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Abstract
Network representations of systems from various scientific and societal domains are neither completely
random nor fully regular, but instead appear to contain recurring structural features. These features tend
to be shared by networks belonging to the same broad class, such as the class of social networks or the
class of biological networks. Within each such class, networks describing similar systems tend to have sim-
ilar features. This occurs presumably because networks representing similar systems would be expected
to be generated by a shared set of domain-specific mechanisms, and it should therefore be possible to
classify networks based on their features at various structural levels. Here we describe and demonstrate a
new hybrid approach that combines manual selection of network features of potential interest with exist-
ing automated classification methods. In particular, selecting well-known network features that have been
studied extensively in social network analysis and network science literature, and then classifying networks
on the basis of these features using methods such as random forest, which is known to handle the type of
feature collinearity that arises in this setting, we find that our approach is able to achieve both higher
accuracy and greater interpretability in shorter computation time than other methods.
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1. Introduction
Past work in the area of network classification has primarily focused on distinguishing net-
works from different categories using two different approaches. In the first approach, network
classification is carried out by examining certain specific structural features and investigating
whether networks belonging to the same category are similar across one or more dimensions as
defined by these features (Onnela et al., 2012; Pennacchiotti & Popescu, 2011; Ralaivola et al.,
2005; Richiardi et al., 2011). In other words, in this approach the investigator manually chooses
the structural characteristics of interest and more or less manually (informally) determines the
regions of the feature space that correspond to different classes. These methods are scalable
to large networks and yield results that are easily interpreted in terms of the characteristics of
interest, but in practice they tend to lead to suboptimal classification accuracy. In the second
approach, network classification is done by using very flexible machine learning classifiers that,
when presented with a network as an input, classify its category or class as an output (Borgwardt
& Kriegel, 2005; Gärtner et al., 2003; Horváth et al., 2004; Kashima et al., 2003; Kondor et al., 2009,
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Niepert et al., 2016; Ramon & Gärtner, 2003; Shervashidze & Borgwardt, 2009; Thoma et al.,
2010; Yanardag & Vishwanathan, 2015). To somewhat oversimplify, the first approach relies on
manual feature specification followed by a manual and subjective selection of a classification
system, whereas the second approach is its opposite, relying on automated feature detection
followed by automated and objective classification. While the latter approach can yield very
accurate class predictions and is capable of identifying important yet unseen network charac-
teristics, its computational cost typically scales poorly and the potentially opaque nature of the
methodology may make it difficult to interpret the obtained results. Note that even though we
draw a distinction between manual and automatic feature selection, automatic methods, such as
those that rely on convolutional neural networks, also require some measure of subjectivity when
it comes to choosing the network architecture of the classifier, which can have a large impact on
its performance (Saxe et al., 2011).

This paper presents a third “hybrid approach” to the network classification problem. We first
specify network features of interest manually and then use existing automatic methods, such as
random forests (RFs), to carry out the classification task using these features. In other words,
our approach uses manual feature selection followed by automated classification. This approach
enables one to leverage domain-specific knowledge to specify a much broader set of relevant fea-
tures. These features might be based on some standard network characteristics, such as vertex
degree, betweenness centrality, or motif counts, but they can also incorporate nodal attributes,
such as the sex or age of a person in a social network. It is possible to incorporate even richer
information, such as data related to the functional or dynamic state of the nodes and edges. For
example, in the context of network epidemiology, the frequency with which a node changes state
from susceptible to infected in a contact network in the course of a spreading process could be
used as a predictor. Since most classifiers assign importance scores to the features that are used in
classification, the resulting organization of networks can be readily interpreted in terms of these
features and their importance.

Our approach to the network classification problem is scalable and easily interpretable. For
example, the computational complexity of classifying n networks using graph kernels (GK), a tech-
nique that falls under the second (fully automated) approach, is O(n2), while the computational
complexity of RFs, used in our approach, is O(n log n). The approach also leads to remarkably
high classification accuracy as we demonstrate by discerning different days of the week in uni-
partite social communication networks, by distinguishing between different tumor body sites in
bipartite biological transcription factor-gene regulatory networks, and by testing the methodol-
ogy on a collection of network classification benchmarks. It is usually not clear a priori in our
approach what the best network features might be for classification as they are expected to depend
on the domain of the network. In cases where there is no domain-specific knowledge of the per-
tinent features to include, we recommend liberal inclusion of a wide variety of features, letting
the classifier determine which features are pertinent. Not all classifiers are equally suited to the
task. In particular, many network properties are related to one another and their collinearity can
cause problems when they are used as predictors. This calls for a classifier that handles collinear
predictors well.

2. Method and data description
We studied three different types of networks. First, to demonstrate classification on social net-
works, we constructed and performed classification of daily communication networks using call
detail records from the largest telecom operator (57% market share) in a European country. This
identified social patterns corresponding with certain days of the week. Second, to demonstrate
classification on biological networks, we used regulatory networks from tumor cells from patients
with either lung (lung adenocarcinoma), brain (glioblastoma multiforme), or ovarian (ovarian
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serous cystadenocarcinoma) cancer. For each sample, we constructed a bipartite network of
10,903 genes and 113 transcription factors with edge weights corresponding to the strength of
regulation between them (Kuijjer et al., 2015). Third, we investigated a variety of network classifi-
cation benchmarks, including Internet-based ego-centric movie actor networks constructed from
the Internet Movie Database (IMDb). For these benchmarks, we used network features to classify
the forum thread networks by their topic and the actor networks by the movie genre.

Within each of these families of networks, we performed classification by a two-step process
(Figure S1 in Supplementary material): in the first step, we select and calculate network features
that are potentially pertinent to the classification problem for each network; in the second step, we
train and test a classifier built upon these features. Importantly, because features are first selected
manually based on available information and then further refined by the classifier, the set of fea-
tures used for accurate classification varies depending on the family of networks of interest. The
common network features that we use in each setting included average degree, global clustering
coefficient, degree assortativity, and network size, alongside specialized context-specific network
features detailed in the Supplementary Materials.

After selecting the network features, the second step requires choosing the appropriate method
for classification. We used three popular classification techniques: k-means, k-nearest neighbors
(KNN), and RFs. The k-means and KNN can have difficulty when features are high dimen-
sional and strongly collinear. On the other hand, RFs account for correlated features and use a
combination of multiple rectangular regions which allow for more flexibility with feature space
partitioning. For each approach, the classifier is trained on a randomly selected subset of the net-
works, and classification accuracy of each approach is tested using the remaining networks. This
randomization is performed repeatedly and the average across randomizations is the classification
accuracy.

3. Results and discussion
None of the classifiers we used had difficulty separating weekends from weekdays in the phone-
based social/communication networks, with all methods achieving greater than 95% prediction
accuracy (Figure 1). In the RF classifier, the fraction of edges connecting individuals residing in
the same zip code was the most important feature based on mean decrease impurity being 4.5
times more important than the average feature used in classification (Figure S2 in Supplementary
material). On the weekends, there was a clear increase in the proportion of ties that connect peo-
ple from the same zip code. The second most important feature was network size, reflecting the
marked decrease in the number of phones used on the weekend as compared to weekdays. The
average age difference over all network edges, which quantifies age-based network assortativity,
was approximately one year greater on weekends compared to weekdays, leading to this feature
being third in importance. This near perfect accuracy by different classifiers indicates that the
features for weekdays and weekends are easily distinguished from one another.

Distinguishing tumor types based on their regulatory networks proved to be a more difficult
task. The RF classifier had an overall prediction accuracy of 68% compared to the 62% prediction
accuracy of the KNN classifier using the same set of features. Themost important feature in the RF
classification of the tumor samples was degree assortativity in the projected gene–gene unipartite
network, at 1.6 times as important as the average feature. However, in contrast to the phone-based
social network where a subset of the features were clearly driving the results, in this case there
was a more uniform contribution from all selected features. As seen in Figure 2(a), one of the lung
tumor tissue samples was classified alongside the ovarian tumor tissue samples. This demonstrates
how classification can be used to identify outliers to be checked for potential mislabeling.

RFs similarly outperformed KNN in the benchmark classification problems, with an aver-
age prediction accuracy margin of 3% across the six benchmarks in Table 1. Moreover, and
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Figure 1. (Color online) (a) RF classification of days of the week: Using odd-numbered days of the data set for training, the
classification of each even day is displayed as a column. The performance of the 7-day classifier is displayed in the top row
with the binary weekend/weekday classifier in the bottom row. Each column represents the color-coded probabilities of a
day being classified as a day of the corresponding color. In the top row, a day is correctly classified if that day has the largest
classification probability. For the bottom row, the larger of the two binary classification probabilities is used to guide the
classification. All nationally recognized holidays were removed from both the training and testing data sets as they would
be expected to have unusual social dynamics. (b) KNN classification of days of the week: This visualizes a single realization of
classification of days of the week using KNN, where ntrain is the total number of days used for the training set, which included
equal number of days of each day of the week.
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Table 1. Classification accuracy for benchmark social network data sets. Results expressed as% from 10-fold cross-validation
to obtain out-of-sample accuracy estimates and their standarddeviations for theRFs andKNNclassifierswithmanual feature
selection used here, compared to results for graph kernels (GK), deep graph kernels (DGK), and PATCHY-SAN, a convolutional
neural network for images (PSCN). The approach we introduce here, using manually selected network features in combina-
tion with a classifier, generally performs well; when using the RF classifier, the approach systematically outperforms others
for each data set.

Data set RF KNN GK DGK PSCN

COLLAB 76.5± 1.68 72.69± 0.80 72.84± 0.28 73.09± 0.25 72.60± 2.15


IMDB-BINARY 72.4± 4.69 67.03± 1.90 65.87± 0.98 66.96± 0.56 71.00± 2.29


IMDB-MULTI 47.8± 3.55 42.40± 2.70 43.89± 0.38 44.55± 0.52 45.23± 2.84


REDDIT-BINARY 88.7± 1.99 87.63± 0.82 77.34± 0.18 78.04± 0.39 86.30± 1.58


REDDIT-MULTI-5K 50.9± 2.07 49.04± 0.77 41.01± 0.17 41.27± 0.18 49.10± 0.70


REDDIT-MULTI-12K 42.7± 1.28 38.21± 0.49 31.82± 0.08 32.22± 0.10 41.32± 0.42

The best performing method on each data set is in bold.

Figure 2. (Color online) (a) RF classification of cancer types: Each of the 483 columns represents RF classifier probabilities as
stacked bars for a tissue sample in the test set with blue, orange, and red bars representing probabilities assigned to brain,
lung, and ovary cancers, respectively. Each sample is then classified by the largest of these three probabilities, and correct
classification is indicated by a black dot above the corresponding column. Overall, 68% of all tissue samples were correctly
classified (cancer-specific classification accuracies are shown in the figure). (b) Feature importance in the tumor type classi-
fication RF: Feature importance is calculated from the mean decrease in tree leaf impurity over the full RF as measured by
the Gini index. Percentages are the decrease in impurity for each feature, scaled so they sum to 100%. Detailed descriptions
of the variables are provided in the Supplementary Materials. (c) KNN classification of cancer types: Each set of bars repre-
sents accuracy of the three cancer types using a single feature. The last block, highlighted in gray, represents accuracy using
all selected features. The green line represents the null rate of classification. Overall, 62% of tissue samples were correctly
classified using this method. Error bars indicate the standard deviation of mean accuracy over 10, 000 randomizations into
training and testing sets. The features used are average degree in the bipartite network (AvgDeg), average bipartite clustering
coefficient in the bipartite network (Bclus), mean closeness centrality in the bipartite network (cctM), variance of closeness
centrality in the bipartite network (cctV), degree assortativity in the gene projection network (Gassor), average degree in
the gene projection network (Gavgdeg), average clustering coefficient in the gene projection network (Gclus), number of
triangles in the gene projection network (Gtri), mean node redundancy in the bipartite network (nrcM), variance of node
redunancy in the bipartite network (nrcV), degree assortativity in the TF projection network (Tassor), average degree in the
TF network (Tavgdeg), average clustering coefficient in the TF projection network (Tclus), and number of triangles in the TF
projection network (Ttri).
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remarkably, our hybrid approach of manually selecting features and using RFs to automatically
select their importance also outperformed three recently developed and significantly more com-
plicated and computationally intensive approaches to graph classification, namely GK (Kondor &
Lafferty, 2002), deep graph kernels (Yanardag & Vishwanathan, 2015), and convolutional neural
networks (Fukushima, 1980) [results for each reported in Niepert et al. (2016)]. Given the value
of domain-specific knowledge for selecting and interpreting prospective features of importance,
and given that RFs are easily trained on large data sets and allow for easy interpretation of results,
our hybrid approach, combining manual specification of features followed by automated classi-
fication on the selected features, appears to have a significant advantage in terms of precision of
classification, cost of computation, and ease of interpretation.
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