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When a fluid in a tube is occluded, one finds a static configuration in which the
occluding free surface of the fluid is an equilibrium capillary surface spanning the
tube. We extend known criteria for existence and non-existence of such a surface,
leading to an explicit mathematically rigorous occlusion criterion for cylindrical tubes
in a transverse body force field, depending on the force magnitude and contact angle.
For any contact angle γ �= π/2, we provide further an explicit design of a tube section,
which will not occlude in a downward gravity field, regardless of the field strength.
In addition, we derive a precise analytic occlusion criterion for liquid partially filling
a circular vessel spinning about its axis.
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1. Introduction
Both interfacial and body forces play important roles in determining the shape of

the interface between two fluids under static conditions. In a cylinder of arbitrary
cross-section, a variety of interface configurations may exist under weightless
conditions, which may or may not occlude or block the entire cross-section (Collicott,
Lindsley and Frazer 2006). If a body force is then applied, blockage may or may not
occur, depending on the force and on how it is applied. Predicting the conditions when
occlusion of the cylinder or vessel may occur can be of value for a variety of
applications.

Mechanical and fluid systems can often, in principle, be miniaturized, towards
obtaining benefits similar to those achievable in the current microelectronics industry.
Lab-on-a-chip technology may replace a series of bench-top instruments with a single,
low-cost, disposable medical device (Zoval & Madou 2004). Miniaturization of fluid
systems can, however, lead to new challenges, one of which is the eventual formation
of liquid plugs or gas bubbles in channels. In larger systems, such plugs do not
generally form, as bubbles will block only a small portion of the channel and may be
advected downstream. However, in smaller devices, the bubble or liquid volume may
occlude or block the entire cross-section of the channel. This may reduce performance
or may even damage the system. Such liquid plugs are known to occur in fuel cells
(Zhang, Yang & Wang 2006; Litterst et al. 2006), micro-electrical mechanical systems
(MEMS) (Gravesen, Branebjerg & Jensen 1993), and other devices. Predicting the
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formation of these bubbles or liquid plugs is an essential step towards creating more
reliable or efficient MEMS and fuel cells.

Vane-type propellant management devices are metal structures that are used to
position liquid propellant within a satellite fuel tank when in micro-gravity. These
vanes are thin metal plates that are inside of and perpendicular to the tank wall. In
practice, the vane and outer wall are not in contact and have a small separation gap.
For no separation gap, a liquid with a contact angle of less than 45◦ will always wet
the corner formed along the vane and vessel wall (Concus & Finn 1969). For small
separations, the liquid will fill the gap if the liquid contact angle and gap separation are
small enough (Chen & Collicott 2006). Thus, some liquid is guaranteed to be between
the vanes and tank wall. While the liquid will nominally be under micro-gravity,
station keeping and momentum dump manoeuvres can introduce transverse
accelerations which may disturb the liquid orientation. If the acceleration is too
large, the liquid will recede from the vane structure and may cause a disruption in
propellant flow.

Zoological and phytological disciplines may also benefit from understanding the
gravitational effects on a gas–liquid interface in a channel. For example, air embolism
occurs when cardiovascular vessels intake air bubbles and may result in death.
Gravitational forces, surface tension and forces due to the flow play a role in
determining the bubble shape and behaviour (Bull 2005).

The above examples illustrate the importance of understanding the quantitative
configuration of the equilibrium gas–liquid interface under a gravitational field. For
MEMS and fuel cells, can a liquid form a plug that will occlude the channel? For
propellant management devices, will the liquid wet the entire vane structure? What
vessel size will allow gas bubbles to obstruct the flow? We obtain here answers
to some of these questions in physically relevant contexts by adapting a general
existence/non-existence theory for capillary surfaces developed by (Finn 1986).

We emphasize that all material of this paper is based on rigorous mathematical
theory, not on approximations. This can be important, as the highly nonlinear nature
of the problem makes it difficult to estimate the consequences of approximating the
equations.

2. Previous work
Capillarity in small vessels was apparently initially described by Leonardo da Vinci

about 1500. The first successful quantitative descriptions were achieved in the early
19th century by Young and by Laplace. General existence theorems have appeared
during the past half century (see, e.g. Finn 1975 for citations). Non-existence theorems
are significant in this theory, and serve to distinguish the two kinds of surfaces
indicated in figure 1. The general criterion was developed by Finn (1986) for capillary
surfaces under weightlessness or force fields directed along the z-axis. The non-
existence criterion of Finn (1986) extends immediately to any force field, regardless of
direction, and provides our criterion for the absence of an occluding surface. Smedley
(1990) and Chen & Collicott (2006) have already applied the criterion of Finn (1986)
to several vessel cross-sections under weightlessness. The criteria change in essential
qualitative ways when force fields are introduced, and the results of the present work
reflect those distinctions.

While an extensive literature is devoted to weightless states, the literature on
bounded capillary interfaces is much more limited when a body force is included.
Jensen et al. (1987) studied the effect of gravity on a two-dimensional Hele–Shaw cell.
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Figure 1. (a,b) Two possible interface configurations.

However, many practical vessels and channels, including those mentioned above, are
not two-dimensional and have a finite width. DeLazzer et al. numerically calculated
the capillary pressure in a rotating polygonal cylinder (de Lazzer et al. 1996). They
noted that a bifurcation of the interface shape exists at a particular rotation rate.
Later, deLazzer et al. examined lateral acceleration of liquids pinned between two
parallel plates (de Lazzer et al. 2003).

The behaviour of liquids partly filling tubes in the presence of transverse gravity
fields has apparently not been studied explicitly from a theoretical point of view;
however, the theory developed by Finn (1986) for the case of fields parallel to
the generators can be adapted to the needs of the present study. Of particular
interest for us is the dichotomy that appears, between existence and non-existence
of surfaces satisfying the prescribed geometrical conditions; see, for example, Concus
& Finn (1990) for background discussion. We base the present work on the
observation that the existence of a capillary surface interface in the sense indicated in
Finn (1986) expresses physically the possibility of occlusion by an equilibrium interface;
correspondingly, the non-existence criterion analogous to that indicated in Finn (1986)
guarantees that no occluding interface can form. We develop those criteria in the
ensuing §§ 3 and 4. In § 5, we apply the theory to the simplest case of tubes with
circular section. In this event, occluding surfaces for vanishing external field are known
explicitly as spherical caps. We show that with increasing (uniform) transverse field
strength, occlusion persists up to a critical field strength (expressed non-dimensionally
by ‘Bond number’ B), above which it cannot occur and the fluid configuration changes
dramatically – in general in a discontinuous way – to a configuration not blocking
the tube. As a check on our procedure, we evaluated the critical B = B0 in two
independent ways, (a) as direct consequence of the theory just indicated, and (b)
by searching empirically for surfaces of minimizing energy, via the Brakke ‘Surface
Evolver’ (Brakke 2011). The comparison of results, as displayed in figure 4, is we
think convincing.

In general, occlusion of flow in tubes is a highly complex dynamical phenomenon,
which we do not attempt to describe here. Once occlusion occurs, the configuration
becomes static. Ultimately, one wants to know when that can occur and to describe to
the extent feasible the shape of the occluding surfaces S. In actual flow through tubes,
there will be a driving pressure from a ‘pumping station’ far upstream, imposing
a force directed along the tube in the flow direction. When occlusion occurs, there
remains a uniform pressure jump across S, which may differ from the pressure jump
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predictable from the contact angle condition and which must be accounted for in
determining the configuration. In principle, this term is accessible to our method,
and we plan to include it in a future work. In the present initial effort, we restrict
attention to stationary configurations in the absence of external forces. In this sense,
our material is directly in the stream of earlier numerical investigations by Reynolds
& Satterlee (1966) and by Concus (1968), and experimental studies by Derdul, Masica
and Petrash (1964), and by Masica (1967).

The earlier of these studies were directed to free surfaces S of cylindrical fluid
columns with circular section subject to (gravitational) body forces directed along the
cylinder axis. In Reynolds & Satterlee (1966) and in Concus (1968), the symmetric
solutions were characterized numerically, up to a critical ‘Bond number’ B0(γ ) at
which (symmetric) stability failed. Notably, the value B0(0) = 0.842 was established.
The reference Derdul et al. (1964) examined the question experimentally for varying
combinations of physical parameters, with a determination B0(0) = 0.84 in all cases,
a remarkable confirmation of the formal theory.

Masica (1967) repeated earlier experiments in an extensive and carefully controlled
investigation, replacing the axial field with a transverse field, as studied in the current
work. He asserted a value B0(0) = 1.25 ± 0.05. This can be compared with the present
theoretical prediction, in § 5 of the present work, of B0(0) = 1.01. We are inclined to
ascribe the discrepancy to difficulties in exact determination of contact angle. The
experimental value 1.25 is attained theoretically at γ = 4.57◦.

There are basic conceptual differences, distinguishing the procedure underlying
the present work from that in Reynolds & Satterlee (1966) and in Concus (1968).
The earlier references are based on linearizing perturbations of the implicitly known
symmetric solutions, and offer no guaranty that independent surfaces of lower energy
have not been overlooked. Additionally, they are based on explicit knowledge of
individual solutions. The present work is based on a general (lower dimensional)
criterion introduced by Finn for existence or for non-existence of a surface spanning
the cylinder walls and minimizing the free energy of the system (see Finn 1986,
Chap. 7). The non-existence criterion is elementary, and provides directly an explicit
test for excluding occlusion. The general theory, as developed in Finn (1986), shows
that in the (dichotomous) situation for which the test fails, an occluding surface does,
in fact, exist. Since in this theory, existence is obtained via an energy minimizing
procedure, and since the second variation is strictly positive, we are assured ab initio
that occluding surfaces determined by the procedure are stable.

The theory as offered in Finn (1986) determines when occlusion can occur, but
provides no information on the shape of the occluding surface when it exists. To this
and related purposes, we have relied on the Brakke surface evolver software (SE),
which computes surfaces described by a minimal energy procedure and bound by
various constraints. The surface is modelled as a union of triangles and is found by
using a gradient descent method (Brakke 2011). Each iteration evolves the surface to
a lower energy state than the prior surface. By successively iterating the surface, one
can achieve in many situations an excellent approximation to the lowest energy state.
The iterations are computational steps and do not represent any physical process. The
surface can also be dynamically adjusted by adding facets, smoothing the surface and
other functions. While SE is designed to find three-dimensional equilibrium interfaces
for a particular set of conditions, it can be used to determine the range of parameters
for which a surface exists. However, one must take precautions to ensure an accurate
result. For an occluding surface without gravity, the free surface must be tessellated
by several thousand triangular facets in conjunction with a special evolution scheme
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(Collicott & Weislogel 2004). Several hours of computation time may be required to
obtain an accurate result.

The first formal criterion for non-existence is apparently due to Concus & Finn
(1969) for a section Ω of particular form. The criterion of Concus & Finn (1969) was
extended to cylinders of general cross-section by Finn (1986). In outline, we follow
the procedures developed in Finn (1986); however, instead of the body force parallel
to the cylinder generators contemplated in that reference, we consider a transverse
force orthogonal to the generators. Although this situation is not formally covered in
Finn (1986), the extension requires only perfunctory changes in the proof. As must
be expected, the specific criteria encountered adopt a significantly different structure
than occurs with axially directed forces.

3. Problem defined
We consider a rigid vessel with a fixed cross-section Ω , as shown in figure 1. The

vessel cross-section in the x-y plane is of arbitrary shape. The length of the vessel
along the z direction is assumed infinite. The vessel is composed of a homogeneous
material, and temperature is assumed temporally and spatially constant. The vessel
contains two different fluids of different densities ρ1 and ρ2. Only the difference in
densities (taken as positive) is significant for us; we denote it by ρ. Both fluids have
very large fixed volumes and are immiscible with respect to one another. The interface
has a fixed surface tension coefficient σ and meets the wall at a uniform contact angle
γ . We restrict attention to equilibrium configurations with fixed γ . Dynamic contact
angle behaviour or hysteresis depends on the motion or previous state of the free
surface, which are not considered in this analysis.

A constant body force, due to a lateral acceleration or gravity, may be applied. The
body force is to be aligned with the y-direction and thus has no axial component
in the z-direction. The system is in mechanical equilibrium, and multiple static
configurations may exist, in each of which both fluids cover the indicated base
domains. The fluid may occlude the entire cross-section of the vessel with a smooth
surface z = u(x, y) meeting the channel walls in the prescribed angle γ , as shown in
figure 1(a). Alternatively, there may exist a soluzione generalizzata (Giusti 1984) for
which u(x, y) ≡ ∞ over a domain of positive area, as shown in figure 1(b). The former
case corresponds to occlusion by the surface u(x, y). In the latter case, the surface
extends cylindrically to infinity in both directions along the channel. The (lower)
infinite domain it bounds can be filled with liquid in equilibrium. In principle, one
would expect that the fluid could be moved (sufficiently slowly) almost rigidly in the
direction of the generators through any given portion of that region, to obtain a flow
without occlusion. However, we have not proved that.

As in figure 1, we adopt coordinates (x, y, z) with z along the generator. When
the interface can be expressed in the form z = u(x, y), the capillary equation is the
following (Finn 1986):

∇ · (T u) = 2H (x, y, u) , with T u ≡ ∇u√
1 + |∇u|2

. (3.1)

Here, H is the mean curvature of the surface. In the classically considered case in
which a gravity field g is directed downwards across a fluid surface u(x, y), it follows
from laws of hydrostatics (Finn 1986) that 2H = λ+ κu, where κ = ρg/σ . Here λ
is a constant depending on eventual volume constraint, ρ is the density change
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Σ*

Σ

yΓ

Ω*

Ω

x

Figure 2. General section Ω : z = c of cylindrical tube, showing arc Γ subtending
subdomain Ω∗ ⊂ Ω and arc Σ∗ ⊂ Σ .

across the surface and σ the surface tension. The analogous procedure in the present
configuration yields

2H = λ + κy. (3.2)

In all cases, the liquid meets the tube wall at a prescribed contact angle γ , depending
only on the materials. Thus, along the boundary Σ of a base domain (orthogonal
section) Ω , there holds

ν · T u = cos γ, (3.3)

where ν is unit exterior normal to the tube on Σ . If the materials are homogeneous,
then γ will be constant, as we shall assume. An occluding surface in the tube would
appear as an interface that must satisfy (3.1) and (3.2) over Ω and (3.3) over Σ . This
corresponds to a plug through which no fluid can pass. We may restrict attention to
occluding surfaces that are graphs z = u(x, y) over Ω , as Vogel (1988) showed that to
be the only possibility. We suppose the existence of such an interface and follow the
general line of approach indicated in Finn (1986), Chap. 7. We choose the constant
λ so that the centroid of Ω lies on the line y = 0. Using the above relations, we then
obtain

λ =
|Σ |
|Ω | cos γ,

∫
Ω

y dx dy = 0. (3.4)

We now integrate (3.1) over a general subdomain Ω∗ ⊂ Ω , bounded in part by a
curve Γ ⊂ Ω and subtending an arc Σ∗ ⊂ Σ (see figure 2).

We find, using (3.3) on Σ∗ and (3.2) and (3.4) in Ω∗

∫
Ω∗

div T u dx dy = |Σ∗| cos γ +

∫
Γ

ν · T u ds =
|Σ |
|Ω | |Ω∗| cos γ + κ

∫
Ω∗

y dx dy. (3.5)

The crucial observation is that for any differentiable function u(x, y), there holds
|T u| < 1. As a consequence, both (3.6) and (3.7) must hold for all smooth Ω∗ ⊂ Ω for
which Ω∗ �= ∅, Ω

Φ
[
Ω∗] ≡ |Γ | − |Σ∗| cos γ +

|Σ |
|Ω | |Ω∗| cos γ + κ

∫
Ω∗

y dx dy > 0, (3.6)

Ψ
[
Ω∗] ≡ |Γ | + |Σ∗| cos γ − |Σ |

|Ω | |Ω∗| cos γ − κ

∫
Ω∗

y dx dy > 0. (3.7)

Since Φ[Ω] = Ψ [Ω] = 0, one finds that Φ [Ω∗] = Ψ
[
Ω\Ω∗]. Thus, as conditions

applying to all subdomains of Ω determined by smooth arcs Γ, (3.6) and (3.7) are
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Γ

y

x

Ω

Σ

Σ*

Ω*

γ

γ

ψ

Figure 3. General section Ω of cylindrical tube, showing inclination angle ψ on extremal
arc Γ that meets boundary in angles γ .

equivalent. We have shown that in the indicated sense, each of these relations is
necessary for existence of an occluding interface. Thus, if one can exhibit an Ω∗ for
which either Φ or Ψ is non-positive, it will follow that there can be no occluding surface.
In this event, some other surface which cannot occlude the tube must presumably
exist instead. Cases in which Φ > 0 or (equivalently) Ψ > 0 for all subsets Ω∗ permit
an occluding surface. We make no assertion as to the detailed structure of such
surfaces.

As a procedure for determining which of these cases prevails, we observe initially
that both Φ and Ψ are bounded below, for any given κ and prescribed Ω . It is thus
appropriate to seek minimizing domains for these functionals; the necessary condition
will then be satisfied if and only if each of the functionals is positive on any corresponding
minimizing domain. We approach this problem as in Finn (1986), by writing the Euler–
Lagrange equation for the bounding curves Γ of eventual extremal domains. This
is the analogue for the present case, of the ‘subsidiary extremal problem’ introduced
in § 6.5 of Finn (1986), and which led to the ‘nonexistence–existence principle’
Theorem 6.8 of that reference.

In suitable local coordinates, as indicated in figure 3, we obtain the equations

d

dx

y ′√
1 + y ′2

= λ + κy (3.8)

for a Φ extremal, and

d

dx

y ′√
1 + y ′2

= − (λ + κy) (3.9)

for a Ψ extremal. In both cases, if the extremal intersects Σ , then it does so in the
angle γ , measured within Ω∗. In general, there will exist only a finite number of
extremals satisfying all these conditions, and thus there will be only a finite number
of cases to be examined. Exceptional cases do occur, and must be confronted on their
individual merits.

We have limited the above discussion to formal description of the procedure we
have used. A more complete discussion of the conceptual background is available
in the section on ‘Property 5. C-singular solutions’ in the expository article of Finn
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(2002). Figure 16 of that reference indicates the nature of the transition from occluding
surfaces to soluzioni generalizzate as the parameters approach critical values.

4. Background remarks
The individual procedures used are best chosen according to the particular problem

considered. In general, we may recognize (3.8) and (3.9) as equations for capillary
surfaces in a single dimension, with the same solutions for each fixed value of z, see,
e.g. § 6.5 of Finn (1986). The left sides of (3.8) and (3.9) are the planar curvatures of
the arcs y(x), thus imparting a geometrical character to the problem. In the absence
of transversal forces, the extremals are circular arcs of known curvature, meeting
Σ in the angle γ . The set of all-possible extremals can then, in individual cases,
be determined by geometrical considerations, a circumstance that was exploited to
striking advantage in earlier literature, cf., some examples described in Finn (1975,
2002).

In the present instance, we obtain the extremals in explicit form by integrating (3.8)

and (3.9). Observing that y ′/
√

1 + y ′2 is the sine of the inclination angle ψ of the
extremal Γ with the x-axis, we rewrite these equations in the form

d sinψ

dx
=

d sinψ

dy
tan ψ =

dψ

dy
sinψ = ± (λ + κy), (4.1)

with positive or negative signs arising, respectively, from (3.8) and (3.9).
The final terms of (4.1) provide separable equations that can be integrated explicitly.

For a solution curve through the point (x0, y0) with inclination ψ0 at that point, we
obtain, using positive square root

y = − λ

κ
+

1

κ

√
(κy0 + λ)2 ∓ 2κ (cosψ0 − cosψ). (4.2)

We also have
dx

dψ
=

dx

d sinψ
cos ψ = ± cos ψ

λ + κy
(4.3)

by (4.1), so that, again with a positive square root

x = x0 +

∫ ψ

ψ0

cosψ√
(κy0 + λ)2 ∓ 2κ (cos ψ0 − cosψ)

dψ. (4.4)

We have incidentally shown that the function (λ+ κy)2 ± 2κcosψ is a first integral
of (4.1), in the sense that it is constant on any integral curve.

Although exceptional situations can occur, one expects in general to find only a
finite number of curves of the form (4.2) and (4.4) that meet Σ = ∂Ω in the prescribed
angle γ . Thus, in general, only a finite number of cases must be tested as to the sign
of Φ (or of Ψ ).

One sees from (4.2) that y <y0 +
√

2/κ . Thus, if y0 is chosen negative (below the
centroid) and if κ is large enough, then y will remain below the centroid throughout
the traverse, and as a consequence there will hold y < 0 throughout the domain Ω∗

determined below the extremal. From this behaviour and (3.6), we then see that if
Φ[Ω∗] � 0 for such an Ω∗ when κ = 0 then Φ for that same Ω∗ will become negative
when κ > 0. We exploit this remark in § 6, to design a tube section that will not
occlude regardless of gravity.

In general, for the cases that we considered, the precise determination of the
extremal arcs Γ turned out to be difficult, and initial configurations were therefore
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studied using the SE software of Brakke 2011. This is essentially a ‘steepest descent’
method, and in a general case one cannot be certain that one achieves a global
minimum. However, for simple geometries, one can apply the procedure with some
confidence.

5. Example 1: circular pipe
If Ω is circular, the problem adopts a relatively simple form. If gravity vanishes,

then occluding surfaces can be found explicitly for any prescribed γ in 0 <γ < π as
spherical caps, of radius a/| cos γ |, where a is the radius of the pipe. Thus continuity
considerations suggest that for each γ0 in that range, there will exist a critical κ0 > 0
such that an occluding surface exists if and only if κ < κ0.

In principle, we can characterize the dependence κ0(γ0) by finding the solutions
(4.2) and (4.4) of (3.8) that meet Σ = ∂Ω in the prescribed angle γ0, and then evaluate
Φ for the domain Ω∗ that is cut off by that extremal. This is easy to do in the zero
gravity case (κ = 0), in which the extremals are circular arcs of radius R = a/2 cos γ .
It is not hard to show that extremals then exist only for γ > π/4, that these are
uniquely determined up to symmetries and that they all yield Φ > 0. If κ > 0, we
expect a corresponding statement, depending on κ and with Φ becoming negative for
κ large; however, the geometrical relations become much more complicated. From
the point of view of obtaining concrete results in this case of special interest, we
found it technically simpler to minimize numerically the functional Φ using the well-
established procedures of the SE software (Brakke 2011). It is important to note that
SE is not used in this context to determine the three-dimensional interface shape
but rather is used to find the two-dimensional extremal arc. Furthermore, the two-
dimensional extremal arc found using SE only minimizes (3.6), and is not necessarily
the profile of the non-occluding surface.

In terms of a Bond number

B =
ρg

σ
a2, (5.1)

we may write in coordinates non-dimensionalized with respect to a

Φ [Γ ; γ ; B] ≡ |Γ | − |Σ∗| cos γ + 2 |Ω∗| cos γ + B

∫
Ω∗

y dΩ. (5.2)

Here, we have used the fact that for the circular pipe, there holds |Σ |/|Ω | =2/a. We
approximated Γ as a piecewise-linear curve without double points, characterized by
2049 vertices and 2048 edges, joining two distinct points P1, P2 of Σ∗and cutting off a
simple domain Ω∗ ⊂ Ω . Using a ‘steepest descent’ method, the vertices were translated
or ‘evolved’ to arrive at a lower functional value. Due to the simple geometry, a global
minimum exists, and one can apply the procedure with good effect.

Brakke’s SE minimizes the functional for a fixed contact angle and Bond number.
A simple but fast procedure can be used to find the transition B = B0, at which Φ = 0.
To prevent SE from finding an empty Ω∗, we must approach B0 from above. We first
choose an initial Γ and take B to be a very large number. The curve is then evolved
for a set number of iterations. The Bond number is reduced until the functional is
zero. The curve evolution and Bond number adjustment is alternated until the desired
precision is achieved.

The accuracy of the results can be verified by calculating the curvature and
inclination angle at the wall. The minimizing Γ meets Σ at the contact angle γ

within 0.01% at both P1 and P2. For a range of contact angles, the transition
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Figure 4. Critical Bond number B0 in terms of contact angle, for circular tube.

values B0 were calculated. We could determine B0 approximately within two or more
significant figures. The computational time was less than 1 min for each case, thus
illustrating the computational efficiency of this method.

Figure 4 compares the analytic theory developed above with direct calculations
of the surfaces using Brakke’s SE (see comments below) and illustrates the results
for all contact angles. If a Bond number is less than B0, then a bounded solution
exists for the capillary problem, and occlusion of the pipe may occur. For values
B >B0 occlusion will not occur. Crossing the solid line corresponds to the kind of
transition indicated in figure 1, from a smooth solution surface projecting simply
onto the section Ω , to a ‘soluzione generalizzata’ (Giusti 1984) that is identically
infinite on a significant subset Ω∗ ⊂ Ω . The transition can, in some circumstances,
occur discontinuously, in the sense that a smooth solution exists at the crossing value
B = B0, but that no bounded solution covering Ω exists if B >B0. That behaviour
occurs, for example, when Ω is a regular polygon, see, e.g. the discussion in § 6.2
of Finn (1986). The detailed nature of the transition can vary depending on the
particular Ω (see § 6.12 of Finn 1986).

The black line consisting of 171 points was computed using the analytic theory
presented in this paper. The gray squares were found using Brakke’s SE in three-
dimensional mode. This was performed by running a series of simulations at different
Bond numbers and evaluating convergence. The critical Bond number was found
when the surface area increases abruptly for a small change in Bond number. While
this numerical procedure is not precisely defined, we found good agreement between
the two methods. This point is of practical interest, as there is several orders of
magnitude difference in computational efficiency between the methods. Finding B0

using SE in three-dimensional mode will take several hours on a modern desktop PC.
The above procedure to minimize (5.2) requires only a few seconds. Figure 5 displays
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Figure 5. Occluding surfaces for γ = 5◦ with B =0, 0.5, and 1.

the actual form of the occluding surface, for γ = 5 degrees, and for three values of B
increasing to the critical Bond number B0 ∼ 1.25.

6. Example 2: non-occluding pipe
We consider a cylinder section Ω as a ‘flattened ice-cream cone’ domain with

half-angle α at the vertex, as indicated in figure 6(a). We denote here by ‘upper’ and
‘lower’ the increasing or decreasing ‘z’ directions parallel to the cylinder generators,
which we describe as ‘vertical’. For a contact angle γ such that π/2 – α � γ < π/2,
an explicit solution of (3.1, 3.2, 3.3) with κ = 0 is obtained as that portion u(x, y) of
a lower hemisphere S centred at O and of radius 1/ cos γ , which projects vertically
onto the ‘horizontally placed’ Ω(z = c); the (c) portion of the figure shows a ‘vertical’
section of S. The figure indicates the equatorial circle Γ of S in the particular case
α + γ = π/2. All larger γ in the indicated range are obtained by increasing the circle
radius; in this way, explicit zero-gravity occluding surfaces are obtained, for all γ in
that range.

If α + γ < π/2, the above construction fails, as the hemisphere no longer covers all
of Ω in vertical projection. In fact, we may introduce a set Ω∗ as indicated in figure 7,
and compute

Φ(Ω∗; γ ; 0) = 2l(sin α − cos γ ) + l2(sin α cosα)/R. (6.1)

From α + γ < π/2 follows sin α – cos γ < 0; thus, for sufficiently small l, we obtain
Φ < 0, which precludes existence of occluding surfaces in zero gravity.

Additionally, the set Ω∗ will lie below the centroid of Ω when l is small enough,;
hence, by (3.6) Φ[Ω∗] will remain negative with increasing B. We conclude that
for prescribed γ < π/2, a tube section of the indicated shape with α < π/2 – γ can be
relied on to transmit fluids without occlusion regardless of the value of B, provided it is
oriented with the point P in the downward direction for the gravity field. If γ > π/2, an
analogous reasoning yields the same result, with the criterion α <γ – π/2.

This result does not depend in an essential way on the presence of a sharp corner
at P. One sees easily that the indicated behaviour persists if the corner is rounded by
a circular arc of small-enough radius, depending on the magnitude |γ – π/2|. Also,
many other types of domain are feasible; for example, a similar reasoning can be
applied to a long thin ellipse, oriented so that its major axis is vertical.

We remark here that the restriction above of γ to the range 0 <γ < π/2 (wetting
fluids) is inessential to the substance of the discussion. In the case of a ‘non-wetting’
fluid/solid interface for which π/2 < γ < π, the criteria α + γ > π/2 (α + γ < π/2) are
replaced by α > γ – π/2 (α <γ – π/2). The lower hemisphere S is then replaced by
its reflection in the plane of Γ .
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Figure 6. (a) ‘Flattened ice-cream cone’ cylinder section Ω; the circular arc on the boundary
of Ω extends past Q to A. Equatorial circle Γ of lower hemisphere S meeting cylinder walls
Σ in angle γ, α + γ = π/2. (b) Vertical section of S, through O, showing geometrical relations.

y

P

l

Γ

α

Ω*

Figure 7. Choice of domain Ω∗ to obtain Φ < 0.
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Figure 8. f (α) as function of α in the range 0 � α � 1, for three choices of γ . Note that
when cos γ =

√
2/2 the critical α0 =

√
2/2

It should be noted that the above material is complete in itself and does not depend
on any general existence theorem. The reasoning depends on the circumstance that in
the indicated orientation for the domain with respect to the direction of an eventual
gravity field, a necessary condition for existence of an occluding surface is violated
independent of the strength of the field. It is, of course, desirable to know that the
criterion is sharp, i.e., to know that the necessary condition is also sufficient. That is
in fact the case when interpreted properly. For details see Chap. 7 in Finn 1986; that
discussion requires some formal extension to encompass the case of transversal fields
studied in the present work.

It should not be difficult to construct experiments to test the assertions of this
section, as no drop tower should be needed.

7. Example 3 circular centrifuge
In addition to gravitation forces, other body forces can be examined within the

framework of this theory. We consider a circular Ω of radius A> 0 rotating about
its axis at an angular rate ω under weightlessness. We denote by ρ the density of a
connected body of liquid filling a linear segment of the tube and rotating rigidly with
the tube, and by σ the surface tension of the liquid/air interface. If ω = 0, occluding
interfaces can be found as spherical caps of radius 1/| cos γ |. We seek an ω0 > 0 such
that an occluding surface will exist if and only if ω <ω0. The ensuing discussion
is complete and mathematically rigorous in the class of symmetric configurations;
however, as indicated by figure 9, it presumably applies without that limitation.
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Figure 9. Analytical (line) and computational (points) results for critical dimensionless
rotation rate for a spinning circular cylinder.

Assuming an occluding surface of the form u(x, y) over the section Ω , the least
action principle leads to the equation

divT u =
1

2

ρω2

σ
(x2 + y2) + λ, (7.1)

where (x, y) are measured from the rotation axis, and λ is a Lagrange parameter
arising from a volume constraint. On Σ = ∂Ω, we obtain again

ν · T u = cos γ, (7.2)

where γ is the physical contact angle. A discussion analogous to that of § 3 leads to
the functional

Φ[Ω∗; γ ; ω] ≡ σ

(
|Γ | − |Σ∗| cos γ +

|Σ |
|Ω | |Ω

∗| cos γ

)
+

ρω2

4

(
πA2|Ω∗| − 2

∫
Ω∗

r2 dΩ

)
,

(7.3)

which must be positive for any choice of Ω∗ ⊂ Ω . We restrict attention to symmetric
configurations, and we seek extremal sets yielding Φ � 0 as concentric subdisks of Ω .
Suppose, in fact, that Ω∗is a disk of radius a < 1 interior to and concentric with the
given disk Ω . Then Σ∗ = ∅, and we find thatafter a brief calculation

1

π
Φ[Ω∗; γ ; ω] = 2σa

(
1 +

a

A
cos γ

)
+

ρa2

4
ω2(A2 − a2) (7.4)

which is positive for every a in 0 < a < 1. Thus, (7.4) provides no information that
could preclude existence of an occluding surface, and cannot be used to obtain a
criterion for existence.
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We look instead at the complementary set Ω\Ω∗, noting that Φ[Ω\Ω∗; γ ; ω] ≡
Ψ [Ω∗; γ ; ω], so that, for Ω∗ a concentric disk of radius a <A, we obtain by analogy
with (3.7)

1

π
Ψ [Ω∗; γ ; ω] = 2σa

(
1 − a

A
cos γ

)
− ρa2

4
ω2(A2 − a2). (7.5)

We may write (7.5) in dimensionless form. Setting α = a/A, and introducing a

‘dimensionless spin rate’ � = ω
√

ρA3/σ , we consider a new (dimensionless) functional

Υ ≡ (1 − α cos γ ) − α� 2

8
(1 − α2), (7.6)

which differs from Ψ only by the positive factor 2πσa, and will thus share with Ψ

sets of common sign.
We see immediately that the second derivative Υ�� < 0, with Υ =0 attained at the

unique value

� 2
0 =

8

α

(
1 − α cos γ

1 − α2

)
. (7.7)

We thus have an explicit criterion ensuring that the tube will not occlude when
� 2 � � 2

0

In general, Ω∗ will not be extremal and (7.7) will not be sharp. Subject to some
restrictions, we can, however, choose α so that (7.7) holds and also Ω∗ is extremal.
We do this most simply by requiring ∂Υ/∂α = 0. This yields

� 2
0 = 8

( cos γ

3α2 − 1

)
. (7.8)

The requirement that (7.7) and (7.8) hold simultaneously yields the equation

1 − 3α2 + 2α3 cos γ = 0. (7.9)

From (7.9), we see that (7.7) and (7.8) can be replaced by the simpler relation

� 2
0 = 4/α3. (7.10)

Denoting the left side of (7.9) by f (α), we find f (0) = 1, f (1) = – 2(1–cos γ ) � 0,
with equality holding only if α = cos γ = 1. Also

f ′ (α) = 6α (α cos γ − 1) < 0. (7.11)

Thus, for each cos γ in the range –1 � cos γ � 1, there is a unique real root α(γ ) of
(7.9) in an interval 0 � α ∗ (γ ) � α(γ ) � 1; from (7.9), it follows that the correspondence
is biunique.

Setting cos γ = –1 in (7.9) yields (α +1)2(α−1/2) = 0, and we conclude α∗(π) = 1/2.
Using (7.10), we see that under all circumstances

4 � � 2
0 � 32. (7.12)

This estimate cannot be improved; from (7.9) and (7.10), we obtain the explicit value

� 2
0 = 32 sin3

(
π + 2γ

6

)
, (7.13)

showing that the lower bound in (7.12) is achieved at γ = 0, the upper one at γ = π.
We observe here that the radius of an extremal disk is a geometrical constant,

independent of the physical parameters ρ and σ . We note that when cos γ = 0, there
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holds α =
√

3/3, and that when cos γ =
√

2/2, then also α =
√

2/2. The relation (7.9)
is illustrated in figure 8, on the interval 0 � α � 1 and cos γ = 1/2,

√
2/2 and

√
3/2.

We also find f
′′
(α) = 6 (2α cos γ − 1), so thatf

′′
(α) � 0 ⇔ α cos γ � 1/2.

We find from (7.6) that for any fixed ω

Υαα (α, � ) =
3� 2

4
α > 0 (7.14)

for all positive α. Since Υ (α0, �0) = Υα (α0, �0) = 0, we obtain that Υ (α, �0) > 0 for
all α > 0, except for the isolated point α = α0. We conclude that the original functional
Ψ is positive for any circle concentric to the original domain, except for the single disk
of radius a0 = Aα0, for which Ψ = 0. This suggests that the configuration is extremal
in the sense that Ψ > 0 for any domain distinct from the concentric disk of radius a0.

We have put that assertion to computational test using the SE software. The solid
line in figure 9 shows the critical values �0, as calculated from (7.13). The points on
the same figure are determined by the SE in three-dimensional mode, as described in
§ 2, with some computational effort.

We note that when cos γ =
√

2/2, the extremal configuration is obtained for
α0 =

√
2/2. We show that this configuration corresponds to a qualitative change

in behaviour. We examine what occurs
Case 1. cos γ �

√
2/2. We then have

f (α) ≡ 1 − 3α2 + 2α3 cos γ � 1 − 3α2 +
√

2α3 ≡ g (α). (7.15)

We have f (0) = g(0) = 1, f (1) � 0, g(1) < 0. Also, f ′(α) = −6α(1 − α cos γ ) � 0 in
the range considered, g′(α) = −3α(2 −

√
2α) < 0. But g(

√
2/2) = 0. We conclude

immediately (see figure 8) that α0 �
√

2/2.
We can carry the reasoning further. Consider

f (cos γ ) ≡ 1 − 3 cos2 γ + 2 cos4 γ ≡ 2(cos2 γ − 1/2)(cos2 γ − 1), (7.16)

which vanishes at cos2 γ = 1/2 and at 1, and is negative between these values. Suppose
first that cos γ > 0. Using the result just proven, we find that f (α0) = 0 � f (cos γ ),
with the equality holding only at the two points just indicated. If α0 > cos γ , we
would have ∫ α0

cos γ

f ′ (ξ ) dξ = 0 − f (cos γ ) � 0. (7.17)

Butf ′ (ξ ) < 0, yielding a contradiction. We conclude that if cos γ > 0, then α0 < cos γ ,
except at the two endpoints

√
2/2 and 1, where equality holds.

Case 2. cos γ �
√

2/2. Analogous reasoning shows directly that cos γ � α0 �
√

2/2,
equality on the left side holding if and only if it holds on the right.

If cos γ < 0, then always α0 � 1/2 > cos γ.

8. Conclusions
We have outlined a general existence/non-existence theory for capillary surfaces

over planar domains (sections of a tube of general section) and subject to contact angle
boundary conditions in the presence of transverse body forces. We applied the theory
to obtain specific criteria determining whether or not a fluid conducting tube of given
section can occlude under such a force. We examined in detail three configurations
of physical interest, starting with the classical tube of circular section (§ 5), for
which we characterized a stability region in terms of the contact angle γ and the
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non-dimensional ‘Bond Number’ for external field strength. The theoretical predictions
correlate remarkably with formal calculations using the Brakke SE software.

Our second example (§ 6) presents the design of a tube that will not occlude
when placed horizontally and correctly oriented subject to a downward gravity field,
regardless of the strength of gravity. Our criterion here is based on an extension of a
zero-gravity non-existence theorem due to Concus and Finn.

As a final example of the procedure, we applied it in § 7 to determine a stability
criterion for a circular tube containing a plug of liquid in rigid rotation together with
the tube, in the absence of gravity. We were led to an explicit upper bound (as formal
solution of a cubic equation) for a non-dimensional angular velocity � under which
such a configuration can occur. Above that bound, no such fluid ‘plug’ can exist in
rotational equilibrium. Again here we were able to characterize an explicit stability
region determined by � and by contact angle, and have found a striking agreement
with Surface Evolver calculations.

The theory developed here can be adapted more generally as a procedure for the
design of reliable two-phase fluid systems, under varying kinds of applied forces and
geometrical constraints.
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