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Abstract

We have designed a new logic programming language called LM (Linear Meld) for program-

ming graph-based algorithms in a declarative fashion. Our language is based on linear logic,

an expressive logical system where logical facts can be consumed. Because LM integrates

both classical and linear logic, LM tends to be more expressive than other logic programming

languages. LM programs are naturally concurrent because facts are partitioned by nodes of

a graph data structure. Computation is performed at the node level while communication

happens between connected nodes. In this paper, we present the syntax and operational

semantics of our language and illustrate its use through a number of examples.
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1 Introduction

Due to the popularity of social networks and the explosion of the content available

in the World Wide Web, there has been increased interest in running graph-based

algorithms concurrently. Most of the available frameworks are implemented as

libraries on top of imperative programming languages, which require knowledge of

both the library and the interface, making it difficult for both novice and expert

programmers to learn and use correctly. Reasoning about the programs requires

knowing how the library schedules execution and the operational semantics of the

underlying language.

Some good examples are the Dryad, Pregel and GraphLab systems. The Dryad

system (Isard et al. 2007) is a framework that combines computational vertices

with communication channels (edges) to form a data-flow graph. Each program

is scheduled to run on multiple computers or cores and data is partitioned during

runtime. Routines that run on computational vertices are sequential, with no locking

required. The Pregel system (Malewicz et al. 2010) is also graph-based, although
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programs have a more strict structure. They must be represented as a sequence of

iterations where each iteration is composed of computation and message passing.

Pregel is aimed at solving very big graphs and to scale to large architectures.

GraphLab (Low et al. 2010) is a C++ library for developing parallel machine

learning algorithms. While Pregel uses message passing, GraphLab allows nodes

to have read/write access to different scopes through different concurrent access

models in order to balance performance and data consistency. Each consistency

model provides different guarantees that are suited to multiple classes of algorithms.

GraphLab also provides several schedulers that dictate the order in which node’s

are computed.

An alternative promising approach for graph-based algorithms is logic program-

ming. For instance, the P2 system (Loo et al. 2006), used Datalog to map nodes

of a computer network to a graph, where each node would do computation locally

and could communicate with neighbor nodes. Another good example is the Meld

language, created by Ashley-Rollman et al. (Ashley-Rollman et al. 2007; Ashley-

Rollman et al. 2009). Meld was itself inspired in the P2 system but adapted to the

concept of massively distributed systems made of modular robots with a dynamic

topology. Logic-based systems are more amenable to proof since a program is just

a set of logical clauses.

In this paper, we present a new logic programming language called LM (Linear

Meld) for concurrent programming over graph structures designed to take advantage

of the recent architectures such as multicores or clusters of multicores. LM is based

on the Meld language, but differs from other logic programming languages such

as Datalog or Prolog in three main aspects. First, it integrates both classical logic

and linear logic into the language, allowing some facts to be retracted and asserted

in a logical fashion. Second, unlike Prolog, LM is a bottom up logic programming

language (similar to Datalog) since the database is updated incrementally as rules are

applied. Third, LM is a language created to solve general graph-based algorithms,

unlike P2 or Meld which were designed for more specific domains.

In the following sections, we present the syntax and semantics of our language

and explain how to write programs that take advantage of its expressive power. We

identify three key contributions in our work:

Linear Logic: We integrate linear logic into the original Meld language so that

program state can be encoded naturally. Meld started as a classical logic pro-

gramming language where everything that is derived is true until the end of the

execution. Linear logic turns logical facts into resources that will be consumed

when a rule is applied. In turn, this makes it possible to represent program state

in a natural and declarative fashion.

Concurrency: LM programs are naturally concurrent because facts are partitioned

by vertices of a graph data structure. While the original Meld sees graphs as a

network of robots, we see each node as a member of a distributed data structure.

This is made possible due to the restrictions on derivation rules which only use

local facts but also permit node communication.
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Semantics: Starting from a fragment of linear logic used in LM, we formalize a

high level dynamic semantics that is closely related to this fragment. We then

design a low level dynamic semantics and sketch the soundness proof of our low

level semantics with respect to the high level language specification. The low level

specification provides the basis for a correct implementation of LM.

To realize LM, we have implemented a compiler and a virtual machine that

executes LM programs on multicore machines1. We also have a preliminary version

that runs on networks by using OpenMPI as a communication layer. Our experi-

mental results show that LM has good scalability. Several interesting programs were

implemented such as belief propagation (Gonzalez et al. 2009), belief propagation

with residual splash (Gonzalez et al. 2009), PageRank, graph coloring, N queens,

shortest path, diameter estimation, map reduce, game of life, quick-sort, neural

network training, among others. While these results are evidence that LM is a

promising language, this paper will only focus on the more formal aspects of our

work.

2 LM By Example

Linear Meld (LM) is a forward chaining logic programming language in the style of

Datalog (Ullman 1990). The program is defined as a database of facts and a set of

derivation rules. Initially, we populate the database with the program’s axioms and

then determine which derivation rules can be applied by using the current database.

Once a rule is applied, we derive new facts, which are then added to the database.

If a rule uses linear facts, they are consumed and thus deleted from the database.

The program stops when we reach quiescence, that is, when we can no longer apply

any derivation rule.

The database of facts can be seen as a graph data structure where each node or

vertex contains a fraction of the database. Since derivation rules can only manipulate

facts belonging to a node, we are able to perform independent rule derivations.

Each fact is a predicate on a tuple of values, where the type of the predicate

prescribes the types of the arguments. LM rules are type-checked using the predicate

declarations in the header of the program. LM has a simple type system that includes

types such as node, int, float, string, bool. Recursive types such as list X and pair X;

Y are also allowed.

The first argument of every predicate must be typed as a node. For concurrency

and data partitioning purposes, derivation rules are constrained by the expressions

that can be written in the body. The body of every rule can only refer to facts in the

same node (same first argument). However, the expressions in the head may refer to

other nodes, as long as those nodes are instantiated in the body of the rule.

Each rule in LM has a defined priority that is inferred from its position in the

source file. Rules at the beginning of the file have higher priority. At the node level,

we consider all the new facts that have been not consider yet to create a set of

1 Source code is available at http://github.com/flavioc/meld.
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Fig. 1. Message program.

candidate rules. The set of candidate rules is then applied (by priority) and updated

as new facts are derived.

Our first program example is shown in Fig. 1. This is a message routing program

that simulates message transmission through a network of nodes. We first declare

all the predicates (lines 1-2), which represent the different facts we are going to use.

Predicate edge/2 is a non linear (persistent) predicate and message/3 is linear.

While linear facts may be retracted, persistent facts are always true once they are

derived.

The program rules are declared in lines 4-8, while the program’s axioms are written

in lines 10-11. The general form of a rule is A1, ..., An -o B1, ..., Bm, where A1, ..., An are

matched against local facts and B1, ..., Bm are locally asserted or transmitted to a

neighboring node. When persistent facts are used (line 4) they must be preceded by

! for readability.

The first rule (lines 4-5) grabs the next node in the route list (third argument

of message/3), ensures that a communication edge exists with !edge(A, B) and

derives a new message(B, Content, L) fact at node B. When the route list is

empty, the message has reached its destination and thus it is consumed (rule in lines

7-8). Note that the ’1’ in the head of the rule on line 8 means that nothing is derived.

Figure 2 presents another complete LM program which given a graph of nodes

visits all nodes reachable from node @1. The first rule of the program (lines 6-7)

is fired when a node A has both the visit(A) and unvisited(A) facts. When

fired, we first derive visited(A) to mark node A as visited and use a comprehension

to go through all the edge facts edge(A,B) and derive visit(B) for each one

(comprehensions are explained next in detail). This forces those nodes to be visited.

The second rule (lines 9-10) is fired when a node A is already visited more than

once: we keep the visited(A) fact and delete visit(A). Line 14 starts the process

by asserting the visit(@1) fact.

If the graph is connected, it is easy to prove that every node A will derive

visited(A), regardless of the order in which rules are applied.

3 The LM Language

Table 1 shows the abstract syntax for rules in LM. An LM program Prog consists

of a set of derivation rules Σ and a database D. A derivation rule R may be written

as BE � HE where BE is the body of the rule and HE is the head. We can

https://doi.org/10.1017/S1471068414000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000167


A Linear Logic Programming Language 497

Table 1. Abstract syntax of LM.

Program Prog ::= Σ, D

Set Of Rules Σ ::= · | Σ, R

Database D ::= Γ; Δ

Rule R ::= BE � HE | ∀x.R | [ S ⇒ y; BE ] � HE

Body Expression BE ::= L | P | C | BE,BE | ∃x.BE | 1

Head Expression HE ::= L | P | HE,HE | EE | CE | AE | 1

Linear Fact L ::= l(x̂)

Persistent Fact P ::= !p(x̂)

Constraint C ::= c(x̂)

Selector Operation S ::= min | max | random
Exists Expression EE ::= ∃x̂.SH

Comprehension CE ::= { x̂; BE; SH }
Aggregate AE ::= [ A ⇒ y; x̂; BE; SH1; SH2 ]

Aggregate Operation A ::= min | max | sum | count
Sub-Head SH ::= L | P | SH, SH | 1

Known Linear Facts Δ ::= · | Δ, l(t̂)

Known Persistent Facts Γ ::= · | Γ, !p(t̂)

Fig. 2. Visit program.

also explicitly universally quantify over variables in a rule using ∀x.R. If we want

to control how facts are selected in the body, we may use selectors of the form

[ S ⇒ y; BE ] � HE (explained later).

The body of the rule, BE, may contain linear (L) and persistent (P ) fact expressions

and constraints (C). We can chain those elements by using BE,BE or introduce

body variables using ∃x.BE. Alternatively we can use an empty body by using 1,

which creates an axiom.

Fact expressions are template facts that instantiate variables (from facts in the

database) such as visit(A) in line 10 in Fig. 2. Constraints are boolean expressions

that must be true in order for the rule to be fired (for example, C = A + B).

Constraints use variables from fact expressions and are built using a small func-

tional language that includes mathematical operations, boolean operations, external

functions and literal values.

The head of a rule (HE) contains linear (L) and persistent (P ) fact templates

which are uninstantiated facts and will derive new facts. The head can also have exist

expressions (EE), comprehensions (CE) and aggregates (AE). All those expressions
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may use all the variables instantiated in the body. We can also use an empty head

by choosing 1.

Selectors When a rule body is instantiated using facts from the database, facts are

picked non-deterministically. While our system uses an implementation dependent

order for efficiency reasons, sometimes it is important to sort facts by one of

the arguments because linearity imposes commitment during rule derivation. The

abstract syntax for this expression is [ S ⇒ y; BE ] � HE, where S is the selection

operation and y is the variable in the body BE that represents the value to be

selected according to S . An example using concrete syntax is as follows:

[min => W | !edge(A, B), weight(A, B, W)] -o picked(A, B, W).

In this case, we order the weight facts by W in ascending order and then try to

match them. Other operations available are max and random (to force no pre-defined

order).

Exists Expression Exists expressions (EE) are based on the linear logic term of the

same name and are used to create new node addresses. We can then use the new

address to instantiate new facts for this node. The following example illustrates the

use of the exists expression, where we derive perform-work at a new node B.

do-work(A, W) -o exists B. (perform-work(B, W)).

Comprehensions Sometimes we need to consume a linear fact and then immediately

generate several facts depending on the contents of the database. To solve this

particular need, we created the concept of comprehensions, which are sub-rules

that are applied with all possible combinations of facts from the database. In a

comprehension { x̂; BE; SH }, x̂ is a list of variables, BE is the comprehension’s

body and SH is the head. The body BE is used to generate all possible combinations

for the head SH , according to the facts in the database. Note that BE is also locally

restricted.

We have already seen an example of comprehensions in the visit program (Fig. 2

line 7). Here, we match !edge(A, B) using all the combinations available in the

database and derive visit(B) for each combination.

Aggregates Another useful feature in logic programs is the ability to reduce several

facts into a single fact. In LM we have aggregates (AE), a special kind of sub-rule

similar to comprehensions. In the abstract syntax [ A ⇒ y; x̂; BE; SH1; SH2 ], A

is the aggregate operation, x̂ is the list of variables introduced in BE, SH1 and SH2

and y is the variable in the body BE that represents the values to be aggregated

using A. We use x̂ to try all the combinations of BE, but, in addition to deriving

SH1 for each combination, we aggregate the values represented by y and derive SH2

only once using y.

Let’s consider a database with the following facts and a rule:

price(@1, 3). price(@1, 4). price(@1, 5).
count-prices(@1).
count-prices(A) -o [sum => P | . | price(A, P) | 1 | total(A, P)].

By applying the rule, we consume count-prices(@1) and derive the aggregate

which consumes all the price(@1, P) facts. These are added and total(@1, 12) is
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Fig. 3. Shortest Distance Program.

derived. LM provides aggregate operations such as min (minimum), max (maximum),

sum and count.

4 Some Sample LM Programs

We now present LM programs in order to illustrate common programming tech-

niques2.

Shortest Distance Finding the shortest distance between two nodes in a graph is

another well known graph problem. Fig. 3 presents the LM code to solve this

particular problem.

We use an edge/3 predicate to represent directed edges between nodes and their

corresponding weights. To represent the shortest distance to a node startnode

we have a path(A,D,F) where D is the distance to startnode and F is a flag

to indicate if such distance has been propagated to the neighbors. Since the

distance from the startnode to itself is 0, we start the algorithm with the axiom

path(startnode,0,notused).

The first rule avoids propagating paths with the same distance and the second

rule eliminates paths where the distance is already larger than some other distance.

Finally, the third rule, marks the path as used and propagates the distance to the

neighboring nodes by taking into account the edge weights. Eventually, the program

will reach quiescence and the shortest distance between startnode and finalnode

will be determined.

In the worst case, this algorithm runs in O(NE), where N is the number of nodes

and E is the number of edges. If we decide to always propagate the shortest distance

of the graph, we get Dijkstra’s algorithm (Dijkstra 1959). However, this is not

feasible, since we would need to globally decide which node to run next, removing

concurrency.

PageRank PageRank (Page 2001) is a well known graph algorithm that is used to

compute the relative relevance of web pages. The code for a synchronous version of

the algorithm is shown in Fig. 4. As the name indicates, the pagerank is computed

2 More examples of LM programs are available at http://github.com/flavioc/meld.
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Fig. 4. Synchronous PageRank program.

for a certain number of iterations. The initial pagerank is the same for every page

and is initialized in the first rule (line 12) along with an accumulator.

The second rule of the program (lines 14-15) propagates a newly computed

pagerank value to all neighbors. Each node will then accumulate the pagerank

values that are sent to them through the fourth rule (lines 20-21) and it will

immediately add other currently available values through the use of the aggregate.

When we have accumulated all the values we need, the third rule (lines 17-18) is

fired and a new pagerank value is derived.

N-Queens The N-Queens (Hoffman et al. 1969) puzzle is the problem of placing N

chess queens on an NxN chessboard so that no pair of two queens attack each

other. The specific challenge of finding all the distinct solutions to this problem is a

good benchmark in designing parallel algorithms. The LM solution is presented in

the Appendix.

First, we consider each cell of the chessboard as a node that can communicate

with the adjacent left (left) and adjacent right (right) cells and also with the first

two non-diagonal cells in the next row (down-left and down-right). For instance,

the node at cell (0, 3) (fourth cell in the first row) will connect to cells (0, 2),

(0, 4) and also (1, 1) and (1, 5), respectively. The states are represented as

a list of integers, where each integer is the column number where the queen was

placed. For example [2, 0] means that a queen is placed in cell (0, 0) and another

in cell (1, 2).

An empty state is instantiated in the top-left node (0, 0) and then propagated

to all nodes in the same row (lines 19-20). Each node then tries to place a queen

on their cell and then send a new state to the row below (lines 52-54). Recursively,

when a node receives a new state, it will (i) send the state to the left or to the

right and (ii) try to place the queen in its cell (using test-y, test-diag-left and

test-diag-right). When a cell cannot place a queen, that state is deleted (lines 29,

37 and 45). When the program ends, the states will be placed in the bottom row

(lines 49-50).
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Table 2. Connectives from Linear Logic used in LM.

Connective Description LM Place LM Example

fact(x̂) Linear facts. Body/Head path(A, P)

!fact(x̂) Persistent facts. Body/Head !edge(X, Y, W)

1 Represents rules with an empty head. Head 1

A ⊗ B Connect two expressions. Body/Head p(A), e(A, B)

∀x.A For variables defined in the rule. Rule p(A) � r(A)

∃x.A Instantiates new node variables. Head exists A.(p(A, P))

A � B � means ”linearly implies”. Rule p(A, B) � r(A, B)

A is the body and B is the head.

defA.B Extension called definitions. Used for Head {B | !e(A, B) | v(B)}
comprehensions and aggregates.

Most parallel implementations distribute the search space of the problem by

assigning incomplete boards as tasks to workers. Our approach is unusual because

our tasks are the cells of the board.

5 Proof Theory

We now present the sequent calculus of a fragment of intuitionistic linear logic (Gi-

rard 1987) used by LM followed by the dynamic semantics of LM built on top of

this fragment.

We use a standard set of connectives except the def A connective, which is inspired

on Baelde’s work on least and greatest fixed points in linear logic (Baelde 2012)

and is used to logically justify comprehensions and aggregates. The sequent calculus

(shown in the Appendix) has the form Ψ; Γ; Δ → C , where Ψ is the typed term

context used in the quantifiers, Γ is the set of persistent terms, Δ is the multi-set

of linear propositions and C is the proposition to prove. Table 2 relates linear logic

with LM.

In a comprehension, we want to apply an implication to as many matches as

the database allows. Our approach is to use definitions: given a comprehension

C = { x̂; A; B } with a body A and a head B, then we can build the following

recursive definition:

def C
�
= 1 � ((A � B) ⊗ def C)

We unfold def C to either stop (by selecting 1) or get a linear implication A � B

and a recursive definition. This uses linear logic’s additive conjunction �. This form

of definition does not capture the desired maximality aspect of the comprehension,

since it commits to finding a particular form of proof and not all possible proofs.

The low level operational semantics will ensure maximality.

Aggregates work identically, but they need an extra argument to accumulate the

aggregated value. If a sum aggregate C has the form [ sum ⇒ y; x̂; A; B1; B2 ],

then the definition will be as follows (the aggregate is initiated as def C 0):

def C V
�
= (λv.B2)V � (∀x.((Ax � B1) ⊗ def C (x + V )))
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Fig. 5. High Level Dynamic Semantics.

Dynamic Semantics The dynamic semantics formalize the mechanism of matching

and deriving a single rule at the node level. The semantics receive the node database

and the program’s rules as inputs and return as outputs the consumed linear facts,

derived linear facts and derived persistent facts. Then, it is possible to compute

the program as a sequence of steps, by updating the database through sending or

asserting.

High Level Dynamic Semantics The High Level Dynamic (HLD) Semantics are

closely related to the linear logic fragment presented above. From the sequent

calculus, we consider Γ and Δ the database of persistent and linear facts, respectively.

We consider the rules of the program as persistent linear implications of the form

!(A � B) that we put in a separate context Φ. We ignore the right hand side C of

the calculus and use inversion on the Δ and Γ contexts so that we only have atomic

terms (facts). To apply rules we use chaining by focusing (marc Andreoli 1992) on

the derivation rules of Φ. The HLD semantics are shown in Fig. 5 and are composed

of four judgments:

1. run Γ; Δ; Φ → Ξ′; Δ′; Γ′ picks a rule from Φ and applies it using facts from Γ

and Δ. Ξ′, Δ′ and Γ′ are the outputs of the derivation process. Ξ′ are the linear

facts consumed, Δ′ are the linear facts derived and Γ′ the new persistent facts;

2. apply Γ; Δ;R → Ξ′; Δ′; Γ′ picks a subset of linear facts from Δ and matches the

body of the rule R and then derives the head;
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3. match Γ; Δ → A verifies that all facts in Δ (set of consumed linear facts) prove

A, the body of the rule. The context Γ will be used to prove any persistent term

in A;

4. derive Γ; Δ; Ξ; Γ1; Δ1,Ω → Ξ′; Δ′; Γ′ deconstructs and instantiates the ordered

head terms Ω (we start with the head of the rule B) and adds them to Δ1 and

Γ1, the contexts for the newly derived linear and persistent facts, respectively.

Comprehensions are derived by non-deterministically deciding to apply the com-

prehension (derive � L and derive � R) and then using the match judgment in the

rule derive comp. We note that the HLD semantics do not take distribution into

account, since we assume that the database is global. We do not deal with unification

or quantifiers since this is a well understood problem (Baader and Siekmann 1994).

Low Level Dynamic Semantics The Low Level Dynamic (LLD) Semantics (shown

in the Appendix) improve upon HLD by adding rule priorities, by removing non-

determinism when matching the body of rules by modeling all the matching steps

and by applying comprehensions or aggregates as many times as the database allows.

Selectors can also be trivially implemented in LLD, although they are not shown in

paper.

In LLD we try all the rules in order. For each rule, we use a continuation

stack to store the continuation frames created by each fact template p present in

the body of the rule. Each frame considers all the facts relevant to the template

given the current variable bindings (matchLLD rules), that may or not fail during

the remaining matching process. If we fail, we backtrack to try other alternatives

(through contLLD rules). If the continuation stack becomes empty, we backtrack to

try the next rule (rule contLLD next rule). When we succeed the facts consumed are

known (matchLLD end).

The derivation process in LLD is similar to the one used in HDL, except for the

case of comprehensions or aggregates. For such cases (deriveLLD comp), we need to

create a continuation stack and start matching the body of the expression as we did

before. When we match the body (matchLLDc judgment), we fully derive the head

(deriveLLDc judgment) and then we reuse the continuation stack to find which other

combinations of the database facts can be consumed (deriveLLDc end). By definition,

the continuation stack contains enough information to go through all combinations

in the database.

However, in order to reuse the stack, we need to fix it by removing all the frames

pushed after the first continuation frame of a linear fact. If we tried to use those

frames, we would assumed that the linear facts used by the other frames were still

in the database, but that is not true because they have been consumed during the

first application of the comprehension. For example, if the body is !a(X), b(X), c(X)

and the continuation stack has three frames (one per fact), we cannot backtrack

to the frame of c(X) since at that point the matching process was assuming that

the previous b(X) linear fact was still available. Moreover, we also remove the

consumed linear facts from the frames of b(X) and !a(X) in order to make

the stack fully consistent with the new database. This is performed by rules using

the updateLLD and fixLLD judgments.
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We finally stop applying the comprehension when the continuation stack is empty

(contLLDc end). Aggregates use the same mechanism as comprehensions, however we

also need to keep track of the accumulated value.

Soundness The soundness theorem proves that if a rule was successfully derived in the

LLD semantics then it can also be derived in the HLD semantics. The completeness

theorem cannot be proven since LLD lacks the non-determinism inherent in HLD.

We need prove to prove matching and derivation soundness of LLD in relation to

HLD. The matching soundness lemma uses induction on the size of the continuation

frames, the size of the continuation stack and the size of terms to match.

The derivation soundness lemma is trivial except for the case of comprehen-

sions and aggregates. For such cases we use a modified version of the matching

soundness theorem applied to the comprehension’s body. It gives us n match and n

derive proofs (for maximality) that are used to rebuild the full derivation proof in

HLD. This theorem is proved by induction on the size of the continuation stack and

continuation frames and uses lemmas that prove the correctness of the continuation

stack after each application.3

6 Concurrency

Due to the restrictions on LM rules and the partitioning of facts across the graph,

nodes are able to run rules independently without using other node’s facts. Node

computation follows a don’t care or committed choice non-determinism since any

node can be picked to run as long as it contains enough facts to fire a derivation

rule. Facts coming from other nodes will arrive in order of derivation but may

be considered partially and there is no particular order among the neighborhood.

To improve concurrency, the programmer is encouraged to write rules that take

advantage of non-deterministic execution.

LM programs can then be made parallel by simply processing many nodes simul-

taneously. Our implementation partitions the graph of N nodes into P subgraphs and

then each processing unit will work on its subgraph. For improved load balancing

we use node stealing during starvation. Our results show that LM programs running

on multicores have good scalability. The implementation of the compiler and virtual

machine and the analysis of experimental results will be presented in a future paper.

7 Related Work

To the best of our knowledge, LM is the first bottom-up linear logic programming

language that is intended to be executed over graph structures. Although there are

a few logic programming languages such as P2 (Loo et al. 2006), Meld (Ashley-

Rollman et al. 2009), or Dedalus (Alvaro et al. 2009) that already do this, they are

based on classical logic, where facts are persistent. For most of these systems, there

is no concept of state, except for Dedalus where state is modeled as time.

3 Details can be found in https://github.com/flavioc/formal-meld/blob/master/doc.pdf?
raw=true.
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Linear logic has been used in the past as a basis for logic-based programming

languages (Miller 1985), including bottom-up and top-down programming languages.

Lolli, a programming language presented in (Hodas and Miller 1994), is based

on a fragment of intuitionistic linear logic and proves goals by lazily managing

the context of linear resources during top-down proof search. LolliMon (López

et al. 2005) is a concurrent linear logic programming language that integrates

both bottom-up and top-down search, where top-down search is done sequentially

but bottom-up computations, which are encapsulated inside a monad, can be

performed concurrently. Programs start by performing top-down search but this

can be suspended in order to perform bottom-up search. This concurrent bottom-up

search stops until a fix-point is achieved, after which top-down search is resumed.

LolliMon is derived from the concurrent logical framework called CLF (Watkins

et al. 2004; Cervesato et al. 2002; Watkins et al. 2003).

Since LM is a bottom-up linear logic programming language, it also shares

similarities with Constraint Handling Rules (CHR) (Betz and Frühwirth 2005; Betz

and Frühwirth 2013). CHR is a concurrent committed-choice constraint language

used to write constraint solvers. A CHR program is a set of rules and a set of

constraints. Constraints can be consumed or generated during the application of

rules. Unlike LM, in CHR there is no concept of rule priorities, but there is an

extension to CHR that supports them (De Koninck et al. 2007). Finally, there is

also a CHR extension that adds persistent constraints and it has been proven to be

sound and complete (Betz et al. 2010).

Graph Transformation Systems (GTS) (Ehrig and Padberg 2004), commonly used

to model distributed systems, perform rewriting of graphs through a set of graph

productions. GTS also introduces concepts of concurrency, where it may be possible

to apply several transformations at the same time. In principle, it should be possible

to model LM programs as a graph transformation: we directly map the LM graph of

nodes to GTS’s initial graph and consider logical facts as nodes that are connected

to LM’s nodes. Each LM rule is then a graph production that manipulates the

node’s neighbors (the database) or sends new facts to other nodes. On the other

hand, it is also possible to embed GTS inside CHR (Raiser and Frühwirth 2011).

8 Closing Remarks

In this paper, we have presented LM, a new linear logic programming language

designed with concurrency in mind. LM is a bottom-up logic language that can

naturally model state due to its foundations on linear logic. We presented several

LM programs that show the viability of linear logic programming to solve interesting

graph-based problems.

We also gave an overview of the formal system behind LM, namely, the fragment

of linear logic used in the language, along with the high level and low level dynamic

semantics. While the former is closely tied to linear logic, the latter is closer to a real

implementation. The low level semantics can be used as a blueprint for someone

that intends to implement LM.
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