how to optimize the battery group method from
a theoretical point of view to improve the life of the power battery group. From Example 2, we find the
performance of the parallel-series battery group is better than the series-parallel battery group. Therefore,
to improve the reliability of the battery group, the battery formation mode is the parallel-series group.
The research results provide some theoretical support for engineers to design more complex power
battery groups. However the series-parallel battery group is conducive to the detection and management
of the individual cells of the system.

5. Conclusion

This paper investigates the case that the vector of the spare lifetimes and the vector of the original
component lifetimes are dependent. In this framework, we consider the issue of stochastic comparison
of multi-active complete matching and nonmatching spares redundancies at the component level versus
the system level, respectively. In cases of the nonmatching and matching spares, we got the sufficient
conditions that are presented to compare component and system redundancies by means of the hazard
rate ordering and the reversed hazard rate ordering, and we also obtain the result for relative aging
ordering. Our work extend the works of Zhang et al. [50] and Hazra and Misra [16] and complements
existing literature. However, for the general case, that is, consider the assumption of all components
are d.n.i.d., which is an important question in future study, and Yan et al. [46] stochastically compares
allocations of standby redundancies in series systems with exponential components at the component
level versus the system level in sense of the likelihood ratio ordering, that is,

∧ (𝑋1 + 𝑌1, 𝑋2 + 𝑌2) ≥lr [∧(𝑋1, 𝑋2)] + [∧(𝑌1, 𝑌2)] . (18)
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Based on Eq. (18), it is also of great interest to consider the corresponding conclusion when replacing
active redundancy in this article as standby redundancy, where Eqs. (4) and (5) are replaced as

𝜏ARCL = 𝜏(𝑋1 + 𝑌11 + · · · + 𝑌𝑚1, 𝑋2 + 𝑌12 + · · · + 𝑌𝑚2, . . . , 𝑋𝑛 + 𝑌1𝑛 + · · · + 𝑌𝑚𝑛),

𝜏ARSL = 𝜏(𝑋1, 𝑋2, . . . , 𝑋𝑛) + 𝜏(𝑌11, 𝑌12, . . . , 𝑌1𝑛) + · · · + 𝜏(𝑌𝑚1, 𝑌𝑚2, . . . , 𝑌𝑚𝑛),

respectively, which remains as an open problem. On the other hand, in design and analysis of the
redundancy allocation issue, engineer must have some components or subsystems in the inventory to
replace the failed part. The number of components in inventory may be limited by factors such as budget
or storage space. Therefore, the redundancy allocation problem is to find a way to maximize reliability
while reducing costs. For example, Hsieh [18] discusses the combination of cold standby strategy and
component mixing and proposes hybrid strategy to optimize reliability redundancy allocation problem.
Thus, in the follow-up, we have to consider not only the optimization of the allocation should be
considered but also the minimization of the cost.
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Appendix. Proof of all main results

Proof of Theorem 1
It is obvious that �̄�ARCL(𝑢) − �̄�ARSL (𝑢) ≥ 0, which is equivalent to

𝑞(1 − 𝛽𝑚+1 (𝑢)) + 𝛽𝑚+1 (1 − 𝑞(1 − 𝑢)) ≥ 1.

The proof is completed.

Proof of Theorem 2
According to Definition 1 (ii), the desired result is equivalent to

Λ(𝑢) =
�̄�ARCL (𝑢)

�̄�ARSL(𝑢)
=

𝑞(1 − 𝛽𝑚+1 (𝑢))

1 − 𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))

is increasing in 𝑢 ∈ (0, 1). Observe that

𝜕Λ(𝑢)

𝜕𝑢

sgn
=

𝑞′(1 − 𝑢)𝛽′
𝑚+1(1 − 𝑞(1 − 𝑢))

1 − 𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
−

𝛽′
𝑚+1(𝑢)𝑞

′(1 − 𝛽𝑚+1(𝑢))

𝑞(1 − 𝛽𝑚+1 (𝑢))

sgn
=

𝑞(1 − 𝑢)𝛽′
𝑚+1(1 − 𝑞(1 − 𝑢))

1 − 𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
·
(1 − 𝑢)𝑞′(1 − 𝑢)

𝑞(1 − 𝑢)
−

(1 − 𝑢)𝛽′
𝑚+1 (𝑢)

1 − 𝛽𝑚+1 (𝑢)

·
(1 − 𝛽𝑚+1 (𝑢))𝑞

′(1 − 𝛽𝑚+1 (𝑢))

𝑞(1 − 𝛽𝑚+1 (𝑢))

≥
(1 − 𝑢)𝛽′

𝑚+1(𝑢)

1 − 𝛽𝑚+1 (𝑢)

[
(1 − 𝑢)𝑞′(1 − 𝑢)

𝑞(1 − 𝑢)
−

(1 − 𝛽𝑚+1(𝑢))𝑞
′(1 − 𝛽𝑚+1 (𝑢))

𝑞(1 − 𝛽𝑚+1 (𝑢))

]
= 𝐿𝛽𝑚+1 (𝑢) [𝐾𝑞 (1 − 𝑢) − 𝐾𝑞 (1 − 𝛽𝑚+1 (𝑢))]

≥ 0,

note that 𝛽𝑚+1 (𝑥) and 𝑞(𝑥) are increasing in 𝑥 ∈ [0, 1], and thus, 𝐿𝛽𝑚+1 (𝑥) and 𝐾𝑞 (𝑥) are nonnegative for
all 𝑥 ∈ [0, 1], then, the first inequality is derived from conditions (1) and (2), and the second inequality
comes from conditions (1), (2) and (3), which completes the proof.

Proof the nonnegative and increasing property of 𝐿𝛽3 (𝑢) in (12)
Obvious that

𝐿𝛽3 (𝑢) =
(1 − 𝑢)𝛽′

3(𝑢)

1 − 𝛽3(𝑢)
sgn
= 3𝑢2(𝜃2 (1 − 2𝑢)(1 − 𝑢)2 + 1)
sgn
= 1 + 𝜃2(1 − 2𝑢)(1 − 𝑢)2 =: 𝜇(𝑢; 𝜃2).
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Figure A.1. Plots of the function 𝜂(𝑢;−1) and 𝜂(𝑢; 1).

In the following, we prove the nonnegative of 𝜇(𝑢; 𝜃).
Case 1: 𝑢 ∈ [0, 1

2 ], 𝜃2 ∈ [−1, 1]. It is easy to see that

0 ≤ (1 − 2𝑢)(1 − 𝑢)2 ≤ 1,

for any 𝜃2 ∈ [−1, 1], we then have

𝜇(𝑢; 𝜃2) ≥ 𝜇(𝑢;−1) = 1 − (1 − 2𝑢)(1 − 𝑢)2 ≥ 0

Case 2: for 𝑢 ∈ ( 1
2 , 1], 𝜃2 ∈ [−1, 1]. Note that

−1 < (1 − 2𝑢)(1 − 𝑢)2 ≤ 0,

for any 𝜃2 ∈ [−1, 1], we have

𝜇(𝑢; 𝜃2) ≥ 𝜇(𝑢; 1) = 1 + (1 − 2𝑢)(1 − 𝑢)2 ≥ 0.

It suffices to prove 𝐿𝛽3 (𝑢) is increasing in 𝑢 ∈ [0, 1]. After some simplifications, we have

𝜂(𝑢; 𝜃2) := 𝐿 ′
𝛽3
(𝑢)

sgn
= 𝑎(𝑢)𝜃2

2 + 𝑏(𝑢)𝜃2 + 𝑐(𝑢),

where

𝑎(𝑢) = 𝑢3(1 − 𝑢)4 ≥ 0,
𝑏(𝑢) = (−3𝑢5 − 2𝑢4 + 2𝑢3 + 12𝑢2 − 11𝑢 + 2),
𝑐(𝑢) = 𝑢 + 2 ≥ 0.

Obvious that, taking 𝑢 = 0 and 𝑢 = 1, then 𝜂(𝑢; 𝜃2) = 2𝜃2 + 2 and 𝜂(𝑢; 𝜃2) = 2, respectively, and thus
𝜂(𝑢; 𝜃2) ≥ 0. For any 𝑢 ∈ (0, 1, ) from the properties of quadratic function, if −𝑏(𝑢)/(2𝑎(𝑢)) ≥ 0, then

𝜂(𝑢; 1) ≥ 0 =⇒ 𝜂(𝑢; 𝜃2) ≥ 0

Similarly, if −𝑏(𝑢)/(2𝑎(𝑢)) ≤ 0, then

𝜂(𝑢;−1) ≥ 0 =⇒ 𝜂(𝑢; 𝜃2) ≥ 0

Figure A.1 shows that 𝜂(𝑢; 1) ≥ 0 and 𝜂(𝑢;−1) ≥ 0.
To sum up, for any 𝑢 ∈ [0, 1] and 𝜃2 ∈ [−1, 1], we have showed that 𝐿𝛽3 (𝑢) is nonnegative and

increasing in 𝑢.
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Proof of Theorem 4
We have two cases to prove this theorem.

Case 1: 𝜏ARCL ≺𝑐 𝜏ARSL. Denote ℎARCL(𝑢) and ℎARSL (𝑢) the hazard rate of 𝜏ARCL and 𝜏ARSL,
respectively, then

ℎARCL(𝑢) =
𝛽′
𝑚+1 (𝑢)𝑞

′(1 − 𝛽𝑚+1 (𝑢))

𝑞(1 − 𝛽𝑚+1 (𝑢))
,

ℎARSL(𝑢) =
𝑞′(1 − 𝑢)𝛽′

𝑚+1 (1 − 𝑞(1 − 𝑢))

1 − 𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
.

According to Definition 2 (i), the desired result is equivalent to ℎARCL(𝑢)/ℎARSL (𝑢) is increasing in
𝑢𝑖 , 𝑖 = 1, 2, . . . , 𝑚 + 1. Obverse that,

ℎARCL (𝑢)

ℎARSL(𝑢)
=

𝛽′
𝑚+1 (𝑢)𝑞

′(1 − 𝛽𝑚+1(𝑢))

𝑞(1 − 𝛽𝑚+1 (𝑢))
·

1 − 𝛽𝑚+1(1 − 𝑞(1 − 𝑢))

𝑞′(1 − 𝑢)𝛽′
𝑚+1 (1 − 𝑞(1 − 𝑢))

=
(1 − 𝑢)𝛽′

𝑚+1 (𝑢)

1 − 𝛽𝑚+1 (𝑢)
·
(1 − 𝛽𝑚+1 (𝑢))𝑞

′(1 − 𝛽𝑚+1 (𝑢))

𝑞(1 − 𝛽𝑚+1 (𝑢))
·

𝑞(1 − 𝑢)

(1 − 𝑢)𝑞′(1 − 𝑢)

×
1 − 𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))

𝑞(1 − 𝑢)𝛽′
𝑚+1 (1 − 𝑞(1 − 𝑢))

=
𝐿𝛽𝑚+1 (𝑢)

𝐿𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
·
𝐾𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐾𝑞 (1 − 𝑢)
.

Note that 𝛽𝑚+1(𝑢) is increasing in 𝑢 ∈ [0, 1], which implies 𝐿𝛽𝑚+1 (𝑢) is nonnegative for all 𝑢 ∈ [0, 1],
and 𝑞(1 − 𝑢) are increasing in (1 − 𝑢) ∈ [0, 1], which implies 𝐾𝑞 (1 − 𝑢) is nonnegative for all
(1 − 𝑢) ∈ [0, 1], we then have[

𝐿𝛽𝑚+1 (𝑢)

𝐿𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))

] ′
≥ 0 and

[
𝐾𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐾𝑞 (1 − 𝑢)

] ′
≥ 0 imply

[
ℎARCL(𝑢)

ℎARSL(𝑢)

] ′
≥ 0,

and [
𝐿𝛽𝑚+1 (𝑢)

𝐿𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))

] ′
sgn
=

𝐿 ′
𝛽𝑚+1

(𝑢)

𝐿𝛽𝑚+1 (𝑢)
−

𝑞′(1 − 𝑢)𝐿 ′
𝛽𝑚+1

(1 − 𝑞(1 − 𝑢))

𝐿𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
.

From the assumption that 𝑢𝐿 ′
𝛽𝑚+1

(𝑢)/𝐿𝛽𝑚+1 (𝑢) is positive and decreasing in 𝑢 ∈ (0, 1) and 1− 𝑞(1−
𝑢) ≥ 𝑢𝑞′(1 − 𝑢), and 𝑞(1 − 𝑢) ≤ 1 − 𝑢, for all 𝑢 ∈ (0, 1), it follows that

𝑢𝐿 ′
𝛽𝑚+1

(𝑢)

𝐿𝛽𝑚+1 (𝑢)
≥

(1 − 𝑞(1 − 𝑢))𝐿 ′
𝛽𝑚+1

(1 − 𝑞(1 − 𝑢))

𝐿𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
≥

𝑢ℎ′(1 − 𝑢)𝐿 ′
𝛽𝑚+1

(1 − 𝑞(1 − 𝑢))

𝐿𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
. (A.1)

Similarity, [
𝐾𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐾𝑞 (1 − 𝑢)

] ′
sgn
=

𝐾 ′
𝑞 (1 − 𝑢)

𝐾𝑞 (1 − 𝑢)
−

𝛽′
𝑚+1 (𝑢)𝐾

′
𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐾𝑞 (1 − 𝛽𝑚+1 (𝑢))
.

From the assumption that 𝑢𝐾 ′
𝑞 (1 − 𝑢)/𝐾𝑞 (1 − 𝑢) is nonpositive and increasing in 𝑢 ∈ (0, 1) and

based on Lemma 1, it is obvious that 𝛽𝑚+1 (𝑢) ≤ min{𝑢, 𝑢𝛽′
𝑚+1 (𝑢)}, for all 𝑢 ∈ (0, 1), we have

𝑢𝐾 ′
𝑞 (1 − 𝑢)

𝐾𝑞 (1 − 𝑢)
≥

𝛽𝑚+1 (𝑢)𝐾
′
𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐾𝑞 (1 − 𝛽𝑚+1 (𝑢))
≥

𝑢𝛽′
𝑚+1 (𝑢)𝐾

′
𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐾𝑞 (1 − 𝛽𝑚+1 (𝑢))
. (A.2)
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From (A.1) and (A.2), we get[
𝐿𝛽𝑚+1 (𝑢)

𝐿𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))

] ′
≥ 0,

[
𝐾𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐾𝑞 (1 − 𝑢)

] ′
≥ 0

And thus 𝜏ARCL ≺𝑐 𝜏ARSL.
Case 2: 𝜏ARCL ≥lr 𝜏ARSL. Based on Theorem 2, we have 𝑢𝐾 ′

𝑞 (1 − 𝑢)/𝐾𝑞 (1 − 𝑢) is nonpositive and
increasing in 𝑢 ∈ (0, 1) implies 𝐾𝑞 (1 − 𝑢) is decreasing in (1 − 𝑢) ∈ (0, 1), and 𝑢𝐿 ′

𝛽𝑚+1
(𝑢)/𝐿𝛽𝑚+1 (𝑢) is

positive and decreasing in 𝑢 ∈ (0, 1) implies 𝐿𝛽𝑚+1 (𝑢) is increasing in 𝑢 ∈ (0, 1). According to Theorem
1.C.4 in Shaked and Shantikumar [40], it is well know that 𝑋 ≥lr 𝑌 . Therefore, if conditions (1), (2) and
(3) hold, we also have 𝜏ARCL ≥lr 𝜏ARSL. Thatcompletes the proof.

Proof of Theorem 5
We have two cases to prove this theorem.

Case 1: 𝜏ARCL 𝑏 𝜏ARSL. Denote ℎ̃ARCL (𝑢) and ℎ̃ARSL (𝑢) the reversed hazard rate of 𝜏ARCL and 𝜏ARSL,
respectively, then

ℎ̃ARCL (𝑢) =
𝛽′
𝑚+1 (𝑢)𝑞

′ (1−𝛽𝑚+1 (𝑢))

1−𝑞 (1−𝛽𝑚+1 (𝑢))
,

ℎ̃ARSL (𝑢) =
𝑞′ (1−𝑢)𝛽′

𝑚+1 (1−𝑞 (1−𝑢))
𝛽𝑚+1 (1−𝑞 (1−𝑢)) .

According to Definition 2(ii), the desired result is equivalent to ℎ̃ARCL(𝑢)/ℎ̃ARSL (𝑢) is increasing in
𝑢, we have

ℎ̃ARCL (𝑢)

ℎ̃ARSL(𝑢)
=

𝛽′
𝑚+1(𝑢)𝑞

′(1 − 𝛽𝑚+1 (𝑢))

1 − 𝑞(1 − 𝛽𝑚+1 (𝑢))
·

𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))

𝑞′(1 − 𝑢)𝛽′
𝑚+1(1 − 𝑞(1 − 𝑢))

=
𝑢𝛽′

𝑚+1(𝑢)

𝛽𝑚+1 (𝑢)
·
𝛽𝑚+1 (𝑢)𝑞

′(1 − 𝛽𝑚+1 (𝑢))

1 − 𝑞(1 − 𝛽𝑚+1 (𝑢))

·
1 − 𝑞(1 − 𝑢)

𝑢ℎ′(1 − 𝑢)
·

𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))

(1 − 𝑞(1 − 𝑢))𝛽′
𝑚+1(1 − 𝑞(1 − 𝑢))

=
𝐾𝛽𝑚+1 (𝑢)

𝐾𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
·
𝐿𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐿𝑞 (1 − 𝑢)
.

Note that 𝛽𝑚+1 (𝑢) is increasing in 𝑢 ∈ [0, 1], which implies 𝐾𝛽𝑚+1 (𝑢) is nonnegative for all 𝑢 ∈ [0, 1],
and 𝑞(1 − 𝑢) are increasing in (1 − 𝑢) ∈ [0, 1], which implies 𝐿𝑞 (1 − 𝑢) is nonnegative for all
(1 − 𝑢) ∈ [0, 1], we then have[

𝐾𝛽𝑚+1 (𝑢)

𝐾𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))

] ′
≥ 0 and

[
𝐿𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐿𝑞 (1 − 𝑢)

] ′
≥ 0 imply

[
ℎ̃ARCL(𝑢)

ℎ̃ARSL(𝑢)

] ′
≥ 0

and [
𝐾𝛽𝑚+1 (𝑢)

𝐾𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))

] ′
sgn
=

𝐾 ′
𝛽𝑚+1

(𝑢)

𝐾𝛽𝑚+1 (𝑢)
−

𝑞′(1 − 𝑢)𝐾 ′
𝛽𝑚+1

(1 − 𝑞(1 − 𝑢))

𝐾𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
.

From the assumption that (1 − 𝑢)𝐾 ′
𝛽𝑚+1

(𝑢)/𝐾𝛽𝑚+1 (𝑢) is nonpositive and decreasing in 𝑢 ∈ (0, 1) and
𝑞(1 − 𝑢) ≤ min{1 − 𝑢, (1 − 𝑢)𝑞′(1 − 𝑢)}, for all 𝑢 ∈ (0, 1), we have

(1 − 𝑢)𝐾 ′
𝛽𝑚+1

(𝑢)

𝐾𝛽𝑚+1 (𝑢)
≥

𝑞(1 − 𝑢)𝐾 ′
𝛽𝑚+1

(1 − 𝑞(1 − 𝑢))

𝐾𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
≥

(1 − 𝑢)𝑞′(1 − 𝑢)𝐾 ′
𝛽𝑚+1

(1 − 𝑞(1 − 𝑢))

𝐾𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))
. (A.3)
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Similarity, [
𝐿𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐿𝑞 (1 − 𝑢)

] ′
sgn
=

𝐿 ′
𝑞 (1 − 𝑢)

𝐿𝑞 (1 − 𝑢)
−

𝛽′
𝑚+1 (𝑢)𝐿

′
𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐿𝑞 (1 − 𝛽𝑚+1 (𝑢))
.

From the assumption that (1 − 𝑢)𝐿 ′
𝑞 (1 − 𝑢)/𝐿𝑞 (1 − 𝑢) is positive and increasing in 𝑢 ∈ (0, 1) and

according to Lemma 1, we have 1−𝛽𝑚+1 (𝑢) ≥ (1−𝑢)𝛽′
𝑚+1 (𝑢), and 𝛽𝑚+1 (𝑢) ≤ 𝑢, hold, for all 𝑢 ∈ (0, 1),

thus

(1 − 𝑢)𝐿 ′
𝑞 (1 − 𝑢)

𝐿𝑞 (1 − 𝑢)
≥

(1 − 𝛽𝑚+1 (𝑢))𝐿
′
𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐿𝑞 (1 − 𝛽𝑚+1 (𝑢))
≥

(1 − 𝑢)𝛽′
𝑚+1 (𝑢)𝐿

′
𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐿𝑞 (1 − 𝛽𝑚+1 (𝑢))
. (A.4)

From (A.3) and(A.4), we get[
𝐾𝛽𝑚+1 (𝑢)

𝐾𝛽𝑚+1 (1 − 𝑞(1 − 𝑢))

] ′
≥ 0,

[
𝐿𝑞 (1 − 𝛽𝑚+1 (𝑢))

𝐿𝑞 (1 − 𝑢)

] ′
≥ 0.

And thus 𝜏ARCL 𝑏 𝜏ARSL.
Case 2: 𝜏ARCL ≥lr 𝜏ARSL. According to Theorem 3, we have (1 − 𝑡)𝐾 ′

𝛽𝑚+1
(𝑢)/𝐾𝛽𝑚+1 (𝑢) is nonpositive

decreasing in 𝑢 ∈ (0, 1) implies 𝐾𝛽𝑚+1 (𝑢) is decreasing in 𝑢 ∈ (0, 1), and 𝑥𝐿 ′
𝑞 (𝑥)/𝐿𝑞 (𝑥) is nonnegative

decreasing in 𝑥 ∈ (0, 1) implies 𝐿𝑞 (𝑥) is increasing in 𝑥 ∈ (0, 1), where 𝑥 = 1 − 𝑢. According to
Theorem 1.C.4 in Shaked and Shantikumar [40], it is well know that 𝑋 ≥lr 𝑌 . Therefore, if conditions
(1), (2) and (3) hold, we also have 𝜏ARCL ≥lr 𝜏ARSL. That completes the proof.

Proof of Theorem 6
According to Definition 1(i), the desired result is equivalent to

Λ(𝑢1, 𝑢2, . . . , 𝑢𝑚+1) =
𝐹ARCL(𝑢1, 𝑢2, . . . , 𝑢𝑚+1)

𝐹ARSL(𝑢1, 𝑢2, . . . , 𝑢𝑚+1)
=

1 − 𝑞(1 − 𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑚+1))

𝐶 (1 − 𝑞(1 − 𝑢1), 1 − 𝑞(1 − 𝑢2), . . . , 1 − 𝑞(1 − 𝑢𝑚+1))

is increasing in 𝑢𝑖 ∈ (0, 1), 𝑖 = 1, 2, . . . , 𝑚 + 1. Observe that

𝜕Λ(𝑢1, 𝑢2, . . . , 𝑢𝑚+1)

𝜕𝑢𝑖

sgn
=

𝑞′(1 − 𝐶 (u))𝜕𝐶 (u)/𝜕𝑢𝑖
1 − 𝑞(1 − 𝐶 (u) −

𝑞′(1 − 𝑢𝑖)𝜕𝐶 (1 − q(1 − u))/𝜕 (1 − 𝑞(1 − 𝑢𝑖))

𝐶 (1 − q(1 − u))
sgn
= 𝛼𝐶

𝑖 (u) · 𝐿𝑞 (1 − 𝐶 (u)) − 𝛼𝐶
𝑖 (1 − q(1 − u)) · 𝐿𝑞 (1 − 𝑢𝑖)

≥ 0,

where u = {𝑢1, 𝑢2, . . . , 𝑢𝑚+1}, 𝐶 (u) = 𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑚+1), 1 − q(1 − u) = {1 − 𝑞(1 − 𝑢1), 1 − 𝑞(1 −

𝑢2), . . . , 1−𝑞(1−𝑢𝑚+1)}. The inequality is derived from conditions (1), (2) and (3) based on 1−𝑞(1−𝑢𝑖) ≥
𝑢𝑖 and 𝐶 (u) ≤ 𝑢𝑖 , 𝑖 = 1, 2, . . . , 𝑚 + 1, which completes the proof.
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