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As the geographical meridians converge rapidly, traditional inertial navigation methods fail in
the polar regions. Classic transversal navigation methods can address the problem by transver-
sal rotation of the original north and south poles, but this can introduce errors based on the
spherical Earth model. To reduce the principle errors, some fruitful research work using an
ellipsoidal Earth model has been done. Under the ellipsoid Earth model, transversal naviga-
tion for polar region becomes a complex coupling problem. Considering the coupling of the
three-dimensional motion, a more rigorous mechanism for transversal navigation using an ellip-
soidal Earth model is proposed. Starting from the relationship between Euclidean coordinates
and spherical coordinates, the main equations of transversal polar navigation based on an ellip-
soidal Earth model are derived in detail. Complete mechanical arrangements of attitude, position
and velocity calculation are presented. The new derivation in this paper completely avoids solv-
ing the ellipsoidal radius. Numerical results indicate that the proposed transversal navigation
mechanism can outperform the traditional method, especially in the condition of vertical motion.
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1. INTRODUCTION. Polar navigation technology has been a widely researched navi-
gation field with the development of worldwide transportation (Yao et al., 2016; Li et al.,
2016; 2015; 2014a; 2014b; Pedersen, 1960). Due to its special geographical characteristics,
general navigation methods such as satellite navigation, radio navigation and geomagnetic
navigation do not always work efficiently in polar regions (Tang et al., 2009; Naumann,
2011; Zhao, 2017). Inertial navigation is not affected by external conditions such as polar
geomagnetic changes and solar storms. With consideration of the self-contained merits, a
Strapdown Inertial Navigation System (SINS) is the most preferred system for a vehicle
in polar regions (Pedersen, 1960). As the geographical meridians converge rapidly in the
polar regions, traditional inertial navigation methods fail in these areas. All mechanisms
in SINS using traditional latitude and longitude as the position parameterisations fail to
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provide accurate positions and orientations in such cases. If the local geographic naviga-
tion frame is chosen as the navigation frame, the turn rate of the navigation frame will be
involved in terms of a tangent function. A potential problem will arise when the vehicle
travels close to the Earth’s poles. This is because when the latitude angle ϕ approaches
±90◦, tan ϕ will be infinite (Bekir, 2007). The wander azimuth mechanism is one option
to circumvent the polar navigation problem. The corresponding idea is to prevent the navi-
gation frame from rotating about the z-axis. However, for the wander azimuth mechanism,
it is impossible to distinguish between the wander azimuth angle and the longitude. This
implies that the wander azimuth angle may not be the answer to navigation near the poles
(Bekir, 2007). Navigation in an Earth-Centred Earth-Fixed (ECEF) frame is another choice
for polar navigation. However, the ECEF mechanism inherits some limitations due to its
non-horizontal characteristic. More specifically, the diverging vertical errors will be cou-
pled into an ECEF-based system, affecting the accuracy of the position in other directions.
In this respect, it is not suitable for long range and long endurance missions (Titterton and
Weston, 2014).

To address the problems of polar navigation, a transversal coordinate system and corre-
sponding navigation mechanism was proposed in Broxmeyer (1964) and Lyon (1984). In
this navigation mechanism, the traditional geographic coordinate system is transversely
rotated, which makes the original north and south poles change to the equator of the
transversal coordinate system. The traditional transversal navigation uses a spherical model
for the earth, which brings advantages of brevity and convenience for transverse rota-
tion of the geographic coordinate system. Unfortunately, the Earth is an ellipsoid and
the corresponding simplification consequentially introduces principle errors for an Inertial
Navigation System (INS). Some interesting research work, such as transformation of nav-
igation parameters and reset and damping of transversal SINS, has been completed based
on transversal mechanisation (Li et al., 2015; 2014a; 2014b; Watland and Ariz, 1995).

In Li et al. (2014a; 2014b), performances and error characteristics of transversal navi-
gation based on the sphere model were theoretically analysed. The principle errors caused
by the spherical model are mainly in the form of oscillation errors, and damping technol-
ogy, widely applied in traditional SINS, is used to suppress those oscillation errors (Li et
al., 2015; 2014a; 2014b). However, constant errors from velocities remain. Due to these
principle errors, transversal navigation using the sphere model is not acceptable for a high-
precision INS. In order to further improve the navigation precision, many researchers have
addressed these principle errors. In Yao et al. (2016) and Li et al. (2016) the ellipsoidal
Earth model is used to address the theoretical error resulting from the inaccurate spherical
Earth model. In Yao et al. (2016), implicit equations of radii using a transversal ellipsoidal
Earth model are derived in detail. To obtain analytic solutions for these radii, an additional
angle parameter is introduced, which unfortunately cannot be obtained analytically in the
differential equation. It should be noted that Equation (15) of Yao et al. (2016) has been
approximated and simplified. In Li et al. (2016), the radius of the transversal meridian and
the radius of the transversal prime vertical are derived. Since in a transversal coordinate
system, “latitude” or “longitude” is affected by both “north” velocity and “east” velocity,
the individual radius of the transversal meridian or the radius of the transversal prime ver-
tical are not so suitable for coupling of transversal navigation. In addition, the height in
transversal navigation is omitted in Li et al. (2016).

Inspired by the ideas of Yao et al. (2016) and Li et al. (2016), a more rigorous transver-
sal navigation mechanism is proposed in this paper. Starting from the relationship between
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Figure 1. Transversal Navigation Coordinate System.

Euclidean coordinates and spherical coordinates, the main equations of transversal polar
navigation based on an ellipsoidal Earth model are derived in detail, including attitude,
velocity and position differential equations. The main contribution of the proposed method
is a new derivation method to avoid approximation errors in the transformation of transver-
sal navigation. Simulations are carried out to evaluate the feasibility and validity of the
proposed navigation mechanism. Compared with Yao et al. (2016) and Li et al. (2016), the
proposed navigation mechanism has advantages of high precision and immunity of heaving
motions in the vertical direction.

The remainder of this paper is organised as follows. Section 2 presents the definition of
the transversal coordinate system. Section 3 is devoted to the derivation of two important
formulae, which are the basis for transversal navigation. The transversal navigation mech-
anism, including differential equations of attitude, velocity and position are proposed in
Section 4. The feasibility and effectiveness of the proposed navigation scheme are evaluated
through simulation experiments in Section 5. Finally, conclusions are drawn in Section 6.

2. DEFINITION OF TRANSVERSAL COORDINATE SYSTEM. In order to address
the problem of traditional inertial navigation methods in the polar regions due to the rapid
convergence of meridians, a transversal navigation method was proposed in Broxmeyer
(1964), which transforms the traditional geographic coordinate system into a transversal
coordinate system. The original geographical north and south poles are transformed to be
the equator in the new coordinate system, as shown in Figure 1.

Let the transversal coordinate system be et. The origin of the coordinate system is
located at the centre of the Earth O, with the xet axis along the Earth rotation axis, the
yet axis along the intersection of the meridian (east meridian 0◦) and the zet axis completes
the right-handed orthogonal frame. As shown in Figure 1, the relationship between the
transversal coordinate system et and the Earth coordinate system e is given by:

Cet

e =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ (1)
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Let the transversal navigation coordinate system be t. Its origin is located at the position
of the carrier, the Et axis lies along the tangent of the transversal latitude circle toward
the transversal east, the N t axis lies along the tangent of the transversal meridian circle
toward the transversal north and the Ut axis lies along the normal of the sphere toward the
zenith. The definition of the transversal latitude and longitude is similar to the definition
of geometric latitude and longitude. Let the meridional circle where the prime meridian is
located be the transversal equator, and the original geographic coordinate points [0◦, 90◦E]
and [0◦, 90◦W] be the new transversal north and south poles, respectively. The transversal
meridian is defined as a contour line by crossing the Earth with the plane through two
transversal poles.

M ′ is the intersecting point of the transversal equator and the transversal meridian
passing through point M . The point M is a point on the surface of the Earth. The cross
angle between the geometric normal and the transversal equatorial plane is defined as
the transversal latitude ϕt at point M . The transversal north hemisphere is located in the
geographical eastern hemisphere and the transversal south hemisphere is located in the
geographical western hemisphere. We define the initial transversal meridian as the northern
hemisphere part of the geographical meridional circle where the geo-longitude is 90◦E. The
cross angle between the transversal meridian surface and the initial transversal meridian is
defined as the transversal meridian λt at point M . P represents the position of a vehicle with
a height h.The position P can be determined by transversal longitude λt, transversal latitude
ϕt and height h, expressed as (x, y, z) in the Earth coordinate system e and as (ϕ, λ, h) using
the geographic latitude and longitude. For the same point, the transformation formula for
(x, y, z) and (ϕt, λt, h) is given by:

⎧⎪⎨
⎪⎩

x = (Rn + h) cos ϕt sin λt

y = (Rn + h) sin ϕt

z = [Rn(1 − e2) + h] cos ϕt cos λt

(2)

where Rn is the radius of the prime vertical circle and e is the elliptical eccentricity.
The transformation formula between (x, y, z) and (ϕ, λ, h) is given by:

⎧⎪⎨
⎪⎩

x = (Rn + h) cos ϕ cos λ

y = (Rn + h) cos ϕ sin λ

z = [Rn(1 − e2) + h] sin ϕ

(3)

According to Equations (2) and (3), the relationships of latitude and longitude between
the geographic coordinate system and transversal navigation coordinate system are given
by:

{
sin ϕt = cos ϕ sin λ

tan λt = cot ϕ cos λ
(4a)

{
sin ϕ = cos ϕt cos λt

tan λ = tan ϕtλt (4b)
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As Rn cannot be treated as a constant value in the polar region, the relationship between
Rn and ϕt, λt becomes:

Rn =
Re√

1 − e2 sin2 ϕ

=
Re√

1 − e2 cos2 ϕt cos2 λt
(5)

where Re is the equatorial radius, and is a constant.
The transversal navigation coordinate system t can be obtained by two rotations of the

Earth coordinate system as follows:

x − y − z
y − axis

λt x1 − y1 − z1
−x1 − axis

ϕt Et − N t − Ut

We rotate an angle λt around the y positive axis to obtain the coordinate system
(x1, y1, z1). The rotation matrix is:

C1
e =

⎡
⎣cos λt 0 − sin λt

0 1 0
sin λt 0 cos λt

⎤
⎦ (6)

We then rotate an angle ϕt around the x1 axis to obtain the ellipsoidal transversal
coordinate system. The rotation matrix is:

Ct
1 =

⎡
⎣1 0 0

0 cos ϕt − sin ϕt

0 sin ϕt cos ϕt

⎤
⎦ (7)

Thus, the Direction Cosine Matrix (DCM) Ct
e is determined:

Ct
e = Ct

1C1
e =

⎡
⎣ cos λt 0 − sin λt

− sin ϕt sin λt cosϕt − sin ϕt cos λt

cosϕt sin λt sin ϕt cosϕt cos λt

⎤
⎦ (8)

3. DERIVATION OF TWO IMPORTANT FORMULAE IN TRANSVERSAL NAVI-
GATION. In order to derive the detailed transversal navigation equations, we firstly
determine two important formulae. One is the position differential equation and the other
is an equation of the transport rate in transversal navigation. Before the presentation of the
explicit form of the following equations, we denote the time differential of one variable as
d(·) = d(·)/dt.
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Executing differential operations on both sides of Equation (2) and substituting Equation
(5) into the resulting equation gives:

Ve =
[
vx vy vz

]T =
[
dx dy dz

]T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin λt cos ϕt

⎛
⎜⎜⎜⎜⎝dh −

Re

(
2dλte2 sin λt cos λt cos2 ϕt

+ 2dϕte2 cos2 λt sin ϕt cos ϕt

)

2
(
1 − e2 cos2 λt cos2 ϕt

)3/2

⎞
⎟⎟⎟⎟⎠

+ dλt cos λt cos ϕt

(
Re√

1 − e2 cos2 λt cos2 ϕt
+ h

)

− dϕt sin λt sin ϕt

(
Re√

1 − e2 cos2(λt) cos2(ϕt)
+ h

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝sin ϕt

⎛
⎜⎜⎜⎜⎝dh −

Re

(
2dλte2 sin λt cos λt cos2 ϕt

+ 2dϕte2 cos2 λt sin ϕt cos ϕt

)

2
(
1 − e2 cos2 λt cos2 ϕt

)3/2

⎞
⎟⎟⎟⎟⎠

+ dϕt cos ϕt

(
Re√

1 − e2 cos2 λt cos2 ϕt
+ h

))
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos λt cos ϕt

⎛
⎜⎜⎜⎜⎝dh −

(1 − e2)Re

(
2dλte2 sin λt cos λt cos2 ϕt

+ 2dϕte2 cos2 λt sin ϕt cos ϕt

)

2
(
1 − e2 cos2 λt cos2 ϕt

)3/2

⎞
⎟⎟⎟⎟⎠

− dλt sin λt cos ϕt(
(1 − e2)Re√

1 − e2 cos2 λt cos2 ϕt
+ h

)

− dϕt cos λt sin ϕt

(
(1 − e2)Re√

1 − e2 cos2 λt cos2 ϕt
+ h

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

According to the transversal coordinate system definition, the velocity vector in the
transversal navigation coordinate t can be expressed as a component form:

Vt =
[
vt

e vt
n vt

u

]
(10)

where vt
e, vt

n, vt
u represent the east velocity, north velocity and vertical velocity in transversal

coordinate t, respectively.
According to Equations (8)–(10), the velocity in the transversal navigation coordinate t

can be obtained:
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Vt =
[
vt

e vt
n vt

u

]T = (Ct
e)Ve (11a)

vt
e = −

⎛
⎜⎜⎜⎜⎝

dλte2 cos4 λt cos3 ϕt
(

h
√

1 − e2 cos2 λt cos2 ϕt + Re

)
+ dλt cos2 λt cos ϕt

(
e2 sin2 λt cos2 ϕt − 1

) (
h
√

1 − e2 cos2 λt cos2 ϕt + Re

)
+ dλt sin2 λt cos ϕt(

(e2 − 1)Re − h
√

1 − e2 cos2 λt cos2 ϕt
)

+ dϕte2Re sin λt cos λt sin ϕt

⎞
⎟⎟⎟⎟⎠

(
1 − e2 cos2 λt cos2 ϕt

)3/2

vt
n = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e2 cos(2λt − 2ϕt)
(

dλtRe + dϕth
√

1 − e2 cos2 λt cos2 ϕt
)

− dλte2Re cos(2(λt + ϕt))

+ 2dϕte2h cos(2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+ dϕte2h cos(2(λt + ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+ 2dϕte2h
√

1 − e2 cos2 λt cos2 ϕt − 8dϕth
√

1 − e2 cos2 λt cos2 ϕt

+ 2dϕte2 cos(2λt)
(

h
√

1 − e2 cos2 λt cos2 ϕt + 2Re

)
+ 4dϕte2Re − 8dϕtRe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8
(
1 − e2 cos2 λt cos2 ϕt

)3/2

vt
u = dh (11b)

If dλt, dϕt, dh are treated as unknown variables in Equation (11), the linear equations
determined by Equation (11) are solved, and the position differential equation in the
transversal coordinate system can be obtained:

dλt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
vsec

et ϕt(e2 cos(2(λt + ϕt)) + e2 cos(2(λt − ϕt))
+ 2e2 cos(2ϕt) + 2e2 − 8)2(

2e2h cos(2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+ e2h cos(2(λt + ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+ e2h cos(2(λt − ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+ 2e2h
√

1 − e2 cos2 λt cos2 ϕt

− 8h
√

1 − e2 cos2 λt cos2 ϕt + 2e2 cos(2λt)(
h
√

1 − e2 cos2 λt cos2 ϕt + 2Re

)
+ 4e2Re − 8Re

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
64
(
1 − e2 cos2 λt cos2 ϕt

)3/2
(

h
√

1 − e2 cos2 λt cos2 ϕt + Re

)
·⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
2e2h cos(2ϕt)

√
1 − e2 cos2 λt cos2 ϕt

+ e2h cos(2(λt + ϕt))
√

1 − e2 cos2 λt cos2 ϕt
)

+ e2h cos(2(λt − ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+ 2e2h
√

1 − e2 cos2 λt cos2 ϕt

+ 2e2h cos(2λt)
√

1 − e2 cos2 λt cos2 ϕt

− 8h
√

1 − e2 cos2 λt cos2 ϕt + 8e2Re − 8Re

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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−

(vnte2Re sin λt cos λt sin ϕt(e2 cos(2(λt + ϕt))
+ e2 cos(2(λt − ϕt)) + 2e2 cos(2λt) + 2e2 cos(2ϕt) + 2e2 − 8)2)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8
(
1 − e2 cos2 λt cos2 ϕt

)3/2
(

h
√

1 − e2 cos2 λt cos2 ϕt + Re

)
·⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2e2h cos(2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+ e2h cos(2(λt + ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+ e2h cos(2(λt − ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+ 2e2h
√

1 − e2 cos2 λt cos2 ϕt

+ 2e2h cos 2λt
√

1 − e2 cos2 λt cos2 ϕt

− 8h
√

1 − e2 cos2 λt cos2 ϕt + 8e2Re − 8Re

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

dϕt =

(
16e2Revet

(
1 − e2 cos2 λt cos2 ϕt

)3/2
λtsecλt sin2(2λt) sin ϕt

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(√
1 − e2 cos2 λt cos2 ϕth + Re

)
(2 cos(2λt)e2 + 2 cos(2ϕt)e2 + cos(2(λt + ϕt))e2

+ cos(2(λt − ϕt))e2 + 2e2 − 8)
√

1 − e2 cos2 λt cos2 ϕt cos(2ϕt)e2(
8Ree2 + 2h + h

√
1 − e2 cos2 λt cos2 ϕt cos(2(λt + ϕt))e2

+ h
√

1 − e2 cos2 λt cos2 ϕt cos(2(λt − ϕt))e2

+ 2h
√

1 − e2 cos2 λt cos2 ϕte2 + 2h cos(2λt)
√

1 − e2 cos2 λt cos2 ϕte2

− 8Re − 8h
√

1 − e2 cos2 λt cos2 ϕt
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4vnt
(
1 − e2 cos2 λt cos2 ϕt

)3/2 (6Ree2 − 2 cos(2λt)(
Re − h

√
1 − e2 cos2 λt cos2 ϕt

)
e2 + 2Re cos(2ϕt)e2

+ 2h
√

1 − e2 cos2 λt cos2 ϕt cos(2ϕt)e2 + Re cos(2(λt + ϕt))e2

+ h
√

1 − e2 cos2 λt cos2 ϕt cos(2(λt + ϕt))e2

+
(√

1 − e2 cos2 λt cos2 ϕth + Re

)
cos(2(λt − ϕt))e2

+ 2h
√

1 − e2 cos2 λt cos2 ϕte2

− 8Re − 8h
√

1 − e2 cos2 λt cos2 ϕt
)

λtsecλt sin(2λt)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(√
1 − e2 cos2 λt cos2 ϕth + Re

)
(2 cos(2λt)e2 + 2 cos(2ϕt)e2

+ cos(2(λt + ϕt))e2 + cos(2(λt − ϕt))e2 + 2e2 − 8)(
8Ree2 + 2h

√
1 − e2 cos2 λt cos2 ϕt cos(2ϕt)e2

+ h
√

1 − e2 cos2 λt cos2 ϕt cos(2(λt + ϕt))e2

+ h
√

1 − e2 cos2 λt cos2 ϕt cos(2(λt − ϕt))e2

+ 2h
√

1 − e2 cos2 λt cos2 ϕte2 + 2h cos(2λt)
√

1 − e2 cos2 λt cos2 ϕte2

− 8Re − 8h
√

1 − e2 cos2 λt cos2 ϕt
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

dh = vut (14)
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According to Equations (12)–(14), we obtain the position differential relationship
equation in the transversal navigation system, which relates velocity Vt with λt, ϕt and h.

According to the rule of the DCM differential equation, we know:

Ċ
t
e = Ct

e

[
ωe

te×
]

(15)

where
[
ωe

te×
]

is the skew symmetric DCM corresponding to the angular velocity vector

ωe
te =

[
ωe

te(x) ωe
te(y) ωe

te(z)
]T

, expressed as:

[
ωe

te×
]

=

⎡
⎣ 0 −ωe

te(z) ωe
te(y)

ωe
te(z) 0 −ωe

te(x)
−ωe

te(y) ωe
te(x) 0

⎤
⎦ (16)

According to the orthogonality of the DCM:

(Ct
e)−1 = (Ct

e)T (17)

Substituting Equation (8) into Equation (15) yields:

[
ωe

te×
]

= (Ct
e)−1Ċ

t
e =

⎡
⎣ 0 dϕt sin λt −dλt

−dϕt sin λt 0 −dϕt cos λt

−dλt dϕt cos λt 0

⎤
⎦ (18)

Then ωt
et can be determined by Equation (18).

Equations (12)–(14) determine the relationship between the velocity and the position of
the vehicle in the transversal coordinate system. Equation (18) determines the relationship
between the linear velocity and the relative rotation called transport rate in the transversal
coordinate system. The two formulae are the basis for the following transversal navigation
mechanism.

ωt
et =

[
ωt

et(x) ωt
et(y) ωt

et(z)
]

= Ct
e(−ωe

te) (19a)

ωt
et(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4vnt
(
1 − e2 cos2 λt cos2 ϕt

)3/2 (6Ree2 − 2 cos(2λt)(
Re − h

√
1 − e2 cos2 λt cos2 ϕt

)
e2 + 2Re cos(2ϕt)e2

+2h
√

1 − e2 cos2 λt cos2 ϕt cos(2ϕt)e2 + Re cos(2(λt + ϕt))e2

+h
√

1 − e2 cos2 λt cos2 ϕt cos(2(λt + ϕt))e2

+
(√

1 − e2 cos2 λt cos2 ϕth + Re

)
cos(2λt − 2ϕt)e2

+2h
√

1 − e2 cos2 λt cos2 ϕte2

−8Re − 8h
√

1 − e2 cos2 λt cos2 ϕt
)

λtsecλt sin(2λt)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(√
1 − e2 cos2 λt cos2 ϕth + Re

)
(2 cos(2λt)e2

+2 cos(2ϕt)e2 + cos(2(λt + ϕt))e2 + cos(2λt − 2ϕt)e2 + 2e2 − 8)(
8Ree2 + 2h

√
1 − e2 cos2 λt cos2 ϕt cos(2ϕt)e2

+h
√

1 − e2 cos2 λt cos2 ϕt cos(2(λt + ϕt))e2

+h
√

1 − e2 cos2 λt cos2 ϕt cos(2λt − 2ϕt)e2 + 2h
√

1 − e2 cos2 λt cos2 ϕte2

+2h cos(2λt)
√

1 − e2 cos2 λt cos2 ϕte2 − 8Re

− 8h
√

1 − e2 cos2 λt cos2 ϕt
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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− 16e2Revet
(
1 − e2 cos2 λt cos2 ϕt

)3/2
λtsecλt sin2(2λt) sin ϕt⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(√
1 − e2 cos2 λt cos2 ϕth + Re

)
(2 cos(2λt)e2 + 2 cos(2ϕt)e2

+ cos(2(λt + ϕt))e2 + cos(2λt − 2ϕt)e2 + 2e2 − 8)(
8Ree2 + 2h

√
1 − e2 cos2 λt cos2 ϕt cos(2ϕt)e2

+h
√

1 − e2 cos2 λt cos2 ϕt cos(2(λt + ϕt))e2

+h
√

1 − e2 cos2 λt cos2 ϕt cos(2λt − 2ϕt)e2

+2h
√

1 − e2 cos2 λt cos2 ϕte2 + 2h cos(2λt)
√

1 − e2 cos2 λt cos2 ϕte2

− 8Re − 8h
√

1 − e2 cos2 λt cos2 ϕt
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19b)

ωt
et(y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vet(e2 cos(2(λt + ϕt)) + e2 cos(2λt − 2ϕt) + 2e2 cos(2ϕt) + 2e2 − 8)2⎛
⎜⎜⎜⎜⎜⎝

2e2h cos(2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2(λt + ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2λt − 2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+2e2h
√

1 − e2 cos2 λt cos2 ϕt − 8h
√

1 − e2 cos2 λt cos2 ϕt

+2e2 cos(2λt)
(

h
√

1 − e2 cos2 λt cos2 ϕt + 2Re

)
+ 4e2Re − 8Re

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

64
(
1 − e2 cos2 λt cos2 ϕt

)3/2
(

h
√

1 − e2 cos2 λt cos2 ϕt + Re

)
·⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2e2h cos(2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2(λt + ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2λt − 2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+2e2h
√

1 − e2 cos2 λt cos2 ϕt

+2e2h cos(2λt)
√

1 − e2 cos2 λt cos2 ϕt

−8h
√

1 − e2 cos2 λt cos2 ϕt + 8e2Re − 8Re

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

(e2Revntsinλt cos λt sin ϕt(e2 cos(2(λt + ϕt)) + e2 cos(2λt − 2ϕt)

+2e2 cos(2λt) + 2e2 cos(2ϕt) + 2e2 − 8)2)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8
(
1 − e2 cos2 λt cos2 ϕt

)3/2
(

h
√

1 − e2 cos2 λt cos2 ϕt + Re⎛
⎜⎜⎜⎜⎜⎝

2e2h cos(2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2(λt + ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2λt − 2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+2e2h
√

1 − e2 cos2 λt cos2 ϕt

+2e2h cos(2λt)
√

1 − e2 cos2 λt cos2 ϕt

− 8h
√

1 − e2 cos2 λt cos2 ϕt + 8e2Re − 8Re

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19c)
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ωt
et(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vet tan ϕt(e2 cos(2(λt + ϕt)) + e2 cos(2λt − 2ϕt)
+2e2 cos(2λt) + 2e2 cos(2ϕt) + 2e2 − 8)2⎛

⎜⎜⎜⎜⎝
2e2h cos(2ϕt)

√
1 − e2 cos2 λt cos2 ϕt

+e2h cos(2(λt + ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2λt − 2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+2e2h
√

1 − e2 cos2 λt cos2 ϕt

−8h
√

1 − e2 cos2 λt cos2 ϕt + 2e2 cos(2λt)(
h
√

1 − e2 cos2 λt cos2 ϕt + 2Re

)
+ 4e2Re − 8Re

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

64
(
1 − e2 cos2 λt cos2 ϕt

)3/2
(

h
√

1 − e2 cos2 λt cos2 ϕt + Re
)

·⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2e2h cos(2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2(λt + ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2λt − 2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+2e2h
√

1 − e2 cos2 λt cos2 ϕt

+2e2h cos(2λt)
√

1 − e2 cos2 λt cos2 ϕt

−8h
√

1 − e2 cos2 λt cos2 ϕt + 8e2Re − 8Re

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

(e2Revnt sin λt cos λt sin ϕt tan ϕt(e2 cos(2(λt + ϕt)) + e2 cos(2λt − 2ϕt)
+2e2 cos(2λt) + 2e2 cos(2ϕt) + 2e2 − 8)2)⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8
(
1 − e2 cos2 λt cos2 ϕt

)3/2(
h
√

1 − e2 cos2 λt cos2 ϕt + Re⎛
⎜⎜⎜⎜⎝

2e2h cos(2ϕt)
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2(λt + ϕt))
√

1 − e2 cos2 λt cos2 ϕt

+e2h cos(2λt − 2ϕt)
√

1 − e2 cos2(λt) cos2 ϕt

+2e2h
√

1 − e2 cos2 λt cos2 ϕt

+2e2h cos(2λt)
√

1 − e2 cos2 λt cos2 ϕt

− 8h
√

1 − e2 cos2 λt cos2 ϕt + 8e2Re − 8Re

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19d)

4. DIFFERENTIAL EQUATIONS OF ATTITUDE, VELOCITY AND POSITION FOR
TRANSVERSAL NAVIGATION.

4.1. Differential equation of attitude. The differential equation of attitude matrix Ct
b

is given by:

Ċ
t
b = Ct

b(ωt
tb×) (20)

where b is the body coordinate system.
In order to solve this differential equation, we must know the rotation rate ω′

tb which is
calculated by ωb

ib, ωt
ie and ωt

et as follows:

ωb
tb = ωb

ib − Cb
t (ωt

ie + ωt
et) (21)
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where ωb
ib is the actual measurement of the gyroscope. ωt

ie is the rotation rate of the Earth
and can be determined by:

ωt
ie = Ct

eωie =
[− sin λtωie − sin ϕt cos λtωie cos ϕt cos λtωie

]T (22)

ωt
et is the key to the attitude solution in transversal navigation, which is already known

from Equation (19).
4.2. Differential equation of velocity. In the ellipsoidal transversal coordinate system,

the transversal velocity equation can be obtained as follows:

V̇t = Ct
bfb − (2ωt

ie + ωt
et) × Vt + gt (23)

where Vt is the transversal velocity and gt is the gravitational acceleration vector expressed
in the t coordinate. ωt

ie and ωt
et can be determined by Equations (22) and (19).

According the definition of transversal navigation coordinate t in Section 2, it is also a
horizontal coordinate system, therefore:

gt = gn (24)

4.3. Differential equation of position. Considering the coupling of the motion in the
transversal coordinate system, the differential equations of position are determined by
Equations (12) and (13). Since an INS cannot independently determine the vertical posi-
tion h without external reference information sources (such as an altimeter), the differential
equation of vertical position can be removed.

It is well known that in a traditional INS, latitude is only determined by the change
rate of north velocity and longitude is only determined by the change rate of east velocity.
From Equations (12) and (13), it can be seen that in the transversal coordinate system t,
latitude ϕt and longitude λt are affected by both north velocity vt

n and east velocity vt
e.

It can be concluded that there are coupling motions in transversal navigation, which are
totally different from a traditional INS.

5. SIMULATION TEST ANALYSIS. In order to verify the feasibility and effective-
ness of the proposed navigation scheme, a simulation study was carried out. The trajectory
generator was designed as follows: the initial geographical position is (70◦N, 0◦E) and geo-
graphic east velocity and north velocity are both 6 m/s. The heaving motion of the vehicle
was set as H · sin(ω · t), where the heave cycle ω = 2π/3600(rad/s) and the heave ampli-
tude H was set as 1 m, 5 m, 10 m, 15 m and 20 m, respectively. The corresponding values
are H1 = 1, H2 = 5, H3 = 10, H4 = 15, H5 = 20. The geographical heading angle was 45◦,
roll angle was set to 5◦ sin(π t/4) and the pitch angle was set to 3◦ cos(π t/5). The simulation
period was 24 hours. The proposed transversal navigation mechanism in this paper is called
“mechanism 1” and the transversal navigation mechanism proposed in Li et al. (2016) is
called “mechanism 2”. Both were tested in the simulation experiments. It was found that
with the increase of the heaving motions, the principle errors gradually increase, among
which the errors of velocity and horizontal attitude are more obviously amplified, as shown
in Figure 2 (for brevity, only the curves of east velocity and pitch errors are presented).
In Figure 2(a), δVet01, δVet05, δVet10, δVet15, δVet20 are east velocity errors and �nt01,
�nt05, �nt10, �nt15, �nt20 are pitch errors in the t coordinate system, under the conditions
of heaving motion with, H1 = 1, H2 = 5, H3 = 10, H4 = 15, H5 = 20 respectively.
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(a)

(b)

Figure 2. (a) Curves of east velocity error (“mechanism 2”). (b) Curves of pitch error (“mechanism 2”).

Compared with “mechanism 2”, the precision advantages of “mechanism 1” in position,
velocity and attitude error are obviously shown in Figures 3–5 (for brevity, only three cases
of curves are given).

Next, some gyroscope and accelerometer errors were introduced, and simulations were
repeated. It was found that the proposed improved navigation mechanism still has a
precision advantage compared with “mechanism 2” under exactly the same experimen-
tal conditions (gyro drifts εx = εy = εz = 0·0001◦/h, accelerometer biases ∇x = ∇y = ∇z =
10−7g), as shown in Figures 6–8. However, it can be deduced that when the inertial sen-
sor errors become the dominating error sources, the performance improvement using the
improved mechanism will be less obvious.
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Figure 3. Transversal navigation errors (H1 = 1).

Figure 4. Transversal navigation errors (H3 = 10).

Figure 5. Transversal navigation errors (H5 = 20).
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Figure 6. Transversal attitude errors (with gyroscope and accelerometer errors).

Figure 7. Transversal velocity errors (with gyroscope and accelerometer errors).

Figure 8. Transversal heading and position errors (with gyroscope and accelerometer errors).
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From the experimental results, it can be concluded that the transversal navigation mech-
anism (“mechanism 2”) presented in Li et al. (2016) has errors in the presence of obvious
heaving motion, and the performance will deteriorate with motion intensity increases.
Errors of horizontal velocity and horizontal attitude are obviously affected by the heav-
ing motion, and the effect on the errors of the position and heading are relatively small.
The more rigorous improved mechanism of this paper (“mechanism 1”) has an obvious
precision advantage over “mechanism 2”. As the intensity of heaving motion increases, the
advantages will increase further.

6. CONCLUSIONS. The traditional transversal navigation algorithm incorporates
errors by adopting a simplified Earth model. Establishing an accurate ellipsoid model with
elliptic curvature radius can significantly reduce the transversal navigation principle errors.
After theoretical analysis by rigorous transversal navigation equations, it is found that under
the ellipsoid Earth model, the transversal navigation of the polar region is a complex cou-
pling problem. In this paper, the mechanism of transversal polar region navigation based
on an ellipsoidal Earth model is theoretically re-derived, and the complete mechanical
arrangement of attitude, position and velocity calculation is presented. The new deriva-
tion in this paper completely avoids solving the ellipsoidal radius, and the coupling of the
three-dimensional motion is fully considered. The simulation experiment validates the pre-
cision advantage of the transversal navigation mechanism proposed in this paper, especially
in the condition of vertical motion.
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