
MODELLING MORTALITY FOR PENSION SCHEMES

BY

ANDREW HUNT AND DAVID BLAKE

ABSTRACT

For many pension schemes, a shortage of data limits their ability to use so-
phisticated stochastic mortality models to assess and manage their exposure to
longevity risk. In this study, we develop a mortality model designed for such
pension schemes, which compares the evolution of mortality rates in a sub-
population with that observed in a larger reference population. We apply this
approach to data from the CMI Self-Administered Pension Scheme study, us-
ing U.K. population data as a reference.We then use the approach to investigate
the potential differences in the evolution of mortality rates between these two
populations and find that, in many practical situations, basis risk is much less
of a problem than is commonly believed.
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1. INTRODUCTION

Longevity risk is increasingly recognised as a major risk in developed coun-
tries, as rising life expectancies place unanticipated strains on social security
and healthcare systems (see Oppers et al., 2012). As well as being of concern for
governments, however, longevity risk also affects private organisations that have
promised people an income for life, be this in the form of an insured annuity or
an occupational pension. In theUnitedKingdom, this means that longevity risk
affects the thousands of occupational pension schemes1 established by compa-
nies to provide final salary pensions to their employees.

An extended version of this paper (Hunt and Blake, 2016a) is available on the Pensions Institute website (http://www.pensions-
institute.org/workingpapers/wp1601.pdf), which contains additional results for female data and more technical details on the
models used.
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However, when it comes to managing the longevity risk in a pension scheme,
actuaries face a critical problem: a shortage of mortality data for the scheme.
A typical U.K. pension scheme has fewer than 1,000 members and may have
reliable, computerised member records going back little more than a decade.
This is insufficient for use with the sophisticated stochastic mortality models
that have been developed in recent years to measure longevity risk in national
populations, since these models require more data to estimate parameters ro-
bustly and longer time series to make projections into the future. While the in-
sights gained from the study of national populations are useful for the study
of longevity risk in pension schemes, actuaries are left with a nagging doubt:
“What if my scheme is different from the national population?” The potential
for divergence in mortality rates between the scheme and the national popula-
tion is often called “basis risk”, and, anecdotally, is often given as a key reason
holding back the use of standardised financial instruments (based on national
data) to manage longevity risk in pension schemes.

The actuarial profession in the United Kingdom initiated the Self-
Administered Pension Scheme (SAPS) study in 2002 in an attempt to over-
come these issues with data. The study pools data from almost all large occupa-
tional pension schemes in the UK, allowing insights about how typical pension
schemes differ from the national population to be established.

In this paper, we use the data collected by the SAPS study and develop a
model for mortality in order to compare the evolution of mortality rates in
U.K. occupational pension schemes directly with that observed in the national
population. This model has the advantages of parsimony and robustness, im-
portant properties when dealing with the smaller datasets available for pension
schemes. We then use this model to investigate the phenomenon of basis risk
between pension schemes and the U.K. population, as well as the potential of
using this approach on even smaller populations comparable with the size of an
individual scheme. In doing so, we bring into question the potential importance
of basis risk in small populations and find that in most contexts it is likely to be
substantially outweighed by other risks in a pension scheme. This is investigated
further in Hunt and Blake (2016b).

The outline of this paper is as follows. Section 2 describes the SAPS study
and how the population observed by it differs structurally from the national
U.K. population. Section 3 discusses the modelling framework that we will use
to compare the mortality experience of these populations. Section 4 then ap-
plies this framework to data from the SAPS study, tests the models produced
and considers the impact of parameter uncertainty and model risk on these
conclusions. Section 5 uses the model to project mortality rates for the sub-
population in the context of assessing the basis risk between it and the national
population. Section 6 then assesses the feasibility of using the model for smaller
populations which have sizes more comparable to those of actual U.K. pension
schemes. Section 7 discusses some of the broader conclusions on the impor-
tance of basis risk we draw from this study, whilst Section 8 summarises our
findings.

https://doi.org/10.1017/asb.2016.40 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.40


MODELLING MORTALITY FOR PENSION SCHEMES 603

2. THE SELF-ADMINISTERED PENSION SCHEME STUDY

The Institute of Actuaries in England & Wales and the Faculty of Actuaries
in Scotland initiated the SAPS study in 2002 to investigate the mortality expe-
rience of pensioner members of occupational pension schemes in the United
Kingdom. Data from the SAPS study has been analysed by the Continuous
Mortality Investigation (CMI) to produce the graduated mortality tables2 in
use by the majority of pension schemes in the United Kingdom for funding and
accounting purposes.3 The CMI has also analysed the SAPS data in terms of the
evolution ofmortality during the study period4 and the differences in experience
for schemes whose employers are in different industries.5

U.K. pension schemes with more than 500 pensioner members are asked to
submit mortality experience data to the SAPS study after each triennial fund-
ing valuation. The CMI provides summaries of the aggregate of this data to
members of the study, categorised across a number of different variables, at reg-
ular intervals.6 We have been provided with this data in a more complete form,
comprising exposures to risk and death counts (unweighted by the amount of
pension in payment) for individual ages and years for all men and women in the
SAPS study between 2000 and 2011 by the CMI. A summary of the data used
in this paper is given in Appendix A.

Since it is sampling from a distinct subset of the national population, the
dataset collected by the SAPS study is atypical of the U.K. population data for
a number of reasons:

• The dataset is the mortality experience of members of occupational, defined-
benefit pension schemes. Typically, this will exclude the unemployed, the self-
employed, those employed in the informal sector or those working for newer
companies (which typically do not offer defined-benefit pensions).

• The dataset is the mortality experience of members of reasonably large pen-
sion schemes. According to The Pensions Regulator (2013b), only around
20% of U.K. pension schemes have more than 1,000 member in total, and
therefore even fewer pensioner members. This means that employees of large,
mature companies are likely to be over-represented in the SAPS study.

• The dataset is themortality experience of pension schemes subject to triennial
funding valuations. This means that it excludes most public sector employees,
who are members of unfunded state pension schemes.

• The dataset is likely to have some individuals in receipt of pensions frommul-
tiple sources, for instance, because of employment at two or more different
companies, and who will therefore be represented multiple times.

• The dataset will includemembers of U.K. pension schemes who emigrate and
possibly die overseas, and who therefore would not be included in the U.K.
national population mortality data.

These factors explain why the experience of the SAPS mortality study is be-
lieved to be a better proxy for the mortality experience of individual U.K. pen-
sion schemes (even those not included in the SAPS study). The mortality tables
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graduated from the SAPS data are therefore often used for pension scheme ac-
counting and funding purposes, as opposed to tables graduated from national
population data or the experience of individuals buying annuities directly from
life insurers. However, they also mean that the future evolution of mortality
rates for SAPS members may be different from that of the national population
(although they may well be similar in other respects).

Unfortunately, the SAPS dataset poses a number of difficulties for use with
the more sophisticated mortality modelling and projection techniques which
have been developed in recent years. These include the following:

• relatively small exposures to risk compared with the national population (at
most around 1.5millionmembers under observation in a single year), leading
to greater parameter uncertainty especially in complex models;

• the short length of the study, with only 12 years of data in the sample for
analysing the trends present; and

• the method of data collection — schemes submit data in respect of a three-
year period at a lag of up to 18 months after the period ends — leads to a
distinctive pattern of exposures shown in the data in Appendix A, with only
partial data having been submitted to date for the last five years in the study.

For these reasons, it is still advisable to use national mortality data, with
its larger exposures and longer period of availability, to produce projections of
mortality rates. The SAPS data can then be used to quantify the ways that mem-
bers of U.K. pension schemes are likely to differ from this baseline. We do this
by means of a “relative” mortality model, which we now describe.

3. THE PROPOSED MODEL

A number of different models have been proposed in order to analyse mortal-
ity for various different populations. Many of these, however, have assumed
that the different populations are of comparable size (e.g., different countries
in Hunt and Blake, 2015c) or the smaller populations are at least of sufficient
size to be able to estimate a large number of parameters for them (for instance,
see Dowd et al., 2011 and Villegas and Haberman, 2014). However, with U.K.
pension schemes, the lack of available data means that we require a far simpler
approach.

In order to achieve this, we fit a sophisticated model to the larger “reference”
population (typically the national population), where we have sufficient data to
be able to robustly estimate a larger number of age, period and cohort terms.
For the sub-population, we then use the more limited data we have to estimate
the difference in the level of mortality observed across different ages and a series
of scaling factors, which scale the period and cohort parameters from the ref-
erence population for the sub-population. This approach is considerably more
parsimonious than fitting a separate model for the sub-population, with a cor-
responding increase in the robustness of our parameter estimates. In addition,
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there is no requirement that the data for the small population covers the same
range of ages and years as that for the larger population.

3.1. The reference model

For the reference population, we choose to use the “general procedure” (GP) of
Hunt and Blake (2014) in order to construct a model sufficient to capture all the
significant information present in the national population data. This selects an
appropriate model within the class of age/period/cohort (APC) models7 of the
form

ln
(
μ

(R)
x,t

)
= α(R)

x +
N∑
i=1

f (R,i)(x; θ(R,i))κ
(R,i)
t + γ

(R)
t−x, (1)

where

• age, x, is in the range [1, X], period, t, is in the range [1,T] and hence that
year of birth, y, is in the range [1 − X,T − 1];

• α(R)
x is a static function of age;

• κ
(R,i)
t are period functions governing the evolution of mortality with time;

• f (R,i)(x; θ(R,i)) are parametric age functions (in the sense of having a specific
functional form selected a priori) modulating the impact of the period func-
tion dynamics over the age range, potentially with free parameters θ(R,i);8

and
• γ (R)

y is a cohort function describing mortality effects which depend upon a
cohort’s year of birth and follow that cohort through life as it ages.

The GP selects the number of age/period terms, N, and the form of the age
functions f (R,i)(x) in order to construct mortality models which give a close but
parsimonious fit to the data. This way, we aim to extract as much information as
possible from the national population dataset and have specific terms within the
model corresponding to the different age/period or cohort features of interest.

3.2. The sub-population model

To analyse the data for the sub-population, we use a model of the form

ln
(
μ

(S)
x,t

)
= α(R)

x + α(�)
x +

N∑
i=1

λ(i) f (R,i)(x)κ(R,i)
t + λ(γ )γ

(R)
t−x + νXt−x. (2)

Apart from the νXy term, this is an APCmodel of the same form as that used to
model the reference population, i.e., with the same age/period terms and cohort
parameters. However, these are modulated by scaling factors, λ( j), where j ∈
{1, . . . , N, γ }. The νXt−x term, where Xy is a set of deterministic functions of
year of birth and ν the corresponding regression coefficients, has been added
to the APC structure in order to ensure that the model is identifiable under
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TABLE 1

TERMS IN THE REFERENCE MODEL CONSTRUCTED USING THE GENERAL PROCEDURE.

Term Description Demographic Significance

f (R,1)(x)κ(R,1)
t Constant Age Function Level of Mortality Curve

f (R,2)(x)κ(R,2)
t Linear Age Function Slope of Mortality Curve

f (R,3)(x)κ(R,3)
t Parabolic Age Function Mid Age-Range Mortality

f (R,4)(x)κ(R,4)
t Parabolic Age Function Younger Age Mortality

invariant transformations of the cohort parameters. Details of these issues are
given in an online appendix.

It should be noted that there are two special cases for these sensitivities:

1. λ( j) = 0: the sub-population has no dependence on the j th age/period or
cohort term; and

2. λ( j) = 1: there is no difference between the reference and sub-populations
with respect to the j th factor.

In order to obtain a more parsimonious model, it may also be desirable to
simplify the non-parametric structure9 for α(�)

x by constraining it to be of a spe-
cific parametric form, for example, a linear combination of a set of pre-defined
basis functions.

When fitting the model to data, we have a strong preference for parsimony
due to the low volume of data for the sub-population. We therefore adopt a
“specific-to-general” modelling approach: first testing a highly restricted form
of the model with a parametric form for α(�)

x and λ( j) = {0, 1} and then relaxing
these restrictions sequentially. The final model is chosen to maximise the Bayes
Information Criteria (BIC),10 which penalises excessive parameterisation. This
procedure is performed algorithmically, and is especially important whenwe ap-
ply themodel to very small datasets comparable to the size of individual pension
schemes, as done in Section 6.

4. APPLYING THE MODEL TO SAPS DATA

4.1. The reference models for U.K. data

Our first task is to construct suitable mortality models for men in the national
U.K. population.11 To do this, we apply the GP to data from the Human Mor-
tality Database (2014) for the period 1950 to 2011 and for ages 50 to 100. The
GP produces a model with four age/period terms, described in Table 1,12 plus a
cohort term. All of these terms are shown in Figure 1.13

As discussed in Hunt and Blake (2015a,b), many mortality models are not
fully identified. To uniquely specify the parameters, we impose identifiabil-
ity constraints. These constraints are mostly standard and have been used to
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FIGURE 1: Age, period and cohort functions in the reference model for men in the United Kingdom: (a) age functions and (b) period functions.
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TABLE 2

REPRESENTATIVE SETS OF RESTRICTIONS FOR THE MODEL USING MALE SAPS DATA.

Model No. 1 2 3 4 5 6 7 8

α(�) P NP P P NP P NP P
λ(1) 0 0 1 1 1 1.36 1.37 1
λ(2) 0 0 1 1 1 0.34 0.28 1
λ(3) 0 0 1 1 1 1.12 1.18 1
λ(4) 0 0 1 1 1 1.29 0.59 1
λ(γ ) 0 0 0 1 1 1.00 0.51 1

Log-Likelihood ×103 −2.04 −1.93 −1.98 −1.93 −1.86 −1.92 −1.85 −1.93
Free Parameters 5 32 5 5 32 10 37 5
BIC ×103 −2.06 −2.03 −1.99 −1.94 −1.95 −1.95 −1.96 −1.94

impose our desired demographic significance on the parameters. Details of these
constraints and further technical information about the models used are given
in an online appendix. However, they are arbitrary, in the sense that they do not
affect the fit to historical data, and so care has been taken to ensure that our
choice does not affect our conclusions.

4.2. The model for the SAPS data

We now estimate the model using these reference age, period and cohort terms
for the full SAPS dataset. As discussed in Section 3, we do this in stages using
a specific-to-general procedure. We start with the simplest and most restricted
model, i.e., where α(�)

x is restricted to take a parametric form and we restrict the
scaling factors λ( j) to be equal to zero. This model is referred to as Model 1 in
Table 2 above.

We then allow these restrictions to be relaxed sequentially. This means that,
in turn, we estimate the model for the sub-population with all possible combi-
nations of constraints, where α(�)

x is either parametric or non-parametric and
where λ( j) can be restricted to be equal to zero, unity or allowed to vary freely.
This gives us 486(= 2 × 35) different combinations of constraints for the two
alternative structures for α(�)

x and three alternatives for each of the five different
scaling factors, λ( j). For each of these different models, the goodness of fit to
the data is calculated, as measured by the BIC. The model which gives the best
fit to data (i.e., the highest BIC) is then selected as the preferred model, referred
to as Model 8 in Table 2, for the dataset. This process is illustrated in Figure 2.

Several of the models tested, with representative combinations of restric-
tions, are shown in Table 2 for the SAPS data.14 These have been chosen to illus-
trate the impact of relaxing various restrictions, for instance, comparingModels
1 and 2 illustrates the impact on the goodness of fit of using a non-parametric
as opposed to a parametric structure for α(�)

x , whilst comparing Models 3 and
4 illustrates the impact of introducing the set of cohort parameters from the
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Observed dataset for
the reference population

Observed dataset for
the sub-population

Fitted parameters for
the reference model

Fit relative model
with different sets

of restrictions

Fitted parameters for
the relative model with
restriction set j = 1

. . .
Fitted parameters for

the relative model with
restriction set j = 486

Select set of restric-
tions, j∗, which

gives best fit to data

Fitted parameters for
the relative model

FIGURE 2: Flow chart illustrating the procedure for fitting and selecting the relative model.

reference population. The preferred model which maximises the fit to data is
shown as Model 8. However, it is important to note that the fitting procedure
tests all 486 possible combinations for the structure of α(�)

x and any combination
of restrictions on λ( j).

The preferred model selects a parametric simplification for the difference in
the level of mortality, α(�)

x . This substantially reduces the number of free param-
eters in the preferred model, leading to greater parsimony. This is also borne out
by comparing models which differ by the form of α(�)

x , but have similar restric-
tions placed on the scaling factors, λ( j), e.g., Models 1 and 2, or Models 4 and
5 in Table 2. In some respects, this supports the traditional actuarial practice
of adjusting mortality rates for a pension scheme by taking a mortality table
from a reference population (in this case, the full U.K. population) and making
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FIGURE 3: 95% fan chart showing the level of parameter uncertainty in α(�)
x .

relatively simple adjustments to it. We also see from Figure 3 that α(�)
x is gener-

ally negative across all ages. This indicates that the SAPS population has gener-
ally lower levels of mortality rates than the national population, which is con-
sistent with the results of Continuous Mortality Investigation (2011).

We note that the procedure selects a model where all the λ(i) for the
age/period and cohort terms are restricted to be equal to unity. This is the same
model as Model 4 in Table 2, – however, the structure of Model 4 was selected a
prioiri, whilst that forModel 8 was selected after an exhaustive search of all pos-
sible model structures. This means that the model finds no difference between
the evolution of mortality rates for men in the SAPS data and the national pop-
ulation.15 This is developed further in Section 4.3.1.

Finally, we note that the BICs of many of the models with different restric-
tions are very similar, meaning that there is not much to choose between them
and so model risk (the risk of using an inappropriate model) may be a potential
issue. This is developed further in Section 4.3.2. It may therefore be justifiable
to select simpler models than suggested by looking just at goodness of fit, on
the grounds that they may be more robust to parameter uncertainty or easier to
project into the future, as done in Section 5. This will be even more important
when we investigate smaller, pension scheme-sized datasets, as in Section 6.

4.3. Parameter uncertainty and model risk

We next consider the robustness of the preferred model selected, i.e., Model 8.
We do this in two stages, by considering the different sources of uncertainty
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outlined in Cairns (2000). First, we consider only parameter uncertainty, i.e.,
the uncertainty in the free parameters of the preferredmodel, on the assumption
that the restrictions placed on the parameters inModel 8 are correctly specified.
Second, we allow for model risk by allowing the procedure to select different
models using the sequential procedure discussed above.

Both parameter uncertainty and model risk could be incorporated using
a Bayesian approach with model averaging. However, doing so would use
BayesianMarkov ChainMonte Carlo techniques, which are unfamiliar to most
pension schemes and their advisors. Therefore, whilst Bayesian approaches have
much to commend them, we will adopt a more familiar frequentist approach in
addressing these issues.

For both stages, we use a procedure based on the residual bootstrapping
method ofKoissi et al. (2006) to generate new pseudo-data. This resamples from
the fitted residuals to generate new simulated death counts to which the model is
refitted, allowing the uncertainty in the parameters to be measured. We do this
first to allow for parameter uncertainty in the reference model. It is important
to allow for parameter uncertainty in the reference model due to the hierar-
chical structure of the model, i.e., that the parameters for the reference model
are implicitly assumed to be known when the model for the sub-population is
fitted. Therefore, uncertainty in the parameters of the reference model can be
magnified when we come to investigate the uncertainty in the parameters of the
model.

The next step is to bootstrap new pseudo-data for the sub-population.When
using a residual bootstrapping procedure, it is important that the fitted residuals
being used contain as little structure as possible, so that as little information as
possible in the original data is lost when these residuals are randomly resampled.
This will be the case for models which provide a close fit to the data, i.e., a
high maximum likelihood. Therefore, in our residual bootstrapping procedure,
we use the expected mortality rates and fitted residuals from Model 7, since
this model has the highest log-likelihood in Table 2. However, since Model 7 is
outperformed by a number of othermodels when the goodness of fit is penalised
for the number of parameters (i.e., it has lower BIC than other models), we do
not specifically consider it further.

4.3.1. Parameter uncertainty. For the first stage, we consider only parameter
uncertainty. To do this, we fit the model to 1,000 sets of pseudo death counts,
generated by the Koissi et al. (2006) residual bootstrapping procedure. For each
of these datasets, however, we do not test which set of restrictions give the best
fit to the data. Instead, we impose the same set of restrictions as were used for
Model 8 in Table 2.

Figure 3 shows the impact of parameter uncertainty on the level parameters
for the SAPS population by showing the 95% fan chart. We therefore conclude
that the differences in the level of mortality between the national and SAPS
populations are statistically significant across the entire age range. However,
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TABLE 3

FREQUENCY WITH WHICH DIFFERENT RESTRICTIONS ARE PLACED UPON THE SCALING FACTORS IN THE
PREFERRED MODEL, BASED ON 1,000 BOOTSTRAPPED DATASETS.

λ( j) = 0 λ( j) = 1 λ( j) Unrestricted

λ(1) 0% 70% 30%
λ(2) 47% 53% 0%
λ(3) 0% 97% 3%
λ(4) 44% 55% 1%
λ(γ ) 1% 37% 62%

substantial statistical uncertainty exists in the differences in the level of mor-
tality, which can have important implications for the cashflows from pension
schemes, as we discuss in Hunt and Blake (2016b).

Because the preferred model restricts the scaling factors for the reference
period and cohort functions to be equal to unity, no parameter uncertainty is al-
lowed for in their estimation.16 Hence, allowing for parameter uncertainty alone
will significantly understate the potential uncertainty in the approach and so we
also need to consider model risk.

4.3.2. Model risk. The second stage of testing the robustness of themodel is to
fit the model to the bootstrapped data for the sub-population without specify-
ing the form of the preferred model. Instead, we allow the procedure to select a
potentially different preferred model in each simulation. This allows for “model
risk”, in the sense of Cairns (2000), i.e., the risk that the model selected is not an
accurate representation of the true processes generating the data. This process is
conceptually similar to the approach developed in Yang et al. (2015). However,
we are still selecting a preferred model from a relatively limited set of compara-
tors, and so the procedure does not fully capture the potential for model risk.

Looking first at the preferred form of α(�)
x , we find that, from 1,000 boot-

strapped datasets, the preferred model restricts α(�)
x to have a parametric form

in only 36% of the bootstrapped datasets. Next, Table 3 shows the frequency of
observing the various restrictions on the scaling factors in the preferred model.
We note that themost commonmodels chosen tend to restrict the scaling factors
to equal unity in the same way as preferred inModel 8 in Table 2. The exception
to this is for λ(γ ), where an unrestricted value is preferred in themajority of cases.

Table 3 shows the frequency of observing the various restrictions on the
scaling factors in the preferred model, based on the same 1,000 bootstrapped
datasets. We note that the most likely form that these restrictions take is the
one preferred for Model 8 in Table 2. The exception to this is for λ(γ ), where an
unrestricted value is preferred.

In summary, we find that there is substantial model risk, and no one set of
restrictions out of the available options is universally selected. This will be im-
portant when we project the model in Section 5. It should also, again, caution us
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against using overly complicated models for the SAPS populations, since there
is substantial uncertainty not only in any parameter estimates found but also in
the fundamental form of the model.

5. BASIS RISK AND PROJECTING MORTALITY FOR THE SAPS POPULATION

In Section 4, the model was applied to historical data for the SAPS population.
Given projections of the reference population, we can also use the model to map
these into projections for the sub-population.

Many pension schemes are concerned that the mortality experience of the
scheme in question will be substantially different to that of the national popu-
lation. This is often and informally referred to as “basis risk”. This is important
when assessing hedging strategies (for instance, in Li and Hardy, 2011, Cough-
lan et al., 2011 and Cairns et al., 2013) using financial instruments based on
national mortality rates. More fundamentally, it is an important question when
funding a pension scheme, since most standard projections for future mortal-
ity rates are based on analysing national populations (for instance, the CMI
Mortality Projection Model in Continuous Mortality Investigation, 2009 that
is widely used in the United Kingdom).

Intuitively, basis risk can arise because of a difference in levels of mortal-
ity rates (e.g., the specific population exhibiting systematically higher or lower
mortality rates than the reference population as a result of characteristics such
as socio-economic status which will change only slowly) and a difference in
trends in mortality rates (i.e., mortality rates evolving differently in the sub-
population, for instance, due to preferential access to newmedications) between
the two populations. In order to be more precise in our analysis, we define the
following:

• themortality basis: the difference inmortality rates between two populations;
• the level basis: the difference in the level ofmortality rates across ages between

two populations at a defined point in time;
• the trend basis: the difference in the evolution of mortality rates between two

populations;
• level basis risk: the risk arising due to uncertainty in the level basis;
• trend basis risk: the risk arising due to uncertainty in the trend basis in future;

and
• basis risk: the aggregate of level basis risk and trend basis risk.

To clarify these definitions, known differences in mortality rates between pop-
ulations form the mortality basis, not the basis risk. For example, if we knew
that population A had mortality rates that were 5% higher across all ages than
population B, but these improved 1% p.a. faster, then this constitutes the basis
between the populations. In this case, we could still construct portfolios using
securities linked to mortality in population B to hedge mortality in population
A perfectly. Basis risk arises because we cannot measure the differences in level
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and trend across different populations perfectly, e.g., we might believe the level
basis is 5% across all ages but this is subject to error (i.e., level basis risk) and
the true value could lie between 4% and 6%. This distinction is not allowed for
in most models of “basis risk” (for instance, Li and Hardy, 2011 and Haberman
et al., 2014), but we believe our definitions allow for a clearer understanding and
attribution of basis risk.

Similarly, we draw a distinction between differences (and uncertainty in the
differences) in the level of mortality between two populations and the rates of
change between them. This distinction is widely made in practice, where it is
common to consider the base table and improvements in mortality rates sepa-
rately when selecting mortality assumptions.

Level differences can be measured relatively easily using traditional actuar-
ial methods which are well within the capabilities of modern scheme actuaries.
Hence, level basis risk is not often a primary concern, albeit we believe that it
may be understated inmany situations (seeHunt andBlake, 2016b). In contrast,
the difference in the evolution ofmortality rate between populations is more dif-
ficult tomeasure reliably and, consequently, trend basis risk is of greater concern
to many scheme actuaries.

In terms of the model of Equation (2), level basis can be thought of as re-
lating to α(�)

x and trend basis to λ( j). Therefore, we note that if parameter un-
certainty and model risk are not allowed for, our proposed approach will not
allow for basis risk in the sub-population, since we have no uncertainty in the
mortality rates in the sub-population, conditional on knowingmortality rates in
the reference population. Parameter uncertainty alone is sufficient to introduce
level basis risk, since this allows for uncertainty in α(�)

x , as shown in Figure 3.
However, in our preferred model for the sub-population, the λ( j) are restricted
to unity and hence there will still be no uncertainty in the trend basis in the
reference population, when allowing for parameter uncertainty alone. Hence, it
is only appropriate to talk about “basis risk” in conjunction with our preferred
model for the SAPS data when both parameter uncertainty and model risk are
allowed for when making projections.

This trade-off is common to many multi-population mortality models de-
signed to measure basis risk. More complicated models can allow for a more
sophisticated analysis and quantification of basis risk than simpler models, but
are more difficult to estimate and less robust when fitted to small datasets. Our
approach has been specifically designed for situations where there is relatively
little data over a short period range tomake best use of sparse data. However, we
acknowledge that this makes it less effective at modelling basis risk than other
models. We discuss this trade-off further in Section 7.

In order to evaluate the potential impact of basis risk between the U.K. and
SAPS populations, we first need to project mortality rates for the national popu-
lation. However, it is important that our projections of mortality rates are “well-
identified” in the sense of Hunt and Blake (2015a,b) in that they do not depend
upon our chosen identifiability constraints. To project the reference population,
we therefore adopt the techniques of Hunt and Blake (2015b) and use random
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walks with drift
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+ κ
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t−1 + ε
(R)
t , (3)

where κ
(R)
t = (

κ
(R,1)
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(R,N)
t

)�
, μ(R) is a matrix of drift coefficients with re-

spect to the period “trends”, (1, t)�, and ε
(R)
t are normally distributed, con-

temporaneously correlated innovations. For the cohort parameters, we make
projections using an AR(1) around “well-identified” drifts
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⎞
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⎤
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where β(R) is a matrix of drift coefficients with respect to the cohort “trends”,(
1, (y− ȳ),

(
(y− ȳ)2 − σy

))�
. These deterministic functions are chosen to en-

sure that the projections are “well-identified”, i.e., that the projected mortality
rates for the reference population do not depend upon the identifiability con-
straints used when fitting the model.

Any dependence between mortality rates for men and women is not relevant
to the following discussion, where only the relationships betweenmortality rates
in the reference and sub-populations for the same sex are investigated. There-
fore, in these projections, we do not take into account any dependence between
male and female mortality rates in the reference population, and consequently
project these populations independently. A more complete analysis of the mor-
tality and longevity risks in pension schemes, such as inHunt andBlake (2016b),
would need to allow for dependence between sexes in the reference population.
For techniques which could allow for dependence between these populations,
see Hunt and Blake (2015c) and the references therein.

To illustrate the basis between the SAPS and U.K. populations, we consider
annuity values at age 65 (calculated using a real discount rate of 1% p.a.). We
perform 1,000Monte Carlo simulations using the time series processes above to
give projected mortality rates in the national population, which are then used
to generate projected mortality rates in the SAPS population using the relative
mortality models for men and women separately. Basis risk is accounted for
by using the approach developed here and allowing fully for both parameter
uncertainty and model risk. Because all parameters in the model are subject to
uncertainty using this method (i.e., even the restrictions that were previously
found are reassessed), this approach allows for both level and trend basis risk in
both populations. Using this procedure, we observe correlations between annu-
ity values in the U.K. and SAPS populations of 85%. Analysing the impact of
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FIGURE 4: Projected annuity values for the U.K. and SAPS populations from 1,000 Monte Carlo simulations.

process, parameter and model risk separately, we find that it is the potential for
model mis-specification which adds most significantly to the basis risk for both
populations.

Figure 4 shows scatter plots of annuity values calculated using mortality
rates in the U.K. and SAPS populations. First, we note that the systematic
longevity risk (indicated by the range of values the annuity value can take) is
far greater than the basis risk. Indeed, the systematic longevity risk accounts for
around 90% of the uncertainty in an annuity value for the SAPS population,17

indicating that basis risk may be considerably less important than is widely be-
lieved. Of the remaining 10% of the uncertainty attributable to basis risk, we
find that approximately 8% is attributable to model risk and only 2% to param-
eter uncertainty.18 Whilst it is true that the preferred model for the male SAPS
data may understate the impact of parameter uncertainty in a more general case
(since all the λ( j) are set to unity), this still indicates that the large majority of
basis risk arises from fundamental uncertainty over the correct model to use.
This is discussed further in Section 7.

Second, Figure 4 shows that the points tend to cluster depending on the pre-
ferred set of restrictions found. Studies which do not allow for potential model
risk will, therefore, only observe one of these clusters and hence understate the
true potential for basis risk. In particular, we find that the second cluster of
points observed in Figure 4 arises from the 30% of simulations, where λ(1) is
unrestricted (see Table 3). These tend to find values of λ(1) > 1 and hence faster
improvements inmortality rates in the SAPS population than the reference pop-
ulation, as shown in Figure 4.
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However, it is important to note that even when model risk is allowed for,
there is limited trend basis risk between the two populations. This is because
the same processes, i.e., κ (R)

t and γ (R)
y , control the evolution of mortality in both

populations, albeit scaled by factors, λ( j), in the sub-population which are un-
certain. This is in contrast with other studies, such as Hunt and Blake (2015c),
which have allowed for different time series processes in each population. This
helps explainwhy the correlations we find are somewhat higher than those found
in other studies of basis risk, such as Cairns et al. (2013). However, we note that
most of these studies used sub-populations which were considerably larger and
covered a longer period of time than the SAPS population. Consequently, there
is a trade-off. On the one hand, we might wish to use more complicated models
thatmight give amore accurate assessment of basis risk, butwhich require larger
volumes of data to estimate robustly and, therefore, might involve using data for
a larger sub-population which is less relevant for the mortality experience of a
specific pension scheme (for instance, the CMI Assured Lives dataset). On the
other hand, we might prefer to use simpler models, which can be robustly esti-
mated from smaller datasets that are likely to be more relevant to the specific
scheme experience, but give a less accurate assessment of basis risk. The impact
of this trade-off is discussed in Section 7.

Finally, the importance of model risk and parameter uncertainty will tend to
increase if we consider populations smaller than the SAPS population, as we do
in Section 6. Although we have not performed a detailed investigation,19 a good
rule of thumb says that parameter uncertainty is inversely proportional to the
size of the dataset in terms of lives. Hence, if we reduce the size of the population
from over one million lives to around 100,000, we would expect the importance
of parameter uncertainty to more than treble. Consequently, we would there-
fore expect to see correlations of a similar size to those found in other studies
for population sizes that are more typical of U.K. pension schemes, due to the
greater parameter uncertainty and model risk, even without allowing for differ-
ent period and cohort processes in the two populations. In addition, the cash-
flows experienced by a pension scheme will also have (potentially substantial)
idiosyncratic risk due to the relatively low number of lives under observation.
This suggests that, for most pension-scheme-sized populations, it is impossible
to distinguish between the trend basis risk arising from different processes in
each population and the basis risk arising from a model such as ours where the
two processes are the same, but we include parameter and model uncertainty.
This is discussed further in Section 7 and Hunt and Blake (2016b).

6. APPLYING THE MODEL TO SMALL POPULATIONS

While the SAPS population is small compared with the national U.K. popula-
tion, it does have annual exposures to risk of over one million lives each for
men and women, and so still represents a population larger than almost all
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occupational pension schemes (with the exception of some state schemes). How-
ever, the methods developed in this paper can be applied to significantly smaller
populations, such as those more comparable with the size of large occupational
pension schemes.

As discussed in Section 4.2, the model applied to the SAPS population ex-
hibited a strong preference for parsimony. However, parameter uncertainty and
model risk were still important considerations, even with a relatively simple
model and the full SAPS data. It is therefore exceedingly likely that in even
smaller populations, these considerations will dominate what we can and cannot
realistically say about the evolution of mortality of a small sub-population such
as that associated with an individual pension scheme.

We investigate the effect of population size on the ability of themodel tomea-
sure mortality differences with the national population by randomly generating
scheme-sized exposures to risk and death counts based on the SAPS data. We
do this first by scaling the exposures to risk from the SAPS data appropriately to
proxy for pension schemes of the desired size. Then, we generate random death
counts for the scheme by modelling them as Poisson random variables with the
expected number of deaths found using the crude mortality rates observed in
the SAPS dataset. We fit the model to this pseudo-scheme data, testing all 486
sets of possible restrictions on the parameters to determine the preferred model
using the same procedure described in Section 4.3.2.

To gain a better understanding of the impact of the size of the popula-
tion on the complexity of the preferred model, we apply this procedure for
scheme sizes at regular intervals in the range N ∈ (102, 106) and for 1,000 sets
of random death counts at each scheme size. This range of population sizes
covers almost the entire range of pension scheme sizes in the United King-
dom, and the fitting of multiple models allows for potential model risk in the
selection of the preferred model. The results of this procedure are shown in
Figure 5.

First, let us consider the results shown in Figure 5a for the level of mor-
tality in the smaller pension schemes. These figures show that the probability
of the procedure preferring a parametric restriction for α(�) is almost unity
for schemes with up to around half a million male members. This indicates
an overwhelming preference for parametric restrictions for α(�)

x in all but the
very largest schemes with memberships far in excess of all but the largest state
schemes in the United Kingdom. The implication of this is that making simple
adjustments to a standard mortality table will be sufficient to capture the differ-
ence in levels in mortality for almost all U.K. schemes, with little or no need to
graduate a bespoke table (even if the data is available).

Looking at the scaling factors for the age/period and cohort terms, we see
that, typically, the smallest schemes (fewer than 1,000 members) are indifferent
between restricting λ( j) to be equal to zero or unity. For instance, Figure 5b
shows that the procedure imposes the restriction λ(1) = 0 and λ(1) = 1 in ap-
proximately 50% of the simulations for small schemes, with λ(1) being estimated
without restrictions in almost no cases. This pattern is repeated for the other
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scaling factors shown in Figure 5. Since the restrictions λ( j) = 0 and λ( j) = 1
give models with the same number of free parameters, the choice between them
depends entirely on the log-likelihood found when fitting the model. However,
the difference between λ( j) = 0 and λ( j) = 1 is the difference between a model
which allowsmortality rates to change with time and a static model of mortality
(λ( j) = 0 ∀ j ). We therefore find that, in very small schemes it is almost impos-
sible to say whether or not mortality rates are changing, let alone whether the
rate of change differs from the national population.

Looking at Figure 5b again, we see that for larger schemes, with around
10,000 to 100,000members, themodel has a clear preference for setting λ(1) = 1.
Indeed, almost all simulations for schemes with 200,000 members prefer this
restriction. This pattern also holds for λ(3) and λ(γ ) (albeit for slightly larger
schemes). For the other scaling factors, the model is broadly indifferent between
imposing λ( j) = 0 and λ( j) = 1 for all sizes and schemes.

The implication of this is that, although there is sufficient evidence to sug-
gest mortality is improving in these larger schemes (unlike the smaller schemes
discussed above), there is not enough data to quantify any differences in this
improvement between the scheme and the national population. This supports
the use of projection methods based on the national population for the major-
ity of pension schemes in the United Kingdom. It also makes it unlikely that we
can detect any trend basis between the scheme and the national population for
schemes with fewer than 100,000 members of each sex. It also shows that there
is insufficient evidence to justify the inclusion of a set of scheme-specific cohort
parameters for all but the largest pension schemes, a result which agrees with
the findings of Haberman et al. (2014).

The preference for a freely varying λ(1) for some scaling factors in schemes
with around one million members in Figure 5b illustrates that it is only in the
very largest schemes do we find that there is sufficient data to estimate unre-
stricted λ( j). Therefore, it is only for these very large schemes that we can quan-
tify any difference in the evolution of mortality rates between a pension scheme
and the national population. However, the results of Section 5 indicate that,
even when trend basis is allowed for, the impact on annuity values is likely to be
quite limited, especially when considered in the context of the other mortality
and longevity risks in the scheme. This is investigated further in Hunt and Blake
(2016b).

In summary, we find that, for datasets that are the same size as a typical
U.K. pension scheme, there is insufficient data to make more than a few sim-
ple adjustments to reflect the level basis. For most practical circumstances, we
would therefore be unable to quantify any trend basis in a pension scheme, and
it is most convenient to assume that the changes in mortality in the scheme are
equal to those in the national population. Therefore, for small schemes, we find
that the basis risk is determined solely by the uncertainty in estimating the level
basis, rather than the trend basis. This is examined further in Hunt and Blake
(2016b). Given that trend basis risk is often given as a key concern for why pen-
sion schemes are reluctant to use index based hedging instruments to manage
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their longevity risk and, instead, prefer bespoke arrangements, we believe that
much of this trepidation is misplaced.

7. DISCUSSION: BASIS RISK IN PENSION SCHEMES

There has been a lot of work regarding the quantification of basis risk between
different populations, most notably in Plat (2009), Salhi and Loisel (2009), Li
and Hardy (2011), Coughlan et al. (2011), Cairns et al. (2013), Li et al. (2015)
andHaberman et al. (2014). The analysis of this risk has alsomotivatedmany of
themulti-populationmortalitymodels that have recently been proposed, such as
those of Dowd et al. (2011), Cairns et al. (2011), Zhou et al. (2014), Villegas and
Haberman (2014) and Hunt and Blake (2015c). However, much of this work to
date is not directly relevant to the situation faced bymanyU.K. pension schemes
when assessing and trying to manage their longevity risk.

Partly, this is because the populations being considered in these studies are
far larger in terms of the size of the exposures to risk than that of a typical (or, in-
deed, even a very large) U.K. pension scheme. This enables the authors of these
studies to adopt a “general-to-specific” approach when analysing trend basis
risk: first mortality models are fitted separately to the different populations un-
der investigation and then any dependence between the period or cohort param-
eters is analysed. This approach is exemplified by the study of Li et al. (2015),
which statistically determined whether or not to simplify a model by using the
same sets of parameters for different populations (which is a very specific form
of dependence). Such an approach therefore starts from the assumption that
mortality rates will have different patterns of evolution in different populations,
and then looks for evidence of similarities.

Such an approach is entirely reasonable when looking at large populations
where there is sufficient data to estimate sophisticated mortality models in each
population under investigation. However, this is not the situation in which most
pension schemes find themselves. Instead, with relatively little data, it is neces-
sary for them to adopt a “specific-to-general” approach, such as that underlying
the model proposed in this paper. As there is insufficient data to estimate many
sub-population-specific parameters robustly, a specific-to-general methodology
starts from the assumption that mortality rates in the sub-population evolve in
the same fashion as those in the reference population and then looks for ev-
idence of differences between the two. This approach naturally leads to more
parsimonious models, which are therefore likely to be more robust. However, it
is less likely to overturn the null hypothesis of no trend basis, especially when
parameter uncertainty and model risk are included in any analysis. This is the
trade-off between the ability tomodel themortality basis fully and the simplicity
and robustness of the model for small datasets discussed in Section 5.

Our findings suggest that large volumes of data (in terms of both the size of
the exposures to risk and the period range of the data) are required to overturn
the null hypothesis of no trend basis, especially when parameter uncertainty and
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model risk are included in the analysis. For the full SAPS dataset, the simple
model we have proposed achieves relatively good and parsimonious fits to the
data for both men and women, as shown in Section 4. Furthermore, for the
smaller datasets more typical of U.K. pension schemes, even simpler models
which fix the scaling factors in the model are preferred, as shown in Section 6.
This is consistent with the results of Haberman et al. (2014), which found that
it is only possible to quantify trend basis for very large schemes.

In addition, in order to estimate the more complicated multivariate time se-
ries processes used in many of the general-to-specific models, we need longer
periods of data than a typical pension scheme has. For instance, to estimate
the cointegration-based models of Salhi and Loisel (2009) and Hunt and Blake
(2015c) requires several decades of mortality data, which is usually far in ex-
cess of what a pension scheme will have itself. Similarly, Haberman et al. (2014)
found that eight years or more of data is required for the quantification of basis
risk, even for very large pension schemes. Specific-to-general models, however,
do not require such long data ranges, as they start from the assumption that
information about the reference population can be used to fill in gaps in the
data if required.

However, Section 5 shows that projections from the model have many of the
features we would expect from models which use more complicated time series
processes, when appropriate allowance is made for parameter uncertainty and
model risk, despite there being no genuine trend basis risk using the proposed
approach. This implies that it may be impossible to distinguish between gen-
uine trend basis risk and the effects of parameter uncertainty and model risk
in practice. Indeed, it is noticeable that few of the studies to date which have
investigated basis risk allow for parameter uncertainty and model risk, and so
the findings of these studies potentially wrongly attribute differences in histori-
cal improvements in mortality between different populations to basis risk and,
thus, overstate its importance.

Finally, we note that the confusion between the mortality basis and basis
risk, and the distinction between the level and trend bases, may cause issues
with some models. For instance, many models proposed for “basis risk”, e.g.,
Jarner and Kryger (2011), are actually models of the mortality basis according
to our definition, since it does not allow for any uncertainty in the basis in future.
Furthermore, models which allow for trend basis risk using different processes
in each population often do not allow for level basis risk by ignoring parame-
ter uncertainty, e.g., Zhou et al. (2014), and so may understate its importance
in smaller populations. We therefore believe that it is important to make these
distinctions to ensure that all users of multi-population mortality models are
able to communicate effectively about the advantages and disadvantages of the
different modelling approaches.

We find that for most U.K. pension schemes, the existence or not of trend
basis between the scheme and the U.K. population is of little practical rele-
vance. The scheme will never have sufficient information to be able to say with
confidence that the improvements in mortality it experiences are significantly
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different from that in the reference population, as any such differences will be
overwhelmed by the other sources of risk and uncertainty present in the scheme.

This is not to dispute that trend basis can exist between different countries
or amongst highly distinct sub-populations of a reference population. Indeed,
there are good reasons to suggest that it does and that there is sufficient data to
estimate it reliably using a general-to-specific approach as in previous studies.
For instance, many studies (for instance in Li and Hardy, 2011 and Hunt and
Blake, 2015c) investigate differences between the evolution of mortality rates in
different countries. However, populations in different countries may have differ-
ent diets, lifestyles and access to healthcare, and so would be expected to have
different patterns of evolution in mortality rates. Other studies, such as in Ville-
gas and Haberman (2014) consider the differences in the evolution of mortality
rates between highly selective sub-populations of a country (for instance, based
on deprivation). The sub-populations in these studies have, therefore, been con-
structed in such as fashion as to maximise the likelihood of observing different
patterns in the evolution of mortality rates.

Nor do we argue that the evolution of mortality rates in a pension scheme
is the same as in the reference population. It may be true that for very large
schemes, we may have sufficient data to be able to detect trend basis (even when
allowing for parameter uncertainty andmodel risk) if there is quite a large differ-
ence in the evolution of mortality rates between the two populations. However,
we note that very large pension schemes or aggregated data sets from many
pension schemes (such as the SAPS dataset) may change in composition over
the period of the data. It will therefore be unclear if genuine trend basis is being
detected, or merely a change in the composition of the underlying data.20

However, a pension scheme, whose only membership requirement was em-
ployment with a particular company, would be expected to be more similar to
the national population or differ only due to persistent selection effects which
affect the level of mortality rates (i.e., level basis) but not how mortality rates
evolve with time (i.e., trend basis). In order to have sufficient data to reject the
assumption that the evolution of mortality rates in the pension scheme is the
same as in the national population, the scheme must be very large (such as be-
ing the pension scheme for a large and long-established national company) and
so entry to such schemes is likely to be relatively unselective. Therefore, these
schemes are more likely to represent a fair cross section of the U.K. popula-
tion. Consequently, the circumstances where we have enough data to quantify
trend basis (for example, the pension scheme of a large, national employer) are
also the circumstances when trend basis is least likely to be important. In most
practical situations, we will never have sufficient data to quantify any trend basis
and therefore an assumption of no difference between the evolution ofmortality
rates in the national population and the pension scheme is both practical and
parsimonious.

The practical implications of these results are important for the development
of any market in longevity hedging. It is commonly believed in industry that
basis risk is sufficiently important as to prevent the feasibility of index-based
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hedging instruments for longevity risk. To date, the vast majority of longevity
risk transfer has been performed on a bespoke basis, with only limited attempts
(such as the Kortis bond discussed in Hunt and Blake, 2015c) to develop in-
struments linked to systematic risks alone. However, we do not believe this view
is consistent with the correlations (and hence hedge effectivenesses) of around
85% in Section 5.

However, we believe a lot of this is due to the confusion between basis (which
can be solved by efficient structuring of the hedge) and basis risk and, further-
more, the confusion between level basis risk (which can be reduced through the
methods discussed above) and trend basis risk. Since trend basis risk is un-
likely to be important enough to be statistically significant, it is also unlikely
to be financially significant. If longevity risk is felt to be important, hedging
can be achieved by use of standardised instruments based on projected changes
in mortality rates in a reference population, making adjustments to reflect the
level of mortality observed in the pension scheme. Concerns that the trend ba-
sis risk will make such hedges ineffective, such as those raised against the EIB
longevity bond (see Blake et al., 2006), should be regarded as secondary com-
pared with the other risks a pension scheme faces, such as idiosyncratic mortal-
ity risk. Bespoke products, such as longevity swaps tailored to the characteristics
of the pension scheme, should be regarded primarily as vehicles for hedging and
transferring these other risks, rather than any trend basis risk for the scheme,
and their cost effectiveness judged accordingly, as discussed in Hunt and Blake
(2016b).

8. CONCLUSIONS

In conclusion, in this study we present a parsimonious model for mortality in
a sub-population, which models the mortality rates observed in a small popu-
lation relative to those observed in a larger reference population. Such a model
has the advantages of being more parsimonious compared with the approach of
fitting separate mortality models for both populations, which has been adopted
in many multi-population mortality studies, and so is better suited to situations
where there is little data for the sub-population.

We then apply the model to investigate the mortality rates observed in the
SAPS study ofU.K. pension schemes.We find that this simplemodel is sufficient
to achieve a good and parsimonious fit to the available data and reasonable pro-
jections of mortality rates. Specifically, we find that, in aggregate, members of
U.K. occupational pension schemes generally experience lower levels of mortal-
ity rates than the national population, which are also improving at a faster rate
than those in the national population. However, we find relatively high levels of
uncertainty in estimating the parameters even in this simple model and that the
data is insufficient to uniformly prefer one model over any other. Furthermore,
when we apply the proposed modelling approach to sub-populations which are
smaller than the SAPS population, and closer in size to those of typical U.K.
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pension schemes, we find that themodelling approach prefers very simple, highly
restricted models, which do not allow for any difference in the evolution of mor-
tality between the reference and sub-populations.

In order to analyse how mortality rates differ between populations more
completely, we introduce a new set of definitions for basis risk. These definitions
seek to distinguish between differences in the level of mortality rates between
populations and differences in their rates of change, and also to restrict discus-
sion of basis risk to a discussion of uncertainty in these differences. We feel that
this allows for a more complete discussion of what different models can, and
cannot, say about basis risk.

These considerations lead us to the belief that a full analysis of trend ba-
sis risk is not possible with the datasets realistically available for most pen-
sion schemes. This is because such an analysis would require more sophisti-
cated models than the model proposed, with separate processes operating in
each population. We find that, in pension-scheme-sized datasets, we will never
have sufficient information to determine whether there is any difference in the
evolution of mortality rates in the sub-population compared with the reference
population when the other risks present are properly accounted for. Therefore,
we believe that an assumption of no difference in the evolution of mortality
rates between the two populations is practical and parsimonious. Consequently,
we conclude that concerns regarding trend basis risk in the development of the
market for longevity hedging and risk management tools for pension schemes
are misplaced.
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NOTES

1. In this paper, we refer to “pension schemes” that administer the provision of defined benefits
to members. We draw a semantic distinction between a “pension scheme” and a “pension plan”,
which we would use as a more general term for any defined benefit or defined contribution pension
arrangement provided on either a group or an individual basis.

2. The S1 tables in Continuous Mortality Investigation (2008) and the S2 tables in Continuous
Mortality Investigation (2014a).

3. The Pensions Regulator (2013a) and Sithole et al. (2012).
4. See Continuous Mortality Investigation (2011).
5. See Continuous Mortality Investigation (2015).
6. See Continuous Mortality Investigation (2014c), for example.
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7. See Hunt and Blake (2015d) for a description of this class of models.
8. For simplicity, the dependence of the age functions on θ(R,i) is suppressed in notation used

in this paper, although it has been allowed for when fitting the model to data.
9. Defined in Hunt and Blake (2015d) as being fitted without any a priori structure or func-

tional form.
10. Defined as max(Log-likelihood) − 0.5 × No. of free parameters × ln(No. of data points).
11. We have performed a similar analysis for women and find broadly comparable results. How-

ever, for reasons of space, these results are not presented here.
12. Demographic significance, as used in Table 1, is defined in Hunt and Blake (2015d) as the in-

terpretation of the components of a mortality model in terms of the underlying biological, medical
or socio-economic causes of changes in mortality rates which generate them.
13. In Figure 1c, one of the most notable features of the cohort parameters is the presence of

large outliers in 1919/20 and 1946/47. We believe, based on the analysis of Richards (2008) and
Cairns et al. (2015), that these are not genuine cohort effects, hence we use indicator variables to
remove the impact of outliers from the cohort parameters.
14. In Table 2, “NP” stands for non-parametric, whereas “P” stands for parametric.
15. In the terminology of Section 5, we say the model finds that there is level basis, but no trend

basis.
16. This is in contrast to when the model is applied to female data, where some of the scaling

factors are allowed to vary freely and hence are subject to parameter uncertainty.
17. As measured as the proportion of the observed variance explained by a regression of the

SAPS annuity value on the national population annuity value.
18. Found by comparing the projected annuity values when either only systematic longevity risk

or systematic longevity risk and parameter uncertainty are considered.
19. Section 6 looks only at in-sample model fitting rather than projection and basis risk.
20. In particular, we note that the data for CMI Assured Lives has varied considerably in the

socio-economic makeup of the relevant population over its lifetime due to changes in the U.K.
annuity market. Since this dataset was used in Cairns et al. (2011), Dowd et al. (2011) and Cairns
et al. (2013), it is unclear whether any difference in the evolution of mortality detected by these
studies is the result of genuine trend basis risk or simply a result of the changing composition of
the dataset.
21. However, we note that Continuous Mortality Investigation (2014b) and Continuous Mor-

tality Investigation (2014c) have been published subsequently to us obtaining the data used in this
study from the CMI. These working papers included new data in respect of the SAPS study for
2012 and 2013, respectively, along with revisions to the data for years prior to 2012 caused by new
pension schemes submitting data to the study. In the interests of avoiding errors caused by merging
multiple sources of data, we have not combined this new data with that provided previously by the
CMI and, therefore, it has not been included in this study.However, we have investigated the impact
the new data would have on our findings if it were included, and are satisfied that it would not affect
our results materially.
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APPENDIX: SUMMARY OF SAPS DATA

We are indebted to the CMI for kindly providing death counts and exposures, weighted by
individual lives, for the SAPS population for the period 2000 to 2011 and ages 60 to 90. These
relate to all pensioners in the surveyed pension schemes, and so include people receiving
benefits after retiring at normal retirement age, those who retired early or in ill-health, and
those in receipt of spousal benefits. It is likely that some of these sub-populations will have
different mortality characteristics, especially those retiring in ill-health. However, such cases
represent a relatively small proportion of the SAPS data and are unlikely to materially impact
our results.

Large pension schemes in the United Kingdom submit their mortality experience to the
SAPS study following completion of a triennial funding valuation. Therefore, each submis-
sion is in respect of data with a considerable time delay, e.g., data submitted on 30 June 2013
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FIGURE 6: Exposures to risk and death counts in the SAPS dataset by age: (a) Exposure to risk by age band
and (b) Death count by age band.
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FIGURE 7: Exposures to risk and death counts in the SAPS dataset by year: (a) Exposure to risk by year and
(b) Death count by year.

may result from a funding valuation with an effective date of 31 December 2011 (due to the
time taken to perform the valuation) and cover the period 1 January 2009 to 31 December
2011. Consequently, the last few years of the SAPS data only reflects a partial submission
to date of the mortality experience of the schemes which will, ultimately, submit data to the
study. However, we have no reason to believe that the schemes that have submitted to date
are an unrepresentative sub-sample of the SAPS population, and so do not believe this biases
our results.

Similarly, there are fewer submissions for the earliest years of the SAPS data. Unlike
the most recent years, the missing data for this period will never be received by the CMI.
Therefore, we only have data we consider complete for roughly the period 2004 to 2008.21

Figures 6 and 7 summarise the patterns of deaths and exposures for men and women
across age and time.
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