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Fluidization by lift of 300 circular particles in
plane Poiseuille flow by direct numerical

simulation
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Department of Aerospace Engineering and Mechanics, 107 Akerman Hall, 110 Union Street SE,

University of Minnesota, Minneapolis, MN 55455, USA

(Received 11 March 2000 and in revised form 5 October 2000)

We study the transport of a slurry of heavier-than-liquid circular particles in a plane
pressure-driven flow in a direct simulation. The flow is calculated in a periodic domain
containing 300 circular particles. The study leads to the concept of fluidization by lift
in which all the particles are suspended by lift forces against gravity perpendicular to
the flow. The study is framed as an initial-value problem in which a closely packed
cubic array of particles resting on the bottom of the channel is lifted into suspension.
All the details of the flow are resolved numerically without model assumptions. The
fluidization of circular particles first involves bed inflation in which liquid is driven
into the bed by high pressure at the front and low pressure at the back of each circle
in the top row. This kind of bed inflation occurs even at very low Reynolds numbers
but it takes more time for the bed to inflate as the Reynolds number is reduced.
It appears that the bed will not inflate if the shear Reynolds number is below the
critical value for single particle lift-off. The flows with a single particle are completely
determined by a shear Reynolds number and a gravity parameter when the density
ratio and aspect ratio parameters are specified. In the multi-particle case, the volume
fraction and distribution also matters. The transition to a fully fluidized slurry by
waves is discussed.

An analytical model of the steady motion of a single particle dragged forward in
a Poiseuille flow is derived and compared with a simulation. The undisturbed fluid
velocity is always larger than the particle velocity, producing a fluid hold-up. The
effect of the hold-up in the many particle case is to greatly reduce the velocity of
the mixture which may be described by a two-fluid model in which the solid laden
mixture is regarded as a second fluid with effective properties.

1. Introduction
The problem of transport of particles by fluids in horizontal conduits and pipes is

of considerable scientific and industrial importance and is the focus of this paper. This
problem arises in the transport of coal–water slurries, in the removal of drill cuttings
in the drilling of horizontal oil wells and in proppant transport in hydraulically
fractured rock in oil- and gas-bearing reservoirs, to name a few examples. The central
unsolved fluid dynamics problem arising in these applications is fluidization by lift.

† Present address: BK21, Mechanical Engineering Research Division, Seoul National University,
Seoul 151–742, Korea.
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Figure 1. Sand transport in a fractured reservoir (after Kern, Perkins & Wyant 1959).

The problem of fluidization by lift can be framed well in the problem of hydraulic
fracturing.

Hydraulic fracturing is a process often used to increase the productivity of a
hydrocarbon well. A slurry of sand in a highly viscous, sometimes elastic, fluid is
pumped into the well to be stimulated at sufficient pressure to exceed the horizontal
stresses in the rock at reservoir depth. This opens a vertical fracture, some hundreds
of feet long, tens of feet high, and perhaps an inch in width, penetrating from the
well bore far into the pay zone. When the pumping pressure is removed, the sand acts
to prop the fracture open. Productivity is enhanced because the sand-filled fracture
offers a higher-conductivity path for fluids to enter the well than through the bulk
reservoir rock, and because the area of contact for flow out from the productive
formation is increased. It follows that a successful stimulation job requires that there
be a continuous sand-filled path from great distances in the reservoir to the well, and
that the sand is placed within productive, rather than non-productive, formations.

In a slot problem, a particle laden (say 20% solids) fluid is driven by a pressure
gradient and the particles settle to the bottom as they are dragged forward. Sand
is deposited on the bottom of the slot; a mound of sand develops and grows until
the gap between the top of the slot and the mound of sand reaches an equilibrium
value; this value is associated with a critical velocity. The velocity in the gap between
the mound and the top of the slot increases as the gap above the mound decreases.
For velocities below critical, the mound becomes higher and spreads laterally; for
larger velocities, sand will be washed out until the equilibrium height and velocity
are reestablished (see figure 1). The physical processes mentioned here are settling
and washout. Washout could be by sliding and slipping; however, a more efficient
transport mechanism is by advection after suspension which we studied by direct
simulation.

In fluidized beds and sedimentation columns in which particles are in a balance
of buoyant weight and drag, the cooperative effects of other nearby particles enter
strongly into the dynamics. These effects are described by theories of hindered motion.
There is a definite relationship between the fluidization by drag of an isolated particle
and the fluidization of a particle in a swarm of other particles; for example, the
Richardson–Zaki correlation (Richardson & Zaki 1954). Analogous ideas must come
into play in problems of slurries which are fluidized by lift rather than by drag;
hindered motion effects involving the effective viscosity and the effective density
of a suspension and other cooperative effects surely enter here, but are not well
understood.

The problem of lift on a single particle has been treated by many authors in the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

41
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001004177


Fluidization by lift of circular particles 103

low-Reynolds-number limit. Even in the much better understood subject of drag on
a single particle, say a drag on a sphere, there are no first principle formulae, and
empirical relations must be used. The problem of lift of a single circular particle
in Poiseuille flow at finite Reynolds numbers has been studied in direct numerical
simulation by Patankar et al. (2001); this paper has a discussion of previous work
which will not be repeated here.

Patankar et al. is based on an ALE method using body-fitted unstructured finite-
element grids very closely related to the numerical method introduced by Choi (2000)
and used here. A Chorin (1968) type fractional step scheme for particulate flows is
introduced in the approach by Choi (2000).

Using the ALE particle mover, Patankar et al. studied lift-off and slip-velocity
fluidization in Newtonian and viscoelastic fluids. A heavier than liquid particle is
resting on the bottom of a channel in the presence of a shear (Poiseuille) flow. At a
certain critical speed, depending on the weight and diameter of the particle, the fluid
properties, and the aspect ratio of the channel, the particle rises from the wall to an
equilibrium height at which the buoyant weight just balances the upward thrust of
fluid forces. The values of the particle velocity, the angular velocity of the particle,
the slip velocity and the angular slip velocity at equilibrium together with the values
of the relevant dimensionless parameters were tabulated.

We did dynamic simulations of single-particle lift to equilibrium at larger Reynolds
numbers and found that the rise and other equilibrium properties are not smooth
functions of the pressure gradient but instead exhibit instability and hysteresis. These
results can be found in Patankar et al. (2001) who showed that the hysteresis loops
arise as double turning point solutions. The existence of multiple steady solutions for
single particle lifting may have important implications for slurries. Certainly, such
considerations are not found in models of solid–liquid flow and it is necessary to visit
this question in the future.

In § 4, we carry out studies of fluidization by lift of 300 particles in the same
plane Poiseuille flow used to study the lift to equilibrium of a single particle. The
computation is carried out in a long periodic domain in which the volume fraction
of solid circles ranges roughly between 78% and 31%. The study is framed as an
initial-value problem in which a closely spaced cubic array of particles resting on the
bottom of the channel is lifted into suspension.

The following picture emerges from this study. At early times, the top of the array
is only slightly disturbed; since the cubic crystal array is not tightly packed, the top
layers move forward relative to the bottom. The lifting of particles out of suspension
is accomplished by a pressure mechanism clearly revealed by the simulation; liquid is
driven into the bed by high pressure at the front and low pressure at the back of each
circle in the top row. The particles are dislodged by this pressure mechanism. At higher
Reynolds numbers, single particles are thrown out of the bed in a manner resembling
saltation. Typically, isolated particles will fall back into the bed because the drag on
an isolated particle is less than when it is among many. The permanent lifting of more
particles of the bed takes shape in the formation of waves, which resemble water
waves. The wave amplitude grows as the pressure gradient and flow speed increase;
particles are levitated out of the bed and the levitated particles form a fluidized
suspension over a fixed bed. This can be described as bed erosion. It is possible to
erode the whole bed and fluidize all of the particles by lift if the pressure gradient is
high enough and the bed depth small enough. The wave amplitude decreases when
the particles are fully fluidized.

The evolution to full fluidization is associated with a transition from a vertical
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104 H. G. Choi and D. D. Joseph

stratification of dynamic pressure to a horizontal stratification of dynamic pressure.
The final state of full fluidization is not steady. Internal pressure waves which prop-
agate horizontally are associated with the propagation of particle-depleted regions
which could be described as an internal wave of the volume fraction.

A single heavier-than-liquid particle will not lift off at low pressure gradients; the
particle slides and rolls on the wall; lift-off to equilibrium occurs at critical values. In
the fluidized suspension, we can track the evolution of the rise of the mass centre of
the particles. The final state of full fluidization can be determined as the levelling off
of the rise of the mass centre curve. The mass centre did not rise, even after a long
computation, when the pressure gradient was below the one critical for the rise of a
single particle.

2. Equations of motion and scaling parameters
We use the same scales and equations as Patankar et al. (2001), (length, time,

velocity, stress) = (d, γ̇−1
w , γ̇wd, ηγ̇w) and find that the governing dimensionless equations

for slurry flow of 300 circular particles can be written as

R

[
∂u

∂t
+ u · ∇u

]
= −∇p+

2d

W
ex + ∇2u fluid, (2.1)

ρp

ρf
R

dU

dt
= −Gey +

2d

W
ex +

2

π

∫ 2π

0

σ dθ

ρp

ρf
R

dΩ

dt
=

16d

π

∫ 2π

0

er ∧ σ dθ

 solid, (2.2)

where er is the radial unit vector from the centre of the circle; σ = −per + 2D[y] · er
is the stress vector,

R = ρfγ̇wd
2/η shear Reynolds number,

G =
ρp − ρf
ηγ̇w

gd gravity parameter.

 (2.3)

Instead of R and G we may use the product

RG = RG =
ρf(ρp − ρf)gd3

η2
, (2.4)

and ratio

R

G
=

dγ̇2
w

(ρp/ρf − 1)g
. (2.5)

The sedimentation Reynolds number RG does not depend on γ̇w , and the generalized
Froude number R/G does not depend on the viscosity η.

Adherence boundary conditions are prescribed also at the boundary of each circle

u = U +Ω ∧ erd. (2.6)

When, as in a slurry, there are many particles, the number N and places of N
boundaries enter into the problem description. In the present case, 300 is the number
and the places of these 300 particles evolve as part of the solution. We have similarity
then for all evolution problems for which N, d/W , ρp/ρf , R and G are identical. In
fact, the density ratio ρp/ρf enters only in (2.2) as the coefficient of the acceleration
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y

x

Channel width W

Particle of diameter d

g

Poiseuille
flow

Figure 2. Levitation of a heavier-than-liquid particle in a plane Poiseuille flow. The disturbed flow
is periodic with period L.

terms, hence, does not enter for steady flow. Though steady flows of a single particle
do occur and were studied by Patankar et al. (2001), steady flow of many particles do
not appear to occur in the multiple particle case after lift off; however, it is possible
that the accelerations are small after the bed has fully expanded.

3. Problem formulation
The problem to be considered is the levitation of particles of diameter d in a plane

Poiseuille flow in a horizontal channel of width W as shown in figure 2.
The undisturbed Poiseuille flow is given by

U(y) = 4Um

y

W

(
1− y

W

)
,

Um = U

(
W

2

)
=
W 2p̄

8η
,

γ̇ =
du

dy
,

γ̇w =
4Um

W
=
Wp̄

2η
.


(3.1)

The presence of particles disturbs the Poiseuille flow. It is assumed that the dis-
turbance flow, satisfying equations (2.1) and (2.2) is periodic with period L. This
periodicity is strictly enforced in the computation by the construction of a periodic
mesh. The solution of the disturbance flow depends on L, but only weakly for large
L. We used

L = 22d for single particle, L = 63d for 300 particles.

All the calculations were carried out in dimensional variables using CGS units. The
height of the channel is W = 12d and d = 1 cm. The particle density is ρp = 1.01ρf and
the fluid density ρf = 1 g cm−3. Calculations were made for three different viscosities
η = 1, 0.2 and 0.01 poise, from light oil to water. For each η, the calculations were
carried out for different pressure gradient p̄ in dyn cm−3.

The results of calculations in dimensional variables may be generalized by post
processing. In the present case, ρp/ρf , d/W , d/L and the number of particles in a cell
are fixed, and flows are completely determined by the shear Reynolds number R and
gravity number G given by (2.3).
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Figure 3. Rise curves for the centre of gravity of 300 circular particles fluidized by lift
(fluid viscosity = 1.0 poise, G = 9.81/R). The timescale for the slow rise at p̄ = 0.9 dyn cm−3

has been compressed by 2; the real time corresponding say, to 50.01 is 100.02 s. The bed is said
to be fully fluidized when the rise curves level off. The time to full fluidization is longer when the
Reynolds number is smaller.

4. Fluidization of 300 circular particles
Here, we study the problem of lift of 300 solid circles in plane Poiseuille flow

(figure 2) when ρp = 1.01ρf, ρf = 1 g cm−3, W = 12d and d = 1 cm for viscosities
η = 1, 0.2 and 0.01 poise (from light oil to water). The calculations are carried out
in a periodic domain L = 63d which is long enough to contain four or more of the
waves of pressure which characterize fully fluidized beds of 300 particles. The period
of the waves does not depend on the period of the computational cell, provided that
the cell contains more than three waves. Initially, the circles are arranged in a square
lattice in which the particles do not touch; they are separated by 0.05 cm when η = 1
and η = 0.2 poise, and by 0.1 cm when η = 0.01 poise. The height of the array is
5.25 cm and 5.35 cm.

Initially, the particle array is at rest and the fluid above is a developed Poiseuille
flow; this kind of initial condition causes a faster saltation type of lift, like a dust
storm in a sudden wind. The same final rise height can be obtained from different
initial conditions.

We recall that the results of calculations may be generalized by computing the
values of the shear Reynolds number R = γ̇wd

2/ν and the gravity number G =
d(ρp − ρf)g/γ̇wη defined in (2.3). The value RG = RG = ρfd

3(ρp − ρf)g/η2 = 9.81/η2

is independent of γ̇w . The running index in our calculation is the pressure gradient p̄;
given η, this determines R = ρd2Wp̄/2η2 = 6p̄/η2.

4.1. Case 1: η = 1 poise, RG = 9.81

Figure 3 shows the height of the centre of gravity of the 300 particles as a function of
R = 6p̄. We say that the bed height has attained its final fully fluidized value when the
rise curve levels off. Average values of the bed height H̄ , the average velocity Ū cm s−1

and angular velocity Ω̄ s−1 at full inflation are given in table 1. The time taken for the
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Fluidization by lift of circular particles 107

R G p̄ H̄ Ū Ω̄

5.4 1.82 0.9 3.01 2.09 0.28
16.2 0.61 2.7 3.54 9.55 1.026
24 0.41 4.0 4.00 18.62 1.75
30 0.33 5.0 4.17 25.63 2.25
60 0.16 10.0 4.69 55.60 3.85

120 0.08 20.0 5.24 119.76 4.90

Table 1. Data for the forward motion of a fluidized suspension of 300 particles after the bed
has fully inflated and the average height H̄ of all particles has stopped increasing (η = 1.0).
H̄ = H̄0 = 2.65d at t = 0. Ū and Ω̄ are the average velocity and angular velocity of the particles.

t = 1

92

112

192

–34 –27 –10 21 53

–36 –16 –15 7 41

6 30 30 31 32

–65 –31 –30 –30 6

–16 –15 76

50 95 140

54 102

Figure 4. Snapshots of the fluidization of lift of 300 circular particles ρp = 1.01 g cm−3 when
η = 1 poise (R = 5.4, G = 1.82). The flow is from left to right. The grey scale gives the pressure
intensity and dark is for low pressure. At early times, particles are wedged out of the top layer by
high pressure at the front and low pressure at the back of each and every circle in the top row. The
vertical stratification of pressure at early times develops into a ‘periodic’ horizontal stratification, a
propagating pressure wave. The final inflated bed has eroded, rather tightly packed at the bottom
with fluidized particles at the top.

centre of gravity to reach its fully fluidized value increases as the Reynolds number R
decreases. Figures 4 to 7 show snapshots of the evolution of the bed to full fluidization
at values of R and G given in the caption to figure 3.

Animations for these snapshots can be found at our URL http://www.aem.umn.edu/
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t = 20

33

43

125

–24 31 89 202

–129 6 8 11

–158 –20 –18 –16

14

–6 23

31 31 31 31

–225 –60 –53 –50 –47 79 281

12 68 265

–14 101 309

Figure 5. Fluidization of 300 particles (R = 16.2, G = 0.61). The conditions are the same as in
figure 4 except that the lift forces are greater, leading to a more complete and faster fluidization.

Solid-Liquid Flows. The snapshots are decorated by shades of grey coded to reveal
the distribution of dynamic pressure (p̄ in (3.1)); dark means low pressure. Figures 8
and 9 show the pressure at different cross-sections of the channel for R = 120 at an
early time t = 0.9 s and when the suspension is fully fluidized at t = 27 s. At early
times, the pressure is stratified vertically, but not horizontally; at the later time, the
pressure is stratified horizontally and not vertically.

In figures 8 and 9 we plotted the distribution of pressures at an early and late
time when R = 120 and G = 0.08. The figures show that the vertical stratification
of pressure at an early time evolves to waves of pressure which are associated with
propagating number density or voidage waves.

4.2. Case 2: η = 0.2 poise, RG = 245

Figure 10 shows the height of the centre of gravity of the 300 particles as a function of
R = 6p̄/η2. The interpretation of figure 10 is the same as figure 3. Average values of
the bed height H̄ cm, velocity Ū cm s−1, and angular velocity Ω̄ s−1 at full fluidization
are given in table 2. Snapshots of the evolution to full fluidization are shown in
figures 11 and 12.

The description in the caption of figure 4 applies also to figures 11 and 12 except
that the particles are more mobile when the viscosity of the fluid is smaller. The
particle laden region at t = 25 s in figure 11, and t = 1.98 s in figure 12 is separated

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

41
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001004177


Fluidization by lift of circular particles 109

t = 1

5

12

54

–36 121 607

–596

–749 146 185 222

1

122 123 247 427

–1267 –232 –85 211

–33 727

873 2134

Figure 6. Fluidization of 300 particles (R = 60, G = 0.16). The conditions are as in figure 4. The
ratio R/G = γ̇2

wd/(g∆ρ/ρ) measures the ratio of lift to buoyant weight. Here the ratio is very large,
leading to a fast and complete fluidization; the entire bed has eroded.

from the particle-free region by an ‘interface’ which propagates like an interfacial
wave. This interface disappears at a higher R = 450, figure 12 for t > 2.7 s, because
the stronger lift forces push wave crests into the top of the channel; however, the
pressure and associated void fraction wave persists.

The pressure wave at t0 = 4.204 s for the case (η = 0.2, R = 450) in figure 12 is
analysed in figure 13. The period of this wave is T = 0.56 s and its wavelength is
16 cm. The pressure wave is associated with a wave of solids fraction which could
also be described as the passage of internal wave crests and troughs.

Figures 14 and 15, like figures 8 and 9, show the evolution of dynamic pressure from
an essentially vertical stratification at early time (t = 0.1 s) to propagating horizontal
waves in the fully developed suspension at t = 4.95 s.

4.3. Case 3: η = 0.01 poise, RG = 9.81/η2 = 9.8× 104

Figure 16 gives the height of the centre of gravity of 300 particles in water as a
function of R = 6p̄/η2 = 6 × 104p̄. The interpretation of figure 16 is the same as
figure 3. Snapshots of the evolution to full fluidization are shown in figures 17 and 18.

The evolution to full fluidization is accomplished by pressure waves. For low
Reynolds numbers the bed expansion is small; the snapshot at t = 116 s in figure 17
is an example of bed expansion in water at low R. The bed has expanded by the
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t = 0.9

4.5

21.0

26.6

–223.62

–1987.69

–5013.01

–376.86

–25.8737 –18.072 213.423

–1701.55 –111.965 113.998 2083.25

–97.2684 3117.88

–2775.23 –2219.35 –1722.19 –189.256

Figure 7. Fluidization of 300 particles (R = 120, G = 0.08). The conditions are the same as in
figures 4 and 6 but the ratio of life to buoyant weights is greater and the fluidization is faster and
the particle mass centre rises higher than in the previous fiugres.

development of voids and dislocations near the top of the bed; only a few particles
are fluidized. The bed is not severely eroded.

Fluidization in water at high Reynolds numbers is greatly different. The fully
fluidized bed shown at t = 0.46 s in figure 18 is completely eroded. The evolution
of the fluidized suspension is driven by a propagating pressure wave, which is in
one-to-one correspondence with the propagation of voids. At t = 0.27 s, before the
bed has fully fluidized, these voids coincide with wave troughs.

Figures 19 and 20 show how the dynamic pressure p develops as the bed evolves
to full fluidization. For this case, t = 0.1 s is not an early time; the periodic pressure
pulses which drive particles into suspension have already developed.

Figure 21 focuses on the wave properties of the evolving fluidization of 300 particles
in water when R = 1200. The t = 40 s panel of figure 17 shows a propagating and
nearly spatially periodic wave of particles. Waveforms for the dynamic pressure p,
the vertical velocity V , and the horizontal velocity U are shown.

4.4. Inertial mechanism of fluidization

We studied the fluidization of 300 circular particles in a Poiseuille flow. Initially, the
particles are arranged in a cubic array filling nearly half the channel. The flow breaks
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Figure 8. Distribution of dynamic pressure p and streamwise velocity u at an early time (t = 0.9 s)
when R = 120, G = 0.08 (cf. figure 7) at different cross-sections of the channel. The dynamic
pressure is stratified vertically but not horizontally. The rows of particles slide relative to one
another moving like rigid bands separated by liquid.

the cubic array and inflates the bed by pumping liquid into the bed. The pressures
that develop in the bed can levitate the particles. Bed inflation may be divided into
two regimes; an eroded bed in which only the top rows of the bed have been inflated,
and a fully fluidized bed in which all of the particles are supported by lift forces from
the fluid flow. The pumping of liquid into the bed at the earliest times appears to be
a universal inertial effect associated with potential flow around spheres and circles.
This inertial effect produces high pressure at the front and low pressure at the back
side of each circle in the top row of the array. This produces a pressure differential
front to back, creating a flow into and out the bed, which dislodges particles from
the top row. Further fluidization is driven by the development of a periodic wave of
pressure and number density which are clearly evident in the snapshots of the bed
evolution.

Apart from aspect and density ratios, the dimensionless equations are fully specified
by the values of a shear Reynolds number R = γ̇wd2/ν and a gravity number
G = d(ρp − ρf)g/γ̇wη and the number of particles in the cell. The ratio R/G is
independent of η and can be viewed as the ratio of lift to buoyant weight whereas
the product RG is independent of γ̇w and can be regarded as the ratio of buoyant to
viscous damping; there is rapid bouncing around when RG is large, and high lifts,
high average height and very inflated beds when R/G is large. A summary of the
average height, velocity and angular velocity of the particles in the fully inflated beds
for η = 1, 0.2 and 0.01 poise are presented in tables 1–3.
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Figure 9. Distribution of dynamic pressure p and streamwise velocity u after full fluidization
(t = 27 s) when R = 120, G = 0.08. The pressure p is stratified horizontally and not vertically;
pressure pulses propagate horizontally.

6

5

4

3

2

1

0
0.0015937 10.0016 20.0016

Time (s)

H(t)

(a)

(b)

(c)
(d )

(a)

450
0.54
833
3.0

(b)

300
0.82
366
2.0

(c)

150
1.63

92
1.0

(d )

45
5.44
8.27

0.3

R
G

R /G
p

Figure 10. Rise curves for the centre of gravity of 300 circular particles fluidized by lift (fluid
viscosity = 0.2, RG = 9.81/η2 = 245.) p̄ is in dyn cm−3. The bed is fully fluidized when the rise
curves level off. The time to full fluidization is longer when the Reynolds number is smaller. The
time to full fluidization is faster when η = 0.2 than when η = 1 (figure 3). The time is scaled down
by 5 and the centre of gravity of the particles will eventually rise when (R, p̄) = (45, 0.3).
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t = 3.8

9.57

16.7
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–19 –18 –16 5 15 25 36

–19 –5 41 103

–249 –226 –216 –194 –150 –83 –17

Figure 11. Fluidization of 300 particles (η = 0.2 poise, R = 150, G = 1.63). The final state of the
fluidization at t = 25 s has not fully eroded. The particles that lift out of the bed can be described
as saltating. A propagating ‘interfacial’ wave is associated with the propagating pressure wave at
t = 250 s.

R G p̄ H̄ Ū Ω̄

45 5.44 0.3 2.64 3.17 0.42
150 1.63 1.0 3.30 10.75 1.25
300 0.82 2.0 3.82 22.98 2.43
450 0.54 3.0 4.75 34.15 2.02

Table 2. Data for the forward motion of a fluidized suspension of 300 particles after the bed
has fully inflated and the average height H̄ of all particles has stopped increasing (η = 0.2).
H̄ = H̄0 = 2.65d at t = 0. Ū and Ω̄ are the average velocity and angular velocity of the particles.

4.5. Model of slip velocity

In the modelling of solid–liquid flows, the slip velocity is an important but sometimes
ambiguous quantity. For single-particle lift studies, the slip velocity is defined as
the difference between the fluid velocity at the particle centre when there are no
particles and the particle velocity. When there are many particles, other possibilities
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t = 0.95
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–1215 –724
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–32 –21 –11 0

29

97 368

747

–2508 –2006 –1505 –1003 –502

Figure 12. Fluidization of 300 particles (η = 0.2 poise, R = 450, G = 0.54). The flow is from left to
right. The particles can be lifted to the top of the channel.

become viable. For example, in the well-known drift flux model (see Wallis 1969)
drift velocities are defined as the difference between the component velocities and the
composite velocity. This kind of definition is useful when there is a large difference
in a average solid and liquid velocity. In sedimenting suspensions and in suspensions
fluidized by drag, these large differences arise from the back flow which is absent
in suspensions fluidized by lift. For such suspensions, the concept of ‘slip’ requires
analysis.

Joseph (2000) proposed a model problem for plane Poiseuille flow defined in
figure 22 in which we replace the circle of diameter d with a long rectangle whose
short side is d, the rectangle is so long that we may neglect effects of the ends of
the cylinder at sections near the cylinder centre. The midplane of the cylinder is a
distance y1 from the bottom wall and

y1 >
1
2
d, W − y1 >

1
2
d. (4.1)

When no particle is in the flow

u =
p̄

2η
y(W − y). (4.2)
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Figure 13. Propagation of the pressure wave centred at t0 = 4.204 s (η = 0.2 poise, R = 450) shown
in figure 12. The period T of this wave is T = 0.56 s and its wavelength is 16 cm.

The long particle is moved forward by shear from the Poiseuille flow at a speed Up

which we shall obtain from the particles equation of motion (4.9) for steady flow.
When 0 6 y 6 y1 − 1

2
d, we find

u =
p̄

2η
y[y1 − 1

2
d− y] +

Upy

y1 − 1
2
d
. (4.3)

When y1 + 1
2
d 6 y 6W , we have

u =
p̄

2η
(y −W )[y1 + 1

2
d− y] +

Up(y −W )

y1 + 1
2
d−W . (4.4)

For the force balance, consider the long rectangle whose long side is L and short
side is d, as in figure 22. The cylinder moves forward with steady velocity Up. The
cylinder is impelled forward by the pressure force (p1− p2)d and is resisted by a shear
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Figure 14. Distribution of dynamic pressure p and streamwise velocity u at t = 0.1 s when R = 350,
η = 0.2 poise. The distribution is vertical. This kind of distribution is typical of the earliest times. The
vertical steps show how the fluid supports rows of particles. The particles move forward together,
with only a small velocity.

force from the fluid motion

(τxy|y1+d/2 − τxy|y1−d/2)L = η

(
du

dy

∣∣∣∣
y1+d/2

− du

dy

∣∣∣∣
y1−d/2

)
L. (4.5)

Equating the pressure and shear forces, after dividing by L and writing (p1−p2)/L = p̄,
we obtain

p̄d = η
du

dy

∣∣∣∣
y1−d/2

− η du

dy

∣∣∣∣
y1+d/2

, (4.6)

where

du

dy

∣∣∣∣
y1+d/2

= − p̄

2η
(y1 + 1

2
d−W ) +

Up

y1 + 1
2
d−W , (4.7)

du

dy

∣∣∣∣
y1−d/2

= − p̄

2η
(y1 − 1

2
d) +

Up

y1 − 1
2
d
. (4.8)

After combining the last three equations we find that

Up =
p̄

2η

{
W + d

W − d (y1 − 1
2
d)(W − y1 − 1

2
d)

}
. (4.9)
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Figure 15. Distribution of dynamic pressure p and streamwise velocity u at t = 4.95 when R = 350,
η = 0.2 poise (see figure 12). The pressure and velocity distribution can be associated with ‘crest’
and ‘trough’ propagating void fractions.
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Figure 16. Rise curves for the centre of gravity of 300 circular particles fluidized by lift (η = 0.01,
RG = 9.81/η2 = 9.81 × 104). p̄ is in dyn cm−3. The timescale for the fast rise at p̄ = 1.0 has been
expanded by 100; the real time corresponding, say, to 50 is 0.5 s. The rise to full fluidization is very
rapid and at full fluidization the mass centre of the particles is closer to the top than to the bottom
wall. The bed inflation at R = 1200 is modest; at early times the position of the mass centre actually
decreases because the circles are more efficiently packed (hexagonally, rather than cubically packed
at t = 27).
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t = 27

40
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116
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Figure 17. Fluidization of 300 particles (η = 0.01 poise, R = 1200, G = 81.75). The flow is from
left to right. This is a ‘relatively’ heavy suspension with a smaller value of R/G. At t = 27 the flow
packs the initial cubic array more closely into a hexagonal array and the mean bed height drops.
The final fluid condition for t > 116 is mildly inflated, more closely packed at the bottom than the
top.

R Rg p̄ H̄ Ū Ω̄

1200 81.75 0.02 2.77 0.63 0.04
6× 104 1.64 1.0 6.02 116.20 4.50

Table 3. Data for the forward motion of a fluidized suspension of 300 particles after the bed
has fully inflated and the average height H̄ of all particles has stopped increasing (η = 0.01).
H̄ = H̄0 = 2.65d at t = 0. Ū and Ω̄ are the average velocity and angular velocity of the particles.

When d→ 0,

Up → p̄

2η
y1(W − y1), (4.10)

which is the value U(y1) of the fluid velocity given by (4.2).
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t = 0.1
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Figure 18. Fluidization of 300 particles in water (η = 0.01 poise, R = 6× 104, G = 1.64). This is a
‘relatively’ light suspension with a much larger value of R/G. Particles fluidize easily; the mean bed
height is higher than midchannel.

We next evaluate the slip U(y1)−Up forming the ratio

Up

U(y1)
=

(
W + d

W − d
)(

y1 − 1
2
d

y1

)(
W − y1 − 1

2
d

W − y1

)
. (4.11)

To show that Up/U(y1) is less than 1 when d > 0, we note that

(W − d)y1(W − y1)− (W + d)(y1− 1
2
d)(W − y1− 1

2
d) = (y1−W/2)2 + 1

8
d(W − d) > 0.

In our simplified model, the fluid velocity is larger than the particle velocity in steady
flow and the lag increases as the particle diameter increases. Small particles follow
the fluid with vanishing lag.

This calculation suggests that the presence of even one particle can produce a
global change of the fluid velocity. This kind of global change can be generated
by circles, as is shown in figures 23 and 24. The velocity profiles far upstream and
downstream of the particle tend to undisturbed values. The effect of particle rotation
is to diminish the effect of the particle on the fluid motion. Our long particle cannot
rotate but we could express an effect of rotation by allowing for a shear profile, less
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Figure 19. Distribution of dynamic pressure p and streamwise velocity u at t = 0.1 s for the
fluidization of 300 particles in water when R = 6× 104 (see figure 18). In this case, t = 0.1 s is not
an early time; the propagating pressure wave has already developed, but it does not yet have a big
effect on the velocity distribution.

than the shear in the unperturbed fluid, in the long body as if it were a very viscous
fluid. The shear in the very viscous fluid would be greater than the zero shear of the
solid and less than the shear in the undisturbed flow. The difference between the shear
in the undisturbed fluid and the very viscous fluid can be viewed as representing the
angular slip velocity. The ‘no shear’ solid corresponds to a circular particle for which
rotation is suppressed.

The presence of more than one particle produces yet more lag globally and the
best way to see the change is to compare the profile with the undisturbed flow. In
figure 25 we have used tecplot to plot profiles at 6 different sections of the flow of
300 particles at p̄ = 20 dyn cm−3, t = 28 s identified by vertical lines in figure 7. The
open circles give the velocity at fluid points. The straight line segments pass through
particles which are rotating. There is no slip velocity in such a plot; the velocity is
continuous through the particle.

In figure 26 we plotted the 10 average fluid velocities as a function of y. They
are obtained by averaging fluid velocities at about 1000 points of the x-coordinate
at a fixed y. These averages are shown as 10 black circles. A scatter plot of particle
velocities is shown and a polynomial fit to this scatter plot is given as a light solid.
There does not seem to be a large difference between the average fluid velocity and
the average solid velocity defined in this way. On the other hand, the difference
between the composite fluid–solid velocity and the particle free Poiseuille flow profile
is dramatic.
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Figure 20. Distribution of dynamic pressure p and streamwise velocity u at t = 0.46 s (see figure 18).
The pressure and velocity wave coincide with the propagation of internal waves of void fractions.

The data shown in figure 26 suggest that one of the main effects of particles in
a fluid is to radically reduce the velocity of the composite. Each particle produces a
drag on the fluid in a freely moving suspension. The effect of such a distributed drag
is equivalent to some form of effective viscosity. Algorithms for the construction of
such effective viscosities would find many important applications. Unfortunately, the
empirical forms of effective viscosity functions which work well for uniform fluidized
and sedimenting suspensions work much less well for sheared suspensions.

For comparison, we calculated velocity profiles using a two-fluid effective viscosity
theory. We suppose that the particle-laden region is an effective fluid with an effective
viscosity and an effective density, though the effective density is not required for the
calculation to follow. The selection of the region occupied by the fluid–solid mixture
is somewhat arbitrary. We suppose that the mixture has a uniform volume fraction
under a flat interface of height 2H̄ , where H̄ is the mean height. The volume fraction
is obtained as 300πd2/8H̄L where d = 1 cm and L = 63 cm. Two highly regarded
expressions for the effective viscosity of a uniform suspension of spheres of volume
fraction φ are:

ηm = ηf/(1− φ/A)2, A = 0.638, (4.12)

which is due to Kataoka et al. (1978) into two dimension and

ηm = ηf(1 + 2.5φ+ 10.05φ2 + 0.00273e16.6φ) (4.13)

which is due to Thomas (1965). These expressions were obtained from experiments
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Figure 21. (a) Distribution of dynamic pressure p, (b) vertical velocity v and horizontal velocity u
in water near the upper wall (y = 11 cm) at t = 40 when R = 1200, G = 81.75, see figure 17). These
spatially periodic waves propagate.

and may not apply in two dimensions. We used A = A2D = 0.8328 which scales
A into two dimension in the ratio of close-packed hexagonal packings in two and
three dimensions, A2D = (0.907/0.740)A3D . The effective theory is a two-fluid stratified
Poiseuille flow satisfying the following equations

p̄ = ηf
∂2uf

∂y2
for y > h, p̄ = η

∂2um

∂y2
for y 6 h, (4.14)

where h = 2H̄ is the interface between the pure fluid and the mixture. At the boundary,

uf(W ) = 0.0, um(0) = 0.0,

and the velocity and shear stress are continuous on y = h;

uf(h) = um(h),

ηf
∂uf

∂y
(h) = η

∂um

∂y
(h). (4.15)

The comparison of the effective theory corresponding to (4.12) and (4.13) with the
numerical simulation is exhibited in figure 26. The agreement between the effective
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Figure 22. Forces on long particle in a steady Poiseuille flow.
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Figure 23. Velocity profiles for three different solutions with W = 12 cm, d = 1 cm, η = 0.2 poise
and p̄ = 1.2 dyn cm−3. (a) Undisturbed Poiseuille flow, (b) DNS one circular particle he = 4.18 cm
(see table 1), (c) model problem corresponding to figure 22 with y = 4.18 cm. The model reduces
the velocity much more because the particle is long and because it does not rotate.

theory and the simulation is far from perfect, but there is agreement within a large
tolerance. However, the effective theory has several defects which must be overcome
before it can be used to model the slurry. First and foremost, the theory requires that h
be specified; here, from the simulation, a second problem is that the effective viscosity
for uniform suspension need not be a good representation of sheared suspension. It
is certain the effective density of the slurry must enter into the height of the fluidized
slurry in ways that we do not yet understand.

The small difference between the spatially averaged fluid and solid velocities cannot
be said to be clearly evident at all positions on a cross-section. It is our position
that a positive slip velocity is required to support the buoyant weight of particles.
In fact, we would expect that the difference between the particle weight and the
composite density ρ̄(φ) = ρpφ + ρf(1 − φ) is a factor in the unknown formula
for the lift on a particle in a swarm of volume fraction φ. In the present case,
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Figure 24. Velocity for the steady flow of a levitated particle near the wall (R = 45, G = 5.4,
η = 0.2, p̄ = 0.3; see table 2). (a) Velocity vector and streamlines, (b) velocity profile on the vertical
line through the particle centre.

ρp − ρ̄(φ) = (ρp − ρf)(1 − φ) = 0.01(1 − φ) is very small and a large slip velocity is
not required to levitate a particle. The calculation of the slip velocity ought to be
defined in terms of time or ensemble averages at a fixed point, which are not readily
calculated with the ALE method used here.

Figure 27 gives a scatter plot for the water flow in figure 18 (η = 0.01 poise,
R = 6 × 104, G = 164). The results here are what might be expected of turbulent
flow and appear to represent the natural extrapolation of results given in this paper
at lower Reynolds numbers. The relevant Reynolds number, based on the average
particle velocity Ū = 200 cm s−1, the effective viscosity ηm = 0.032 poise and particle
diameter d, is about 6000, a value at which we might expect weak turbulence.
Informed readers will question the validity of our computation using Choi’s (2000)
split method in direct numerical simulation with no artificial viscosity or turbulence
model. The natural way to test this result is to use mesh refinement. Our unstructured
mesh is generated automatically from nodes on the surface of the circular particle.
Our calculation converged, and converged solutions have nearly the same height
history for 15–30 nodes on the circular particle when the timestep size (∆t) used is
about 10−5 (the corresponding Courant number is about 0.1); the converged solution
cannot be obtained when the number of nodes is less than 12 or sometimes greater
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Figure 25. Fluid velocity profiles at 6 different sections of the flow of 300 particles at
p̄ = 20 dyn cm−3, η = 1.0 and when it is fully fluidized (t = 28).

than 30. When the number of nodes is greater than 30, the calculation may stop
because the mesh generator is unable to generate mesh owing to the distortion of
very short elements during motion. We have not established the validity of such a
high Reynolds number computation, but the results do converge to something which
appears reasonable and survives tests of mesh refinement.

5. Summary of results
1. A numerical package (Choi 2000) based on a splitting method, which is an

extension of the numerical package developed by Hu, Joseph & Crochet (1992) for
the direct numerical simulation of solid–fluid mixtures, is used to study the fluidization
by lift of 300 particles.

2. The present problem is governed by a shear Reynolds number R and a gravity
number G. The product RG = RG is a Reynolds number based on the sedimentation
velocity of a sphere under gravity. This is a measure of the activity level and is
small when the viscosity is large. The ratio R/G is a generalized Froude number. It
compares the inertial lift due to the shear to the buoyant weight and is independent
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Figure 26. Scatter plot of +, particle velocities of 300 particles taken from figure 25 (η = 1 poise,
p̄ = 20 dyn cm−3); (a) ——, average particle velocity for the scatter; (b) average fluid velocity taken
from the tecplots in figure 25 at 10 values of y over 1000 points; (c) two-fluid Poiseuille flow model
based on (4.14) and (4.15) using the effective viscosity ηm = 3.06 from (4.12) with φ = 0.36, and
(d) ηm = 4.19 from (4.13); (e) undisturbed Poiseuille flow. The particles ‘hold up’ the fluid. The
increased drag on the fluid owing to the free particles can be modelled as an effect of an increased
viscosity of the fluid–solid mixture.

of viscosity; the rise of particles is large when this number is large even though the
motion may be sluggish.

3. A turning point bifurcation of a steady forward flow of a single particle was
found (see Patankar et al. 2001). The height and particle velocity change strongly at
such points and the solutions may exhibit hysteresis. The proof that the arrangement
of stable and unstable solutions is associated with double turning points is given by
Patankar et al. (2001).

4. The transport of a slurry of 300 heavier-than-liquid particles in a plane pressure-
driven flow was studied using DNS. Time histories of fluidization of the particles for
three viscous fluids with viscosity η = 1.0, 0.2 and 0.01 (water) were computed at
different pressure gradients. The time history of the rise of the mean height of particles
at a given pressure gradient is monitored and the rise eventually levels off when the
bed is fully inflated. The time taken for full inflation decrease as the pressure gradient
(or shear Reynolds number) increases. The bed does not inflate when the critical
value is below the critical value for lift off of a single particle.

5. At early times, particles are wedged out of the top layer by high pressure at the
front and low pressure at the back of each particle in top row.

6. The dynamic pressure at early times balances the weight of the particles in
the rows defining the initial cubic array. This vertical stratification evolves into a
horizontally stratified propagating wave of pressure which tracks waves of volume
fraction. The pressure wave is strongly involved in the lifting of particles. For low-
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Figure 27. Scatter plot for the fluidization of 300 particles in water (h = 0.01 poise) shown in
figure 18. In this case, particles fill the whole channel and the scatter is caused by large fluctuations.
(a) The average velocity profile (——) is rather flat as would be expected from turbulent flow.
•, average fluid velocities from the tecplots in figure 18. (b) Velocity profile for Poiseuille flow of a
fluid with effective viscosity ηm = 0.032 given by (4.13) for φ = 0.31. This does not agree with the
simulation. Perhaps it would be better to create an effective ‘eddy viscosity’ theory for this weakly
turbulent flow. (c) Undisturbed Poiseuille flow without particles.

viscosity fluids such as water where RG is large, the particle-laden region supports an
‘interfacial’ wave corresponding to the wave of pressure. If R/G is large, the interface
collapses since the stronger lift forces push wave crests into the top of the channel,
but the pressure wave persists.

7. A simple analytical model for the free motion of a single particle of diameter d
in Poiseuille flow gives rise to a formula for the particle velocity

Up

U(y1)
=

(
W + d

W − d
)(

y1 − 1
2
d

y1

)(
W − y1 − 1

2
d

W − y1

)
,

where y1 is the distance from the channel bottom to the particle centre, U(y1) is
fluid velocity at y1 when no particle is present and W is the channel height. The slip
velocity U(y1)−Up > 0 is positive, but tends to zero with the particle diameter. The
presence of particles produces a lag in the fluid velocity and the effect of such a drag
can be interpreted as an effectively increased viscosity for the fluid–solid mixture.

8. DNS data can be sampled for average fluid and average solid velocities. The
difference of these velocities is very small, but the difference between the composite
velocity and the particle-free Poiseuille flow is dramatic. We attempted to model the
average flow of the slurry by a two-fluid model in which the particle-laden region is
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treated as a fluid with an effective viscosity; for this calculation we used two different
well-regarded formulae for the effective viscosity with pure liquid above the mean
height and effective liquid below. We would like to be able to predict the mean height
from considerations involving an effective density.
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the Engineering Research Program of the Office of Basic Energy Sciences at the DOE,
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