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We propose a hierarchy of low-dimensional proper orthogonal decomposition (POD)
models for the transient and post-transient flow around a high-lift airfoil with unsteady
Coanda blowing over the trailing edge. The modal expansion comprises actuation
modes as a lifting method for wall actuation following Graham et al. (Intl J. Numer.
Meth. Engng, vol. 44 (7), 1999, pp. 945–972) and Kasnakoğlu et al. (Intl J. Control,
vol. 81 (9), 2008, pp. 1475–1492). A novel element is separate actuation modes
for different frequencies. The structure of the dynamic model rests on a Galerkin
projection using the Navier–Stokes equations, simplifying mean-field considerations,
and a stochastic term representing the background turbulence. The model parameters
are identified with a data assimilation (4D-Var) method. We propose a model hierarchy
from a linear oscillator explaining the suppression of vortex shedding by blowing
to a fully nonlinear model resolving unactuated and actuated transients with steady
and high-frequency modulation of blowing. The models’ accuracy is assessed through
the mode amplitudes and an estimator for the lift coefficient. The robustness of the
model is physically justified, and then observed for the training and the validation
dataset.

Key words: low-dimensional models, turbulence control

1. Introduction
Flow separation over airfoils with high-lift configuration can be efficiently delayed

or mitigated using flow control strategies. For model-based flow control, reduced-order
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Reduced-order modelling of the flow around a high-lift configuration 73

models (ROM) based on proper orthogonal decomposition (POD) are of major
importance (e.g. Bergmann & Cordier 2008). As discussed in Noack, Tadmor &
Morzyński (2004), a flow model capturing fast transients between the actuated and
the unactuated state is then highly desirable. However, this requirement becomes more
complicated to achieve when actuation is unsteady. The typical solution, referred to
as the lifting method in the theory of partial differential equations (PDEs), involves
homogenizing the boundary condition for the POD modes by including a suitably
chosen function in the expansion of the velocity field. The current study proposes
a hierarchy of reduced-order models derived from mean-field considerations and
Galerkin projection with an increasing number of actuation modes and degrees of
nonlinearity.

For aircraft, circulation control in combination with high-lift devices offers several
advantages over traditional high-lift configurations. The basic concept of circulation
control involves the Coanda principle, where energy is introduced into the flow by
means of a thin jet ejected tangentially from a slot near the trailing edge. The main
advantage of circulation control is an increased lift output, which makes shorter
take-offs and landings possible. This technology was first patented by Davidson
(1960) and has since been repeatedly investigated (Lachmann 1961; Wood & Nielson
1985; Nielson & Biggers 1987; Englar 2000). A circulation control wing (CCW)
with steady jets, even at very small mass flow rates, has been shown to yield lift
coefficients that are comparable or superior to conventional high-lift systems (Smith
1975; Sexstone et al. 1998). A particular variation of circulation control is the
Coanda flap. Here, the flow is kept attached over a highly deflected flap by blowing
a jet tangentially over its specially designed upper surface. This concept has been
previously investigated and geometrically optimized in several previous studies (Jensch
et al. 2009; Radespiel, Pfingsten & Jensch 2009). However, efficiency requirements
demand that the lift gained through the use of circulation control be as large as
possible in comparison to the momentum coefficient of the blown jet, which is
usually acquired by engine bleed. This ratio is referred to as the lift gain factor.
An increase in the lift gain factor can be achieved through periodic blowing. Two
studies during the mid-1970s investigated pulsed blowing associated with circulation
control (Oyler & Palmer 1972; Walters, Myer & Holt 1972). Results from these
experiments indicated that pulsed blowing reduced the mass requirements for CCW.
However, both experiments were limited in scope and little was revealed about the
physics of the phenomena. More recently, periodic blowing on a circulation control
wing with circular trailing edge was examined (Jones et al. 2002). A 50 % reduction
in the required mass flow for a required lift coefficient was achieved. It is worth to
note that the benefits of periodic excitation targeting flow instabilities have also been
demonstrated in other flow control applications, such as pulsed actuation over a flap
(Becker et al. 2007; Petz & Nitsche 2007) and acoustic excitation (Seifert, Greenblatt
& Wygnanski 2004; Greenblatt & Wygnanski 2007).

Beside the numerical and theoretical investigations, the current research project
entails a water tunnel experiment, which is presently under construction. Periodic
excitation of the Coanda jet will be performed through oscillation of piezo-electric
actuators installed over the jet exit slot, as illustrated in figure 1. The blue arrows in
the figure illustrate the blown jet, whereas the red arrows illustrate the lip movement.
This type of actuation enables fine tuning of the jet actuation frequency, amplitude
and mean momentum. This flexibility coupled with high sensing capability from
surface-mounted pressure and shear stress sensors enables closed-loop control, which
promises further energy gains.
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FIGURE 1. (Colour online) Schematic of the actuated lip movement over the jet exit slot.

Closed-loop flow control has been rapidly advanced over the past decades with
the development of control theory, simulation methods and experimental techniques
(Allan et al. 2000; Rowley & Williams 2006; Kim & Bewley 2007; Choi, Jeon
& Kim 2008). Several control strategies can be found in the literature. A very
simple strategy is a model-independent approach with direct sensor feedback (Joshi,
Speyer & Kim 1997; Rapoport et al. 2003), or with sensor-based feedback, such
as proportional-integral-derivative (PID) control (Roussopoulos 1993). This method
is simple to implement and requires only parameter tuning (Killingsworth & Krstić
2006). The resulting control has been successfully applied to single-input single-output
opposition and phasor control, but comes with no guaranteed performance or
optimality property. Furthermore, the large number of tuneable parameters make
this approach impractical for multiple actuators, multiple sensors and complex
dynamics. A well-investigated model-based control design for multiple sensors and
actuators directly uses the input/output signals (black box model) under strong
linearity assumptions (Rowley & Williams 2006). For complex dynamics with
unknown nonlinearities this control strategy has severe challenges. In contrast, optimal
control (Gunzburger 2000; Scott et al. 2002) is based on a high-fidelity nonlinear
Navier–Stokes discretization and minimizes a cost functional. The computational cost,
however, exclude any real-time implementation in an experiment (Li et al. 2003).

Control-oriented reduced-order models resolving just the key nonlinear actuation
mechanisms are a compromise between the online-capable black-box models geared
towards linear dynamics and the accuracy of the computationally expensive nonlinear
Navier–Stokes-based approaches. The starting point is a POD model derived from
a Galerkin projection (Noack, Morzyński & Tadmor 2011). Such models exist for
virtually any unforced configuration starting with the pioneering wall-turbulence
model by Aubry et al. (1988). On the other hand, modelling actuated flows is more
challenging. Volume forces can be easily integrated in the Galerkin projection (Lumley
& Blossey 1998), whereas wall-bounded actuation such as blowing and suction on
a zero set ‘disappears’ in volume integrals of the Galerkin projection. Auxiliary
techniques, called lifting methods, are necessary to resolve this form of forcing. A
simple approach is an additional calibrated forcing term in the dynamical system
(Luchtenburg et al. 2009). The price of simplicity may be a reduced accuracy of
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the POD expansion in the neighbourhood of the actuators. A more accurate Galerkin
model employs a more refined lifting method resolving the near-wall actuation with
actuation modes. This approach has been employed for Galerkin models for over
half a century (Ladyzhenskaya 1963). Application to POD models appears to have
started with Graham, Peraire & Tang (1999). Several subsequent studies followed,
such as Rediniotis, Ko & Kurdila (2002), where an ingenious transformation leads
to a linear forcing term in the Galerkin system. Kasnakoğlu, Serrani & Efe (2008)
provided a frequently employed data-based method to derive actuation modes which
elegantly simplify the Galerkin system. These aforementioned studies however have
lumped all the actuation components (steady, unsteady and phase shifted) into a
single function, which made it impossible to discern the different flow dynamics
resulting from the various actuation components. This shortcoming becomes critical
when the different actuation components excite different flow dynamics, which
can result in a reduced-order model with a poor frequency resolution. In the
present study, we extend these works and propose a hierarchy of lifting methods
for different frequency components associated with the same actuation input. The
subgrid turbulence modelling is bypassed by (i) respecting the model structure from
mean-field considerations and a Galerkin projection and (ii) implementing a parameter
identification of all Galerkin system coefficients with 4D-Var method (Navon 2009;
Artana et al. 2012). This approach yields by construction the optimal model with the
imposed structure for the transient dataset and has been proven to be surprisingly
successful for complex flow dynamics (Cordier et al. 2013).

Since the main focus of the current study is the development of reduced-order
models, it is relevant to highlight their planned applications. The first usage of
the proposed reduced-order models is to enable understanding of the flow physics
by deriving least-order models that can correctly capture the flow dynamics. This
analysis is detailed in §§ 3–6. The second usage targets flow control, which is
planned to take place during the water tunnel experiment. Here, several possible
flow control strategies are possible: (i) model-based open-loop control (Bergmann
& Cordier 2008), (ii) model-based adaptive control (Luchtenburg et al. 2010), (iii)
sparse Galerkin model tuneable for experiments (Luchtenburg et al. 2009) or (iv)
model-based on real-time control with variation of modelling approach (Gerhard et al.
2003).

The manuscript is structured as follows. The configuration and numerical simulations
are described in § 2. The Galerkin method is outlined in two sections for the kinematic
modal expansion (§ 3) and for the dynamical system (§ 4). In particular, § 3 proposes
a hierarchy of lifting methods for the Galerkin expansion. In § 4, mean-field and
Galerkin models are derived. A hierarchy of Galerkin models is proposed and
investigated in § 5. In § 6 the lift is estimated from the models and the robustness to
different operating conditions is considered. The study is summarized in § 7.

2. Numerical simulations

The present investigations are based on one two-dimensional numerical simulation
of an airfoil with a Coanda flap. The test case is selected for its aerodynamic
characteristics, and includes two sudden transients for richer dynamics. The details
of the airfoil configuration (§ 2.1), of the numerical set-up (§ 2.2) and of the transient
flow solutions (§ 2.3) are presented in the following.
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FIGURE 2. (Colour online) Part of the numerical mesh surrounding the modified DLR
F15 airfoil with a close up of the actuation duct.

2.1. Configuration
The high-lift configuration, shown in figure 2, is a modified DLR F15 airfoil equipped
with a highly deflected Coanda flap and a droop nose. The details of the airfoil design
are described in Jensch et al. (2009) and Burnazzi & Radespiel (2014), where the
objective was to accomplish high lift coefficients during take-off and landing. The
droop nose design is chosen to satisfy low noise emission restrictions, which exclude
other leading edge devices, such as the Krüger slat. The leading edge geometry was
reached after an iterative process that improved the airfoil stall behaviour, which is
ruled by the suction peak. The highly deflected flap at 65◦ has a chord length of
cfl = 0.25c, where c is the main airfoil chord length with the retracted flap. The flap
is specially designed with a round shoulder to enhance the Coanda effect. Henceforth,
all physical variables are assumed to be non-dimensionalized with respect to the chord
length c, the incoming flow velocity U∞ and the constant density ρ (constant outside
the plenum). The numerical simulations are performed at Mach number Ma = 0.15
and Reynolds number Re=U∞c/ν = 12× 106, where ν is the kinematic viscosity of
the fluid. These flow parameters correspond to the expected conditions during landing.

Unsteady Coanda blowing is performed through an oscillatory lip motion, simulating
the planned experimental device. This yields a velocity fluctuation at the jet exit whose
magnitude can be prescribed as

‖UJ‖2(t)≈ B0 + B1 cos(ωat), (2.1)

where ωa is the angular actuation frequency, B0 is the mean exit velocity, B1 is the
oscillatory actuation amplitude and ‖ · ‖2 is the Euclidean vector norm. For simplicity,
the jet velocity magnitude at the jet exit ‖UJ‖2 will henceforth be referred to simply
as UJ . For the current test case, the corresponding actuation velocity parameters are
ωa= f ac/U∞= 1.96, B0= 4.515 and B1= 0.07. The blowing intensity is characterized
by the momentum coefficient,

cµ(t)= UJ(t)ṁJ(t)
1
2ρU2∞Sref

, (2.2)

where ṁJ is the jet mass flow rate and Sref is the reference area. Similar to the jet exit
velocity given by (2.1), the momentum coefficient can be expressed as cµ(t)=Cµ0 +
Cµ1 cos(ωat), where Cµ0 is the steady mean and Cµ1 is the amplitude of oscillation.
This yields a mean momentum coefficient of Cµ0=0.0295 and amplitude Cµ1=0.0239.
The non-dimensional actuation frequency (Seifert, Darabi & Wyganski 1996; Seifert
et al. 2004) can be expressed as,

F+ = f acfl

U∞
= ω

acfl

c
, (2.3)
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where the flap chord length cfl is used as the length scale, since the flow is only
separated over the flap. This definition yields a normalized actuation frequency of
F+ = 0.49 for the current test case. All actuation parameters are selected from a
previous parametric study, where lift was maximized with respect to the steady
blowing momentum coefficient.

2.2. Unsteady Reynolds-averaged Navier–Stokes simulations
The computational fluid dynamics (CFD) solver employed to perform the analysis
is the DLR TAU-Code (Kroll et al. 2002; Schwamborn, Gerhold & Heinrich 2006).
The two-dimensional unsteady Reynolds-averaged Navier–Stokes (URANS) equations
are solved using a finite volume approach. The discretization schemes are the central
scheme and the second-order upwind Roe scheme for the mean-flow inviscid flux and
the convective flux of the turbulence transport equation, respectively. The turbulence
model is that of Spalart–Allmaras with a curvature correction (Shur et al. 2000) which
allows the one-equation turbulence model to maintain a good accuracy in regions
where the streamlines have a high curvature. This characteristic is fundamental for the
simulation of the Coanda phenomenon, which is based on the equilibrium between
the inertial forces and the momentum transport in the direction normal to the convex
surface (Pfingsten et al. 2007). The numerical scheme and the turbulence model were
previously assessed by comparing the results to wind tunnel experiments (Pfingsten,
Cecora & Radespiel 2009; Pfingsten & Radespiel 2009). The lift, drag and pitching
moment coefficients are determined by integrating the pressure and shear stress
distributions over the airfoil surface. The contribution from the added jet momentum
is not included.

The mesh density was determined by means of a mesh convergence exercise based
on the Richardson extrapolation (Richardson & Gaunt 1927). This procedure provided
an estimation of the space discretization error and of the minimum number of points
that produced acceptable accuracy. Three different grid densities with ∼70 000,
230 000 and 920 000 points were tested. The corresponding maximum lift coefficients
of 4.410, 4.456 and 4.480 were obtained for the three grids at α = 3◦ angle of
attack. Based on these values, the Richardson extrapolation yielded a maximum lift
coefficient of 4.496, which is an approximation of using an infinite large number
of grid points. This extrapolated value was used as a reference lift coefficient to
determine the grid resolution error, which was 1.91 %, 0.89 % and 0.36 % for the
three grids, respectively. As such, the medium grid, with ∼230 000 points was chosen,
which represented a compromise between accuracy and computational cost.

The mesh is composed of a structured and an unstructured region, as the close up
in figure 2 shows. The outer unstructured mesh has a C-block topology and extends
50 chord lengths in all directions. The structured grid extends from the airfoil surface
outward to cover the region where the main viscous phenomena occur. The viscous
sublayer is also resolved with y+<1 everywhere over the airfoil surface. An important
characteristic of the grid is the high grid density along the pressure side, where the
stagnation point can be located, far from the leading edge. The structured region is
also extended over a large area behind the highly deflected flap, in order to accurately
capture the wake dynamics during the separated non-actuated period. Both the trailing
edge and the edge of the slot lip are discretized by means of a local C-block topology.

The lip oscillation movement is numerically simulated by means of grid deformation,
as shown in figure 3, where the black/blue lines denote the mesh domain boundaries
for the lowest/highest position. To avoid a pressure surge in the plenum and a mesh
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FIGURE 3. (Colour online) Numerically simulated dynamic lip movement. The slot exit
mid-point xJ is also shown.

singularity, no simulations are conducted with a fully closed lip. The total lip height
movement is 2h (3h/4 below and 5h/4 above neutral position), where h = 0.0006
is the lip height at the neutral position. Both, the neutral lip height and the plenum
geometry, are based on the results by Jensch et al. (2009), where a range of possible
duct geometries was investigated.

The unsteady lip movement represents a constantly deforming non-homogeneous
boundary condition and introduces additional complexity to any reduced-order model.
As simplification, all snapshots are exported, a posteriori, onto a static mesh that
is fixed at the neutral position. Critically, this procedure preserves all dynamical
interactions between the moving lip wall and the incoming boundary layer over the
lip edge along the suction side. All data presented henceforth are those exported on
the static mesh. This approximation is deemed acceptable due to the spatially limited
extent of the deformed mesh, as can be seen in figure 3. As a result, the unsteady
non-homogeneous boundary condition is transferred to the Coanda jet flow across the
exit location, which now acts as a boundary with periodic pressure/velocity fluctuation.
The implications of such simplification on POD modelling will be discussed in § 3.1.

2.3. Transient flow solutions
Sudden transients between two flow states lead to rich dynamics. The current
numerical simulation includes two sudden transients between the unactuated state and
an actuated one. The unactuated flow field behind the deflected flap is characterized
by massive separation, as seen in figure 4(a). The recirculation region behind the
wake is associated with periodic vortex shedding with a dominant Strouhal number of
Stu

fl= f ucfl/U∞= 0.23. With actuation, the effect on the flow field is the near complete
attenuation of the natural shedding vortices and the emergence of a new attractor
locked-in on the actuation frequency. This observation is also confirmed in the lift
coefficient distribution in figure 5. During this state, the flow is attached over the flap
length, with the exception of roll-off vortices generated at the jet exit. The averaged
effect of this phenomenon is shown in figure 4(b), where a small recirculation region
near the trailing edge of the flap can be observed. One can also see the more curved
streamlines in comparison with the natural state, which are associated with elevated
lift for that case.

A more accurate description of the flow behaviour throughout both transients
is provided by the lift distribution. Figure 5 shows the lift coefficient (black) and
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FIGURE 4. (Colour online) Comparison between (a) the unactuated, and (b) the actuated
(Cµ0 = 0.0295, Cµ1 = 0.0239 and F+ = 0.49) mean-flow field visualized by streamlines.
The black line surrounding the airfoil delimits the structured grid region.
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0 20 40 60 80

t

FIGURE 5. The lift coefficient (black) and the jet exit velocity (grey) from the URANS
data: Re = 12 × 106, Ma = 0.15, and α = 0◦. Actuation is turned on at ts = 7.395 and
turned off at te = 43.843.

the jet exit velocity (grey) from the URANS data. The simulation starts from the
unactuated natural state until ts = 7.395, when actuation is turned on. The exit
velocity distributions rise sharply with oscillatory modulation. In other words, the lip
starts oscillating at the same instant as the total pressure in the plenum is increased.
The flow response to the sudden actuation is almost instantaneous, as seen by the
quick increase in the lift coefficient. This initial response, hereafter called the off–on
transient, is followed by a slow asymptotic convergence towards the new state,
which is reached at tc ≈ 39. Asymptotic behaviour is assumed reached when one
lift coefficient period changes less than 0.1 % than its predecessor. The lift increase
through actuation is 80 % (Cl = 1.92 versus 3.47). Throughout this transition period
the flow is locked on the actuation frequency ωa, as seen in the Cl frequency and in
the flow field snapshots (not shown here). After the flow settles on the new attractor
for 8 cycles, the actuation is suddenly turned off at te = 43.843 and the flow is left
to settle towards its natural state. Similar to the first transient, the flow response
to the second transient called the on–off transient is immediate, and a sudden drop
in the lift coefficient is observed. The flow transition from the actuation frequency
to the natural shedding frequency (ωu = 0.919) is also near instantaneous. However,
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unlike the off–on flow response, the on–off transient is associated with an undershoot
and an increased oscillation amplitude. These differences stem from the different
damping mechanisms acting on the two transients. The oscillations following the
on–off transient decay only through ‘natural’ damping from wall shear stress and
the motion of the separation region, whereas those following the off–on transient
have the added damping effect of the blown jet that increases the Reynolds stresses
(Amitay, Smith & Glezer 1998). Following this transition phase, the flow settles on
the unactuated attractor at t≈ 68.

3. Hierarchy of lifting methods
This section describes the employed lifting methods, where the unsteady Coanda

blowing is incorporated in the Galerkin models as free dynamic input via actuation
modes. Before detailing the proposed actuation modes, it is critical to note that there
exists a large set of modes that could serve as actuation modes. Mathematically,
they are only constrained by the following: (i) they must be divergence free, to
retain the divergence-free property of the basis functions, (ii) they must satisfy
the appropriate (homogeneous) boundary conditions on the unactuated boundaries.
Contrary to Kasnakoğlu et al. (2008) where the actuation modes were determined
as the solution of an optimization problem from snapshots corresponding to the
unactuated flow, here, we use actuated snapshots and rely on an heuristic approach
that is generally employed in reduced-order modelling. This suggests that our selection
of actuation modes might not be mathematically optimal but the main objective is
that the actuation modes ‘properly’ describe the control action influence on the flow.

This section is organized as follows: first (§ 3.1), the constitutive equation of a
Galerkin expansion with given actuation modes is discussed. In §§ 3.2–3.4, a hierarchy
of actuation modes with increasingly refined resolution of the dynamic actuation is
proposed. In § 3.2, a single actuation mode derived from the difference between
actuated and unactuated mean flow is introduced. The second set of actuation modes
(§ 3.3) distinguishes between the flow response from the steady and the oscillatory
component of Coanda blowing. The third lifting method (§ 3.4) resolves phase-shifted
flow structures from the oscillatory actuation.

3.1. Actuation modes as lifting method
A Galerkin model of fluid flow is based on an inner product in the observation region.
In this study, a circular domain of five chord lengths surrounding the airfoil was
chosen,

Ω := {(x, y) : (x, y) 6∈ airfoil and x2 + y2 6 52}. (3.1)

This domain is large enough to resolve the main coherent structures and actuation
effects, yet small enough to reduce long-term convection effects which are detrimental
to the robustness of Galerkin models (Noack et al. 2011).

The Galerkin expansion is defined in the space of square-integrable vector functions
in the observation domain, L2(Ω). The corresponding inner product between two
velocity fields v and w is defined by

(v,w)Ω :=
∫
Ω

v ·w dx, (3.2)

where the associated norm reads ‖v‖Ω :=
√
(v, v)Ω .
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In L2(Ω), there exists a complete countable orthonormal basis {ui(x)}∞i=1, such
that any velocity field can be arbitrarily closely approximated by a finite Galerkin
expansion of N modes. In the following search for the proper Galerkin expansion,
we trade completeness for a minimal average residual of given snapshots um(x),
m= 1, . . . ,M. This leads to the proper orthogonal decomposition

u(x, t)= u0(x)+
N∑

i=1

ai(t)ui(x), (3.3)

where N is the number of retained POD modes, u0 denotes the mean flow, ui are the
spatial POD modes and ai are the temporal mode coefficients (Holmes et al. 2012).

In the following, two averaging operators are defined. 〈·〉u denotes the time
averaging operator of the unactuated flow between t= 0 and ts, whereas 〈·〉a denotes
that of the actuated flow between tc and te. In this sense, the zeroth mode of (3.3) is
defined as the mean base flow of the unactuated state u0(x)= 〈u(x, t)〉u.

Compared to unactuated flows, Galerkin expansions for actuated flows with a
deforming surface face two additional challenges. First, the moving surface (oscillating
lip in this case) and thus the domain Ω vary with time while the traditional approach
of POD–Galerkin projection requires a fixed fluid domain. Second, the actuation does
not enter explicitly as a free control command in the Galerkin expansion (3.3). The
first challenge is solved by neglecting the small lip oscillations, since they are four
orders of magnitude smaller than the chord length. Thus, all operations are performed
on the steady domain corresponding to the unactuated state, as detailed in § 2.2, and
the tiny lip motion is ignored in this Galerkin expansion. This simplification can be
justified following the pioneering work of Bourguet, Braza & Dervieux (2011). In the
Hadamard formulation, a solution of a partial differential equation (PDE) in a domain
with small time-varying deformations is considered. The effect of these deformations
can be approximated by a volume force in the PDE with a steady domain. This
approximation leads to an additional linear actuation term in the Galerkin system.

The jet exit velocity at the slot exit mid-point xJ is selected as the free actuation
command. Hence, UJ given by (2.1) acts as boundary actuation for Ω , and UJ ≡ 0
represents unactuated flow. The standard lifting method (see § 3.2) constructs an
actuation mode u−1 which describes the jet blowing such that UJ(t) = a−1(t) and
‖u−1(xJ)‖2 = 1 at the unsteady boundary, and vanishes at all other boundaries. Now,
u0 + a−1u−1 satisfies the unsteady inhomogeneous boundary conditions at the airfoil
and the oncoming flow at infinity. The POD decomposition is then applied to the
modified snapshots, where u0 + a−1u−1 is subtracted. Thus, the POD modes – and
arbitrary linear combinations thereof – also fulfil homogeneous boundary conditions.
In the case of NA actuation modes, the general expression for the instantaneous
velocity fields becomes

u(x, t)= u0(x)+
−1∑

i=−NA

a[NA]
i (t)ui(x)+

N∑
i=1

a[NA]
i (t)u[NA]

i (x), (3.4)

where we change the notations of ai and ui to emphasize in superscripts the
dependence on the number of actuation modes NA. By construction (see §§ 3.2–3.4),
the actuation modes ui, i=−NA, . . . ,−1 are independent of the number of actuation
modes considered. In addition, the mode amplitude a0 := 1 has been introduced for
convenience following Rempfer & Fasel (1994). The flow at infinity and through
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Homogenization of the
boundary condition

AC and DC components
as independent flow

response components

Resolution of the
phase-shifted

oscillatory component

PurposeActuation velocity

GE A

GE B

GE C

FIGURE 6. (Colour online) Hierarchy of lifting methods visualized by the actuation
velocity decomposition. The purpose behind each hierarchy level is explicated on the
right-hand side.

the slot is described by the mean flow u0 and the actuation modes
∑−1

i=−NA
a[NA]

i ui,
respectively. The POD modes u[NA]

i , i = 1, . . . , N satisfy homogeneous boundary
conditions by construction. The actuation mode amplitudes a[NA]

i , i = −NA, . . . , −1
represent free actuation commands.

For the purpose of homogenizing the boundary conditions of the POD modes,
a single actuation mode NA = 1 enables a lifting of the boundary actuation into
the Galerkin model. This actuation mode, however, lumps the flow response of
the steady blowing and the oscillatory component. A refined analysis considers two
actuation modes NA= 2, one corresponding to steady blowing and one to the unsteady
component. However, the convection of high-frequency structures also generates a
phase-shifted flow response. Any harmonically oscillating coherent structures requires
two modes for an accurate description. These considerations lead to three actuation
modes NA = 3. For easy reference, the corresponding Galerkin expansions (GE) for
NA= 1, NA= 2 and NA= 3 are termed GE A, B and C, respectively. Figure 6 illustrates
the link between these expansions and the decomposition of the actuation command.
A preview on the corresponding computational algorithm is offered in figure 7 and
will be explained in the following subsections.

3.2. Galerkin expansion A: standard lifting method with one actuation mode
The first actuation mode i=−1 resolves the difference between the actuated and the
unactuated state and is computed in two steps:

u∗−1(x) := 〈u(x, t)〉a − u0(x), (3.5a)

u−1(x) := u∗−1(x)
‖u∗−1(xJ)‖2

. (3.5b)

The normalization ensures that

‖u−1(xJ)‖2 = 1, (3.6)

and the fluctuating velocity at the exit can be expressed as

UJ(t) := u′(xJ, t)= a[1]−1(t)u−1(xJ), (3.7)
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Mode amplitude Actuation modes Galerkin expansion

GE A

GE B

GE C

FIGURE 7. (Colour online) Algorithm for computing the three Galerkin expansions.
The definition of the mode amplitudes, the actuation modes and the resulting Galerkin
expansion is provided on the left, centre and right, respectively.

where u′(x, t)= u(x, t)− u0(x) are the fluctuating velocity fields, and where the first
actuation mode coefficient is defined as

a[1]−1(t)=
{

UJ(t)= B0 + B1 cos(ωat) during actuation;
0 otherwise. (3.8)

In this case, a−1 encompasses both the steady and the unsteady component of
actuation.

The homogenized snapshots are then computed as

u[NA]
A (x, t) := u′(x, t)− a[NA]

−1 (t)u−1(x), (3.9)

with NA = 1. By construction, u[1]A (xJ, t) ≡ 0, i.e. the homogeneous Dirichlet
condition is fulfilled. This property carries over to the POD modes which are linear
combinations of the snapshots. The Galerkin expansion reads

u(x, t)= u0(x)+ a[1]−1(t)u−1 +
N∑

i=1

a[1]i (t)u
[1]
i (x). (3.10)

We would like to emphasize that Galerkin expansion A corresponds to the standard
lifting procedure encountered in the literature (Graham et al. 1999; Ravindran 2000).
It should be noted that (3.6) and a unit L2-norm are not compatible requirements. The
physical interpretation of the mode coefficient is given higher priority over a L2 unit
norm.
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3.3. Galerkin expansion B: two actuation modes for steady and unsteady
blowing effects

With the addition of a second actuation mode, it becomes possible to divide the
forcing term into its steady and fluctuating components. As such, the first actuation
mode corresponds to steady blowing, whereas the second mode to oscillatory
modulation. The definition of u−1 is the same as in GE A, but with the mode
coefficient defined as

a[2]−1(t)=
{〈UJ〉a during actuation;

0 otherwise. (3.11)

The second actuation mode i=−2 is defined as

u∗−2(x) := 〈a[2]−2(t)u
[2]
A (x, t)〉a, (3.12)

where a[2]−2 is the corresponding mode coefficient defined as

a[2]−2(t)=
{

U′J(t)≈ B1 cos(ωat) during actuation;
0 otherwise. (3.13)

In an electric circuit analogy, a[2]−1 and a[2]−2 denote the direct current (DC) and
alternating current (AC) components, respectively. The DC and AC components for
GE B are shown in figure 6. Similar to u−1, the second actuation mode is normalized
by its value at the slot exit,

u−2(x) := u∗−2(x)
‖u∗−2(xJ)‖2

. (3.14)

Thus, the fluctuating jet velocity reads,

UJ(t)= u′(xJ, t)= a[2]−1(t)u−1(xJ)+ a[2]−2(t)u−2(xJ). (3.15)

The POD is then computed from the homogenized snapshots,

u[2]B (x, t) := u′(x, t)− a[2]−1(t)u−1(x)− a[2]−2(t)u−2(x) (3.16)

and the Galerkin expansion is expressed as,

u(x, t)= u0(x)+
−1∑

i=−2

a[2]i (t)ui(x)+
N∑

i=1

a[2]i (t)u
[2]
i (x). (3.17)

As discussed in § 3.2, an L2 normalization of the actuation modes would obstruct
the physical meaning of a[NA]

−1 and a[NA]
−2 . Following Kasnakoğlu et al. (2008), one could

envision, at minimum, an orthogonalization of the actuation mode with respect to each
other and to the POD modes. This would simplify the resulting Galerkin system but
has severe disadvantages. First, in Kasnakoğlu et al. (2008), this orthonormalization
is independent of the POD modes since the authors consider unactuated snapshots for
determining the POD modes. In our approach, the POD modes are affected by the
actuation modes. Second, we prefer to have identical actuation modes u−i (i= 1, 2, 3)
in Galerkin expansions A, B and C. If the actuation modes are orthogonalized with
respect to the POD modes, this independence is lost. Third, after the orthogonalization,
the actuation modes would lose their physical meaning as correlated flow responses
to the DC or AC actuation component.
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3.4. Galerkin expansion C: three actuation modes for steady, unsteady and
time-delayed blowing effects

The third actuation mode i=−3 is an additional unsteady mode that is time shifted
with respect to the main unsteady actuation term. It is defined as,

u∗−3(x) := 〈a[3]−3(t)u
[2]
B (x, t)〉a, (3.18)

where

a[3]−3(t)=
{

U′J(t− T/4)≈ B1 sin(ωat) during actuation;
0 otherwise, (3.19)

and T is one period of the actuated shedding cycle. The normalization of u−3 is less
restricted than that of u−2 and u−1, since the spatial evolution of the control is already
represented by the first two actuation modes. Hence, u−3 must vanish at the exit (i.e.
u−3(xJ)= 0), and the fluctuating jet velocity reads,

UJ(t) := u′(xJ, t)= a[3]−1(t)u−1(xJ)+ a[3]−2(t)u−2(xJ), (3.20)

with a[3]−1 := a[2]−1 and a[3]−2 := a[2]−2. u−3 is simply normalized by the same factor as the
second actuation mode, i.e.

u−3(x) := u∗−3(x)
‖u∗−2(xJ)‖2

. (3.21)

This choice makes the fluctuation levels of the second and third actuation mode as an
oscillatory flow response comparable.

The homogenized snapshots are determined as

u[3]C (x, t) := u′(x, t)− a[3]−1(t)u−1(x)− a[3]−2(t)u−2(x)− a[3]−3(t)u−3(x) (3.22)

and the Galerkin expansion is expressed as

u(x, t)= u0(x)+
−1∑

i=−3

a[3]i (t)ui(x)+
N∑

i=1

a[3]i (t)u
[3]
i (x). (3.23)

For highly convective flows, the first POD modes are the most energetic. For the
current flow, the first four POD modes contain 78 % of the total turbulent kinetic
energy, and are deemed sufficient to represent the dynamics. The mean base flow, the
first four POD modes and all three actuation modes for Galerkin expansion GE C
are shown in figure 8. By construction, the actuation modes are independent of NA,
i.e. they are the same for GE A and B and therefore are not shown separately. All
modes can be physically interpreted. Mode u0 represents the unactuated low-lift base
flow. The first actuation mode u−1 displays the difference to the high-lift actuated
equilibrium. The nearly circular streamlines clearly indicate the enhanced lift. The
higher-order actuation modes u−2 and u−3 resolve the oscillatory flow response to the
blowing modulation, as intended by construction.

The first two POD modes u[3]1 and u[3]2 represent von Kármán vortex shedding.
The third and fourth mode u[3]3 and u[3]4 resolve slow transient base flow changes;
u[3]3 resolves global flow changes, while u[3]4 is concentrated in the near wake. Their
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FIGURE 8. (Colour online) The mean base flow, the first four POD modes and all three
actuation modes for Galerkin expansion GE C. The results are visualized by the vorticity
fields and vortex lines.

coefficients get non-vanishing amplitudes during change of the actuation and vanish
with time. Thus, these modes can be considered as transient modes. Their impact on
the Galerkin system dynamics will be elaborated in §§ 4 and 5.

The Galerkin expansion of the high-lift configuration by Luchtenburg et al. (2009)
constitutes a good basis for comparison with the current study. In both models, the
first POD mode pair resolves unactuated vortex shedding. Luchtenburg et al. (2009)
incorporate the high-frequency flow response in modes 3 and 4. These modes resolve
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the forcing of the zero-net-mass-flux actuator and their amplitudes are determined by
the Galerkin system. Base-flow changes in the Galerkin system are not kinematically
resolved. In the present study, actuation modes i=−2 and i=−3 take on this role
commanded by control. The response to steady and unsteady is kinematically and
dynamically resolved with additional modes corresponding to the indices i=−1 , −2
and −3.

The first four POD modes ui (i = 1, . . . , 4) depend hardly on the number of
actuation modes considered for their determination. For this reason, we remove
hereafter in our notation the explicit dependence of NA for the spatial POD modes ui
and the temporal mode coefficients ai.

4. Galerkin modelling
In this section, a low-dimensional Galerkin model with sparse, analytically tractable

dynamics is derived. This derivation starts from the Galerkin expansion of § 3
and involves mean-field considerations and the Galerkin projection. The resulting
models resolve key dynamic features of the high-lift configuration: a self-amplified,
amplitude-limited oscillatory dynamics which is mitigated by actuation with steady
and high-frequency components. Focus is placed on low-order state-space and
sparse dynamical systems providing crisp intuitive access to the physical actuation
mechanism. The structure of the Galerkin system is derived from a mean-field
consideration (§ 4.1) and an analysis of the mean-field dynamics (§ 4.2), generalising
Luchtenburg et al. (2009). The dynamics motivates a cubic term (§ 4.3) and a noise
term (§ 4.4) as envisioned by the POD model of Aubry et al. (1988). Section 4.5
introduces the most general Galerkin system from a Galerkin projection on the
expansion (3.23) of § 3. These considerations lead to a hierarchy of investigated
Galerkin models which are elaborated in § 5. The structure of all presented Galerkin
models is motivated by first principles and assumed solution properties. Yet, we
refrain from deriving the Galerkin system coefficients from Galerkin projection,
subscale turbulence representations and actuation models (Noack et al. 2011). Instead,
these coefficients are identified with a 4D-Var method as described in appendix A.
The resulting Galerkin models yield by definition the optimal performance achievable
of physics-based approaches.

4.1. Derivation of the mean-field model
The following consideration contains two key components of mean-field theory (Stuart
1971), namely frequency decomposition and slaving. The resulting Galerkin expansion
is based on a standard inner product of square-integrable fields in steady observation
domain Ω as introduced in (3.2). We shall not pause to include a bifurcation
expansion as this is irrelevant for a turbulent flow.

The mean-field model will be derived in four steps. First, a suitable mean-field
expansion is developed (§ 4.1.1). Second, the dynamics of the natural frequency is
derived (§ 4.1.2). Third, the dynamics of the forcing frequency is considered (§ 4.1.3).
Finally, the base flow dynamics is investigated (§ 4.1.4).

4.1.1. Mean-field expansion
The considered flow has three frequency components: a slowly varying mean-field

ub (superscript ‘b’ for base flow), a natural shedding component uu (superscript ‘u’ for
unforced) and a forced high-frequency component ua (superscript ‘a’ for actuated):

u(x, t)= ub(x, t)+ uu(x, t)+ ua(x, t). (4.1)
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Upon short-term averaging the terms with natural and high frequency vanish. The
harmonic contribution at natural shedding frequency may be composed of two modes
u1, u2,

uu(x, t)= a1(t)u1(x)+ a2(t)u2(x). (4.2)

In what follows, POD modes 1 and 2 of figure 8 are taken as ui, i= 1, 2. These two
modes may also be obtained from the real and imaginary part of the dominant Fourier
mode, from the first two POD modes of natural shedding or from any other suitable
filter. Higher harmonics tend to be small and are neglected. The corresponding mode
amplitudes describe in good approximation a limit cycle

a1(t)= r cos(φ), a2(t)= r sin(φ),
dφ
dt
=ω (4.3a−c)

were φ is the phase, ω a constant or slowly varying angular frequency and r a constant
or slowly varying amplitude. Without loss of generality, a1 follows the cosine function.
Otherwise, the origin of the time is shifted. Similarly, a2 follows the sinus. Otherwise,
the second mode u2 needs to be adjusted.

In completely analogous manner, the high-frequency contribution is characterized
by

ua(x, t)= a−2(t)u−2(x)+ a−3(t)u−3(x), (4.4)

and

a−2(t)= s cos(ωat), a−3(t)= s sin(ωat). (4.5a,b)

In the choice of symbols for the modes and their amplitudes we have anticipated
the use of actuations modes −2 and −3 of figure 8 for the flow response at forcing
frequency.

The base flow is conceptualized as the sum of the steady Navier–Stokes solution
us and a constant or slowly varying base-flow deformation u∆, following mean-field
theory and departing from the POD expansion of § 3,

ub(x, t)= us(x)+ u∆(x, t). (4.6)

The unforced base-flow deformation may be characterized by a single mode u3
pointing from the steady solution to the unforced mean flow 〈u〉u, often called the
shift mode (Noack et al. 2003; Tadmor et al. 2010). The corresponding shift mode
amplitude a3 is driven by the fluctuation of the vortex shedding and considered as a
slowly varying quantity. Changes by steady blowing may be incorporated in a single
actuation mode u−1 pointing from the unforced averaged velocity to the averaged
actuated one 〈u〉a (Weller, Lombardi & Iollo 2009). The amplitude a−1 determines
the strength of blowing in the high-lift configuration. An additional mode u4 may be
needed to capture transient effects parameterized by the amplitude a4. Summarizing,
the mean-field deformation reads

u∆(x, t)= a−1(t)u−1(x)+ a3(t)u3(x)+ a4(t)u4(x) (4.7)

and (4.1) becomes

u(x, t)= us(x)+
4∑

i=−3

ai(t)ui(x). (4.8)

The resulting components of the mean-field expansion are catalogued in table 1.
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Dynamics ub uu ua

Unforced components us + a3u3 a1u1 + a2u2 —
Forced components a−1u−1 + a4u4 — a−2u−2 + a−3u−3

TABLE 1. Components of the mean-field expansion. The table comprises unforced (top)
and forced components (bottom) contributing to the base flow ub (left), the vortex shedding
uu (middle) and the high-frequency actuation ua (right).

4.1.2. Dynamics of the natural frequency
The dynamics of the mean-field expansion may be inferred from the non-

dimensionalized Navier–Stokes equation,

∂tu= 1
Re
1u−∇u⊗ u−∇p. (4.9)

Here ∂t, ∇ and 1 denote the partial temporal derivative, the nabla operator and
Laplace operator, respectively. The product sign ⊗ denotes an outer tensor product,
also called dyadic vector product. We shall not pause to discuss the pressure term as
it will vanish under Galerkin projection for sufficiently large domains (Deane et al.
1991; Noack, Papas & Monkewitz 2005).

The natural frequency component of (4.9) is described by

∂tuu = 1
Re
1uu −∇ub ⊗ uu −∇uu ⊗ ub −∇pu. (4.10)

All other terms of (4.8) vanish upon filtering at frequency ω. For the following, we
assume that u1 and u2 are orthogonal, (u1, u2)Ω = 0. Otherwise, the modes may be
orthogonalized. From (4.6) and (4.2), Galerkin projection on ui and i= 1, 2 yields

d
dt

(
a1
a2

)
= A

(
a1
a2

)
where A= As + a−1A−1 + a3A3 + a4A4. (4.11)

Here, the system matrix A = ( A11 A12
A21 A22

)
depends affinely on a−1, a3 and a4. As

corresponds to the 2 × 2 matrix from a linearization around the fixed point us,
A3 characterises a change of the dynamics from an unforced mean-field deformation,
and A−1 and A4 the corresponding change from actuation. The assumed ansatz (4.3)
further restricts the system matrix to

A11 = A22 = σ1 − β−1a−1 − β3a3 − β4a4, (4.12a)
−A12 = A21 =ω1 + γ−1a−1 + γ3a3 + γ4a4. (4.12b)

The first equation (4.12a) describes the growth rate σ1 near the fixed point and its
changes from mean-flow deformation parameterised by a−1, a3 and a4. The second
equation (4.12b) is the analogue for the frequency.

4.1.3. Dynamics of the forcing frequency
In this study, the flow component at forcing frequency is kinematically imposed by

the actuation command a−2 and a−3 and the corresponding actuation modes u−2 and
u−3. This is the most simple representation of the actuation component.
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In Luchtenburg et al. (2009), the actuated flow follows an oscillatory dynamics
described by a stable forced oscillator

da3/dt= σ aa3 −ωaa4 + g3(t), (4.13a)
da4/dt= σ aa4 +ωaa3 + g4(t), (4.13b)

where σ a and ωa are the growth rate and frequency of a stable oscillator and g3
and g4 represent ωa-periodic forcing. This refined model accounts for time delays
from forcing to flow response. In this study, we choose the more simple kinematic
representation because the high-frequency component was found to be small and the
time delays are not critical.

4.1.4. Dynamics of the base flow
The slowly varying base flow near the fixed point is described by the linearized

Reynolds equation,

∂tu∆ = 1
Re
1u∆ −∇us ⊗ u∆ −∇u∆ ⊗ us −∇〈uu ⊗ uu〉 −∇〈ua ⊗ ua〉 −∇pb. (4.14)

This equation is obtained by substituting the mean-field expansion (4.8) in the
Navier–Stokes equation (4.9), subtracting the steady Navier–Stokes equation for us,
filtering out the natural and forced frequency terms and neglecting the second-order
term −∇u∆ ⊗ u∆. The first three terms on the right-hand side of (4.14) denote a
linear operator in u∆, the fourth one the Reynolds stress at the natural frequency
and the fifth the analogue for the forcing frequency. The brackets denote short-time
averages.

For simplicity, we assume that u3 and u4 are orthogonal to each other. A Galerkin
projection of (4.14) on both shift modes yields

da3

dt
= l3,−1a−1 + l33a3 + l34a4 + α3rr2 + α3ss2, (4.15a)

da4

dt
= l4,−1a−1 + l43a3 + l44a4 + α4rr2 + α4ss2. (4.15b)

The linear terms lij parameterise the linear operator for u∆ of (4.14). The coefficients
α? represent the gain of the Reynolds stresses at natural and forced frequency on
the shift-mode amplitudes. We did not include an evolution equation for a−1 as the
blowing is imposed in our high-lift configuration.

4.2. Dynamics of the mean-field model
Summarizing (4.11), (4.12) and (4.15), the resulting mean-field system reads

da1

dt
= σa1 −ωa2, (4.16a)

da2

dt
= σa2 +ωa1, (4.16b)

da3

dt
= l3,−1a−1 + l33a3 + l34a4 + α3rr2 + α3ss2, (4.16c)

da4

dt
= l4,−1a−1 + l43a3 + l44a4 + α4rr2 + α4ss2, (4.16d)
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σ = σ1 − β−1a−1 − β3a3 − β4a4, (4.16e)
ω=ω1 + γ−1a−1 + γ3a3 + γ4a4, (4.16f )

r=
√

a2
1 + a2

2, (4.16g)

s=
√

a2
−2 + a2

−3. (4.16h)

Here, a1, a2, a3 and a4 are considered as dynamic state variables while the forcing
parameters a−1, a−2 and a−3 are exogenous inputs.

Equation (4.16) describes a self-amplified, amplitude-limited oscillation which
is mitigated by steady- or high-frequency actuation. In the following, we consider
special cases which illuminate the role of the coefficients, the states and their dynamic
interaction.

(1) Unforced equilibrium. By construction, i.e. the Galerkin expansion (4.8), the
unforced fixed point us is a trivial solution of (4.16). This implies a1=a2=a3=a4=0
and the absense of actuation a−1 = a−2 = a−3 = 0. This is readily seen to satisfy the
mean-field system.

(2) Linear unforced dynamics (a−1 = a−2 = a−3 = a4 = 0). Linearizing the unforced
dynamics around the fixed point yields an oscillator

da1

dt
= σ1a1 −ω1a2,

da2

dt
= σ1a2 +ω1a1, a3 = 0. (4.17a−c)

The assumed self-amplification requires a positive growth rate σ1 > 0. The shift-mode
amplitude should be linearly stable l33<0 as it is only driven by the Reynolds stresses.

(3) Unforced periodic dynamics (a−1 = a−2 = a−3 = a4 = 0). The initial oscillations
converge to a periodic limit cycle implying a vanishing growth rate σ = 0, converged
shift-mode amplitude da3/dt= 0 and β3 > 0. The resulting oscillation and shift-mode
amplitude read

r=
√
−σ1l33

α3rβ3
, a3 = σ1

β3
. (4.18a,b)

(4) Unforced transient dynamics (a−1= a−2= a−3= a4= 0). Inserting vanishing forcing
in (4.16) yields a mean-field Galerkin model (Noack et al. 2003):

da1

dt
= (σ1 − β3a3)a1 − (ω1 + γ3a3)a2, (4.19a)

da2

dt
= (σ1 − β3a3)a2 + (ω1 + γ3a3)a1, (4.19b)

da3

dt
= l33a3 + α3r(a2

1 + a2
2). (4.19c)

In mean-field theory, i.e. close to the bifurcation, the shift-mode amplitude is shown
to be slaved to the fluctuation level, or, equivalently da3/dt= 0 in (4.19c). This yields
the descriptor system

da1

dt
= (σ1 − βrr2)a1 − (ω1 + γrr2)a2, (4.20a)
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da2

dt
= (σ1 − βrr2)a2 + (ω1 + γrr2)a1, (4.20b)

a3 = αrr2, (4.20c)

with αr =−α3r/l33 > 0, βr = αrβ3 > 0 and γr = αrγ3. The state lives on a mean-field
paraboloid (4.20c) centred around the fixed point (case 1), parallel to its stable
manifold (case 2) and accommodating the limit cycle (case 3). The oscillation
amplitude of (4.20) is described by the famous Landau equation

dr
dt
= σ1r− βrr3. (4.21)

The slaving assumption is found to be valid for the laminar cylinder wake at
distinctly supercritical Reynolds numbers from direct numerical simulations (Noack
et al. 2003) and from the identified parameters |l33| � σ1 (Tadmor & Noack 2004).
Experiments with turbulent wakes also corroborate the existence of a mean-field
paraboloid (Bourgeois, Martinuzzi & Noack 2013; Hosseini, Martinuzzi & Noack
2015). More complex mean-field Galerkin models with cubic terms have already
been proposed by Aubry et al. (1988) and elaborated by Podvin (2009).

(5) Shedding suppression by steady actuation. The high-lift configuration is designed
to stabilise vortex shedding with steady Coanda blowing a−1 > 0, a−2 = a−3 = a4 = 0.
In the mean-field model (4.16), this stabilisation implies σ < 0 for a3 = a4 = 0.
For blowing a−1 > 0, negative growth rates can only be achieved with β−1 > 0.
Summarizing, (4.16e) determines the minimal blow rate for complete stabilisation:

σ = σ1 − β−1a−1 < 0⇒ a−1 >
σ1

β−1
. (4.22)

The blow rate increases with natural growth rate σ1 and decreases with the actuation
gain β−1.

(6) Shedding suppression by high-frequency actuation. As a last case, we mention
that (4.16) incorporates – in principle – the stabilizing effect of ‘pure’ high-frequency
forcing (Glezer, Amitay & Honohan 2005; Luchtenburg et al. 2009), i.e. a−1 ≡ 0
and s2 = a2

−2 + a2
−3 > 0. High-frequency forcing introduces a Reynolds stress which

changes the corresponding shift-mode amplitude a4 as portrayed in (4.16d). Without
loss of generality, we can assume a4 > 0 or change the sign of u4. This base flow
change affects the stability of vortex shedding (4.16e). A minimal base-flow change
for complete stabilisation is given by

σ = σ1 − β4a4 < 0⇒ a4 >
σ1

β4
(4.23)

implying β4 > 0. This minimal mean-field deformation translates into a minimal
actuation fluctuation level which can be derived from (4.16d). This equation simplifies
for stabilization, r= a3 = 0 and equilibrium conditions, da4/dt= 0, to

l44a4 + α4ss2 = 0, (4.24)

which defines another mean-field paraboloid for the forced dynamics.
We do not claim that pure high-frequency forcing will mitigate vortex shedding for

the studied high-lift configuration – unlike another actuation study by Luchtenburg
et al. (2009). But the mean-field model structure should also include this mechanism
as the derivation assumes nothing about the particular form of actuation.
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4.3. The need for a cubic term
The mean-field model (4.16) is based on a shift mode u3 for unforced dynamics. The
construction of the shift mode requires the knowledge of the unstable solution which
is an art in itself (Åkervic et al. 2006). In this study, the steady solution and hence
the shift mode are not available, but accounted for by mean-field paraboloid (4.20c).
The result is a three-dimensional model:

da1

dt
= σa1 −ωa2, (4.25a)

da2

dt
= σa2 +ωa1, (4.25b)

da4

dt
= l4,−1a−1 + l44a4 + α4rr2 + α4ss2, (4.25c)

σ = σ1 − β−1a−1 − β4a4 − βrr2, (4.25d)
ω=ω1 + γ−1a−1 + γ4a4 + γrr2. (4.25e)

The stabilising cubic term −βrr2a1 in (4.25a) replaces −β3a3a1 from (4.16a) using
(4.20c). An analogous statement holds for (4.25b). In (4.25c), l43a3 of (4.16d) is
incorporated in a changed value of α4r, since l43a3+α4rr2= (l43αr+α4r)r2. In (4.25d),
the a3-term of (4.16e) has been transferred to the cubic term.

4.4. The need for a noise term
The mean-field model (4.16) elucidates how actuation suppresses vortex shedding.
This includes the off–on transient from natural shedding to forced suppression. The
on–off transient from suppression to natural shedding is more challenging. Once,
vortex shedding is suppressed, r = 0, the equations have no resurrection mechanism
and a1, a2 will remain zero. Even if r> 0, the transient period would strongly depend
on the numerical noise. A transient starting with r = 10−50 needs much more time
to rich the limit cycle than one starting with r = 10−10 although both are effectively
at the origin. This is an unphysical feature. In an experiment, turbulent fluctuations
excite vortex shedding again. These fluctuations represent a well-defined noise level
with well-defined transient times. Hence, we introduce a noise term in the first two
equations of (4.16),

da1

dt
= σa1 −ωa2 + κξ1(t), (4.26a)

da2

dt
= σa2 +ωa1 + κξ2(t). (4.26b)

Here, ξi(t) represents white noise with vanishing mean and unit variance while κ
denote noise gain. For simplicity a single noise gain is assumed for both evolution
equations. No noise term is added to the shift-mode equations, e.g. (4.16c) and (4.16d)
or (4.25c), as the corresponding amplitudes are driven by fluctuation levels and are
much less sensitive to noise.

The need for a noise term was postulated already in the first POD model of Aubry
et al. (1988). Bourgeois et al. (2013) have implemented a noise term in a least-order
Galerkin model to feature slow wake modulations.

The evolution equation (4.26) augmented by the shift-mode equation (4.25c) and
parameters (4.25d), (4.25e) can be considered as a physics-based, deterministic
stochastic, least-order model which describes the off–on–off transient of § 2.
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4.5. Galerkin projection
Section 4.4 provides the description of a robust control-oriented low-order Galerkin
model, in which each state and each term has a well-defined effect. In this section,
we pursue an alternative path starting with the Galerkin expansion (3.23). A Galerkin
projection of the Navier–Stokes equations onto the mentioned subspace yields a
Galerkin system of the form (Graham et al. 1999; Luchtenburg et al. 2009; Noack
et al. 2011),

dai

dt
= ν

N∑
j=−NA

lνijaj +
N∑

j,k=−NA

qc
ijkajak +

−1∑
j=−NA

mij
daj

dt
. (4.27)

Here, we follow again the elegant compact nomenclature of Rempfer & Fasel
(1994) in which the basic mode is included as zeroth mode with a0 ≡ 1. In (4.27),
each actuation mode gives rise to an additional acceleration term mij daj/dt, with
mij = (ui, uj)Ω , j = −NA, . . . , −1. The dissipation term is characterized by the
inverse Reynolds number ν = 1/Re and lνij = (ui, 1uj)Ω , while the convective term
is determined from qc

ijk = (ui, ∇ · [uj ⊗ uk])Ω . The pressure term vanishes for many
closed flows and is negligible for open flows with large observation domains. For
smaller domains, the inclusion of the pressure term in the Galerkin method just
modifies the coefficients of (4.27) (Noack et al. 2005). In many cases, a calibrated
linear term offers a good approximation of the Galerkin pressure term representation
(Galletti et al. 2004).

The Galerkin system (4.27) allows us to track the influence of viscous and
convective terms on the dynamics. The mean-field system of § 4.4 lumps both terms
but distils the dynamic significance of each frequency component. By construction,
the mean-field system lives on a manifold defined by the Reynolds equation. This
gives rise to cubic terms which are not present in (4.27). Secondly, the mean-field
system contains a noise term to account for high-frequency background turbulence. In
principle, similar noise terms could be added to the Galerkin system. Equation (4.27)
includes an actuation-induced acceleration term mij daj/dt. This term vanishes for no
or steady blowing. Periodic actuations lead to additional terms which may be lumped
into the terms qi0kak, k < 0. Drastic changes like sudden blowing or reversal thereof
are ignored by mean-field considerations. This will be reflected in the hierarchy of
Galerkin models introduced in § 5.

5. Results
In this section we propose and investigate a hierarchy of Galerkin models

incorporating lifting methods of § 3 and the mean-field considerations of § 4. This
hierarchy comprises six models of increasing resolution ranging from a linear
two-dimensional system to a nonlinear system with four degrees of freedom (§ 5.1).
Sections 5.2–5.7 present the corresponding results.

5.1. Hierarchy of models
We compose a hierarchy of Galerkin models with increasing dynamic resolution. This
hierarchy rests on the options of § 3 from a single actuation mode for steady blowing
(expansion A) to three actuations modes resolving individually the steady and the high-
frequency component of forcing (expansion C). The subsequent dynamical systems
may range from a linear–quadratic model simplified by frequency considerations to
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the full linear–quadratic model obtained directly from Galerkin projection. These
models may be enriched by a stabilizing cubic term featuring unresolved mean-field
variations and destabilising noise term representing the high-frequency background
turbulence. The considered spectrum of six control-oriented models ranges from a
simple oscillator model to fully nonlinear four-state model with cubic and noise
terms.

Galerkin model I. This minimal flow representation incorporates just the vortex
shedding N = 2 and one actuation mode NA = 1. Frequency filtering (§ 4.1.2) yields
an oscillator with actuation (a−1) dependent growth rate σ and frequency ω:

da1

dt
= σa1 −ωa2, (5.1a)

da2

dt
= σa2 +ωa1, (5.1b)

σ = σ1 − β−1a−1, (5.1c)
ω=ω1 + γ−1a−1. (5.1d)

This is (4.11) with vanishing mode amplitudes a3 = a4 = 0. Evidently, equation (5.1)
can describe a neutrally stable oscillation with σ1 = 0 and suppression of vortex
shedding with blowing a−1 > 0 assuming β−1 > 0. The system fails to feature a
globally stable limit cycle and the resurrection of vortex shedding after complete
stabilization a1 = a2 = 0.

Galerkin model II. Following the reasoning of § 4.3, we add a stabilising cubic term
to Galerkin system I, obtaining a Landau oscillator with globally stable limit cycle:

da1

dt
= σa1 −ωa2, (5.2a)

da2

dt
= σa2 +ωa1, (5.2b)

σ = σ1 − β−1a−1 − βrr2, (5.2c)
ω=ω1 + γ−1a−1 + γrr2, (5.2d)

where r = √a2
1 + a2

2 is the oscillation amplitude. The resulting system is a special
case of (4.25) with a4 ≡ 0, and does not describe the onset of vortex shedding after
complete stabilization a1 = a2 = 0.

Galerkin model III. Following § 4.4, we add a noise term to Galerkin system II,
obtaining a noisy Landau oscillator with globally stable limit cycle:

da1

dt
= σa1 −ωa2 + κξ1(t), (5.3a)

da2

dt
= σa2 +ωa1 + κξ2(t), (5.3b)

σ = σ1 − β−1a−1 − βrr2, (5.3c)
ω=ω1 + γ−1a−1 + γrr2. (5.3d)

This oscillator can resolve the off–on–off transient presented in § 2.1 with proper
choice of coefficients.
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Galerkin model IV. Next, the POD expansion is increased from N = 2 to N = 4,
thus incorporating two POD modes which act as shift modes. Modes i= 3, 4 resolve
the base-flow variation during off–on–off transients. The resulting Galerkin system
corresponds to (4.25) with added noise (§ 4.4) and added acceleration term (§ 4.5):

da1

dt
= σa1 −ωa2 + κξ1(t), (5.4a)

da2

dt
= σa2 +ωa1 + κξ2(t), (5.4b)

da3

dt
= l33a3 + l34a4 + l3,−1a−1 + α3rr2 +m3,−1

da−1

dt
, (5.4c)

da4

dt
= l43a3 + l44a4 + l4,−1a−1 + α4rr2 +m4,−1

da−1

dt
, (5.4d)

σ = σ1 − β−1a−1 − β3a3 − β4a4 − βrr2, (5.4e)
ω=ω1 + γ−1a−1 + γ3a3 + γ4a4 + γrr2. (5.4f )

The shift modes can change the growth rate and frequency of oscillator.

Galerkin model V. Hitherto, the actuation frequency component has been neglected.
This component is incorporated by increasing the number of actuation modes from
NA = 1 to NA = 3. This adds new actuation commands and new terms in Galerkin
system IV. The resulting dynamics corresponds to (4.16) with added noise and
acceleration term

da1

dt
= σa1 −ωa2 + κξ1(t), (5.5a)

da2

dt
= σa2 +ωa1 + κξ2(t), (5.5b)

da3

dt
= l33a3 + l34a4 + l3,−1a−1 + α3rr2 + α3ss2 +m3,−1

da−1

dt
, (5.5c)

da4

dt
= l43a3 + l44a4 + l4,−1a−1 + α4rr2 + α4ss2 +m4,−1

da−1

dt
, (5.5d)

σ = σ1 − β−1a−1 − β3a3 − β4a4 − βrr2 − βss2, (5.5e)
ω=ω1 + γ−1a−1 + γ3a3 + γ4a4 + γrr2 + γss2. (5.5f )

We see that the high-frequency component s > 0 may change the shift-mode
amplitudes and the stability of the oscillator via the −βss2 term in (5.5e).

Galerkin model VI. In the final generalisation, we allow for all constant, linear and
quadratic terms of the Galerkin system (4.27), also those which have been ruled out
by mean-field considerations:

da1

dt
=

4∑
j,k=−3

q1jkajak − βrr2a1 + κξ1(t), (5.6a)

da2

dt
=

4∑
j,k=−3

q2jkajak − βrr2a2 + κξ2(t), (5.6b)

da3

dt
=

4∑
j,k=−3

q3jkajak +m3,−1
da−1

dt
, (5.6c)
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FIGURE 9. (Colour online) Comparison between the first two POD mode amplitudes (solid
black curve) and those of the reduced-order model (dashed red curve) from GM I (5.1).

da4

dt
=

4∑
j,k=−3

q4jkajak +m4,−1
da−1

dt
. (5.6d)

Here, qijk lumps the viscous and convective term of (4.27) into constant (qi00), linear
(qi0j, qij0, j 6= 0) and quadratic terms (qijk, j 6= 0, k 6= 0) remembering a0≡ 1. Evidently,
equation (5.6) can describe a much richer dynamics than imposed by mean-field
considerations. In principle, even a forced chaotic dynamics would be possible.

The proposed hierarchy of Galerkin models become increasingly general, incorpor-
ating qualitatively new behaviour. GM I is a subset of GM II, GM II a subset of GM
III etc. Or, symbolically,

GM I⊂GM II⊂GM III⊂GM IV⊂GM V⊂GM VI. (5.7)

Many other hierarchies starting with GM I and arriving at GM VI are possible,
e.g. the noise term may be added in the last step. The proposed hierarchy gives
emphasis to the most relevant features in the most simple models.

The coefficients of these Galerkin systems are determined with the 4D-Var method
described in appendix A. This method identifies the best model behaviour as
permissible by the structure and as quantified by the cost function. Alternatively
the model may be derived by a Galerkin projection using the Navier–Stokes equation.
The alternative approach would require us to neglect many terms not consistent with
the mean-field model, a calibration of the cubic and noise term and would need to
be augmented by a subscale turbulence term (Östh et al. 2014).

5.2. Galerkin model I
The dynamics of the actuation off–on–off transient is illustrated in figure 9. The first
two POD mode amplitudes of the simulation are depicted as solid black curve, the
analogue quantities of the model (5.1) are marked as dashed red curve. The temporal
behaviour of the POD mode amplitudes is consistent with the spatial mode structures
shown in figure 8. During the unactuated phase, the POD mode coefficients a1 and
a2 oscillate at the natural shedding frequency ωu = 0.919. When actuation is turned
on, these natural oscillations are suppressed. The simulation shows small fluctuations
at the actuation frequency ωa = 1.96.

The basic Galerkin model I performs as expected. The natural vortex shedding
is well represented until the actuation is turned on. The dynamical system has no
mechanism to revert to the unforced limit-cycle dynamics.
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FIGURE 10. (Colour online) Same as figure 9 but for model II (5.2).
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FIGURE 11. (Colour online) Same as figure 9 but for model III (5.3).

5.3. Galerkin model II

The cubic term of (5.2) features a robust limit-cycle dynamics. In GM I, the initial
growth rate σ1 was approximately zero, while the analogue value of GM II is 2.116.
Figure 10 shows the model dynamics. The ‘resurrection’ of vortex shedding in the
on–off transient was unexpected. The 4D-Var method underpredicts the damping σ

to allow for a residual fluctuation when actuation is turned on. The price for the
poorer performance during the actuation phase is over-compensated by resolving
the limit-cycle dynamics in the final unforced state. This unexpected behaviour can
be considered as over-fitting, as the growth rate calibration anticipates the length
of actuation phase, a transient-dependent control decision which should not be
incorporated in the model parameters. A significantly increased actuation period, for
instance, would have lead to expected irreversible decay of vortex shedding.

5.4. Galerkin model III

The behaviour of GM III is displayed in figure 11. The off–on transient time for
suppression of vortex shedding by forcing is much closer to the simulation reference
data than the analogue data of GM II. Now, the noise term allows the onset of vortex
shedding after suppression. The rise of fluctuations before actuation is turned off may
be considered as an indication of over-fitting of the model parameter for this particular
transient.
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FIGURE 12. (Colour online) Same as figure 9 but for model IV (5.4).

5.5. Galerkin model IV
The performance of GM IV is illustrated in figure 12. The oscillatory dynamics of
a1 and a2 of GM III and GM IV have comparable accuracy. A new feature is the
surprisingly accurate tracking of the shift-mode amplitudes a3 and a4. The actuation
mode a−1 (blowing) changes sharply while the base flow needs time to adjust. The
shift-mode amplitudes a3 and a4 parameterize the near-field and far-field relaxation.
The terms mi,−1 da−1/dt, i= 3, 4 provide delta impulses in (5.4c) and (5.4d) allowing
the tracking of the large initial gradients of the simulation-based amplitudes. Both
shift mode amplitudes relax to zero after this impulse. a3 resolves the near-field
change and is mainly active during the on–off transient. The positive and negative
delta-impulse is briefly visible only in the model, not in the simulation reference.
Apart from these instances, the tracking accuracy can be considered good. a4 resolves
the far-field transients and has opposite signs during off–on and on–off transient.

5.6. Galerkin model V
Figure 13 shows the performance of GM V with high-frequency actuation modes
i = −2, −3 added. GM IV and V are comparable indicating that the (small) high-
frequency modulation is a second-order effect on the vortex shedding. Yet, the flow
response can be felt in the lift coefficients (see § 6).

5.7. Galerkin model VI
Figure 14 depicts the behaviour of GM VI with many additional constant, linear
and quadratic terms. GM IV, V and VI track the reference simulations similarly
well. There is not a single feature which is improved. Even the overshoot of the
oscillation amplitude during the on–off transient is not resolved by the last three
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FIGURE 13. (Colour online) Same as figure 9 but for model V (5.5).

Galerkin models. This comparison corroborates that Galerkin model IV incorporates
the natural dynamics and main actuation mechanisms. Adding the high-frequency
actuation component or adding many more terms does not visibly improve the model
performance. In retrospect, this hierarchy of Galerkin models justify the mean-field
assumptions for the derivation of sparse propagators with a small number of terms.
An alternative data-driven approach for sparse dynamic representations has recently
been proposed by Brunton, Proctor & Kutz (2016).

6. Discussion

The model predictions can be related to any aerodynamic quantity. Since one of the
main objectives of the project is to implement flow control to increase the lift gain
factor, it is natural to evaluate the models’ ability in predicting the lift coefficient Cl.
This coefficient will be inferred from the reduced-order model by assuming that it
is function of the actuation and the POD mode amplitudes i.e. Cl = Cl(a−3, . . . , a4)

(see Bergmann & Cordier 2008; Luchtenburg et al. 2009). We assume that the lift
coefficient is a polynomial expression, where (i) the steady and unsteady actuation
inputs are modelled by a linear combination of a−3, a−2 and a−1, (ii) the oscillatory
behaviour of the lift coefficient is modelled by a linear combination of a1, a2, a3 and
a4, (iii) the influence of the mean-field deformation during transients is taken into
account by a Taylor series of second order in r2 and s2. Thus, the lift coefficient
equation is assumed to be of the following form:

Cl(t)=Cl0 +
−1∑

i=−NA

kiai(t)+
N∑

i=1

kiai(t)+ k5r2 + k6s2 + k7r4 + k8s4, (6.1)
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FIGURE 14. (Colour online) Same as figure 9 but for model VI (5.6).

where Cl0 is a constant. The values of NA and N are dependent of the model that
is considered. The first part of (6.1) up to the quadratic terms follows directly from
the Galerkin expansion (4.27) and the Navier–Stokes equations. The two remaining
fourth-order terms are conjectured to account for unmodelled mode deformations. The
parameters k−3, . . . , k8 were determined from a least-squares fit from the training data
with the two transients. Their values are presented in table 2 for Galerkin model V.

Figure 15 compares the reference URANS lift coefficient (black) with the
reconstructed lift coefficient (red) based on the six Galerkin models presented
in §§ 5.2–5.7. The accuracy of the predicted lift coefficients mirror the previous
behaviour, where a gradual improvement from Galerkin model I to Galerkin model V
and VI is observed. However, since Cl is function of all actuation and POD modes, a
more global picture of the models’ performance now emerges. Most noteworthy are
the resolutions of the second transient and of the high-frequency forcing. It is now
much clearer how the addition of mode 3 and 4 (starting with model IV) acts as a
necessary enabler to resolve the transient dynamics, especially the on–off transient.
The benefits of including higher-order actuation terms can also be observed, where
only Galerkin model V and VI were capable of capturing the high-frequency forcing.

Robustness is a critical criterion for reduced-order models. Two additional numerical
simulations (on–off–on) with different forcing conditions were therefore conducted.
The different forcing conditions were accomplished through variations in the lip
nominal position and amplitude, which translate into variations in the mean blowing
intensity Cµ0 and the blowing amplitudes Cµ1 (§ 2.1). The first validation case
was performed with Cµ0 = 0.027 and Cµ1 = 0.023, whereas the second case with
Cµ0 = 0.032 and Cµ1 = 0.026. Both simulations were performed with the same lip
actuation frequency of ωa = 1.96. All flow conditions (angle of attack, Reynolds
number, Mach number) were kept similar to those of the training dataset.
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FIGURE 15. (Colour online) The reference URANS lift coefficient (black) compared with
the reconstructed lift coefficient (red) based on the six presented Galerkin models.

Parameter Value

Forcing effects
k−3 0.14
k−2 0.65
k−1 −1.04

Linear dynamics

Cl0 1.92
k1 0.03
k2 0.07
k3 0.32
k4 −0.54

Mean-field effects

k5 −9.29
k6 −0.49
k7 23.88
k8 2.10

TABLE 2. Identified parameters of the lift coefficient equation (6.1) for Galerkin
model V .

Figure 16 compares the reference URANS lift coefficient (black) with the
reconstructed lift coefficient (red) based on Galerkin model V. The first validation
case is shown in (a), and the second case in (b). As can be seen, the agreement
between the reference and the reconstructed lift coefficient is favourable. The actuated
state, the unactuated state, as well as the transients between them are well captured.
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FIGURE 16. (Colour online) The reference URANS lift coefficient (black) compared with
the reconstructed lift coefficient (red) based on Galerkin model V: (a) is validation case
1; (b) is validation case 2.

7. Conclusions

The study focuses on transient and post-transient flow around an actuated high-lift
configuration. The actuation is an unsteady Coanda blowing over the flap which
mitigates von Kármán vortex shedding and increases lift by 80 %. We assess a range
of POD-based reduced-order models resolving unactuated and actuated states as
well as off–on and on–off transients. The departure point is a POD model with a
single actuation mode following Graham et al. (1999) and Weller et al. (2009). This
actuation mode resolves the Coanda blowing with strong steady and small oscillatory
component. In this study, we propose a generalized actuation mode concept as a
key enabler for an accurate least-order model. We also offer model improvements
through a stabilizing cubic term representing the mean-field variations and a noise
term modelling the high-frequency background turbulence.

The structure of the dynamical Galerkin system is inferred from mean-field
considerations, while the model parameters are identified with a 4D-Var method.
Typical issues associated with subgrid turbulence and pressure term representation are
bypassed, since these terms are optimally incorporated in the resulting Galerkin
system. Targeting a least-order model, a range of possible dynamical systems
with increasing dynamical resolution ranging from a linear–quadratic to the full
linear–quadratic model was investigated. Only the first four POD modes are retained.
The first two modes represent von Kármán vortex shedding, whereas the third and
fourth modes describe transient base-flow changes under change of actuation. The
third mode is concentrated in the near field while the fourth mode resolves the
far-wake changes.

The simplest model in our hierarchy (GM I) is nothing but a simple oscillator
with an actuation term. It describes the vortex shedding and the first off–on transient.
Expectedly, it fails to resurrect the vortex shedding after complete stabilization
following actuation. The addition of a cubic term (GM II) offers a substitute to the
missing shift mode and consequently a globally stable limit cycle. The first ability of
the Landau oscillator to solve the off–on–off transient is with the introduction of the
noise term (GM III), which simulates the turbulent fluctuations present in a real flow.
Improved modelling of the transient dynamics and the ability for variable growth
rate and variable oscillation frequency are introduced with the addition of mode 3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.380


104 R. Semaan, P. Kumar, M. Burnazzi, G. Tissot, L. Cordier and B. R. Noack

Number Equation Parameters Added features

GM I (5.1) 4 ‘Blow-out’ of vortex shedding from Coanda blowing
GM II (5.2) 6 Stable limit-cycle dynamics by cubic term
GM III (5.3) 7 ‘Resurrection’ of vortex shedding by noise term
GM IV (5.4) 21 Base-flow dynamics from steady component of Coanda blowing
GM V (5.5) 23 Includes effect of high-frequency blowing component
GM VI (5.6) 148 Includes all coefficients of a Galerkin system

TABLE 3. Hierarchy of Galerkin models. The table lists the number of the model, the
equation, the number of parameters and the added features with respect to the previous
model. For instance, GM III has also the features of GM I and GM II.

and 4 (GM IV). The resolution of the forced high-frequency component is enabled
with the inclusion of higher-order actuation terms, a−2 and a−3 (GM V). Including
all constant, linear and quadratic terms of Galerkin model (GM VI) does not improve
its performance.

Table 3 provides an overview of the model hierarchy and the features added by
a higher-order representation. The table also includes the number of coefficients
computed by the 4D-Var method. We emphasize that the number of coefficients for
the first 5 models is quite modest, ranging from 4 to 23. Each of these coefficients
characterizes a well-defined feature exhibited by the numerical simulation. The
numerical values of these coefficients hardly changes in higher-order models with
new features. Hence, the danger of over-fitting is mitigated by the low number of
tuneable coefficients, by the simple analytical structure of the model, and by the
numerical observation of consistent calibration results. Only the highest-order GM VI
has a substantial number of 148 coefficients making it prone to overfitting. Yet, the
additional coefficients almost vanish and do not give rise to any noticeable change in
the behaviour.

The models with a single actuation mode reproduce the transient and post-transient
flow dynamics, yet the speed of the transients and the amplitude of the base flow
changes are quantitatively under-predicted. The accuracy of the Galerkin model is
significantly increased by transferring the frequency-filtering approach for expansions
modes (Noack et al. 2010) to the actuation modes. This yields an actuation command
with steady and oscillatory components giving rise to a steady and a different
oscillatory flow response. Hence, this response is resolved with three actuation
modes, one for the DC component, and two for the oscillatory one. In hindsight, one
cannot expect a single actuation mode to represent steady blowing and high-frequency
fluctuations. The Galerkin expansion comprising the unactuated mean flow, all four
expansion modes, the cubic term and the noise term (model V) constitutes a robust
flow estimation which is optimally correlated with actuation and is capable of
modelling fast transients.

To the best of our knowledge, the present study is the first to present a lifting
method of POD models that captures the actuation response of different frequencies
from a single actuator. We conjecture that this frequency separation is a good practice
for reduced-order modelling of other shear flows. The hierarchy of investigated
models with the multitude of possible combinations (with or without a noise term,
with or without a cubic term, with or without a shift modes) can be envisaged
as building blocks to model a wide range of possible flows. The success of the
generalized mean-field model underlines the large importance of equivalent linear
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parameter varying models for control design. A linear model which reacts to base-flow
changes is often found to be an adequate plant for control design (Brunton & Noack
2015). Future efforts involve a control design for a companion experiment at the
Collaborative Research Centre (CRC 880), ‘Fundamentals of High Lift of Future
Civil Aircraft’ at the Technical University of Braunschweig. A key challenge is to
implement closed-loop flow control that further increases the lift gain factor towards
a viable STOL aircraft.
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Appendix A. Model identification with 4D-Var
In § 4, reduced-order models based on mean-field considerations and Galerkin

projection of the Navier–Stokes equations onto the Galerkin expansion have been
presented. For the traditional Galerkin approach, the system coefficients can be in
principle determined directly from the Navier–Stokes equations. A subscale turbulence
model that accounts for the unresolved fluctuations is generally required. In this study,
a different path is pursued and the coefficients of the different models are determined
from the flow data. Following Cordier et al. (2013), a 4D-variational data assimilation
(4D-Var) methodology is used as a parameter identification technique. 4D-Var is a
method widely used in meteorology (Navon 2009; Artana et al. 2012) to combine
different sources of inhomogeneous information: a simplified model, noisy and sparse
observations and an a priori knowledge of the solution. The resulting parameter
identification problem is formulated as an optimisation problem, which includes the
initial conditions of the mode amplitudes and the Galerkin system coefficients.

In all considered cases, the Galerkin system is written in the following general
form:

da
dt
= f (a, c),

a(0)= a•(0)+ η,

 (A 1)

where c contains all model coefficients, a• denotes the POD reference value and η is
a perturbation of the initial conditions employed to improve the identification process.

The 4D-Var method seeks (η, c) that minimizes the cost functional

J 4D-Var(η, c, a)= 1
2

∫ To

0
‖H(a)−Y ‖2

R−1 dt+ 1
2
‖η‖2

B−1 + 1
2
‖c− cBg‖2

C−1, (A 2)
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Parameter σ
Bg
1 βBg

r β
Bg
−1 ωBg lBg

33 lBg
34 qBg

344 lBg
44 mBg

4,−1 κBg

Value 1 1
0.422

2
4.5 −6 −0.1 0.5 −2 − 1

2
0.5
4.5 0.1

TABLE 4. Background parameters of model (A 4).

where Y are observations and To is the time horizon of optimization. The nonlinear
operator H, called the observation operator allows the passage from the state space
to the observation space. R, B and C are covariance tensors associated with the
observation, the initial conditions and the model coefficients, respectively. The norms
‖ · ‖R−1 , ‖ · ‖B−1 , ‖ · ‖C−1 , are induced respectively by the inner products associated
with the weight matrices R−1, B−1 and C−1. For instance, the inner product associated
with the state perturbations of η, η′ is given by

(η, η′)B−1 = (η, B−1η′)2 = ηTB−1η′. (A 3)

The other inner products are defined analogously. The role of these norms is to give
more or less confidence in each source of information. The background coefficients
cBg represent a priori knowledge of the model coefficients which can be provided
by Galerkin projection, by a previous identification, or by another knowledge of the
system. Here, the background coefficients cBg are determined by phenomenological
considerations, such that the original dynamics is roughly reproduced. As background
model, we consider a simplified version of (5.4) i.e.

da1

dt
= σ Bga1 −ωBga2 + κBgξ1(t),

da2

dt
= σ Bga2 +ωBga1 + κBgξ1(t),

da3

dt
= lBg

33 a3 + lBg
34 a4 + qBg

344a2
4,

da4

dt
= lBg

44 a4 +mBg
4,−1

da−1

dt
,

σ Bg = σ Bg
1 − βBg

r r2 − βBg
−1a−1,


(A 4)

where the parameters are given in table 4. For all the other parameters appearing
in the Galerkin models of § 5 and not belonging to (A 4), their background values
are zero. In addition, all terms appearing in the background model (A 4) and not
considered in the hierarchy of Galerkin models presented in § 5, are simply ignored.

Considering full knowledge of the dynamics, a natural starting point for model
identification is based on full-state observation where we have

Y = (a•1, a•2, a•3, a•4)
T and H(a)= (a1, a2, a3, a4)

T. (A 5)

We refrain from such a full-state observation, as this would imply a model
identification with a tracking of the oscillation phase over O(100) periods. Such
a phase tracking is neither necessary for the reproduction of the dominant slow
dynamics nor for closed-loop control in which a model prediction horizon of only
few periods is required. Instead, the observations Y are chosen to represent only the
slowly varying dynamics. Modes a1 and a2 are identified to be fast oscillatory modes
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which can be parameterized by a radius r=√a2
1 + a2

2 and an angle θ = arctan(a1/a2),
as in Protas, Noack & Morzyński (2014). In contrast to θ , r is assumed to vary
slowly in time. For the Galerkin models of § 5 where ai, i= 1, . . . , 4, are considered
i.e. for (5.4)–(5.6), we thus define as observations

Y = ((a•1)2 + (a•2)2, a•3, a•4)
T and H(a)= ((a1)

2 + (a2)
2, a3, a4)

T (A 6)

while for the Galerkin models with only a1 and a2, i.e. for (5.1), (5.2) and (5.3), we
define as observations

Y = ((a•1)2 + (a•2)2)T and H(a)= ((a1)
2 + (a2)

2)T. (A 7)

The covariance tensors are chosen as R−1 = I, B−1 = C−1 = σ I, where I is the
identity matrix and σ is a scalar value chosen a posteriori using the classical L-curve
method (Hansen 1992; Cordier, Abou El Majd & Favier 2010). 4D-Var minimization
of (A 2) is then solved iteratively using an adjoint method (Cordier et al. 2013).
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KILLINGSWORTH, N. J. & KRSTIĆ, M. 2006 PID tuning using extremum seeking: online, model-free
performance optimization. IEEE Control Syst. Mag. 26 (1), 70–79.

KIM, J. & BEWLEY, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech.
39, 383–417.

KROLL, N., ROSSOW, C. C., SCHWAMBORN, D., BECKER, K. & HELLER, G. 2002 MEGAFLOW-a
numerical flow simulation tool for transport aircraft design. In ICAS Congress, pp. 1–105.

LACHMANN, G. V. 1961 Boundary Layer and Flow Control: its Principles and Application. Pergamon
Press.

LADYZHENSKAYA, O. A. 1963 The Mathematical Theory of Viscous Incompressible Flow, 1st edn.
Gordon and Breach.

LI, Z., NAVON, I. M., HUSSAIN, M. & DIMET, F. L. 2003 Optimal control of cylinder wakes via
suction and blowing. Comput. Fluids 32, 149–171.
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