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We perform Lagrangian investigations of the dynamics of velocity gradients in
compressible decaying turbulence. Specifically, we examine the evolution of the
invariants of the velocity-gradient tensor. We employ well-resolved direct numerical
simulations over a range of Mach number along with a Lagrangian particle tracker
to examine trajectories of fluid particles in the space of the invariants of the velocity
gradient tensor. This allows us to accurately measure the lifetimes of major topologies
of compressible turbulence and provide an explanation of why some selective
topologies tend to exist longer than the others. Further, the influence of dilatation on
the lifetime of various topologies is examined. Finally, we explain why the so-called
conditional mean trajectories (CMT) used previously by several researchers fail to
predict the lifetime of topologies accurately.
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1. Introduction
Gradients of the velocity field and its dynamics in a turbulent flow influence

many important nonlinear turbulence processes like cascade, mixing, intermittency
and material element deformation. Thus, examination of the velocity-gradient tensor
in canonical turbulent flow fields has been a subject of interest. Various studies
have been performed employing experimental measurements (Lüthi, Tsinober &
Kinzelbach 2005), direct numerical simulations (DNS) (Ashurst et al. 1987b) as well
as simple autonomous dynamical models (ordinary differential equations) (Vieillefosse
1982; Cantwell 1992) of velocity gradients. The pioneering works done by these
authors have been further followed up extensively by several researchers for both
incompressible (Ashurst, Chen & Rogers 1987a; Girimaji & Pope 1990a; Ohkitani
1993; Pumir 1994; Soria et al. 1994; Girimaji & Speziale 1995; O’Neill & Soria
2005; Chevillard & Meneveau 2006; da Silva & Pereira 2008; Chevillard & Meneveau
2011) and compressible turbulence (Pirozzoli & Grasso 2004; Suman & Girimaji 2009,
2010, 2012; Wang & Lu 2012; Vaghefi & Madnia 2015; Danish, Sinha & Srinivasan
2016a; Parashar et al. 2017a).
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Most DNS or experiment-based studies of turbulent flows have so far been
performed using the Eulerian approach. However, it is desirable to investigate flow
physics following individual fluid particles (via Lagrangian tracking) as well. Such
an investigation is especially required for developing/improving simple dynamical
models of velocity gradients like the restricted Euler equation (REE) (Cantwell
1992; Girimaji & Speziale 1995; Meneveau 2011) and the enhanced homogenised
Euler equation model of Suman & Girimaji (2009). Such simple models, in turn,
can be used for the closure of the Lagrangian probability density function (PDF)
method of turbulence (Pope 2002). An apt example of how Lagrangian statistics
can reveal more insights into velocity-gradient dynamics is the recent experimental
study of Xu, Pumir & Bodenschatz (2011), wherein the authors provided evidence
of the so-called ‘Pirouette effect’. Even though the vorticity vector had always been
expected to align with the largest strain-rate eigenvector, the Eulerian investigations
performed by Ashurst et al. (1987b) revealed a counter-intuitive picture of vorticity
aligning most strongly with the intermediate eigenvector of the instantaneous local
strain-rate tensor. Xu et al. (2011), with their experimental Lagrangian investigations,
provided experimental evidence that indeed the vorticity vector dynamically attempts
to align with the largest strain-rate eigenvector of an initial reference time. Buxton &
Ganapathisubramani (2010) and Bechlars & Sandberg (2017b) provide similar insights
regarding vorticity–strain alignment tendencies using their Eulerian approach as well.

In incompressible flows, Lagrangian studies using the direct numerical simulation
of decaying turbulence have been performed earlier by Yeung & Pope (1989) and
Girimaji & Pope (1990b). Yeung & Pope (1989) focused on Lagrangian statistics of
velocity, acceleration and dissipation. Girimaji & Pope (1990b) examined the evolution
of material elements in incompressible decaying turbulence. Recently, Xu et al. (2011)
have complemented their experimental observations of vorticity alignment with the
Lagrangian data extracted from DNS of forced isotropic turbulence as well. Chevillard
& Meneveau (2011) evaluated the Lagrangian model for the velocity-gradient tensor
for its capability in predicting vorticity alignment using Lagrangian data obtained
from DNS of forced isotropic turbulent flow. Bhatnagar et al. (2016) quantified
the persistence time of fluid particles in vorticity-dominated and strain-dominated
topologies using Lagrangian data obtained from DNS of isotropic incompressible
turbulence.

In compressible turbulence, Lagrangian statistics of velocity gradients have been
recently studied by Danish et al. (2016a) and Parashar et al. (2017a). While Danish
et al. (2016a) provided first glimpses of compressibility effects on the alignment
tendencies of the vorticity vector, Parashar et al. (2017a) followed it up and made
attempts at explaining the observed behaviour in terms of the dynamics of the inertia
tensor of fluid particles and the angular momentum of tetrads representing fluid
elements. In continuation of our effort to develop deeper insight into the dynamics of
small-scale turbulence from a Lagrangian perspective, in this work, we focus on the
lifetimes of the flow-field topology and their conversion tendencies in compressible
turbulence.

We examine the evolution of flow-field topology in compressible turbulence
following the Lagrangian trajectories (LT) of the invariants of the velocity-gradient
tensors. Topology can be visualised as the local streamline pattern, observed with
respect to a reference frame which is translating with the centre of mass of a local
fluid element (Chong, Perry & Cantwell 1990). Topology actually depends on the
nature of the eigenvalues of the velocity-gradient tensor (VGT), but can also be
readily determined by knowing the three invariants of the VGT (Cantwell & Coles
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1983; Chong et al. 1990). Flow-field topology can also be used for visualisation of
a flow field. Further, topology has been shown to reveal deeper insights into various
nonlinear turbulence processes as well (Cantwell 1993; Soria et al. 1994). Recently,
Danish, Suman & Girimaji (2016b) have attempted to develop models for scalar
mixing using topology as a conditioning parameter.

The time spent by fluid particles in different topological states is of significance in
raindrop formation (Pinsky & Khain 1997) and the formation of proplanetary disks
(Armitage 2010) as well. Traditionally, due to the prohibitive demand of computational
resources, the dynamics of the topology has been studied employing an approximate
surrogate method called the conditional mean trajectory (CMT). The idea of CMT was
proposed by Martín et al. (1998), who employed merely a one-time velocity gradient
field and computed bin-averaged rates of change of second and third invariants of
VGT using the right-hand sides of the evolution equations of the invariants. These
averaged rates of change conditioned upon their locations were subsequently used to
plot trajectories in the space of VGT invariants. The authors called these trajectories
conditional mean trajectories (CMT) and used them as a surrogate approach to
study the invariant dynamics. Subsequently, several authors have employed CMTs
to investigate various aspects of topology dynamics both for incompressible (Martín
et al. 1998; Ooi et al. 1999; Elsinga & Marusic 2010; Meneveau 2011; Atkinson
et al. 2012; Zhou et al. 2015) and compressible flows (Chu & Lu 2013; Bechlars &
Sandberg 2017a). Even though CMTs do provide some useful information about the
dynamics of invariants, they remain approximate and merely a surrogate approach in
the absence of adequate computational resources (Martín et al. 1998). An investigation
of the exact Lagrangian dynamics in compressible turbulence must be performed for
better insight, if adequate computational resources are available. This is the motivation
for our employment of the LTs to investigate the lifetimes of topologies and their
conversion tendencies in compressible turbulence.

To address the objectives of this paper, we employ direct numerical simulations of
decaying isotropic compressible turbulence over a range of turbulent Mach numbers
(0.4–0.8) using computational grids up to 10243. The Lagrangian dynamics is obtained
using an almost time continuous set of Eulerian flow fields along with a spline-aided
Lagrangian particle tracker (more details in § 3).

This paper is organised into seven sections. In § 2 we present the governing
equations. In § 3 we provide details of our direct numerical simulations as well as
the Lagrangian particle tracker. In § 4 we present the governing equations of the
velocity-gradient invariants and cast them in a form suitable for our study. In § 5 we
present our results on lifetimes of various flow topologies existing in compressible
turbulence, and further compare our results of CMTs with LTs. We explain the
significance and implications of our work in § 6. Section 7 concludes the paper with
a summary of the main results.

2. Governing equations
The time evolution of a compressible flow field is governed by the following

equations:

∂ρ

∂t
+ Vk

∂ρ

∂xk
=−ρ

∂Vk

∂xk
; (2.1)

∂Vi

∂t
+ Vk

∂Vi

∂xk
=−

1
ρ

∂p
∂xi
+

1
ρ

∂σik

∂xk
; (2.2)
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∂T
∂t
+ Vk

∂T
∂xk
=−T(n− 1)

∂Vi

∂xi
−

n− 1
ρR

∂qk

∂xk
+

n− 1
ρR

∂

∂xj
(Viσji); (2.3)

p= ρRT, (2.4)

where Vi and xi represent the velocity and position, respectively. Various thermody-
namic properties are represented by ρ (density), p (pressure) and T (temperature),
while R and n denotes the gas constant and specific heat ratio, respectively. Equation
(2.1) is the continuity equation, equation (2.2) represents the momentum conservation
equations, (2.3) is the equation of energy conservation and (2.4) is the equation of
state for a perfect gas. Heat flux (qk) and the viscous stress tensor (σij) are found
using the following constitutive relationships:

σij =µ

(
∂Vi

∂xj
+
∂Vj

∂xi

)
+ δijλ

∂Vk

∂xk
; (2.5)

qk =−K
∂T
∂xk

, (2.6)

where K is the thermal conductivity, µ is the first coefficient of viscosity and λ
denotes the second coefficient of viscosity (λ=−(2µ/3)).

In this work we use the symbol Aij to denote the components of the velocity-
gradient tensor,

Aij ≡
∂Vi

∂xj
. (2.7)

By taking the gradient of momentum (2.2), the exact evolution equation of Aij can be
obtained,

DAij

Dt
= −AikAkj −

∂

∂xj

(
1
ρ

∂p
∂xi

)
︸ ︷︷ ︸

Pij

+
∂

∂xj

{
1
ρ

∂

∂xk

[
µ

(
∂Vi

∂xk
+
∂Vk

∂xi
−

2
3
∂Vp

∂xp
δik

)]}
︸ ︷︷ ︸

Υij

, (2.8)

where Pij is the pressure Hessian tensor and Υij is the viscous process governing the
evolution of the velocity-gradient tensor. The rate of change following a fluid particle
is calculated using the substantial derivative, which is represented by the operator
D/Dt(≡ (∂/∂t)+ Vk∂/∂xk).

3. Direct numerical simulations and particle tracking
Our direct numerical simulations have been performed using the gas kinetic method

(GKM). GKM was originally developed by Xu (2001) and has been shown to be quite
robust in terms of numerical stability. Further, GKM has the ability to capture shocks
without producing numerical oscillations. In the recent past several researchers have
employed GKM to simulate compressible decaying turbulence (Kerimo & Girimaji
2007; Liao, Peng & Luo 2009; Kumar, Girimaji & Kerimo 2013; Parashar et al.
2017b).
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Simulation Mt Reλ Grid size A0 κ0

A 0.488 175 2563 0.011 4
B 0.4 250 10243 0.00066 4
C 0.6 250 10243 0.0015 4
D 0.8 250 10243 0.0027 4
E 0.075 70 2563 0.000023 4

TABLE 1. Initial parameters of DNS simulations.

Our computational domain is of size 2π with a uniform grid and periodic boundary
conditions imposed on opposite sides of the domain. The initial velocity field is
generated at random with zero mean and having the following energy spectrum
E(κ):

E(κ)= A0κ
4exp

(
−2κ2/κ2

0

)
, (3.1)

where κ is the wavenumber. Values for spectrum constants A0 and κ0 are provided in
table 1 for various simulations employed in this work. The initial temperature, pressure
and density fields are uniform. The relevant Reynolds number for isotropic turbulence
is the one based on Taylor micro-scale (Reλ),

Reλ =

√
20

3εν
k, (3.2)

where k, ε and ν represent turbulent kinetic energy, its dissipation rate and kinematic
viscosity. For compressible isotropic turbulence, the relevant Mach number is the
turbulent Mach number (Mt),

Mt =

√
2k

nRT
, (3.3)

where T represents mean temperature. Following the work of Kumar et al. (2013),
we have used a fourth-order accurate weighted essentially non-oscillatory (WENO)
method for interpolation of flow variables. Various parameters of the simulations are
presented in table 1.

We first show validation of the results from our numerical scheme (GKM) against
high-order compressible results of Samtaney, Pullin & Kosovic (2001) (Simulation A,
table 1). In figure 1(a) we present the evolution of turbulent kinetic energy (k). In
figure 1(b), we present the root mean square (r.m.s.) velocity divergence (θ ) which is
defined as,

θ =

〈(
∂V ′i
∂xi

)2
〉1/2

, (3.4)

where ′ denotes fluctuation. Further, in figure 1(c), we plot the probability distribution
function of the local Mach number (Mloc), where

Mloc =

√
V
′

i V
′

i

nRT
. (3.5)
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FIGURE 1. Validation of the GKM solver. PDF of Mloc is presented at 1.56 eddy-turnover
times.
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FIGURE 2. Evolution of (a) normalised turbulent kinetic energy k/k0, (b) normalised
dissipation rate (ε/ε0), (c) PDF of local Mach number and (d) normalised energy spectra
of Simulations B–D (t= 3τ ).

Note that time in these figures have been normalised using τ , which represents the
eddy-turnover time (Yeung & Pope 1989; Elghobashi & Truesdell 1992; Samtaney
et al. 2001; Martín et al. 2006),

τ =
λ0

u′0
, (3.6)

where u′0 is the root mean square (r.m.s.) velocity, and λ0 is the integral length scale of
the initial flow field (at time, t= 0). It can be observed that for all the three statistics
shown in figure 1, the results from GKM show excellent agreement with the results of
Samtaney et al. (2001). In figures 2(a) and 2(b) we present the evolution of turbulent
kinetic energy (k) and dissipation rate (ε) of Simulations B–D. In figures 2(c) and 2(d)
we present the PDF of local Mach number and energy spectra at t= 3τ of Simulations
B–D.

For our study various Lagrangian statistics are obtained using a Lagrangian particle
tracker (LPT), which extracts the time history of tagged fluid particles. The trajectory
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(X+(y, t)) of a fluid particle is obtained (using LPT) by solving the following equation
of motion:

∂X+(t, y)
∂t

=V(X+(t, y), t), (3.7)

where y indicates the label/tag assigned to the fluid particle at the initial time (t= 0)
and the superscript ‘+’ represents Lagrangian flow variable (or equivalently, y). To
comply with the initial uniform density field, we consistently choose initial values
of X+ at random using the uniformly distributed probability density function of the
spatial coordinates at t= 0. Subsequently, equation (3.7) is integrated using a second-
order Runge–Kutta method. As suggested by Yeung & Pope (1988), we employ a
cubic spline based interpolation to find flow properties at spatial locations which do
not coincide with the grid points of the computational domain. Further details of
validation of our DNS solver and LPT algorithm are available in Danish et al. (2016a)
and Parashar et al. (2017a). In the next sections, unless specified otherwise, results are
presented from Simulation D.

4. Velocity-gradient invariants and flow-field topology

The topology associated with a fluid element is the local streamline pattern in its
vicinity as observed with respect to a reference frame which is purely translating
with the centre of mass of the fluid element. Topology depends on the nature of the
eigenvalues of the local state of the velocity-gradient tensor. However, it can also be
inferred with a knowledge of the three invariants (P, Q, R) of the velocity-gradient
tensor,

and
P=−Aii; Q= 1

2(P
2
− AijAji);

R= 1
3(−P3

+ 3PQ− AijAjkAki).

}
(4.1)

Correspondingly, the invariants (p, q, r) of the normalised velocity-gradient tensor (aij)
are defined as Suman & Girimaji (2010):

aij =
Aij

√
AmnAmn

; p=−aii;

q= 1
2(p

2
− aijaji); and r= 1

3(−p3
+ 3pq− aijajkaki).

 (4.2)

Chong et al. (1990) categorise topological patterns (table 2) of an incompressible
field into unstable-node-saddle-saddle (UNSS), stable-node-saddle-saddle (SNSS),
stable-focus-stretching (SFS) and unstable-focus-compressing (UFC). In compressible
flows, four additional major topologies can exist: stable-focus-stretching (SFS) and
stable-node/stable-node/stable-node (SNSNSN), which are associated with contracting
fluid particles, and unstable-focus-stretching (UFS) and unstable-node/unstable-
node/unstable-node (UNUNUN), which are associated with expanding fluid particles.
Figure 3 shows different regions in the p–q–r space associated with different
topologies. The reader is referred to Chong et al. (1990) for further details on
flow-field topology.

Since the value of the three invariants of the velocity-gradient tensor uniquely
determines the topology associated with a local fluid element, the dynamics of
topology can be studied in terms of the dynamics of the invariants themselves. Using
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q-axis
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0

0
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SN/SN/SN

SN/S/S
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UN/S/S

FIGURE 3. Regions of different flow topologies in different p-planes: (a) p< 0, (b) p> 0
and (c) p= 0.

the evolution equation of the velocity-gradient tensor (2.8), the time evolution of
invariants (P, Q, R) can be expressed (Bechlars & Sandberg 2017a),

dP
dt
= P2
− 2Q− Sii;

dQ
dt
=QP−

2P
3

Sii − 3R− AijS
∗

ji;

dR
dt
=−

Q
3

Sii + PR− PAijS
∗

ji − AikAkjS
∗

ji,


(4.3)

where Sij is the source term in the evolution equation of velocity-gradient tensor (2.8)
and the symbol S∗ij is the traceless part of the Sij tensor,

Sij =−Pij +Υij;

S∗ij = Sij −
Skk

3
δij.

}
(4.4)

Here Pij is the pressure Hessian tensor and Υij represents the viscous process in the
evolution equation of the velocity-gradient tensor (2.8).

The relationship between the non-normalised invariants (P, Q, R) and normalised
invariants (p, q, r) is

p=
P

√
AijAij
; q=

Q
AijAij
; and r=

R
(AijAij)3/2

. (4.5a−c)
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Acronyms p= 0 p< 0 p> 0 Eigenvalues of aij

SFS r< 0 r< 0 and S2> 0 r< 0 Complex
UFC r> 0 r> 0 r> 0 and S2< 0 Complex
UNSS r> 0 and q< 0 r> 0 r> 0 and q< 0 Real
SNSS r< 0 and q< 0 r< 0 and q< 0 r< 0 Real
UFS — r< 0 and S2< 0 — Complex
UN/UN/UN — r< 0 and q> 0 — Real
SFC — — r> 0 and S2> 0 Complex
SN/SN/SN — — q> 0 and r> 0 Real

TABLE 2. Zones of various topologies in p–q–r space, where acronyms are:
stable-focus-stretching (SFS), unstable-focus-compressing (UFC), unstable-node/saddle/
saddle (UNSS), stable-node/saddle/saddle (SNSS), unstable-focus-stretching (UFS),
unstable-node/unstable-node/unstable node (UN/UN/UN), stable-focus-compressing (SFC),
stable-node/stable-node/stable-node (SN/SN/SN). S1 and S2 are the curves separating the
regions of real and imaginary eigenvalues of A (Chong et al. 1990).

Using (4.3) and (4.5a–c), the evolution equation of the normalised invariants (p, q, r)
can be derived as:

dp
dt
=

d
dt

(
P

√
AijAij

)
=

1
√

AijAij

dP
dt
−

P
(AijAij)3/2

Aij
dAij

dt
;

dq
dt
=

d
dt

(
Q

AijAij

)
=

1
AijAij

dQ
dt
−

2Q
(AijAij)2

Aij
dAij

dt
;

dr
dt
=

d
dt

(
R

(AijAij)3/2

)
=

1
(AijAij)3/2

dQ
dt
−

3R
(AijAij)5/2

Aij
dAij

dt
.


(4.6)

While following an identified fluid particle in physical space and tracking its
invariants information, we can track the footprints of the fluid particle in the p–q–r
space as well. We refer to such a trajectory of the fluid particle in p–q–r space as
the Lagrangian trajectory (LT).

5. Lifetimes of topologies
Two pertinent questions to address while studying the dynamics of velocity

gradients and flow-field topology are how long a topology lasts, and how compress-
ibility influences that. In this section we address these questions. We quantify the
lifetime of a topology as the time it takes for a fluid particle to change its topology
from the one it had at a reference time tref . We express this time non-dimensionalised
by the Kolmogorov time scale (τκ) of the homogeneous flow field at tref . We refer to
the normalised lifetime of a given topology (T ) thus obtained as

LT = 2
t∗ − tref

τκ
, (5.1)

where t∗ denotes the time instant when the topology T associated with a tagged fluid
particle at tref changes to some other topology. Correspondingly, the mean value of
LT is calculated by following a large number of tagged particles which have the same
topology T at tref ,

〈LT 〉 = 2
〈t∗ − tref 〉

τκ
, (5.2)
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FIGURE 4. Value of 〈LT |aii〉 (bin size aii ± 0.05) for 6 major topologies: (a) UNSS,
(b) SNSS, (c) SFS, (d) UFC, (e) UFS and ( f ) SFC. SymbolA, +,@ represent lifetime
of topology for Simulations B, C and D, respectively. Here tref = 3τ .

Simulation UNSS SNSS SFS UFC UFS SFC

B 3.35 1.09 5.04 3.13 0.51 0.46
C 2.53 0.83 3.42 2.21 0.50 0.44
D 2.08 0.64 2.37 1.67 0.51 0.43

TABLE 3. Influence of Mt on mean 〈LT 〉. Flow fields at t= 3τ from Simulations B, C
and D have been used.

where 〈 〉 represents an averaged value over various LTs. Note that the factor 2 is
included in our definitions (5.1) and (5.2) to statistically account for the fact that the
particles which are identified with a given topology (T ) at a chosen reference time
(tref ) for our analysis might not have necessarily attained that topology exactly at tref ;
those particles might have existed with that same topological state for some duration
prior to tref .

In our calculations and analysis of lifetime of topologies we employ the data fields
of Simulations B–D, and in each case tref = 3τ . A total sample size of 1 000 000
particles is used for calculating the mean lifetime of the topologies. To identify the
role of compressibility on the lifetimes, we examine 〈LT 〉 conditioned upon discrete
values of aii at the reference time (tref ). These conditioned lifetimes are represented
as 〈LT |aii〉.

In table 3 we present mean lifetimes 〈LT 〉 of topologies. The six major topologies
that exist in compressible turbulence are considered (UNSS, SNSS, SFC, SFS, UFC
and UFS). We also present mean lifetimes of various topologies conditioned upon
different initial dilatation levels (〈LT |aii〉) in figure 4. Each panel corresponds to a
specific topology. Further, to identify the role of initial turbulent Mach number Mt, we
have calculated both 〈LT 〉 and 〈LT |aii〉 using Simulations B–D. All these simulations
have identical initial Reynolds number (250), but different initial Mach number
(0.4, 0.6 and 0.8).
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We observe that the compressibility parameters, dilatation and initial Mach numbers
influence the lifetimes of the topologies, but selectively. Mean lifetimes of UNSS
(figure 4a), UFC (figure 4c) and SFS (figure 4d) topologies seem to be more sensitive
to both the Mach number and dilatation as compared to those of the other topologies.
As the level of dilatation increases from high negative values to zero dilatation,
lifetimes of these topologies increase. On the other hand, however, as we move from
zero to positive dilatation, lifetimes seem to decrease again. Further, the lifetime
of these topologies (UNSS, UFC and SFS) tend to decrease with an increase in
initial turbulent Mach number as shown in figure 4(a,c,d). In contrast to the UNSS,
UFC and SFS topologies, the other three major topologies exiting in a compressible
flow field, SNSS, UFS and SFC, seem to last for more or less the same amount of
time, showing not much sensitivity to either dilatation rate or Mach number. Further,
we would like to mention that the statistics of the lifetimes presented in figure 4
have been found to be fairly independent of the choice of tref over a wide range,
tref ∈ [τ , 5τ ].

5.1. Factors influencing lifetimes of topologies
To further understand the behaviour observed in figure 4, we investigate two
prospective reasons which may influence the lifetime of a topology of a fluid particle
as it moves in the p–q–r space: (i) the actual volume available to a topology in
the p–q–r space, and (ii) the velocity of the fluid particles in the p–q–r space. The
velocity of a particle in the p–q–r space can be defined as the rate at which its three
invariants, p, q and r, change with time. This rate is quantified as a velocity vector
in the p–q–r space. We denote this velocity vector by Upqr,

Upqr =
dp
dt

p̂+
dq
dt

q̂+
dr
dt

r̂, (5.3)

where dp/dt, dq/dt and dr/dt are rates of change of the invariants following a fluid
particle in accordance with (4.6). The symbols p̂, q̂ and r̂ denote the unit vectors
along the three mutually perpendicular axes of the p, q and r coordinates. The quantity
Upqr is indeed a measure of how fast the footprint of a fluid particle is changing in the
p–q–r space. The component dp/dtp̂ is the rate of movement of a particle perpendicular
to the q–r plane, whereas dq/dtq̂+ dr/dtr̂ is the projection of Upqr on the q–r plane.
We denote this part of the velocity vector by Uqr,

Uqr =
dq
dt

q̂+
dr
dt

r̂. (5.4)

The quantity dp/dt represents how fast dilatation changes along the trajectories.
This is indeed negative of the rate of change in dilatation rate, and thus directly
influences fluid density. In numerical simulations of strictly incompressible turbulence,
wherein the pressure evolves through Poisson’s equation, dp/dt is trivially zero.
However, in compressible flows, the dynamics of the first invariant (P) of the
velocity-gradient tensor is governed by the imbalance between the pressure and
inertial processes. Sarkar, Erlebacher & Hussaini (1991) showed that the r.m.s. of
dilatation (P= p

√
AmnAmn) is proportional to the square of the turbulent Mach number

in decaying compressible turbulence.
It is expected that a smaller volume available to a topology in the p–q–r space

will be a contributing factor towards decreasing the lifetime of a topology, because
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FIGURE 5. Value of 〈|Upqr|〉 conditioned upon topology (T ) and dilatation level (aii) at
t = 3τ (symbol @), 〈|dp/dt|〉 (symbol u) and 〈|Uqr|〉 (symbol +) (a) UNSS, (b) SNSS,
(c) SFS, (d) UFC, (e) UFS and ( f ) SFC. (All results from Simulation D.)

p (−aii) UNSS SNSS SFS UFC UFS SFC SNSNSN UNUNUN

−ve 0.04 0.01 0.08 0.10 0.08 0 0 0.01
+ve 0.01 0.04 0.01 0.08 0 0.08 0.01 0

TABLE 4. Available volumes for different topologies in the p–q–r space.

a particle even if moving slowly is expected to cross-over to the territory of a
neighbouring topology sooner. On the other hand, a high magnitude of Upqr of
a fluid particle in the p–q–r space is expected to bring the particle closer to the
bounding surfaces (figure 3) quickly and thus contributing to a reduction in lifetime
of the topology associated with that fluid particle. In table 4 we present the volumes
associated with the six major topologies that exist in compressible turbulence in the
space of the normalised invariants p, q and r. These volumes have been reported
separately on the positive and the negative side of the p-axis. In figure 5(a–f ) we
present the mean value of |Upqr| calculated by taking the average of |Upqr| conditioned
upon topology (T ) and dilatation level (aii) at t = 3τ . Further, conditional means of
|dp/dt| and |Uqr| are also shown.

We observe that in all topologies the trends in the variation of |dp/dt| and |Uqr|

with dilatation (aii) are qualitatively similar. However, the mean value of |dp/dt| seems
to be significantly higher than those of |Uqr|. This observation may give an initial
impression that the transition of particles from their original topological states to other
states must be driven by the movement of particles along the p-axis alone rather than
any significant movement along q̂ or r̂. However, our investigation shows that despite
|dp/dt| being the dominant contributor to the magnitude of Upqr, the particle-averaged
displacement achieved during the elapsed time t∗ − tref in the p-direction is actually
comparable to the displacements in the q- and the r-directions (table 5) during the
same time period. Thus, topological transitions are not determined by the movement of
particles in the p-direction alone: |Uqr| is still an important contributor in determining
topological transitions and thus the lifetimes of topologies.
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aii at tref Along p̂ Along q̂ Along r̂

−0.5 0.11 0.09 0.10
0 0.05 0.09 0.08
+0.5 0.12 0.11 0.12

TABLE 5. Particle-averaged magnitudes of net displacements along the p̂, q̂ and r̂
directions during t∗ − tref (5.1) (normalised by 2

√
3, 1 and 2

√
3/9, respectively; these

numbers are the algebraic extents of p, q and r, respectively).

We now examine if the volume measures available in table 4 and the conditional
mean values of |Upqr| available in figure 5 can help us understand the variation
of the lifetimes reported in figure 4. We begin our discussion with the UNSS and
SNSS topologies. In figure 5 we observe that the mean value of |Upqr| is higher
at positive/negative dilatations than what it is at zero dilatation. Moreover, if we
compare only the high positive and high negative dilatations, the mean velocity is
somewhat higher at negative dilatations. On the other hand, table 4 shows that the
available volume of the UNSS topology on the negative side is less than what it is
on the positive side. A higher mean velocity associated with a smaller volume on
the aii < 0 side allows a particle with initial UNSS topology to quickly cross-over to
the territory of the neighbouring topologies, making its lifetime low, as observed in
figure 4(a). At zero dilatation, the velocity drops significantly, thus allowing the fluid
element to stay inside the UNSS territory for a longer duration. At positive dilatation
levels, even though the velocity is high, a significant increase in the volume of UNSS
allows the lifetime to decrease moderately, as evident in figure 4(a). In the case of the
SNSS topology, as dilatation increases from high negative dilatation to high positive
dilatation levels, the volume decreases. Velocity, however, decreases from a high value
at negative to a very low value at zero dilatation (figure 5b). The drop in the available
volume seems to be offset by a decrease in velocity keeping the average lifetime
of the topology more or less at the same level as it was at high negative dilatation.
When dilatation increases to positive values, velocity increases (figure 5) – although
not as much as it was at the negative dilatations and thus, even a decrease in volume
results in only a small increase in the lifetime (figure 4b). A similar explanation can
be provided for the variation in lifetimes observed in figures 4(c) and 4(d) for the
SFS and UFC topologies using the volume data and the mean magnitude of |Upqr| of
these topologies in figures 5(c) and 5(d).

For the UFS and SFC topologies, we do not observe any change in lifetimes in
figure 4(e). While UFS exists only at positive dilatation, SFC exists only at negative
dilatations. For both these topologies, the volumes increase as the magnitude of the
dilatation increases (table 4). Further, figure 5(e) clearly shows that their velocities
also increase as the magnitude of the normalised dilatation increases. For both these
topologies, the increase in volume (which favours high lifetime) seem to be effectively
counteracted by an increase in mean velocity (which favours low lifetime) resulting in
an almost dilatation-independent lifetime, as evident in figure 4.

5.1.1. Role of Mach number
In general, the influence of increasing initial turbulent Mach number is to decrease

the lifetime of the topologies (figure 4). The explanation for this trend is provided by
table 6, wherein we have included the mean magnitude of Upqr in Simulations B–D at
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Simulation UNSS SNSS SFS UFC UFS SFC

B 0.85 1.15 0.79 0.97 1.30 1.98
C 1.04 1.54 1.11 1.25 1.35 2.10
D 1.31 1.97 1.45 1.53 1.36 2.14

TABLE 6. Influence of Mt on mean of |Upqr|. Flow field at t= 3τ from Simulation D
has been used.

UNSS SNSS SFS UFC UFS SFC
28.17 9.95 31.00 21.25 5.81 3.82

TABLE 7. Percentage topology composition in Simulation D.

t= 3τ . We observe that, in general, an increase in the initial turbulent Mach number
increases mean value of |Upqr|, consequently reducing 〈LT 〉 as evident in figure 4.
It is plausible to attribute this observed enhancement in the magnitude of Upqr to
the increased importance of the inertial processes as compared to the pressure-related
processes in the evolution equations of the invariants (4.6) as Mach number increases.
To ascertain the veracity of this conjecture, however, a much more detailed analysis
of the various tensorial interactions between the velocity gradient and the pressure
Hessian tensors incumbent in (4.6) is required. The authors deem such an analysis
to be too involved for it to be adequately addressed within the scope of the present
study.

Overall, our results in table 3 clearly show that, in terms of longevity, the six
major topologies existing in compressible turbulence can be arranged in the following
descending order: SFS>UNSS>UFC>SNSS>UFS>SFC. Accordingly, it is plausible
to expect that at a typical instant of this simulation, compressible decaying turbulence
should have the highest population of particles associated with the SFS topology, the
lowest with the SFC topology and populations of the other four topologies falling in
the same order as the order of their lifetimes. In table 7 we present the population
percentage of each of the six topologies at t = 3τ in Simulation D. This percentage
composition has been computed by averaging over Lagrangian trajectories. Since
initial seeding of Lagrangian trajectories has been done at t = 0 when the density
is uniform in the flow domain, this Lagrangian based averaging is equivalent to
mass-weighted averaging. We observe that indeed the percentage populations of the
six topologies decrease exactly in the same order as the order shown by them in
terms of lifetimes.

5.2. Conversion tendencies of topologies
In the previous section we quantified the lifetimes of different topologies and
examined the influence of compressibility on them. Besides these estimates of
lifetimes, it is also pertinent to investigate the relative inclinations of a given topology
to convert into other possible topological structures in a compressible flow field. In
figure 6 we show time evolution of the percentage topology composition of a sample
initially composed of 100 % of a chosen topology (T ). For example, in figure 6(a)
we show the evolution of the percentage topology composition of a sample initially
composed of 100 % UNSS topology (calculated by averaging over LTs). It can be
observed in figure 6(a) that within approximately one eddy-turnover time the 100 %
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FIGURE 6. Evolution of percentage composition of topology starting from 100 %
(a) UNSS, (b) SNSS, (c) SFS, (d) UFC, (e) UFS and ( f ) SFC topology (Simulation
D, tref = 3τ ). Different symbols represent six major topologies: × (UNSS), @ (SNSS),
A (SFS),u (UFC), + (UFS) andE (SFC). Dashed lines represent the global composition
of a topology, which is also presented as a percentage in table 7 and is found to be almost
invariant with time.

UNSS sample spreads throughout the p − q − r space in a proportion that mimics
the global topology composition (table 7). Similar trends are observed for other
topologies as well (shown in figure 6b–f ).

Figure 6 is useful for demonstrating the asymptotic tendency of a sample
comprising of a given topology to transform and spread to other possible topologies
and eventually merge with the composition of the unconditioned sample. However, it
does not explicitly demonstrate what the most preferred transformation paths (or the
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FIGURE 7. Conversion tendencies of various topologies at t∗ (5.1) in compressible
turbulence. At tref each sample of particles has 100 % of a given topology. Different
symbols represent: × (UNSS), @ (SNSS), A (SFS), u (UFC), + (UFS) and E (SFC).
(a) aii =−0.5, (b) aii = 0 and (c) aii = 0.5.

dominant conversion tendencies) of a chosen topology are and how these tendencies
may be influenced by the initial dilatation level of a fluid particle.

In figure 7 we present the conversion tendencies of particles having three
representative dilatation levels at tref : aii =−0.5, aii = 0 and aii = 0.5 (figures 7a, 7b
and 7c, respectively). In each of these figures, the y-axis represents a sample of
particles with 100 % population of a given topology. On the x-axis we show the
percentage of various other topologies which are generated when the particles of
the original sample undergo their first transformation (at t∗). For example, the first
horizontal level in figure 7(a) shows that a sample comprising of 100 % UNSS
topology eventually breaks down predominantly into SNSS (approximately 70 %)
with the remainder being the UFC topology (approximately 30 %). Similarly, other
horizontal levels can be followed to arrive at the conversion percentages starting with
other topological states and dilatation levels. To help the reader to visualise the major
conversion tendencies that exist in compressible turbulence, in figure 8 we present
a qualitative picture of the dominant conversion tendencies of various topologies.
Arrows are based only on those conversions which are more than 20 % of the original
sample (see figure 7). Note that these arrows represent major conversion tendencies
and not necessarily the trajectories themselves. The corresponding transitions may
involve significant displacements along the p-axis as well. A similar analysis on
topology conversion can also be performed for incompressible flows. In figure 9, we
present the conversion tendency of particles in a nearly incompressible flow field
(Simulation E). It can be observed that, for all the topologies, there is a significant
conversion tendency in both the clockwise and anticlockwise directions.

5.3. CMT versus LT
As mentioned in the Introduction, many researchers have adopted an alternate,
although approximate, procedure of examining the topology dynamics in the p–q–r
space. This alternative method does not track the individual fluid particles at different
time instants, but uses the averaged value of the right-hand side of (4.6) conditioned
on a chosen set of p, q and r merely at one single time instant. The statistics thus
obtained are essentially the conditional averages of the rate of change of the invariants
with the conditional parameters being the local values of p, q and r. The trajectories
thus obtained are presented as the instantaneous streamlines in p–q–r space. Such
trajectories are referred to as the conditional mean trajectories (CMT) (Martín et al.
1998). CMTs are approximate, and their use in past studies can only be justified as
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FIGURE 8. (Colour online) An illustration depicting major tendencies of topological
transitions in compressible isotropic turbulence. Note that the arrows indicate major
conversion tendencies and not necessarily the trajectories themselves. Three representative
q–r planes are shown at aii = −0.5, aii = 0 and aii = 0.5. Numbers represent: 1-UNSS,
2-SNSS, 3-SFS, 4-UFC, 5-UFS and 6-SFC.
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FIGURE 9. (Colour online) (a) Conversion tendencies of various topologies at t∗ in
incompressible turbulence (details of the symbols are given in the caption of figure 7).
(b) Pictorial representation of major tendencies of topological transitions in incompressible
isotropic turbulence.

a surrogate tool in the absence of adequate computational resources (Martín et al.
1998).

To further underline the significance of our present work using Lagrangian
trajectories, we present table 8, wherein we have included mean values of the
lifetimes of the UNSS, SNSS, SFS and UFC topologies computed using the flow
fields of Simulation E. Note that Simulation E has a very low initial Mach number
and can be treated practically as an incompressible flow. The percentage composition
in terms of the four topologies in this flow field is included in table 8. Note that
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UNSS SNSS SFS UFC

% Composition 27.2 7.6 38.5 26.6
Lifetime 〈LT 〉 3.60 1.06 6.64 4.16
% Time (LTs) 26.9 7.4 39.2 26.4
% Time (CMTs HIT, Martín et al. (1998)) 53 5.5 21.5 20.0
% Time (CMTs TBL, Elsinga & Marusic (2010)) 15 8 39 38

TABLE 8. Comparison of the performances of CMTs versus the approach adopted in
this work. The data in the first three rows are from Simulation E of this work. (HIT,
homogeneous isotropic turbulence, TBL, turbulent boundary layer).

the topology composition in this case has also been computed using averages across
Lagrangian trajectories. However, since this is a nearly incompressible flow, the
density does not change significantly. Thus the averages over Lagrangian trajectories
are almost the same as volume-based averaging.

We observe that the mean lifetimes calculated using our Lagrangian approach for
these four topologies are in almost the same proportion as the percentage population
of the topologies. Further, we present the time spent by the particles in different
topologies during a time interval of three eddy-turnover times, calculated using LTs
(third row of table 8). We find that, like LT , the percentage of time spent by the
particles in different topologies is also almost similar to the percentage composition
of topology. In the last row of table 8 we have included the percentage of ‘time
spent in various topologies’ as calculated by Martín et al. (1998) using their CMT
approach. Since Martín et al.’s (1998) CMTs do show a cyclic change in topology
(UFC → UNSS → SNSS → SFS → UFC), the ‘time spent in various topologies’
can be interpreted as the ‘CMT-based estimate of lifetime of topologies’. We find that
the proportion of lifetimes calculated using CMTs are in gross disagreement with the
percentage composition of topology in incompressible turbulence. In table 8 we have
included the CMT-based calculations from the DNS of turbulent boundary layers
(Elsinga & Marusic 2010) as well. Even though the proportions of the elapsed
duration in various topologies predicted by the CMT-based calculations in the
boundary layer are not as skewed as observed in the CMT-based calculations of
isotropic turbulence of Martín et al. (1998), these proportions still do not show as
good an agreement as shown by the LT-based calculations.

To elucidate why CMTs fail in capturing topology lifetimes (and probably other
time-dependent aspects of the dynamics of velocity gradients), we present a simple
comparison. In figure 10(a) we show a conditional mean trajectory (solid line)
originating at point (q = 0.3, r = −0.05). This CMT has been generated using
a one-time Eulerian field from incompressible Simulation E. The CMT shows
a spiralling path around the origin. Performing a procedure of line integrations
along such trajectories, Martín et al. (1998) estimate the characteristic ‘cycle time’
of topology interconversion as three eddy-turnover times. Next, we tag the same
particles (in total 5000) which were having their initial invariants in the vicinity of
(q = 0.3, r = −0.05) at the reference time of four eddy-turnover times and track
their movement on the q–r plane. The locations of these 5000 particles after just
one eddy-turnover time is shown in figure 10(a). It can be observed that the tagged
population of particles spreads vastly over the q–r plane. Indeed the spread of this
population sample is identical to the characteristic global distribution of particles in
the entire flow field. This characteristic distribution has a teardrop shape with the
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FIGURE 10. (Colour online) (a) Instantaneous CMT (solid line) and final spread of
particles (grey dots) after one eddy-turnover time starting from r (−0.05 ± 0.01) and q
(0.3 ± 0.025). (b) Evolution of root mean squared value of invariants q and r starting
from r (−0.05± 0.01) and q (0.3± 0.025).

bulk of data concentrated on one side in the SFC region and on the other side along
the curve separating the UFC and UNSS regions (the so-called Vieillefosse curve,
Vieillefosse (1982), Ashurst et al. (1987b)).

Further, in figure 10(b), we present the root mean squared (r.m.s.) values of q and
r of the same sample of 5000 particles which had their q, r in the vicinity of (q=
0.3, r =−0.05) at the reference time of four eddy-turnover times. The r.m.s. values
start increasing and within just one eddy-turnover time reach their asymptotic states:
the r.m.s. of q reaches an asymptotic state of 0.24, and the r.m.s. of r reaches an
asymptotic state of 0.05. Indeed, these values match with the unconditioned r.m.s.
values of q and r of all the particles that are present in the flow field. Thus, even one
eddy-turnover time is a long enough duration for particles to completely forget their
initial association with a particular point in the q–r plane. Thus, employing CMTs to
estimate phenomena which happen over such time scales is indeed not appropriate.

6. Significance and implications of this work
(i) The question of how long the fluid particles of a turbulent flow field reside in

vortical regions compared to strain-dominated regions is of fundamental interest.
Examples of the context of this question can be found in geophysical flows. The
residence time of a fluid particle in a vortical region is expected to enhance
its acceleration, which in turn has consequences for the formation of raindrops
(Pinsky & Khain 1997; Falkovich, Fouxon & Stepanov 2002; Biferale & Toschi
2005; Toschi et al. 2005). The same question finds pertinence in the context
of astrophysics as well (Armitage 2010; Pater & Lissauer 2015). To further
highlight the significance of this question, Bhatnagar et al. (2016) goes to the
extent of relating the time spent by a typical fluid particle in a vortical region
to the lifetime of vortices themselves that exist in the flow field. In line with
the motivation to answer this fundamental question, the present paper provides
a detailed Lagrangian investigation and the corresponding estimates of times
spent by fluid particles in various topologies existing in a compressible flow
field. Each of these topologies represents specific patterns of streamlines and is
representative of the relative importance of the rotation rate, strain-rate tensor and
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the dilation rate in the flow field. Indeed our results show that even within the
broad classification of so-called vortical (or focal) topologies, there are significant
differences in lifetimes (see figure 4) associated with SFC, SFS UFS and UFC,
all of which are focal topologies. Further, we would like to emphasise that our
study examines the influence of compressibility as well on these statistics, and
is thus relevant for high Mach number flows as well.

(ii) The velocity gradient is a key quantity in the closure of Lagrangian probability
density function (PDF) methods (Pope 2000). Computing velocity gradients, in
turn, requires modelling of several incumbent unclosed terms like the pressure
Hessian and the viscous processes (Cantwell 1992). While in incompressible
flows, a well-accepted model for these processes has already been in place
(the recent fluid deformation closure model or the RFDM of Chevillard
et al. (2008)), the quest for an equally reliable model in compressible flows
continues. Recent DNS-based studies of compressible turbulence have shown
that several aspects of the local velocity-gradient tensor are strongly influenced
by the local instantaneous topological state and dilatation (Danish et al.
2016a,b; Parashar et al. 2017a). Thus, it seems viable to attempt to model
the unclosed terms of the dynamics of velocity gradients conditioned upon
local dilatation and topology rather than attempt to develop unconditioned
models in the traditional way. Indeed, some attempts in this direction have
already been made for modelling velocity-gradient–scalar-gradient interactions
(see Danish et al. (2016b)). The work of Wilczek & Meneveau (2014) is another
successful example of using conditional means as input to a modelled stochastic
process. Wilczek & Meneveau (2014) showed that the Fokker–Planck equation
for the velocity-gradient PDF can be written in terms of conditional means.
Currently, we are committed to making attempts to model the pressure Hessian
tensor conditioned upon local topological and dilatation states in compressible
turbulence. In compressible flows, potentially, there are far more possible
topological states (Chong et al. 1990; Suman & Girimaji 2010) than those
in incompressible flows. The conclusions from this study regarding the lifetimes
of various topologies found in compressible turbulence provide a measure with
which to judge which topologies are more persistent and long lasting than others.
In the evolutionary history of a given particle, the more persistent topologies
and their associated physics can be preferably targeted from a modelling point
of view (rather than all those numerous topologies which are short lived and
thus do not influence the velocity-gradient dynamics for long enough) to arrive
at simple and robust models. Indeed, further details of such models require more
research. However, the authors believe that this is a prospective way in which
the findings of this study can be leveraged to arrive at improved models of
compressible velocity-gradient dynamics.

7. Conclusions
We investigate the dynamics of velocity gradients in compressible decaying

turbulence employing the Lagrangian approach of following a set of identified
fluid particles. Well-resolved direct numerical simulations over a range of turbulent
Mach number along with a well-validated Lagrangian particle tracker are employed
for this study. We examine the invariants of the velocity-gradient tensor using the
Lagrangian approach and compute lifetimes of various topologies in compressible
turbulence. In particular, we identify the role of initial turbulent Mach number and
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the normalised dilatation rate on topology lifetimes. Explanation of the identified
trends is then provided in terms of the geometric constraint of the p–q–r space and
the disparity in the speed of the fluid particles in the p–q–r space. Further, using our
Lagrangian data and the associated analysis, we clearly demonstrate the limitation
of the so-called conditional mean trajectory (CMT) in explaining certain aspects of
the dynamics of velocity-gradient invariants. While the lifetimes computed with the
Lagrangian trajectory are in complete agreement with the population composition of
the entire flow field, the lifetimes computed by conditional mean trajectories show
significant errors.
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