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Estimation of turbulent channel flow at
Reτ 100 based on the wall measurement using
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The unsteady flow estimation problem of wall-bounded turbulence, numerically
benchmarked by Chevalier et al. (J. Fluid Mech., vol. 552, 2006, pp. 167–187),
is re-tackled with simple approaches. A turbulent channel flow at Reτ = 100 with
periodic boundary conditions is reconstructed with linear stochastic estimation only
based on the wall measurement, i.e. the wall shear stress in the streamwise and
spanwise directions as well as the wall pressure over the entire wavenumber space.
The results reveal that instantaneous information on the wall governs the success
of the estimation in the vicinity of the wall (y+ . 20). The degrees of agreement
are equivalent to those reported by Chevalier et al. using the extended Kalman filter
as well as the ensemble Kalman filter performed in this study. This suggests that
the instantaneous information on the wall dictates the reconstruction rather than the
prediction step in these state observers solving the dynamical system. Subsequently,
we feed the velocity components given by the linear stochastic estimation via the
body-force term into the Navier–Stokes system: such an observer slightly improves
the estimation in the log layer, indicating a small benefit of involving a dynamical
system but over-suppression of turbulent motions beyond the viscous sublayer due to
their low correlation with the wall measurement. Errors in the estimation grow in the
buffer layer and prevent further reconstruction toward the centreline even if we relax
the feedback forcing and let the flow evolve nonlinearly through the observer. We
also discuss the flow components truly reconstructible from the wall measurement,
which has limited degrees of freedom and poor correlation across wavenumbers.

Key words: turbulence control, turbulent flows

1. Introduction

Non-invasive estimation or reconstruction of instantaneous flows is a generic
problem in fluid dynamics. In particular, estimation or reconstruction of fully
developed turbulence using the information only on the boundaries is a challenging
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FIGURE 1. Flow geometry to be solved and the coordinate system.

problem relevant to various applications (see Bewley 2001; Brunton & Noack 2015,
for example). Wide spectra of the length and time scales generate many degrees of
freedom (i.e. mutually less correlated motions), and poor correlation between the
motion near the wall and that outside the boundary layer prevents accessibility to
large-scale structures based on the information on the wall. In other words, motions
in the vicinity of the wall dominate fluctuating components measured on the wall.

Because of such difficulties in turbulence estimation and the limitation of even the
state-of-the-art measurement capability (especially in terms of accuracy and spatial
resolution), the main frame of current research is computational fluid dynamics (CFD).
We find, for example, various types of flows in recent estimation studies (Chevalier,
Hœpffner & Henningson 2007; Jones et al. 2011; Lasagna & Tutty 2015) as well
as past studies in a review article (Kim & Bewley 2007). Considering the current
status and the ultimate application in experiments, the underlying assumptions would
be that (i) the unsteady flow to be estimated during a certain period, called the ‘true
solution’, is an exact solution to the governing equations solved by the CFD with a
given geometry, (ii) we can take any statistics necessary for the estimation regarding
the flow and the wall measurement equivalent to the true solution from the CFD
(namely, we should not sample the flow field during the true solution but its statistics
are available, for example from different ensembles), yet (iii) the measurement during
the true solution is available only on the wall, potentially with the full resolution
(although it can be noisy) and (iv) the initial condition is totally unknown. Some
of the assumptions were unclear in several past studies, and they may have misled
conclusions, as discussed later in §§ 2.1 and 3.2 and appendices A and D. In spite of
these ideal assumptions, it is evident that the problem remains challenging.

Bewley and his colleagues (Bewley, Moin & Temam 2001; Högberg, Bewley &
Henningson 2003; Bewley & Protas 2004; Chevalier et al. 2006; Colburn, Cessna
& Bewley 2011) have studied such flow estimation problems by solving turbulent
channel flows with periodic boundary conditions using direct numerical simulation
(DNS) primarily at the friction Reynolds number of Reτ = 100: they estimated
unsteady flows based on noisy wall measurement, equivalent to the wall shear
stresses in the streamwise and spanwise directions as well as the wall pressure over
the entire wavenumber space. Figure 1 illustrates the flow geometry and the coordinate
system. Such a configuration is simple and generic but possesses essential features
for non-invasive estimation of fully developed turbulence; namely, we observe a
cascade of eddies in a wall-bounded space only through measurable quantities on the
wall. They have applied several data assimilation methods including an adjoint-based
variational technique (Bewley et al. 2001; Bewley & Protas 2004) and sequential
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762 T. Suzuki and Y. Hasegawa

techniques (Chevalier et al. 2006; Colburn et al. 2011). In particular, the latter,
namely the Kalman filter (Kalman 1960) in their study, consists of a prediction step
involving a dynamical system and an update step governed by the instantaneous wall
measurement. In contrast to the DNS, which nonlinearly solves a state vector yet
only with dimensions of 3Ngrid, with Ngrid being the grid counts in the physical or
Fourier space, the Kalman filter must additionally advance a covariance matrix with
a dimension of 3Ngrid × 3Ngrid in time and approximately invert a matrix of this size
even for a linear time-invariant system in principle (there are ways to avid direct
inversion of the matrix, such as a sequential processing (Bucy & Joseph 1968)). In
addition to such high computational cost, correlations across the entire input/forcing
points (or the corresponding wavenumbers) are necessary for all quantities, spanning
huge dimensions and requiring extensive sampling time. The ensemble Kalman filter
(Evensen 1994) can also circumvent such large matrix calculation, but instead needs
simultaneous simulations of ensemble members, typically more than 50.

These reconstruction studies may give us an impression that such sequential
data assimilation techniques owe their success (in particular, Colburn et al. (2011)
reported exceptional success in turbulence estimation using the ensemble Kalman
filter) primarily to the prediction step solving the governing equations for the state
vector and its covariance matrix, rather than the update step given by the instantaneous
measurement. However, these studies have not evaluated the contribution of each step;
namely, it is unclear if the instantaneous estimation (i.e. the update step) is sufficient
or the sequential prediction is crucial. In addition, filtering of the measurement noise
relies on the assumption of ‘known’ statistics (for the noise not for the true solution),
leaving a question of practicality. Moreover, large dimensions in the spatial correlation
matrix comprise many degrees of freedom, and the number of sampled snapshots
must far exceed the dimensions of the correlation matrix; otherwise, the correlation
matrix merely ‘memorizes’ the flow patterns during the sampling duration. Such
reconstruction works only for flows composed of motions similar to those occurred
during the sampling time but would fail to estimate different phases of flows even
under the same condition.

Our goal is to clarify the contributions from the two essential steps in sequential
turbulent flow estimation using simpler approaches: this study re-tackles the same
benchmark flow estimation problem of a turbulent channel flow at Reτ = 100 with
periodic boundary conditions by Chevalier et al. (2006). For the update step, we
apply linear stochastic estimation (Adrian & Moin 1988) to the wall measurement
over the entire wavenumber space. This technique provides the best estimate of
instantaneous velocity components at any points in space in a least-squares sense. We
then proportionally feed these velocity fields via the body-force term and solve the
full incompressible Navier–Stokes equations using DNS for the prediction step. These
two steps constitute a simple state observer. By evaluating the degree of agreement
with the true solution at each step, we can separate the effect of instantaneous
estimation from the prediction step in a sequential-type data assimilation approach.

The results uncover important implications which were not transparent in the
previous studies: we show poor correlations between the measured quantities on
the wall and the velocity components in the flow as well as limited improvement by
inclusion of time derivatives of the measured quantities, justifying our linear stochastic
estimation approach. The analysis of the measurement noise demonstrates that even
a simple sequential technique can effectively suppress uncorrelated noise, by merely
increasing the frequency of the feedback. Accordingly, the instantaneous estimation
by the linear stochastic estimation is sufficient to reconstruct the velocity field near
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the wall (within the wall units of y+ . 20) in the degree reported by Chevalier
et al. (2006) using the extended Kalman filter; furthermore, not only the simple
observer solving the nonlinear dynamical system but also the ensemble Kalman filter
performed in this study provide limited improvement in the log layer. These results
affirm the inherent difficulty of turbulent flow estimation due to weak coherence
between fluctuations in the viscous sublayer and strong motions in the buffer layer.
From the series of the analyses, we can also deduce potential hurdles that have not
been quite resolved by the sequential data assimilation approaches in the past studies.

The rest of the paper is organized as follows. After the introduction, the governing
equations and the wall measurements are formulated, followed by the descriptions
of linear stochastic estimation and the body-force term. The computational methods,
i.e. DNS, are then briefly summarized, and the procedure of the sampling is carefully
stated. In the results and discussions, fundamental flow features are first observed, the
instantaneous estimation using the linear stochastic estimation is then analysed and
the effects of the body-force feedback in the observer to the estimation are eventually
discussed. Finally, the conclusions and implications are addressed referring to the past
studies. Independent analyses of the noise filtering effect, linear stochastic estimation
including time derivatives of the wall measurement, and the ensemble Kalman filter
are performed in the appendices. In addition, the no-slip wall treatment for a spectral
method with a collocation technique is explained in an appendix.

2. Formulation
2.1. The governing equations and the wall measurement

This study solves the incompressible Navier–Stokes equations to compute the true
solution, to take its statistics (e.g. time averages and correlations for linear stochastic
estimation as well as evaluation of the agreement) and to advance prediction steps
in the observer. We non-dimensionalize the system of the equations by the channel
half-height, h, the constant density, ρ, and the friction velocity, uτ ≡

√
τ̄w/ρ (τ̄w being

the mean wall shear stress), and express it in three dimensions as:

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
+w

∂u
∂z
+
∂p
∂x
−

1
Reτ
∇

2u = 0, (2.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
+
∂p
∂y
−

1
Reτ
∇

2v = 0, (2.1b)

∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y
+w

∂w
∂z
+
∂p
∂z
−

1
Reτ
∇

2w = 0, (2.1c)

with the continuity equation

∂u
∂x
+
∂v

∂y
+
∂w
∂z
= 0, (2.2)

where the friction Reynolds number is defined as Reτ ≡ uτh/ν (ν being the kinematic
viscosity). The full nonlinear Navier–Stokes equations are solved for all these
processes although fluctuating quantities relative to the time-averaged mean flow
are used for post-processing and analyses in this study.

As described later in § 3.1, all the computation and the post-processing are
performed in the wavenumber space, in which the discrete Fourier transform is
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764 T. Suzuki and Y. Hasegawa

defined as

ũ(t, kx, y, kz)≡
1

NxNz

Nx−1∑
nx=0

Nz−1∑
nz=0

u(t, xnx, y, znz) exp[−i(kxxnx + kzznz)]. (2.3)

Here, the discrete points in space and the wavenumbers are given by xnx ≡ nxLx/Nx

and znz ≡ nzLz/Nz (nx ∈ [0, Nx − 1] and nz ∈ [0, Nz − 1]) as well as kx ≡ 2πmx/Lx and
kz ≡ 2πmz/Lz (mx ∈ [−Nx/2, Nx/2− 1] and mz ∈ [−Nz/2, Nz/2− 1]), where Lx and Lz

are the domain lengths (i.e. the spatial periodicity) in the streamwise and spanwise
directions, respectively. It should be remarked that ũ(−kx, −kz) = ũ∗(kx, kz), where
∗ denotes complex conjugate. The other velocity components are similarly Fourier
transformed only in the two periodic directions.

On both sides of the wall (i.e. y/h = ±1), shear stresses in the streamwise and
spanwise directions as well as pressure are recorded over the entire wavenumbers in
time:

τ̃x =
1

Reτ

∂ ũ
∂y
,

τ̃z =
1

Reτ

∂w̃
∂y
,

p̃.


(2.4)

Unlike the series of studies by the Bewley & Henningson group (Bewley et al. 2001;
Högberg et al. 2003; Bewley & Protas 2004; Chevalier et al. 2006; Colburn et al.
2011), we measure these physical quantities instead of the transverse derivative of
the wall-normal vorticity and the second transverse derivative of the vertical velocity
(the wall pressure is the same). To compare the results with their studies, we perform
necessary conversions.

One such example is the conversion for the random measurement noise. Chevalier
et al. (2006) imposed Gaussian white noise with zero mean on these three measured
quantities across the entire wavenumber range. In appendix A, we attempt to examine
equivalent measurement noise for evaluation of the filtering capability, but their
normalizations associated with the measurement noise are unclear throughout the
series of the papers (Hœpffner et al. 2005; Chevalier et al. 2006; Colburn et al.
2011). In reality, however, we can readily filter out uncorrelated noise by simply
applying a sequential technique and separate core flow estimation problems from the
measurement noise issue, as explained in appendix A. In the rest of the main part,
we impose no measurement noise during sampling and also develop the estimation
scheme without assuming measurement noise.

2.2. Linear stochastic estimation
We apply linear stochastic estimation (Adrian & Moin 1988) for the instantaneous
estimation. As explained later, the correlation across different wavenumbers between
the wall measurements and the velocity components in the flow is fairly small, while
there is appreciable correlation across the opposite side of the wall measurements.
Moreover, appendix B demonstrates that including time derivatives of the wall
measurements improves the estimation only a little. Consequently, we express the
estimated velocity (denoted by ũLSE below) as linear summation of instantaneous
measured quantities and minimize the least-squares error over time from the true
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solution (denoted by ũDNS). The cost function for the streamwise velocity in the
interior domain then defines

Ju ≡

Ntime∑
nt=1

∣∣∣(a∗x τ̃x + a∗z τ̃z + a∗pp̃
)

y=−h
+
(
a∗x τ̃x + a∗z τ̃z + a∗pp̃

)
y=+h
− ũDNS

(
tnt , kx, y, kz

)∣∣∣2
≡

∑∣∣a†
· τ̃
(
tnt

)
− ũDNS

(
tnt

)∣∣2 =∑∣∣ũLSE
(
tnt

)
− ũDNS

(
tnt

)∣∣2 , (2.5)

where τ̃ has six components including the streamwise and spanwise wall shear stresses
as well as the wall pressure on both y/h = ±1 in the wavenumber space and a†

consists of a∗x , a∗z and a∗p, which denote their coefficients (to be precise, their complex
conjugate is taken for later convenience). We similarly define the cost functions for v
and w, while we compute pressure via the observer. Although the acquired velocity
field generally does not satisfy continuity, the Poisson equation in the observer rectifies
it, as described later. Assuming the symmetry in the y and z directions as well as the
homogeneity in the x and z directions for the turbulent statistics, we expect that the
mean quantities vanish except for u of (kx, kz) = (0, 0), and (2.5) directly expresses
the equation for the fluctuating components.

We determine the coefficients above by setting ∂Ju/a = 0 where a is each of the
six coefficients in a. Accordingly, the system of equations for each (kx, y, kz) yields

a=
(
τ̃ τ̃ †
)−1

6×6
τ̃ ũ∗DNS, (2.6)

where † expresses the complex conjugate transpose and the overbar the time average,
and

(
τ̃ τ̃ †
)
≡



τ̃x|+hτ̃ ∗x |+h τ̃x|+hτ̃ ∗z |+h τ̃x|+hp̃∗|+h τ̃x|+hτ̃ ∗x |−h τ̃x|+hτ̃ ∗z |−h τ̃x|+hp̃∗|−h

τ̃z|+hτ̃ ∗x |+h τ̃z|+hτ̃ ∗z |+h τ̃z|+hp̃∗|+h τ̃z|+hτ̃ ∗x |−h τ̃z|+hτ̃ ∗z |−h τ̃z|+hp̃∗|−h

p̃|+hτ̃ ∗x |+h p̃|+hτ̃ ∗z |+h p̃|+hp̃∗|+h p̃|+hτ̃ ∗x |−h p̃|+hτ̃ ∗z |−h p̃|+hp̃∗|−h

τ̃x|−hτ̃ ∗x |+h τ̃x|−hτ̃ ∗z |+h τ̃x|−hp̃∗|+h τ̃x|−hτ̃ ∗x |−h τ̃x|−hτ̃ ∗z |−h τ̃x|−hp̃∗|−h

τ̃z|−hτ̃ ∗x |+h τ̃z|−hτ̃ ∗z |+h τ̃z|−hp̃∗|+h τ̃z|−hτ̃ ∗x |−h τ̃z|−hτ̃ ∗z |−h τ̃z|−hp̃∗|−h

p̃|−hτ̃ ∗x |+h p̃|−hτ̃ ∗z |+h p̃|−hp̃∗|+h p̃|−hτ̃ ∗x |−h p̃|−hτ̃ ∗z |−h p̃|−hp̃∗|−h

 .
(2.7)

Here, the subscripts ±h distinguish the measured quantities on the upper and the lower
walls, and τ̃ ũ∗DNS of a 6 × 1 matrix in (2.6) is similarly defined. It is clear that the
estimation of ũLSE at a specific point is independent from those at other points in
y or other velocity components. Since the correlation matrix (2.7) is common to all
these components, we can arrange the column vectors a as many as the number of the
components to be estimated by replacing ũ∗DNS in (2.6) by a row vector of a velocity
field, denoted by ũ†

DNS:

A≡

 | | |

a (ũ) a (ṽ) a (w̃) · · ·
| | |

= (τ̃ τ̃ †
)−1

τ̃ ũ†
DNS. (2.8)

We should note that an estimate based on this method is unchanged by using
different combinations of the measured quantities (e.g. in the studies of Bewley’s
group) or by expressing the velocity field in different bases (e.g. orthogonal basis
functions versus physical points), as long as they are uniquely given by linear
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766 T. Suzuki and Y. Hasegawa

combinations (i.e. with the same ranks). Suppose a different combination of the
measured quantities can be converted by

η̃=Ωτ̃ , (2.9)

where the inverse of the conversion matrix Ω , which is 6 × 6, is assumed to exist.
Likewise, the velocity vector including all three components across all the grid points
is assumed to be decomposed as

ũ=
∑

i

ciφi ≡Φc, (2.10)

where φi denotes the ith vector in different bases and ci its coefficient. When the bases
constitute a complete set, the matrix Φ becomes a square matrix of the full rank. If we
adopt only a subset of it, the number of the columns in Φ is fewer than the number
of the components in ũ.

By similarly defining the cost function as given in (2.5), we can derive the
coefficient matrix for the different set of the measured quantities η̃ as

B=
(
η̃η̃†
)−1

η̃c† =

(
Ωτ̃ τ̃ †Ω†

)−1
Ωτ̃ (Φc)†

(
Φ†
)−1
=
(
Ω†
)−1 A

(
Φ†
)−1

. (2.11)

If Φ is a non-square matrix, (Φ†)−1 denotes a pseudo-inverse such that Φ†(Φ†)−1
= I

still holds. As mentioned above, the estimation of an individual component in c
is independent from the other components, regardless of the number of bases to
be truncated. Consequently, the estimation of the coefficients c based on the new
measurement set η̃ becomes

B†η̃=
(
Φ−1 A†Ω−1

)
η̃=Φ−1

(
A†

· τ̃
)
. (2.12)

If Φ is a square matrix with the full rank, equation (2.12) recovers the estimation of
ũ by multiplying above by Φ from the left. This manifests that the estimate of the
velocity field is the same regardless of the set of measured quantities (i.e. τ̃ or η̃)
and the set of the bases (i.e. ũ or c) as long as these sets are uniquely related by
linear combinations. If Φ is a non-square matrix, the pseudo-inverse does not recover
an identity matrix, i.e. ΦΦ−1

6= I; therefore, the estimation differs from that based on
the complete set.

By expressing the estimate as ũ∼ A†τ̃ , it is clear from the number of the columns
in A† that the reconstructed velocity field consists of as few as six independent
vectors, to be precise, up to the rank of the correlation matrix (2.7) for each (kx, kz).
This is generally true if the estimation is given by a linear combination of the
measured quantities on the wall. For example, if φ represents a proper orthogonal
decomposition (POD) mode (Lumley 1970) in the vertical direction, Φ consists of a
set of orthogonal bases. Since A†

= ΦB†Ω from (2.11), we can view that a linear
combination of τ̃ determines the weight of the orthogonal bases, which can be as
many as the number of the dimensions in ũ, to form its estimate. However, since the
dimensions of τ̃ are as few as six, this limits the degrees of freedom. Although we
may be able to prioritize these bases using the POD, it requires post-processing a
correlation matrix across all the grid points in y for each (kx, kz); hence, we pursue
a much less expensive approach in this study.

We can expand the dimensions of the correlation matrix, for example by
including time derivatives of the measured quantities or nonlinear combinations
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of the wavenumbers. However, appendix B demonstrates that the inclusion of time
derivatives, solving 12 × 12 matrices, improves the estimation only a little. Lasagna
et al. (2015) actually reported limited improvement using multi-time-delay information
for linear stochastic estimation. Moreover, our analysis in § 4.1 shows little correlation
across different wavenumbers, which supports decoupling of the wavenumbers in the
stochastic estimation. Thus, we focus on the linear approach with the aforementioned
six measured quantities.

Likewise, if we apply linear stochastic estimation using all the grid points in the
physical space on the wall, it drastically expands the degrees of freedom (i.e. the
number of the grid points in x and z times the types of the measured quantities on the
wall). In reality, however, this approach tends to merely ‘memorize’ flow patterns and
would work poorly outside the sampling duration unless we calculate the coefficients
in (2.6) by taking the number of samples much greater than the number of the grid
points times the types of the measured quantities. This cautions us that some data
assimilation techniques that collect large cross-correlation data must take a sufficient
number of samples over time. We revisit this point later.

2.3. Feedback via the body-force terms

To sequentially feed the flow estimation into the dynamical system, the body force
is imposed at every time step. In popular data assimilation techniques, such as the
Kalman filter (Kalman 1960, in which we follow the notation in this paragraph), the
forcing terms are optimized in time and space by solving the covariance equations
in a linear time-invariant system. In this study, instead, a velocity field given by the
linear stochastic estimation is forced simply with a constant weight in time (see the
discussion in Suzuki 2012). The idea behind this approach consists in the following
simplifications: (i) in the Kalman filter, the covariance P tends to converge to a
constant matrix which governs the forcing gain, K ≡ PHT

[H PHT
+ R]−1, after a

sufficient number of time steps. We ignore the transient time, which is much shorter
than the sampling duration for the estimation, and simplify the time variation of K .
(ii) The optimization of the feedback terms requires the inversion (to be precise, the
transpose) of the transfer matrix from the velocity field to the wall measurement,
called the observation matrix H. Our approach replaces the inverse of the transfer
matrix by the stochastic estimation from the wall measurement and the Kalman gain
by a time-invariant function in y (i.e. K(y− Hx) ≈ εf (y)(H−1 y − x), where y and
x represent the wall measurement and the velocity field, respectively, ε and f are
defined below, and H−1 y is given by the stochastic estimation). We regard this system
as a simple state observer, whose quantities on the left-hand side are expressed with
hat marks (which are later defined as the observer quantities with the subscript ‘Obs’)
and write the nonlinear system including the body-force terms as

∂ û
∂t
+ û

∂ û
∂x
+ v̂

∂ û
∂y
+ ŵ

∂ û
∂z
+
∂ p̂
∂x
−

1
Reτ
∇

2û = εfx (y)
(
uLSE − û

)
, (2.13a)

∂v̂

∂t
+ û

∂v̂

∂x
+ v̂

∂v̂

∂y
+ ŵ

∂v̂

∂z
+
∂ p̂
∂y
−

1
Reτ
∇

2v̂ = εfy (y)
(
vLSE − v̂

)
, (2.13b)

∂ŵ
∂t
+ û

∂ŵ
∂x
+ v̂

∂ŵ
∂y
+ ŵ

∂ŵ
∂z
+
∂ p̂
∂z
−

1
Reτ
∇

2ŵ = εfz (y)
(
wLSE − ŵ

)
, (2.13c)
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where the velocity components above given by the linear stochastic estimation are
computed via the inverse Fourier transform of (2.3):

uLSE (t, x, y, z) ≡
Nx/2−1∑

mx=−Nx/2

Nz/2−1∑
mz=−Nz/2

ũLSE (t, kx = 2πmx/Lx, y, kz = 2πmz/Lz)

× exp
[
i (kxx+ kzz)

]
+ ũDNS (kx = 0, y, kz = 0), (2.14)

and vLSE and wLSE are similarly defined. Since only the fluctuating parts are estimated
as ũLSE, the time-averaged DNS velocity profile for (kx, kz) = (0, 0) is added above.
Thus, these terms in (2.13) can be regarded as linear feedback, K y ∼ εf A†τ̃ , from
the wall measurement (where fx, fy and fz are symbolically expressed as f hereafter).
The constant ε is the weight on the feedback, and f provides the spatial distributions
of the feedback, which are equivalent to the ‘patch function’ introduced in Suzuki,
Ji & Yamamoto (2009a), Suzuki et al. (2009b), Suzuki, Ji & Yamamoto (2010). We
normalize f such that max[ f ] = 1. Unlike those previous studies, it takes a non-zero
value everywhere in this study because the linear stochastic estimation gives an
estimate over the entire domain.

We have examined various ways of defining f . For example, we have included it in
the wavenumber space as f̃ (kx, y, kz) prior to the inverse Fourier transform by referring
to the correlation in y for each (kx, kz); however, this hardly improves the estimation
through the dynamical system compared with f defined in the physical space. We have
also tested various distributions of f (y), as briefly discussed later, but none of them
are substantially better than a constant f . As a result, we analyse only one spatially
varying f (y) explained in § 4.3 as well as f ≡ 1 with several constant ε.

3. Numerical procedures
3.1. Direct numerical simulation (DNS)

Incompressible wall-bounded channel flow is solved in three dimensions using DNS.
This code has been validated in the past (a part of the verification can be found
in figure 27(a) in appendix C), and the details of its numerics are described in
Hasegawa & Kasagi (2011). The main features and the points specific to this study
are summarized below. Periodic boundary conditions are imposed in the streamwise
and spanwise directions (see figure 1 for the coordinate system); therefore, the flow
is considered to be perfectly homogeneous in these directions. The density and
the viscosity are set to be constant, and the friction Reynolds number is set to
be Reτ = 100 (normalized based on the channel half-height, h), corresponding to
u+ ≡ ucentreline/uτ ≈ 17. The flow is observed to be fully developed turbulence, yet
with some low Reynolds number characteristics, which are discussed later in § 4.1.

The physical domain size is set to be Lx = 4πh, Ly = 2h and Lz = 4πh/3 to make
a fair comparison with Chevalier et al. (2006), and the 3/2 law is used to remove
aliasing errors: Lx and Lz are equally spaced with Nx =Nz = 64 grid points, in which
flow quantities are decomposed into 42 × 42 Fourier modes in the streamwise and
the spanwise directions, respectively. Unlike their study, however, the Chebyshev
collocation method is used in the vertical direction, in which Ly is discretized into
Ny= 64 spacings using 43 polynomials. Compared with Chevalier et al. (2006) using
Ny= 64 uniform grid spacings with finite differencing, the resolution in y is expected
to be higher in this study. Thus, the velocity field is spatially differentiated with the
spectral methods in all directions.
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As opposed to solving the vertical velocity and the wall-normal vorticity, referred to
as the v–ωy formulation, in many other studies (Kim, Moin & Moser 1987; Högberg
et al. 2003; Bewley & Protas 2004; Chevalier et al. 2006), primitive variables, u, v, w
and p, are solved in the current code instead. For pressure decoupling, a fractional step
method (Kim & Moin 1985) is used to march the aforementioned transformed velocity
field in time: the second-order Adams–Bashforth scheme is adopted for the convection
terms and the second-order Crank–Nicholson scheme for the diffusion terms. The time
step is set to be 1tuτ/h = 2.0 × 10−3 (i.e. 1t+ = 0.2). The solver is used both to
solve the original Navier–Stokes equations as well as to run as an observer with
the body force defined in § 2.3. The body-force term is inserted before solving the
Poisson equation to impose the continuity every time step, as introduced in Suzuki
et al. (2009a, 2010).

The collocation method allows us to directly compute flow quantities on the wall.
On the other hand, we must treat the no-slip boundary condition differently from
staggered grid systems. Appendix C describes the details of the no-slip boundary
treatment posterior to solving the Poisson equation.

3.2. Sampling statistics
After the flow becomes statistically stationary by running the DNS, we prepare
two sets of unsteady flow fields (i.e. true solutions of the original Navier–Stokes
equations) for the same conditions but with different initial conditions, plus another
extra initial condition. During the first unsteady solution, referred to as the ‘sampling
duration’, time-averaged quantities, necessary statistics and correlations are calculated
using every time step; at the same time, the wall quantities are recorded also at every
time step and the velocity components as well as pressure are recorded at every
100 time steps over all points in the physical space. Likewise, the same unsteady
quantities are recorded during the second solution set. To secure enough sampling in
the wavenumber space, 50 000 time steps (i.e. 100h/uτ ) are computed for both sets
of solutions, and their initial conditions are t = 200h/uτ apart to make these three
initial conditions statistically independent. No measurement noise is added to the wall
quantities except for the analysis in appendix A.

Using the first solution set the coefficients A in (2.8) for the linear stochastic
estimation are computed. Assuming that the two sets of solutions are statistically
equivalent, these coefficients are commonly applied to the wall measurement for
both solutions, and the discrepancies in the velocity field inside the domain from
the true solution are compared between the two sets of the solutions. To analyse the
observer, the flow is started with the extra initial condition but the second set of the
wall measurements is used for the update steps; accordingly, it is monitored if the
estimated flow field is sequentially assimilated to the true solution from an unknown
initial condition.

Because we decouple wavenumbers in the linear stochastic estimation, the number
of samples, 50 000, is much greater than the degrees of freedom, i.e. six in this study.
If we were to apply it based on the wall measurement at every grid point in the
physical space, the degrees of freedom suddenly expands to 64 × 64 × 6 = 24 576,
which is nearly the half of the number of samples. In such a case, linear stochastic
estimation can find a linear combination that almost exactly reconstructs the sampled
velocity fields up to the degrees of freedom but would not estimate the flow well
beyond the sampling duration. Analogous problems occur when the degrees of
freedom increase (e.g. by including coupling of the wavenumbers) or when the
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FIGURE 2. Comparison of the time- and space-averaged streamwise velocity. Line patterns:
——, Reτ = 100 in the current study; - - -, Reτ = 150 (Iwamoto et al. 2002, and thereafter);
– · – · –, Reτ = 396; · · · · · ·, Reτ = 643. (a) Profiles near the wall. Thin grey lines indicate
u+ = y+ and u+ = 0.4−1 log y+ + 5. (b) Profiles across the channel.

sampling is limited (e.g. by characterizing the flow with fewer reduced-order models
or ensembles); thus, special attention being required for fair evaluation (cf. Chevalier
et al. 2006; Colburn et al. 2011).

4. Results and discussion
4.1. Basic flow characteristics at Reτ = 100

We start with general observations of the flow to be estimated. For reference, we
compare flow statistics with the database by Iwamoto, Suzuki & Kasagi (2002), which
has been extensively validated in the past. Figure 2 compares the time- and space-
averaged streamwise velocity profile, i.e. the time average of ũ(kx= 0, y, kz= 0), with
those at higher Reynolds numbers. All cases collapse very well in the viscous sublayer
(y+ . 10). Our case, Reτ = 100, indicates a low Reynolds number feature in the log
layer, as reported by Moser, Kim & Mansour (1999); namely, the velocity profile in
this region overshoots those at high Reynolds numbers, as is expected.

Figure 3 similarly compares velocity fluctuations in our case with those at higher
Reynolds numbers. Regardless of Reτ , the streamwise velocity fluctuation becomes
the highest in the buffer layer, in which the linear and the log profiles intersect, and
turbulent kinetic energy also forms a peak in this layer. In the physical scale, the
peak of turbulent kinetic energy shifts away from the wall with decreasing Reynolds
number. Its level near the centreline at Reτ = 100 is slightly higher than the other
cases, possibly because the aspect ratio of our domain is Lx/Lz = 3 as opposed to
Lx/Lz = 2 by Iwamoto et al. (2002). It should be noted that we have confirmed the
agreement with their database for the same condition in appendix C. In general, our
simulation possesses fundamental turbulence characteristics although it indicates some
low Reynolds number features.

Now, the correlations of the velocity components, ũ, ṽ and w̃, in the flow with
the wall measurements, τ̃x, τ̃z and p̃, are analysed in the wavenumber space. Through
these results, the region reconstructible from the instantaneous wall information
can be assessed. Four different wavenumber combinations, (k′xh, k′zh) = (0.5, 1.5),
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FIGURE 3. Comparison of the fluctuating velocity components (database at higher
Reynolds numbers is similarly taken from Iwamoto et al. 2002). Line patterns are the
same as figure 2. (a) Root mean squares of three velocity components near the wall (a
similar figure can be found in Moser et al. 1999). (b) Turbulent kinetic energy across the
channel.

(0.5, 6), (3, 18) and (5, 30), are analysed for the velocity in the flow; in particular,
the second and third combinations are representative of low-/high-speed streaks and
quasi-streamwise vortices, respectively, containing a large portion of turbulent kinetic
energy and representing key features of near-wall turbulence (Smith & Metzler
1983; Kim et al. 1987). We record the correlation coefficient for each wavenumber
combination against each wall quantity over the entire wavenumber space during the
sampling duration of 100h/uτ .

Contours for one of such coefficients, given by

Cor[ũ(k′x, y, k′z), τ̃x(kx, y/h= 1, kz)] ≡

∣∣∣ũ∗ (k′x, y, k′z
)
τ̃x (kx, 1, kz)

∣∣∣√∣∣ũ (k′x, y, k′z
)∣∣2√|τ̃x (kx, 1, kz)|

2
, (4.1)

are drawn at three heights in figures 4–6. The overbar above represents the time
average over the aforementioned duration: every time step during 100h/uτ is used
for the evaluation in the wavenumber space. Here, the lower half-plane (i.e. kz < 0)
is omitted because it is complex conjugate of the upper half. Near the wall, a
distinctive peak is formed at the same wavenumber as the velocity component. Aside
from the peak, weak correlations are found in the vicinity of the same kx, indicating
spanwise patterns of streamwise vorticity, but mostly less than 0.2. Although only a
single combination (i.e. ũ versus τ̃x) is shown here, other correlations across different
wavenumbers are also investigated and confirmed to be always low except for the
primary peak (i.e. the identical wavenumber). Accordingly, linear stochastic estimation
is performed for each wavenumber combination in this study. Moreover, correlation
of a velocity component in the flow with a product between two wall quantities
should then be further reduced; hence, unlike unsteady laminar flows, the justification
of nonlinear stochastic estimation is weak for such turbulent flows.

By focusing on the same wavenumber between τ̃x on the wall and the velocity
components, the correlation coefficients are plotted across the channel in figure 7.
At low wavenumbers, i.e. (kxh, kzh) = (0.5, 1.5) and (0.5, 6.0), high correlation is
retained beyond the viscous sublayer (y/h . 0.8), but all three correlations decay
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FIGURE 4. Correlation coefficients of ũ(k′xh = 0.5, y, k′zh = 1.5) with τ̃x(kx, y/h = 1, kz).
(a) y/h=0.942 (peak correlation 0.978 at the same wavenumber point indicated by broken
lines). (b) y/h= 0.803 (0.614). (c) y/h= 0 (0.129 at a different wavenumber point).
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FIGURE 5. Correlation coefficients of ũ(k′xh = 0.5, y, k′zh = 6.0) with τ̃x(kx, y/h = 1, kz).
(a) y/h=0.942 (peak correlation 0.991 at the same wavenumber point indicated by broken
lines). (b) y/h= 0.803 (0.902). (c) y/h= 0 (0.154 at a different wavenumber point).
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FIGURE 6. Correlation coefficients of ũ(k′xh = 3.0, y, k′zh = 18.0) with τ̃x(kx, y/h = 1, kz).
(a) y/h=0.942 (peak correlation 0.776 at the same wavenumber point indicated by broken
lines). (b) y/h= 0.803 (0.120). (c) y/h= 0 (0.101 at a different wavenumber point).
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FIGURE 7. Correlation coefficients of τ̃x(y/h = 1) with three velocity components
at the same wavenumber. Line patterns: ——, with ũ; - - -, with ṽ; – · – · –, with w̃.
(a) (kxh, kzh)= (0.5, 1.5). (b) (0.5, 6.0). (c) (3.0, 18.0). (d) (5.0, 30.0).

toward the centreline. At higher wavenumbers, the correlations sharply drop beyond
the viscous sublayer. At all wavenumbers, the streamwise velocity correlation is
appreciably higher than the other two components, indicating that the streamwise
shear-stress measurement is effective to estimate the streamwise velocity component.

Figure 8 similarly plots the correlations of τ̃z and p̃ at (kxh, kzh) = (0.5, 6.0). In
contrast to the correlation with τ̃x above, these two wall quantities, τ̃z and p̃, are
primarily responsible for w̃ and ṽ (these trends are more or less similar at other
wavenumbers, not shown). The correlation with p̃ is lower than those with τ̃x and τ̃z;
namely, the pressure signal is less effective than the shear stresses. We can confirm
this by applying linear stochastic estimation with individual components (the results
are not shown). Regardless of the combinations, all the profiles decay as low as 0.2
at the centreline. These results imply inherent difficulty with instantaneous estimation
near the centreline based on the wall measurements.

At low wavenumbers, we find discernible correlation recovery on the opposite side
of the wall (i.e. y/h = −1) in figures 7(a–b) and 8. We attribute this phenomenon
to large-scale motions across the channel represented by lower-order Chebyshev
polynomials. This motivates us to process wall quantities on both sides simultaneously
in the stochastic estimation. By expanding the degrees of freedom only from three to
six, we can appreciably improve the accuracy of estimation (comparison not shown).
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FIGURE 8. Correlation coefficients of the other wall quantities with three velocity
components at (kxh, kzh)= (0.5,6.0). Line patterns are the same as figure 7. (a) τ̃z(y/h=1).
(b) p̃(y/h= 1).

4.2. Instantaneous estimation: linear stochastic estimation
Next, we discuss the results of instantaneous velocity estimate using the linear
stochastic estimation explained in § 2.2. To make the comparison of our results with
those by Chevalier et al. (2006) easier, we define the correlation coefficient in the
same manner:

Cor
(
u′LSE, u′DNS

)
≡

∣∣∣∣∣
∫ Lx

0

∫ Lz

0
u∗′LSEu′DNS dx dz

∣∣∣∣∣√∫ Lx

0

∫ Lz

0

∣∣u′LSE

∣∣2 dx dz

√∫ Lx

0

∫ Lz

0

∣∣u′DNS

∣∣2 dx dz

, (4.2)

where u′LSE and u′DNS denote the streamwise velocity fluctuation based on the linear
stochastic estimation and that of the true solution from the original DNS, respectively.
Here, the overbar represents time average over the 100h/uτ period but takes a sample
every 100 time steps for physical quantities, a total being 500 samples. We similarly
define the correlation coefficients for the other velocity components, v′ and w′, as well
as the Reynolds stresses, u′v′, v′w′ and w′u′.

Figure 9(a) shows the correlation coefficients of the three velocity components
near the wall. Here, we plot the estimates for the two sets mentioned in § 3.2: (i)
the first set during which statistics for the linear stochastic estimation are taken (thin
grey lines) and (ii) the second set sufficiently after the sampling duration (thick black
lines). In y+ 6 20, the correlations between the two sets are nearly the same. These
profiles also agree very well with those of the extended Kalman filter by Chevalier
et al. (2006) in figure 6 of their paper. To be precise, our streamwise velocity
correlation tends to be slightly lower than theirs, while the vertical and spanwise
velocity correlations are somewhat better.

Figure 9(b) reveals that all the correlations drop toward the centreline. In particular,
the correlations after the sampling duration are clearly lower than those during the
sampling duration beyond the viscous sublayer (|y/h| . 0.8). This implies that the
statistics between the two periods, although 100h/uτ apart, are not exactly equivalent,
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FIGURE 9. Correlation coefficients of velocity fluctuations. Line patterns: ——,
Cor(u′LSE, u′DNS); – – –, Cor(v′LSE, v

′

DNS); – · – · –, Cor(w′LSE,w′DNS). Thick black lines indicate
the estimates sufficiently after the sampling duration, and thin grey lines those during the
sampling duration. (a) Profiles near the wall. (b) Profiles across the channel.
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FIGURE 10. Profiles of other quantities near the wall. Distinction between the thick
and thin lines is the same as figure 9. (a) Reynolds stresses. Line patterns: ——,
Cor(u′v′LSE, u′v′DNS); – – –, Cor(v′w′LSE, v

′w′DNS); – · – · –, Cor(w′u′LSE, w′u′DNS). (b) Errors
defined in (4.3). Line patterns: ——, Err(u′LSE, u′DNS); – – –, Err(v′LSE, v

′

DNS); – · – · –,
Err(w′LSE,w′DNS).

and the linear stochastic estimation ‘memorizes’ a part of flow patterns rather than
takes statistical correlation. Interestingly, the streamwise velocity generally gives the
highest correlation except near the centreline for the result outside the sampling
duration. The estimation of spanwise velocity fluctuations is least successful over the
entire channel.

We also plot other quantities evaluated by Chevalier et al. (2006). The correlation
profiles of all the Reynolds stresses in figure 10(a) are again very close to their results
(see figure 8 in Chevalier et al. 2006). Not surprisingly, Cor(v′w′LSE, v

′w′DNS) yields the
lowest correlation because the individual estimates of v′ and w′ are worse than u′.
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FIGURE 11. Profiles of turbulent quantities across the channel. Line patterns: ——,
original Navier–Stokes; – – –, linear stochastic estimation. (a) Turbulent kinetic energy
(· · · · · ·, the squared difference). (b) Reynolds shear stress (· · · · · ·, total shear stress).

In addition, the normalized error is defined as

Err(u′LSE, u′DNS)≡

√∫ Lx

0

∫ Lz

0

∣∣u′LSE − u′DNS

∣∣2 dx dz√∫ Lx

0

∫ Lz

0

∣∣u′DNS

∣∣2 dx dz

, (4.3)

for the streamwise velocity fluctuation and the other velocity components are similarly
defined. The results of these errors in figure 10(b) are consistent with figure 9(a) in
the sense that the agreement is similar to Chevalier et al. (2006). To be precise, our
estimate of u′ deviates slightly more for greater y+, while our other two components
give better estimates than theirs. Because we impose no measurement noise, the errors
almost vanish near the wall except in the very small v′ region. The differences due to
the sampling duration are again relatively small, and we analyse the data only after
the sampling duration (i.e. the second set) in the rest of the discussion.

These results consistently suggest that if we can remove the measurement noise,
the linear stochastic estimation can essentially estimate velocity fields as good
as the extended Kalman filter. Both approaches take the same information from
the wall, but the major difference is that the former one estimates the velocity
field from instantaneous information while the latter one optimizes the forcing
distribution and accounts for the dynamics in the course of time. General expectation
is the observer solving the Navier–Stokes equations compensates the information
propagating from the wall. However, the fact that the agreement away from the wall
is comparable between the two approaches may imply that the extended Kalman filter
only suppresses the measurement noise and hardly contributes to improvement of the
estimation beyond the viscous sublayer.

We elucidate the reason for poor estimates away from the wall. Figure 11(a)
compares the turbulent kinetic energy profile of the linear stochastic estimation with
that of the true solution together with their squared difference. We notice that the
turbulence intensity in the linear stochastic estimation diminishes beyond the buffer
layer. When the correlation between the wall quantity and the velocity in the flow
drops, as seen in § 4.1, the magnitude of the coefficients in (2.6) decreases. Namely, if

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

58
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.580


Estimation of wall-bounded turbulence 777

–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FIGURE 12. Normalized covariance given by (4.4). Line patterns: ——, ĉov(u′LSE, u′DNS);
- - -, ĉov(v′LSE, v

′

DNS); – · – · –, ĉov(w′LSE,w′DNS).

the estimation is less certain, the linear stochastic estimation produces smaller values
to minimize errors, resulting in over-suppression of turbulent motion, especially in the
log layer. Likewise, figure 11(b) reveals that the contribution of the u′v′ shear-stress
component is much lower in the linear stochastic estimation near the centreline. On
the other hand, the mean streamwise velocity profile is invariant since we determine
the linear coefficients a† in (2.5) relative to the mean flow; namely, the shear stress
by the molecular viscosity remains the same between the true solution and the linear
stochastic estimation.

In this sense, the correlation coefficient is somewhat misleading since
∫ ∫
|u′LSE|

2 dx
dz in the denominator of (4.2) diminishes toward the centreline, elevating its value. It
is rather intuitive if we plot the covariance normalized by the auto-correlation as

ĉov
(
u′LSE, u′DNS

)
≡Cov

(
u′LSE, u′DNS

)
/Cov

(
u′DNS, u′DNS

)
=

∣∣∣∣∣
∫ Lx

0

∫ Lz

0
u∗′LSEu′DNS dx dz

∣∣∣∣∣∫ Lx

0

∫ Lz

0

∣∣u′DNS

∣∣2 dx dz

.

(4.4)
Figure 12 now reveals that the estimation is mostly unsuccessful away from the
wall and indicates the limitation of instantaneous measurement based on the wall
quantities. Since both correlation coefficients and normalized errors in Chevalier et al.
(2006) essentially show the same profiles as our profiles, their estimation must have
the common problem. The key for further improvement is to infer motions away
from the wall, especially beyond the peaks of turbulent kinetic energy.

We subsequently visualize the discrepancy in the wavenumber space. To measure
the success of the estimation, we similarly define the normalized covariance between
the linear stochastic estimation and the true solution for each (kx, kz):

ĉov
[
ũLSE (kx, y, kz) , ũDNS (kx, y, kz)

]
≡ Cov (ũLSE, ũDNS) /Cov (ũDNS, ũDNS)

=

∣∣∣ũ∗LSE (kx, y, kz) ũDNS (kx, y, kz)

∣∣∣
|ũDNS (kx, y, kz)|

2
, (4.5)
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FIGURE 13. Contours of normalized covariance for ũ given by (4.5). The domain extends
over the entire kx − y space. (a) kzh= 1.5. (b) kzh= 6.0. (c) kzh= 18.0. (d) kzh= 30.0.
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FIGURE 14. Contours of normalized covariance at kzh= 6.0. (a) for ṽ. (b) for w̃.

where the time average again takes every time step for wavenumber components.
Figure 13 draws its contours for ũ on selected constant kz planes corresponding
to figure 7. Regardless of the wavenumbers, the normalized covariance reaches
approximately unity near the wall: its thickness decreases with increasing kz. In the
vicinity of the centreline (i.e. y= 0), the covariance is high only at low wavenumbers.
We also display the contours for ṽ and w̃ on kzh= 6.0 in figure 14, showing the same
trends. Thus, the stochastic estimation can reconstruct only very large motions, and
its capability rapidly deteriorates from the buffer layer with increasing wavenumber.

In contrast to the turbulence estimation based on the wall measurement, Baars,
Hutchins & Marusic (2016) reported success in estimation of near-wall turbulent
statistics from large-scale motions in the log layer and beyond. By extracting
coherent motions from pointwise measurement in the log layer, they conversely
infer streamwise velocity fluctuations beneath it using linear stochastic estimation
even at higher Reynolds numbers (i.e. Reτ >O(103)). On the other hand, their study
also reveals the limitation of the instantaneous estimation in the buffer layer, in which

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

58
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.580


Estimation of wall-bounded turbulence 779

Sq
ua

re
d 

ve
lo

ci
ty

 d
if

fe
re

nc
e

10 20 30 40 50 60 70 80 90 1000

2

4

6

8

10

12(a) (b)

10

8

6

3

12

0 1 2 3 4 5 6 7 8 9 10

5

4

FIGURE 15. Time histories of the squared velocity difference given by (4.6). Line patterns:
· · · · ·, ε = 1; · · · · · ·, ε = 2; − · · − · · −, ε = 5; – · – · –, ε = 10; – – –, ε = 20;
— —, ε= 50; ——, linear stochastic estimation. (a) Linear scale over the entire sampling
duration. (b) Log scale in the initial part.

incoherent motions dominate the peak of the energy spectrum. This is consistent with
our observation below that it is difficult to infer instantaneous motions in the log
layer from those in the viscous sublayer.

4.3. State observer combined with the linear stochastic estimation
Finally, an observer is established by imposing the body-force term in the Navier–
Stokes equations, as explained in § 2.3. In this approach, a part of the estimation is
given instantaneously by the linear stochastic estimation, while the rest is advanced
from the previous time step using the DNS. Therefore, it is expected that the over-
suppression of turbulent kinetic energy found in the previous section can be relaxed by
propagating the information toward the centreline from the wall. Through this process,
the pressure field is simultaneously produced, which is also evaluated below.

When the errors in the forcing term are uncorrelated in space, and its magnitude
is uniform, we can apply the criterion in Suzuki et al. (2009a) for the weight of the
forcing, ε, in (2.13). In such a case, ε must overcome the maximum amplification rate
of the system (in the current flow, the system is linearly stable; hence, it is difficult to
directly determine the threshold). However, the errors are partially correlated in space,
and the accuracy of the linear stochastic estimation is significantly deteriorated outside
the viscous sublayer. Thus, several constant weights are examined below. In figure 15,
time histories of the squared velocity difference given below are plotted for various ε:

1
LxLz

∫ Lx

0

∫ h

−h

∫ Lz

0
(uObs − uDNS)

2
+ (vObs − vDNS)

2
+ (wObs −wDNS)

2 dx dy dz. (4.6)

Here, the subscript Obs denotes a quantity from the observer, which is equivalent to
that with a hat mark in (2.13). Since we impose the initial condition inconsistent with
the wall information for the rest of the time, the discrepancy starts with the maximum
value and soon becomes stationary for all the cases. This shows a sequential data
assimilation feature, but the observer can suppress the discrepancy by approximately
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FIGURE 16. Normalized covariance given by the observer with different weights. Line
patterns: · · · · ·, ε = 1; · · · · · ·, ε = 2; − · · − · · −, ε = 5; – · – · –, ε = 10; – – –, ε = 20;
— —, ε=50; ——, linear stochastic estimation. (a) ĉov(u′Obs,u

′

DNS). (b) ĉov(v′Obs, v
′

DNS). (c)
ĉov(w′Obs,w′DNS). (d) ĉov(p′Obs, p′DNS). No linear stochastic estimation available for pressure.

one third at best. The least weight yields the slowest initial convergence, and the slope
becomes steeper with increasing ε. We should note that the least weight here, ε= 1, is
still strong in general control applications, and the magnitude of ε=O(10) is actually
necessary to reduce the errors to the level equivalent to the linear stochastic estimation.
This approximately corresponds to the frequency of streamwise-vortex passages above
the wall. To remove the initial transient states, we take statistics from t = 10h/uτ in
the following discussion.

Subsequently, we compare the normalized velocity covariances given in (4.4) for
various ε in figure 16(a–c). To achieve good agreement near the wall, we find that
very strong forcing is necessary, especially for v and w. The magnitude of the
velocity fluctuations in the viscous sublayer is much smaller than that near the peak
of turbulent kinetic energy, as shown in figure 11. In the observer, strong motions in
the buffer layer, which are inaccurately estimated from the wall information, evolve
over time and dominate over weak fluctuations near the wall, which are accurately
imposed by the linear stochastic estimation. Thus, we must force the right hand side
strongly enough to overcome it and to retain accurate motions near the wall.

Away from the wall, on the other hand, smaller weights can improve estimate. For
the streamwise velocity in figure 16(a), ε = 1 gives the highest covariance in |y/h|.
0.4 (this will be clear in figure 17), and the covariance degrades with increasing
weight in this region. Likewise, ε= 5 provides the highest covariance for the spanwise
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FIGURE 17. The weight of the forcing ε providing the best covariance at each y (denoted
by E) and a quartic function best fitting to them (denoted by a solid line), which is
used as the spatially varying εf (y) (max[ε] ≡ 100). (a) For streamwise velocity. (b) For
spanwise velocity.

velocity over a wide range of y in figure 16(c), while the linear stochastic estimation
predicts best across the entire channel for the vertical velocity in figure 16(b). If we
compare the correlation coefficients instead (not shown), the best weight changes, but
the trend of better estimation with a smaller weight away from the wall is more or
less similar. By relaxing the forcing, we can improve the over-suppression of turbulent
kinetic energy in the log layer, and this benefit seems to surpass the influence of
strong motions inaccurately estimated in the buffer layer.

Regarding the estimated pressure field, the normalized covariance monotonically
improves with increasing ε, as shown in figure 16(d). Because of the nature of
the wall boundary condition, i.e. ∂p/∂y ≈ 0, pressure exerted by the motions in the
buffer layer penetrates the viscous sublayer. As a result, the pressure estimation on
the wall is less successful compared with that of velocity fluctuations. On the other
hand, such large-scale motions partly influence pressure near the centreline, leading
to better estimates than those of velocity fluctuations.

Referring to figure 16, we eventually show that the normalized covariance can be
improved by varying ε as a function of y. As a simple example, figure 17 plots the
weight ε that provides the best normalized covariance in figure 16 at each y (points
at which the linear stochastic estimation gives the best covariance are eliminated).
We then fit a quartic function to those points assuming symmetry and introduce
such spatially varying εf (y) (6 100 is imposed) into the observer for the streamwise
and spanwise velocity components. For the vertical velocity estimation, the linear
stochastic estimation always yields the best covariance; hence, we impose constant
ε = 100 across the channel for simplicity (a plot for v′ is omitted in figure 17).

In figure 18, we compare the results for the set of such εf (y) with the envelopes
of the best estimate in figure 16 as well as the linear stochastic estimation. Since
a result of the linear stochastic estimation is unavailable for the pressure estimation,
we overlay the ε = 50 case for reference in figure 18(d). The spatially varying
weight predicts the streamwise and spanwise velocity components better than the
other two profiles except very close to the wall. In particular, the improvement for
ĉov(u′Obs, u′DNS) is appreciable over a wide range of y. In contrast, the covariance for
the vertical velocity approximately remains the same since we only impose strong
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FIGURE 18. Normalized covariance of the observer with the spatially varying εf (y) given
in figure 17 (denoted by a thicker black line). For reference, the envelope of the best
estimate in figure 16 is plotted by dots together with the linear stochastic estimation by
a thin grey line for (a–c). (a) ĉov(u′Obs, u′DNS). (b) ĉov(v′Obs, v

′

DNS). (c) ĉov(w′Obs,w′DNS). (d)
ĉov(p′Obs, p′DNS). No linear stochastic estimation available, but the ε = 50 case from figure
16(d) is plotted by a grey dashed line for reference.

uniform forcing across the channel. Likewise, the degree of success in the pressure
estimation is similar to the strongest uniform forcing of ε= 50. Although we have not
fully optimized the weight, these results demonstrate that we can improve the estimate
in a certain degree by tuning the forcing function. On the other hand, the improvement
of estimation for the two velocity components hardly helps the improvement of the
remaining components. The comparison of the correlation coefficients in figure 19
shows consistent results.

It is evident from figure 20(a) that the spatially varying weight helps relax the
over-suppression of turbulent kinetic energy away from the wall compared with the
linear stochastic estimation. However, the errors themselves somewhat increase near
the centreline, indicating that the elevated turbulence intensity does not accurately
fill large-scale motions. Figure 20(b) clarifies that the shear stress also slightly
increases beyond the buffer layer. Unlike the linear stochastic estimation, the sum of
the molecular and the eddy viscosities must comprise the total shear stress, which
dictates the mean velocity profile. As a result, u(y) in the observer slightly deviates
from the true solution. Nonetheless, the spatially varying weight provides the best
estimate in the most regions for the streamwise and spanwise velocity components.
Although we may speculate improvement by further relaxation of the forcing or by
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FIGURE 19. Comparison of the correlation coefficients. Line patterns: ——,
Cor(u′Obs, u′DNS); – – –, Cor(v′Obs, v

′

DNS); – · – · –, Cor(w′Obs, w′DNS). Thick black lines
denote the results of the spatially varying εf (y) and thin grey lines those of the linear
stochastic estimation.
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FIGURE 20. Turbulent quantities generated by the spatially varying weight. Line patterns:
——, original Navier–Stokes; – – – (black), spatially varying εf (y); – – – (thin grey), linear
stochastic estimation. (a) Turbulent kinetic energy (· · · · · ·, the squared difference). (b)
Reynolds shear stress (· · · · · ·, total shear stress).

further enhancement of turbulent kinetic energy near the centreline, we found no
other effective profile of εf (y) among many other trials.

In figure 21, an instantaneous flow field estimated using the spatially varying weight
is compared with the true solution at one of the best instants in a three-dimensional
view. Their cross-sections are also compared in figure 22. Although large-scale streaks
creeping near the wall are estimated relatively well, those detached from the wall as
well as quasi-streamwise vortices away from the wall are mostly smeared, as expected
from the results above. It is rather surprising from figure 22 that such distinctive
structures are still difficult to be reconstructed based on the wall measurement with the
full resolution. We should remember, however, that any linear combinations of the flow
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FIGURE 21. Comparison of instantaneous flow fields in a three-dimensional view.
Iso-surfaces of the second invariant of the velocity gradient tensor Q+ are displayed
to visualize vortex cores. Contours of the streamwise velocity are also drawn. (a) True
solution on the top (Q+ =−0.02). (b) Estimate using the spatially varying weight on the
bottom (Q+ =−0.01).
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FIGURE 22. Comparison of instantaneous flow fields in a cross-sectional view at x/h=3.0.
Streamwise velocity contours are drawn with velocity vectors on perpendicular planes. (a)
True solution. (b) Estimate using the spatially varying weight.
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representation cannot improve the estimation, and the weak correlation across different
wavenumbers would make nonlinear estimation ineffective.

In appendix D, we apply the ensemble Kalman filter (Evensen 1994) analogous
to the work by Colburn et al. (2011) to the current channel geometry. Although
there are some differences in the flow solver architecture, we examine a few possible
scenarios to replicate their work. Counter to their conclusion, the correlations near the
centreline are less than 0.5 for all the cases (our results are displayed based on the
normalized covariance, but this statement still holds). This is rather consistent with
our analyses above. Thus, our results imply that the observer solving the dynamical
system improves the accuracy in the viscous sublayer in a limited extent relative to
the instantaneous estimation, i.e. the linear stochastic estimation. Although Chevalier
et al. (2006) reported comparable results using the extended Kalman filter in y+6 20,
it is fair from the discussions in appendices to ascribe the major contribution of
the estimation in this region to the instantaneous estimation rather than the observer
solving the dynamical system or the optimized feedback.

We observe that a series of our analyses reveal generic viewpoints in turbulent flow
estimation based on wall measurement. The results of the following two analyses
indicate that the linear part of the stochastic estimation, which is decoupled in the
wavenumber space, dictates instantaneous estimation: one is poor correlation across
different wavenumbers between the quantities on the wall and the velocity components
in the flow, as shown in § 4.1; the other is limited improvement in the estimation
by including time derivatives of the measured quantities and by using the ensemble
Kalman filter, performed in appendices B and D, respectively. In addition, the analysis
in § 2.2 manifests that the results of the estimation should be independent of the flow
representation. Therefore, we cannot expect much improvement by incorporating
nonlinearity or temporal variation in the estimation scheme or by changing it from
the wavenumber space to the physical space except that they may help ‘memorize’
flow patterns during the sampling duration. The linear stochastic estimation can
accurately reconstruct velocity components in the viscous sublayer, but inaccurately
estimated motions in the buffer layer inevitably disrupt the estimation toward the
centreline. Even by introducing an observer that solves the full Navier–Stokes
equations, we can improve the estimation in a limited extent beyond the viscous
sublayer. All these results may imply inherent difficulty of turbulent flow estimation
even using sequential data assimilation techniques. Such techniques can remove
unbiased uncorrelated measurement noise, but even a simple sequential observer
has the same function, as demonstrated in appendix A. In fact, the accuracy of the
estimation by using the extended Kalman filter (Chevalier et al. 2006) is only as
good as the linear stochastic estimation. There is a study reporting nearly perfect
estimation of a similar turbulent channel flow based on analogous wall measurements
using the ensemble Kalman filter (Colburn et al. 2011). However, which function of
their method truly enables the success is not understood.

5. Conclusions

We have tackled turbulent flow estimation based on the wall measurement by
solving a channel flow with periodic boundary conditions at Reτ = 100 with DNS.
By introducing linear stochastic estimation, we instantaneously estimate velocity
fields from the two wall shear-stress components and the pressure fluctuation over
the entire wavenumber space. Subsequently, we have used it to develop a simple
observer; namely, a nonlinear dynamical system is solved with DNS to propagate
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the state vector consisting of velocity components, and it is sequentially updated by
the body-force term given by the linear stochastic estimation. Degrees of success
have been measured based on the normalized covariance as well as the correlation
coefficients and the normalized errors, as reported by Chevalier et al. (2006). The
correlations between the three quantities measured on the wall and the velocity
components inside the channel have also been evaluated in the wavenumber space.
To support our claim, the ensemble Kalman filter has been performed by following
the study by Colburn et al. (2011). In addition, the effect of the uncorrelated white
noise and the improvement by including time derivatives of the wall measurement
have been analysed.

The linear stochastic estimation perfectly reconstructs all three velocity components
right above the wall; however, the correlation coefficients significantly decay toward
the centreline as low as 0.3 or less. We can also estimate the Reynolds stresses
comparably well, but the correlation coefficients diminish even more steeply. The
bottleneck of the stochastic estimation is over-suppression of the velocity fluctuations
beyond the viscous sublayer: because stochastic estimation determines a flow quantity
by minimizing the least-squares difference, it tends to underestimate values in
highly uncertain regions. In turn, the correlation coefficient may under-emphasize
the discrepancy from the true solution due to the corresponding decrease in the
denominator; hence, we have introduced the normalized covariance as a relevant
measure.

We have investigated the effects of forcing strength in the observer. To achieve the
accuracy comparable to the linear stochastic estimation near the wall, we must set the
right-hand side of the Navier–Stokes equations to ten times the velocity difference
or greater (i.e. ε & 10). Strong feedback gain is necessary for weak fluctuations in
the viscous sublayer, which are accurately estimated, to overcome strong motions
in the buffer layer, which are inaccurately estimated. On the other hand, strong
uniform forcing hardly alleviates over-suppression of turbulent kinetic energy near the
centreline. In fact, our results show that weaker forcing improves the estimation in
the log layer for the streamwise and spanwise velocity components. This motivates
us to examine a spatially varying weight on the forcing which takes the maximum
near the wall and diminishes away from it; as a result, the normalized covariances
for those two velocity components become somewhat higher in the log layer than
any of the uniform forcing weights.

Chevalier et al. (2006) applied the extended Kalman filter to the same problem
but including uncorrelated white noise in the measured quantities. The accuracy of
their velocity estimation in y+ . 20 is indeed almost the same as our result of the
linear stochastic estimation without noise. On the other hand, we have uncovered that
a simple sequential processing can essentially remove uncorrelated noise. Assuming
that the sequential process in the Kalman filter suppresses the measurement noise
in their study, our study indicates that the instantaneous estimation based on the
wall measurement primarily governs the accuracy of the estimation, and the observer
solving the nonlinear dynamical system only secondarily contributes to it in a limited
extent. In fact, the simple observer examined in this study improves the accuracy
only in the streamwise and spanwise velocity components in the log layer relative to
the linear stochastic estimation. Moreover, the addition of time derivative quantities
on the wall hardly improves linear stochastic estimation. Thus, it is non-trivial to
effectively integrate the time-dependent contribution into the estimation scheme.

The key to success is to accurately reconstruct motions in the buffer layer and
propagate them toward the centreline without suppression; otherwise, errors from
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the instantaneous estimation in the buffer layer growth with turbulence production,
and such motions prevail against the updated estimation in the sequential process.
Collections of our analyses, however, infer the difficulty of substantial improvement
in the instantaneous estimation. Change in the set of wall measurements or basis
functions of the flow representation would not contribute to improvement unless
increasing the dimensions of the measurement quantities. Although we can potentially
increase them by utilizing nonlinear combinations in the wavenumber space or
time variation in the wall measurement, they seem to be less effective according
to our analyses. Moreover, poor correlation between wall fluctuations and motions
beyond the viscous sublayer prevents the observer from accurately propagating the
information toward the centreline even by solving the exact dynamical system. Thus,
this study has clarified inherent hurdles for further improvement of the turbulent flow
estimation beyond the buffer layer based on the wall measurement using sequential
data assimilation approaches.
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Appendix A. Effects of measurement noise
Measurement noise can be one of the potential issues in such flow estimation

problems. Chevalier et al. (2006) actually imposed Gaussian white noise in the
wavenumber space on their measured quantities, and we wish to simulate statistically
equivalent noise for comparison. However, their definition of the covariance in the
Gaussian noise appears to be somewhat questionable: although there is ambiguity
of the normalization in the discrete Fourier transform and the size of the time step,
which are undefined throughout their series (Hœpffner et al. 2005; Chevalier et al.
2006; Colburn et al. 2011), the signal to noise ratio in the pressure, 2.0 × 10−4, is
unrealistically low relative to that in the streamwise shear stress, 0.92 in Chevalier
et al. (2006); moreover, the covariance in the pressure measurement for the laminar
flow in Hœpffner et al. (2005) is even greater by several orders of the magnitude. In
this study, we impose similar measurement noise but analyse the results in a different
approach. In turn, the results show that a sequential estimation technique can filter
out uncorrelated noise, and we can separate the noise issue from the core of the
estimation problems.

We define the uncorrelated mean-zero Gaussian white noise for their measured
quantities in the same way as (2.7)–(2.9) in Chevalier et al. (2006), except that the
covariances are set to be αη = 2.88 × 10−3, αv = 1.28 × 10−3 and αp = 1.07 × 10−4

based on their normalization using the centreline velocity and the channel half-height;
subsequently, we convert the noise components to our measured quantities. This
combination provides the signal to noise ratio of the three measured quantities, τ̃x,
τ̃z and p̃, to be approximately all unity based on our normalization of the discrete
Fourier transform given by (2.3). The magnitudes of the noise are still large compared
with practical situations.

Figure 23 compares the results of the linear stochastic estimation with and without
the measurement noise. Since the normalized covariance given by (4.4) hardly detects
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FIGURE 23. Comparison of the linear stochastic estimation with and without the
measurement noise. Thick lines denote the results with the noise, and thin lines those
without it. (a) Correlation coefficients defined in (4.2) over the channel height. Line
patterns: ——, Cor(u′LSE, u′DNS); – – –, Cor(v′LSE, v

′

DNS); – · – · –, Cor(w′LSE,w′DNS). (b) Errors
defined in (4.3) near the wall. Line patterns: ——, Err(u′LSE, u′DNS); – – –, Err(v′LSE, v

′

DNS);
– · – · –, Err(w′LSE,w′DNS).

difference against uncorrelated noise, we only display the correlation coefficients
and the normalized errors. Due to the constant magnitude of the noise over the
wavenumber space, high-wavenumber errors are emphasized, and the estimation near
the wall is significantly deteriorated. The correlations, particularly in the vertical
velocity component, are dropped, and the errors are increased by an order of
magnitude in the viscous sublayer. Thus, the instantaneous estimation is inevitably
contaminated by the white noise.

We can minimize the discrepancy due to the measurement noise through a state
observer. Figure 24 compares the results of the body forcing with ε = 10 at every
time step with and without the noise. Except for discernible discrepancy in v′ in
the viscous sublayer, the correlation coefficients agree well between the two cases.
Likewise, the errors are much smaller than those by the linear stochastic estimation
found in figure 23. In the observer, the estimated flow is updated by only a fraction
of ε × 1tuτ/h = 2.0 × 10−2 based on the linear stochastic estimation, while the
rest is sequentially advanced via the DNS; consequently, uncorrelated noise is largely
cancelled and dissipated in the course of time.

Such filtering capability of a sequential technique can be clarified conversely by
imposing stronger forcing but with a longer time interval. As discussed in Suzuki
et al. (2009b), the effect of the forcing is governed by ε ×1tf , where 1tf being the
forcing interval. Namely, if the measurement noise were to be absent, forcing effects
equivalent to the preceding case can be gained by imposing the body force with ε =
100 at every ten time steps. In figure 25, the same quantities are compared in such a
case with and without the noise, in which the same αη, αv and αp are kept, but the
impact of the noise is consequently amplified by ten times per forcing. Compared with
figure 24, the discrepancy due to the noise is clearly increased, while the estimates
without the noise remain to be similar to those in figure 24. These results demonstrate
that a sequential technique can essentially remove white noise by simply increasing
the frequency of the forcing and cancelling uncorrelated disturbances (a similar trend
is observed using experimental data (Suzuki et al. 2009b)). In this sense, numerical
simulations can over-idealize measurement noise by introducing uncorrelated white
noise without a constraint on the time step.
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FIGURE 24. Comparison of the observer for ε = 10 with and without the measurement
noise. The line patterns are all the same as figure 23. (a) Correlation coefficients over the
channel height. (b) Errors near the wall.
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FIGURE 25. Comparison of the observer forced at every 10 time steps for ε = 100 with
and without the measurement noise. The line patterns are the same as figure 23. (a)
Correlation coefficients over the channel height. (b) Errors near the wall.

Appendix B. Stochastic estimation including the time derivatives of the wall
quantities

To improve the accuracy of the estimation using the same set of the measured
quantities, one candidate is to introduce their time derivatives in linear stochastic
estimation. If we expand the measured quantities to higher-order derivatives, the
method becomes equivalent to multi-time-delay stochastic estimation (Lasagna et al.
2015) or possesses features of spectral stochastic estimation (Tinney et al. 2006).
In fact, Lasagna et al. (2015) quantified the benefit of including multi-time-delay
information in a wall-bounded turbulent channel flow at Reτ = 180; however, the
benefit is limited, particularly away from the wall (i.e. y+ = 50) even by including
more than 100 time steps. Therefore, we perform the analysis only in the first order
below to observe the order of improvement and to assess the importance of the time
variation in the wall measurement.

Unlike nonlinear stochastic estimation in the wavenumber space, the inclusion up
to the first derivative only doubles the dimensions of the correlation matrices to be
inverted. We formulate the linear stochastic estimation in the same way as (2.5)–(2.8)
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FIGURE 26. Comparison of the linear stochastic estimation with and without the time
derivatives of the measured quantities. Thick lines denote the results with the time
derivatives, and thin lines those without them. (a) Correlation coefficients defined in
(4.2). Line patterns: ——, Cor(u′LSE, u′DNS); – – –, Cor(v′LSE, v

′

DNS); – · – · –, Cor(w′LSE,w′DNS).
(b) Normalized covariance defined in (4.4). Line patterns: ——, ĉov(u′LSE, u′DNS); – – –,
ĉov(v′LSE, v

′

DNS); – · – · –, ĉov(w′LSE,w′DNS).

except that it additionally includes the first-order time derivatives of all six wall
quantities, a total of 12 measured variables. Following the steps in § 3.2, we calculate
12 coefficients during the first sampling duration and similarly perform the estimation
during the second duration sufficiently after the sampling duration.

Figure 26 compares the results of the linear stochastic estimation with and
without the time derivative quantities. Both measures reveal that the degrees of the
improvement are very limited across the channel height despite that the dimensions
of the correlation matrices are doubled. This is consistent with the results reported
by Lasagna et al. (2015). Not only does this result support the linear stochastic
estimation using only six measured quantities, but also may indicate that unsteadiness
on the wall hardly influences motions beyond the viscous sublayer in an organized
manner. Hence, we expect that the accuracy of the estimation would not significantly
improve even including further higher derivatives unless we deterministically estimate
the flow field over a much longer time horizon. This may also be consistent with the
fact that solving the nonlinear dynamical system improves the estimation only a little
in the log layer, as observed in § 4.3.

Appendix C. Treatment of the wall boundary condition in a pseudo-spectral
method

In this study, a pseudo-spectral method is applied with the Fourier expansions
in the horizontal directions, whereas the Chebyshev polynomials are exploited in
the vertical direction. Although it is common to use the v–ωy formulation (Kim
et al. 1987) for a turbulent channel flow considered here, our simulation scheme
was originally developed to simulate a flow over a deformable surface in a general
coordinate system; hence, the primitive variables, i.e., u, v, w and p, are solved by
decoupling the pressure based on a fractional step method (Kim & Moin 1985). Our
scheme is essentially the same as that used in Fulgosi et al. (2003) except for the
wall boundary conditions, as described below.

In the fractional step method, the first step typically imposes the no-slip conditions
at the two walls; subsequently, the second step corrects the intermediate velocity field
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FIGURE 27. Characteristics of the present scheme at Reτ = 150. (a) Comparison of
velocity and pressure fluctuations between the current results and the data from Iwamoto
et al. (2002). (b) Dependence of urms and wrms at the wall on the time step 1t.

by solving the Poisson equation. This results in modifying the tangential velocity
components at the walls of the order of 1t as

un+1
i =−1t

∂ϕ (u∗)
∂xi

for i= 1, 3, (C 1)

where ϕ denotes the solution to the Poisson equation for the intermediate velocity
u∗. This creates no problem for a finite volume method with a staggered grid system
since the tangential velocities are undefined at the grid points on the wall. In a
pseudo-spectral method, however, this causes non-zero tangential velocities at the
wall. Note that the vertical component, un+1

2 , always remains zero regardless of
numerical schemes as far as ∂ϕ/∂y= 0 holds at the wall.

To avoid this problem, a few studies (Marcus 1984; Lyons, Hanratty & McLaughlin
1991) have proposed a three-step method. In the present study, we apply a simpler
approach by introducing a virtual wall boundary condition to solve the intermediate
velocity field u∗i , which satisfies un+1

i = 0 at the wall. It is obvious that un+1
1 and un+1

3
vanish at the wall if the wall boundary conditions for u∗1 and u∗3 yield

u∗i =1t
∂ϕn+1/2

∂xi
for i= 1, 3, (C 2)

while ϕn+1/2 remains unknown. Hence, we approximate this quantity using the values
from the previous time steps as

ϕn+1/2
=

M∑
m=1

α (m) · ϕn−m+1/2. (C 3)

Our scheme takes fourth-order accuracy in 1t, i.e. M=3 with α(1)=3.0, α(2)=−3.0
and α(3)= 1.0.

In figure 27(a), the velocity fluctuations obtained by the present scheme are
compared at Reτ = 150 with the existing database (Iwamoto et al. 2002) using a
pseudo-spectral method with the v–ωy formulation. Excellent agreement is observed
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for all primitive variables. In figure 27(b), the tangential velocity fluctuations at the
wall in the our simulation are plotted as a function of 1t. The fourth-order accuracy
in 1t is ensured from their decay rates. In the present study, 1tuτ/h= 2.0× 10−3 is
employed so that both urms and wrms at the wall are kept of the order of 10−5 in the
wall unit.

Appendix D. Ensemble Kalman filter

We attempt to replicate the work by Colburn et al. (2011), who performed the
data assimilation of a similar turbulent channel flow at Reτ = 100 using the ensemble
Kalman filter (Evensen 1994). In principle, its limit of an infinite number of ensembles
should approach the optimal Kalman filter formulated for the linear, time-invariant
system. However, only the ensemble Kalman filter of their work successfully
assimilated a turbulent flow over the entire region, and the extended Kalman filter
(Chevalier et al. 2006), though only the covariance equation is linearized, as well
as other estimation methods failed to estimate the flow beyond the buffer layer. Our
intent below is to identify the root cause of such a difference.

Although there are some steps that are not explicitly defined in Colburn et al.
(2011), we have made the best efforts to follow the their description except for
the difference in the flow geometry between Chevalier et al. (2006) and Colburn
et al. (2011) as well as the basic architecture difference between our flow solver
and theirs. Namely, Colburn et al. (2011) solved a wall-bounded channel flow in
Lx × Ly × Lz = 2πh × 2h × πh as opposed to 4πh × 2h × 4πh/3 by Chevalier et al.
(2006) and our study. Moreover, their solver discretized the vertical direction using a
second-order finite-difference method, while we employ the Chebyshev polynomials
with the same grid counts. The measured white noise levels that they imposed are
unclear, but we set them only 5 % of the root mean square of the measured quantities
so that the results are insensitive to the noise levels.

In our study, most of the steps and the parameters in the ensemble Kalman filter
are the same as those in Colburn et al. (2011): In essence, the same state vector
and covariance equations are solved with the same number of ensembles, 66. Those
initial conditions are generated at every 2h/uτ (i.e. t+ = 200) in the pure DNS from
the initial condition of the true solution. Since the independence of these ensemble
members from the true solution is questionable, another set of ensemble members is
generated from a different initial condition (more than 500h/uτ apart) at every 10h/uτ .
The ensemble members are fed back at every 1t= 0.01h/uτ , as indicated by Colburn
et al. (2011). Their rate of convergence is apparently very slow compared with typical
Kalman filters, which are optimized in time (they took as many as 1000 updated steps
in their figure 2). In fact, forcing the optimal gain from the beginning makes the DNS
solver unstable. Considering the possibility of multiplying a relaxation factor, such as
1t (which is not specified in their paper), the Kalman gain K and the inflation rate
(we adopt the same value, β = 1.01) are commonly multiplied by 0.01 in our study.
Yet, the initial slope of the convergence in our simulation appears to be still faster than
their result, and statistics after the transient time are insensitive to this multiplication
factor in the Kalman filter.

Regarding the localization parameter, it is unclear whether they applied the same
correlation distances for ρ1 and ρ2 in their (2.17). An additional point is that our
solver records the three wall quantities over the entire wavenumber space instead of
the physical quantities at 16× 16 equally spaced points in Colburn et al. (2011). To
perform equivalent or even better estimation, therefore, one way is to calculate the
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FIGURE 28. Time histories of the squared velocity difference given by (4.6) using the
ensemble Kalman filter. Line patterns: ——, ensemble Kalman filter with ρk; – – – (thick),
that without ρk; – – – (grey thin), that without ρk with ensemble members of 10h/uτ apart;
· · · · · ·, exact body force via ερk.

Kalman gain for each wavenumber combination and to filter the feedback term in the
wavenumber space such that our localization function retains equivalent correlation
distances to their approach in the x and z directions. Their localization function
between the points i and j indicates

ρx
(
xi, xj

)
≡ exp

[
−50

(
xi − xj

)2
− 50

(
yi − yj

)2
− 25

(
zi − zj

)2
]
. (D 1)

By taking its Fourier transforms, we define an equivalent wavenumber filter:

ρk
(
ki, kj

)
≡ exp

[
−k2

x/200− 50
(
yi − yj

)2
− k2

z/100
]
, (D 2)

where the localization from the wall keeps the physical length. We also examine the
ensemble Kalman filter without this localization (i.e. ρ = 1).

To reveal the impact of the localization in the y direction, we additionally test the
body forcing of the true solution via the filter (D 2). Namely, we solve (2.13) by
replacing the forcing distribution f by ρk and uLSE by the exact true solution. This
case eliminates errors in the estimation and mimics the best scenario of the Kalman
filter with the localization above. We set the weight to be ε=50 (the maximum weight
tested in § 4.3), beyond which the DNS solver becomes unstable.

Figure 28 compares the time histories of the squared velocity difference from the
same true solution defined by (4.6) across the aforementioned conditions. To convert
the time scale to the viscous time unit and compare it with figure 2 in Colburn
et al. (2011), we must multiply the horizontal time scale by Reτ = 100. It is clear
that the ensemble Kalman filter with the localization, which simulates their work,
suppresses the errors only by half or less. In fact, the ensemble Kalman filter without
the localization performs better. Figure 28 also ensures that the ensemble members
with longer time duration apart produce a comparable result even if starting with a
totally different initial condition from the ensemble members. It is interesting that the
body force with the true solution almost reproduces the time history of the ensemble
Kalman filter with the localization. This may imply that the instantaneous estimation
based on the wall measurement provides sufficient accuracy for this localization
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FIGURE 29. Normalized covariance across different conditions obtained using the
ensemble Kalman filter. Line types are the same as figure 28. (a) ĉov(u′EnKF, u′DNS). (b)
ĉov(v′EnKF, v

′

DNS). (c) ĉov(w′EnKF,w′DNS). (d) ĉov(p′EnKF, p′DNS).

to work near the wall, but the thickness of the forcing is insufficient to propagate
the information toward the centreline. Most importantly, none of the simulations
can successfully suppress the squared velocity error by more than one third, while
Colburn et al. (2011) reported that it decays more than two orders of magnitude.

Figure 29 exhibits the normalized covariance of each component for these different
conditions. We can compare it with figures 16 and 18 although the duration of
the statistics in figure 29 is approximately one fifth of those figures due to high
computational expense. The ensemble Kalman filter performs better without the
localization, and the estimation beyond the buffer layer appears to be as good as
the case with the body force of the true solution via the localization. The thickness
of the high covariance region near the wall corresponds to the length scale in y
given by the localization function. It is important to note that the body force with
the strong weight produces excessive velocity fluctuations, resulting in greater errors
in figure 28. There is appreciable improvement using the ensemble Kalman filter in
the streamwise and spanwise velocity components relative to the simple observer in
figure 18. However, the correlations at the centreline are still far from unity, unlike
those reported by Colburn et al. (2011).
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