
J. Fluid Mech. (2017), vol. 822, pp. 762–773. c© Cambridge University Press 2017
doi:10.1017/jfm.2017.311

762

Multi-scale statistics of turbulence motorized by
active matter

J. Urzay1,†,‡, A. Doostmohammadi2,‡ and J. M. Yeomans2

1Center for Turbulence Research, Stanford University, CA 94305-3024, USA
2Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3NP, UK

(Received 27 December 2016; revised 30 April 2017; accepted 5 May 2017;
first published online 8 June 2017)

A number of micro-scale biological flows are characterized by spatio-temporal chaos.
These include dense suspensions of swimming bacteria, microtubule bundles driven by
motor proteins and dividing and migrating confluent layers of cells. A characteristic
common to all of these systems is that they are laden with active matter, which
transforms free energy in the fluid into kinetic energy. Because of collective effects,
the active matter induces multi-scale flow motions that bear strong visual resemblance
to turbulence. In this study, multi-scale statistical tools are employed to analyse direct
numerical simulations (DNS) of periodic two-dimensional (2-D) and three-dimensional
(3-D) active flows and to compare the results to classic turbulent flows. Statistical
descriptions of the flows and their variations with activity levels are provided in
physical and spectral spaces. A scale-dependent intermittency analysis is performed
using wavelets. The results demonstrate fundamental differences between active and
high-Reynolds-number turbulence; for instance, the intermittency is smaller and less
energetic in active flows, and the work of the active stress is spectrally exerted near
the integral scales and dissipated mostly locally by viscosity, with convection playing
a minor role in momentum transport across scales.

Key words: multiphase and particle-laden flows, turbulent flows

1. Introduction

The multi-scale processes observed in the types of flows discussed here are induced
by active matter laden in a fluid (Sanchez et al. 2012; Wensink et al. 2012; Dunkel
et al. 2013). These are a special class of multi-phase flows, where the constituent
particles are self-propelled. Examples of biological active matter are cells, motor
proteins and bacteria. Synthetic active matter can be manufactured in the form
of mechanically, chemically or optically propelled particles. However, a unifying
characteristic of laden active matter is that it transforms free energy in the fluid into
systematic motion (Simha & Ramaswamy 2002). Although such energy conversion
occurs at the particle scales, the collective interactions among many of these particles
oftentimes translate into unstable flow motion across much larger scales.

† Email address for correspondence: jurzay@stanford.edu
‡ Both authors contributed equally to this work.
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Despite the low Reynolds numbers involved, flows induced by active matter have
been referred to as active turbulence in analogy to the unsteady multi-scale dynamics
found in high-Reynolds-number flows (Wensink et al. 2012; Bratanov, Jenko & Frey
2015; Giomi 2015; Doostmohammadi et al. 2017). However, whether these flows
can be identified as turbulent in the classical sense is debatable. The conservation
equations of active flows are considerably nonlinear and formally more complex than
the incompressible Navier–Stokes equations, and the nature of these nonlinearities is
fundamentally different from those responsible for high-Reynolds-number turbulence.
Nonlinear dynamical systems are known to display chaotic particle trajectories and
mixing behaviour even at low Reynolds numbers (Ottino 1990).

In this study multi-scale tools are employed to examine basic flow statistics in
two and three dimensions. The remainder of this paper is organized as follows.
The formulation and computational set-up are described in § 2. The analysis of the
numerical results is presented in § 3. Finally, concluding remarks are provided in § 4.

2. Formulation and computational set-up
The approach employed here is based on the numerical integration of the

conservation equations of dense active nematohydrodynamics. This continuum
formulation extends the description of passive liquid crystals of De Gennes & Prost
(1995) and has proven successful in reproducing spatio-temporal dynamics observed
in experiments of active flows (see Doostmohammadi et al. (2016b) and references
therein).

2.1. Conservation equations for active nematohydrodynamics
In this formulation, the mesoscopic orientational order of active particles is represented
by the nematic tensor Qij = (3q/2)(ninj − δij/3), where q is the magnitude of the
nematic order, ni is the director and δij is the Kronecker delta. The conservation
equation for the nematic tensor is given by

∂tQij + uk∂xk Qij = Γ H ij + Rij, (2.1)

where uk are velocity components, t is time, xi are spatial coordinates and Γ is
proportional to a rotational diffusivity. Additionally, Rij is a standard co-rotation
tensor defined as

Rij = (λSik +Ωik)

(
Qkj +

δkj

3

)
+

(
Qik +

δik

3

)
(λSkj −Ωkj)− 2λ

(
Qij +

δij

3

)
Qkl∂xk ul,

(2.2)
which accounts for the response of the orientation field to the extensional and
rotational components of the velocity gradients, with Sij = (1/2)(∂xiuj + ∂xjui) and
Ωij = (1/2)(∂xjui − ∂xiuj) being the strain-rate and vorticity tensors, respectively. The
relative importance of the vorticity and strain rate is controlled by the parameter λ,
which characterizes the alignment of the nematics with the flow. The term involving Γ
in (2.1) describes, through the auxiliary tensor H ij =−–δF/–δQij + (δij/3)tr(–δF/–δQkl),
the relaxation of Qij to a minimum of a free energy

F = (A/2)QijQij + (B/3)QijQjkQki + (C/4)(QijQij)
2
+ (K/2)(∂xk Qij)

2. (2.3)

In this formulation, –δ represents the variational derivative, tr denotes the trace, K
is an elastic constant, while A, B and C are material constants that determine the
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equilibrium state of the orientational order. The first three terms in (2.3) correspond
to the Landau/De Gennes free energy, while the last term represents the Frank elastic
energy with a one-constant approximation (De Gennes & Prost 1995). Equation (2.3)
is the free energy expansion in terms of the order parameter, where the terms allowed
by symmetry have been retained. Note that the Frank term in (2.3) gives rise to a
diffusive flux of Qij in the form ΓK∂2

xk,xk
Qij in (2.1). The description of the flow field

is completed by the mass and momentum conservation equations, namely

∂xiui = 0, ρ∂tui + ρuj∂xjui =−∂xip+µ∂
2
xj,xj

ui + ∂xjσij − ζ∂xj Qij, (2.4a,b)

where ρ is the density, p is the pressure and µ is the dynamic viscosity. The additional
terms in the momentum equation (2.4) involve the elastic stress

σij= 2λ(Qij + δij/3)(QklH lk)− λH ik(Qkj + δkj/3)− λ(Qik + δik/3)Hkj

− ∂xi Qkl

–δF
–δ∂xj Qlk

+QikHkj − H ikQkj,
(2.5)

which represents the passive conformational resistance of the nematics to changes in
the orientational order (Edwards, Beris & Grmela 1991), and the active stress ζQij,
which corresponds to a coarse-grained collective effect of the stresslets set up by
the active particles (Simha & Ramaswamy 2002). In particular, the divergence of the
active stress is responsible for the injection of kinetic energy through the orientational
order of particles represented by the nematic tensor, whose conservation equation (2.1)
is nonlinearly coupled with the velocity field. The absolute value of the coefficient
ζ is proportional to the activity, where positive and negative values of ζ correspond,
respectively, to extensile (pusher) and contractile (puller) particles, the former being
the case addressed in the computations shown below.

2.2. Remarks on the conservation equations
Some aspects with regard to the formulation given above are worth briefly pointing
out. The first one is related to characteristic dimensionless parameters. In the
conditions addressed by these simulations (see further details in § 2.3) and most
experimental observations, the Reynolds number is small, Re = ρu′`/µ . 1, with u′
and ` being the integral scales for velocity and length, respectively. In this limit, the
convective transport of momentum has a diminishing influence, with the dominant
balance in (2.4) being between viscous and active stresses. Similarly, the orientational
order diffuses slower than momentum, as indicated by the relatively high Schmidt
number Sc= (µ/ρ)/(ΓK)& 5, which results in characteristic structures of the velocity
field that are larger than those of the orientational order, as discussed in § 3. As a
consequence, the Péclet number of the nematic order Pe = ReSc & 3 suggests that
advection may play a more important role in transporting orientational order than it
does for transporting momentum.

The second aspect worth stressing is that the conservation equations outlined
above do not include any obvious external forcing term aimed at sustaining the
dynamics. A flow laden with active matter is different from an inactive flow externally
driven by boundary conditions, imposed shear or volumetric forces added to the
momentum conservation equation. In real biological flows laden with swimming
bacteria, adenosine tri-phosphate (ATP) molecules are consumed by the bacteria via
hydrolysis reactions and transformed into motion in such a way that the driving
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occurs internally at the expense of depletion of chemical energy. The source of
chemical energy, however, is not represented in the formulation above, in that it only
concerns systems where the rate of ATP depletion is infinitesimally small compared
to hydrodynamic processes.

The active motorization of the flow can be understood by multiplying the
momentum equation in (2.4) by ui and performing a surface (in two dimensions)
or volumetric (in three dimensions) periodic integration, which leads to the balance
equation ρ(dk/dt)=−ε − 〈σijSij〉 + ζ 〈QijSij〉 for the spatially averaged kinetic energy
k = 〈uiui/2〉, where ε = 〈2µSijSij〉 is the viscous dissipation. The work done by the
active forces, given by the term ζ 〈QijSij〉, represents the main source of k. The power
deployed by the active work is dissipated by viscosity as shown below, thereby
yielding a stationary state in which k remains mostly constant.

2.3. Computational set-up
The formulation described above is integrated numerically in quasi-two-dimensional
(quasi-2-D) and 3-D domains with periodic boundary conditions. In the quasi-2-D
framework the velocity varies in two dimensions while the nematic directors could
develop out-of-plane components, as in previous studies (Thampi, Golestanian &
Yeomans 2013; Doostmohammadi et al. 2016b; Saw et al. 2017). The dimensional
parameters in the simulations are A = 0.04, B = 0 for two dimensions and B = 0.06
for three dimensions, C = 0.06, λ = 0.3 (tumbling particles), Γ = 0.34, K = 0.40,
ρ = 1.0 and µ= 0.66 (Sc= 4.90). The baseline activity coefficient is ζ0 = 0.036 for
two and three dimensions, with an additional 2-D computation being performed with
a smaller activity ζ0/10. All parameters here are expressed in simulation units. This
generic set of parameters has been shown in earlier work to reproduce qualitatively
the active turbulent state observed in microtubule/motor-protein suspensions (Sanchez
et al. 2012; Wensink et al. 2012; Thampi et al. 2013). A standard lattice-Boltzmann
approach is used to integrate (2.4), while (2.1) is solved by employing a second-order
finite-difference predictor–corrector algorithm. The resulting set of ordinary differential
equations is integrated in time using an Euler method. The number of grid points for
the 2-D and 3-D simulations is N = 5122 and 1283, respectively, with a minimum
grid spacing of ∆= `d/3 for all cases, where `d =

√
K/A= 3.16 is the characteristic

size of the topological defects in the orientational order field. The time increment
used in the numerical integrations is 1t= tq/60, with tq =µ/ζ being a characteristic
time scale for the damping of the activity by viscosity. The initial conditions consist
of zero velocity everywhere while the directors are set to random orientations. Data
are collected after approximately 2× 104 time steps for 10 snapshots spanning a time
period of 150tq, which provide 5122

× 10 and 1283
× 10 statistical samples leading

to converged probability density functions (PDFs) in two and three dimensions,
respectively. In the results, spatial coordinates are normalized with `d. Additionally,
velocities are normalized with u′= 0.11 (for two dimensions with ζ = ζ0) or u′= 0.04
(for three dimensions, and for two dimensions with ζ = ζ0/10), where u′ =

√
2k.

3. Analysis of numerical results
3.1. Flow structures

Instantaneous contours of velocity and vorticity are provided in figures 1(a,b) and 2(a)
for 2-D and 3-D domains, respectively. Specifically, the effects of decreasing the
activity coefficient from ζ0 to ζ0/10 in the 2-D simulations are an increase in the
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FIGURE 1. (Colour online) Instantaneous contours of (a) velocity magnitude (high activity,
main panel; low activity, inset), (b) vorticity and (c) magnitude of the nematic tensor. In
(b,c), which are zoomed views of the white squared region in (a), green lines are nematic
director fields while symbols represent +1/2 (circles) and −1/2 (triangles) topological
defects. The small inset above (c) shows the director field around topological defects.

integral length (computed from the ensemble-averaged kinetic-energy spectrum) from
` = 5.45 to ` = 10.22, a decrease in the Reynolds number from to Re = 0.74 to
Re= 0.68 and a decrease in the dissipation from ε = 1× 10−3 to ε = 2× 10−4. The
resulting low-activity flow has a less dense pattern of flow structures, as observed by
comparing the main (high activity) and inset (low activity) frames in figure 1(a) and
noticing that the normalizing length `d is independent of activity. It is noteworthy that,
for the same activity coefficient ζ0, moving from two to three dimensions translates
into an increase in the integral length from ` = 5.45 to ` = 8.97, a decrease in the
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FIGURE 2. (Colour online) (a) Instantaneous isosurfaces of velocity magnitude
(uiui)

1/2/u′ = 1.1 (30 % of maximum value) and enstrophy ωiωi(`d/u′)2 = 0.4 (20 %
of maximum value) for 3-D simulations. (b) Scatter plot of the velocity-gradient
invariants. (c) Schematics of the stresslet-like flow induced by extensile active particles
(ζ > 0).

Reynolds number from Re= 0.74 to Re= 0.53 and a decrease in the dissipation from
ε = 1× 10−3 to ε = 0.3× 10−4.

The spatial variations in the nematic tensor Qij are central to the generation of
vorticity. This is easily observed by taking the curl of (2.4), namely

ρ∂tωi + ρuj∂xjωi =−ρωj∂xjui + εijk∂xj(µ∂
2
x`,x`uk + ∂x`σk` − ζ∂x`Qk`), (3.1)

where ωi is the vorticity and εijk is the permutation tensor. In two dimensions, the
vortex stretch term is exactly zero and the dominant mechanism of vorticity generation
is the curl of the divergence of the active stresses. The structures of vorticity, which
are shown in figure 1(b), are different from the classic round vortices observed in high-
Reynolds-number 2-D isotropic flows. Instead, vortical structures attain here band-like
shapes, which are closely related to thinner elongated regions referred to as walls,
where the magnitude of the nematic-order tensor becomes small, as shown by the solid
contours of ω3 overlaid on the director field (largest eigenvector of the Qij tensor) in
figure 1(b). The walls are characterized by bend deformations in the in-plane director
field in figure 1(c) (note that the out-of-plane components in these 2-D simulations are
zero), which separate nematically aligned regions (q ∼ 1) across interstitial isotropic
states (q� 1), and are typically much thinner than the hydrodynamic structures of
velocity and vorticity. The resulting ±1/2 topological defects, depicted by circles and
triangles in figure 1(b,c) (see inset), represent singular, disordered regions of strong
vorticity generation that are created and annihilate in pairs while propagating in the
flow in a complex manner (Doostmohammadi et al. 2016a; Saw et al. 2017) that is
beyond the scope of the present study.
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FIGURE 3. (Colour online) Ensemble-averaged PDFs of (a) velocity, (b) velocity gradient,
(c) vorticity and (d) nematic-order magnitude, including three dimensions (ζ = ζ0, solid
lines) and two dimensions (ζ = ζ0, dot-dashed lines; ζ = ζ0/10, dashed lines). Red short
dashed lines indicate reference Gaussian distributions.

In three dimensions, the vortex stretch term in (3.1) represents a much smaller
contribution than the active stresses because of the low Reynolds numbers involved.
As observed in figure 2(a), the resulting vortical structures in three dimensions are
elongated as well but smaller than the velocity ones. The 3-D mechanisms of vorticity
generation are mostly unknown since the description of 3-D topological defects in
active nematics is not well understood. Further insight into rotational and straining
components of the 3-D flow field can be gained by examining the velocity-gradient
invariants Qinv = (1/4)(ωiωi − 2SijSij) and Rinv = (3/4)(ωiωjSij + 4SijSjkSki), which
are expedient for classifying flow structures. In contrast to typical scatter plots for
high-Reynolds-number turbulence, where most of the activity is in the upper-right and
lower-left quadrants, figure 2(b) shows that for active flows straining is predominant.
As a result, the marginal PDF of Qinv is heavily skewed toward negative values
(skewness −1.6). The straining is caused by the cumulative effect of the stresslets
from the extensile active particles (see flow sketch in figure 2c).

3.2. PDF moments of flow variables
The PDFs of velocity u1, velocity gradient ∂u1/∂x1, vorticity ω3 and magnitude of
the nematic order q are shown in figure 3, and some of their moments are listed in
table 1. The PDFs of velocity and vorticity have nearly Gaussian flatness, while the
largest skewness of the velocity gradient is reached in the 2-D high-activity case and
equals −0.10. In all cases, the vorticity flatness and the velocity-gradient skewness
are smaller than typical values observed in high-Reynolds-number turbulence (i.e. ∼8
and ∼−0.4, respectively). In two dimensions, small activities favour sub-Gaussian
flatness for vorticity and velocity along with decreasing skewness of the velocity
gradient. Note, however, that for the same activity coefficient the 3-D case leads to
a smaller skewness of the velocity gradient, which suggests that the lesser spatial
confinement plays a role in the development of fluctuations. Additionally, small values
of the nematic-order magnitude, which correspond to isotropic behaviour and vorticity
generation, are statistically favoured at large activities.

3.3. Intermittency analysis
Albeit small, intermittency may not be entirely ruled out in these systems, as
suggested by a narrowband filtering analysis of the results based on a discrete
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2-D (ζ0/10) 2-D (ζ0) 3-D (ζ0)

Velocity (u1) flatness 2.84 3.14 2.78
Velocity derivative (∂u1/∂x1) skewness −0.03 −0.10 −0.02
Vorticity (ω3) flatness 2.85 3.21 3.12

TABLE 1. Moments of velocity, velocity derivative and vorticity PDFs.

db-4 wavelet decomposition of the velocity and vorticity fields. This is shown
in figure 4, which provides the scale-dependent flatness F(s) of the PDFs of the
direction-averaged velocity and vorticity wavelet coefficients, û(s)1 and ω̂(s)3 , normalized
by their corresponding standard deviations σ (s)u and σ (s)ω , with s being a scale index
that ranges from 1 (equivalent to a length scale of 2∆) to smax = log2 N (equivalent
to N∆) and is related to a representative wavenumber as κ = 2π2−s/∆. In these
simulations, smax = 9 (for 2-D cases) and smax = 7 (for 3-D cases). The inverted
caret denotes the wavelet transform, e.g. û(s,d)i (xs) = 〈ui(x)Ψ (s,d)(x − xs)〉, where d
is a positive-integer direction index (d = 1, 2, 3 and d = 1, 2, . . . , 7 in two and
three dimensions, respectively), xs = 2s−1(i∆, j∆, k∆) are scale-dependent wavelet
grids where the wavelets are collocated, with i, j, k = 1, 3, 5, . . . , N/2s−1

− 1, and
Ψ (s,d)(x− xs) are wavelet basis functions that are here taken to be tensor products of
orthonormal 1-D db-4 wavelets with four vanishing moments. The reader is referred
to Meneveau (1991) and Schneider & Vasilyev (2010) for general applications of
wavelets in turbulent flows, and to Nguyen et al. (2012) for a scale-dependent flatness
analysis of homogeneous isotropic turbulence similar to the one performed here.

While the 2-D fields remain nearly Gaussian at all scales, with a slight increase
for the vorticity flatness observed in the largest scale, figure 4(b) shows that the
3-D fields contain significant intermittency in the small scales, as indicated by the
strong increase in Fs with κ (main panel) and by the increasingly longer tails in the
PDFs of the wavelet coefficients as the length scale increases (inset). Nonetheless,
the energetic content of these small scales and their associated intermittent motion
is small in all cases. This can be understood by noticing the rapid decay of the
Fourier kinetic-energy and enstrophy spectra, Ek and Eω, as κ increases, as observed
in figure 5(a,b,d,e). Specifically, the kinetic-energy spectra decay with a slope that
decreases from −4.5 to −3.5 as the activity is increased tenfold. As a result, the
enstrophy spectra reach a maximum at the integral scale and decay rapidly thereafter,
indicating that the small-scale gradients bear vanishing energy. This detracts dynamical
relevance from the increased intermittency observed in the 3-D small scales and sets
a fundamental difference between these flows and high-Reynolds-number turbulence;
in the latter, the kinetic-energy spectra decays at a slower rate and the small-scale
vorticity intermittency is energetic.

It is also of interest to note that the characteristic wavenumber where the
nematic-order fluctuation energy spectra Eq (defined such that the area under the
curve is 〈q′q′〉) reach a maximum is approximately one decade smaller than the
wavenumber corresponding to the maximum enstrophy spectra in the 2-D low-activity
case, as shown in figure 5(c). The distance between peaks decreases with increasing
activity and moving to three dimensions, as observed in figure 5( f ). The wavenumber
of maximum Eq decreases as the activity increases and its value is closer to 2π/`d
than to 2π/`, which spectrally illustrates the fine structure of the nematic-order field
compared to the coarser velocity field.
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FIGURE 4. (Colour online) Wavelet-based scale-dependent flatness (main frames) for
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s= 1 (dark blue lines) s= 2 (red), s= 3 (orange), s= 4 (purple), s= 5 (green) and s= 6
(light blue).
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FIGURE 5. (Colour online) Ensemble-averaged Fourier and wavelet spectra of kinetic
energy. The solid contours in (d–f ) correspond to the PDF of the wavelet spectra, which
include the mean (solid lines) and associated 95 % confidence intervals (dashed lines).

3.4. Spectral energy-transfer analysis
As discussed in § 2.2, a crucial role in the dynamics is played by the divergence
of the active stress −ζQij. Because of the small Re involved, it is anticipated that
the spectral transfer of the active energy is locally dissipated by viscosity, since the
convective inter-scale transfer is a mechanism of secondary importance. Although
there may exist additional triadic interactions resulting from (2.5) that could transport
energy across scales, the 3-D results provided in figure 6 for active (T̂ A), convective
(T̂ C) and viscous (T̂ V) wavelet-based spectral energy-transfer fluxes support the
view that locality may dominate the transfer. Specifically, these fluxes describe
the rate at which the spatially averaged, wavelet spectral kinetic-energy density,
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FIGURE 6. (Colour online) Mean and 95 % confidence intervals of wavelet-based spectral
energy-transfer flux of the 3-D flow for (a) active and convective fluxes and (b) viscous
flux. The panels also show solid contours for PDFs of (a) active and (b) viscous fluxes,
indicating spatial variabilities.

Ek = 2−3s
〈
∑

d û(s,d)i (xs)û
(s,d)
i (xs)/2〉xs/δκ , is transferred across scales. In particular,

Ek and the analogous Eω and Eq are shown and compared to their Fourier-based
counterparts in figure 5(d–f ). In this formulation, δκ = 2π ln 2/(2s∆) is a discrete
wavenumber shell, and the subindexed bracketed operator represents spatial averaging
over scale-dependent wavelet grids xs.

Upon wavelet-transforming the momentum equation in (2.4), multiplying by
û(s,d)i (xs) and summing over d, the spectral-energy equation ∂Ek/∂t =

∑
T̂ (κ)

is obtained. Here, the source term represents the sum of spectral energy-transfer
fluxes created by each term on the right-hand side of the momentum equation
in (2.4). For any force φi, the corresponding spectral flux is given by T̂ (κ) =
[(2−2s∆)/(2π ln 2)]〈

∑
d û(s,d)i (xs)φ̂

(s,d)
i (xs)〉xs , with T̂ > 0 and T̂ < 0 indicating,

respectively, inflow and outflow of energy at a given δκ . Note that T̂ = T̂ A for
φi=−ζ∂xj Qij, T̂ = T̂ V for φi=µ∂

2
xj,xj

ui and T̂ = T̂ C for φi =−ρuj∂xjui, which satisfy∑
κ T̂ Aδκ = ζ 〈QijSij〉,

∑
κ T̂ Vδκ =−ε and

∑
κ T̂ Cδκ = 0.

Figure 6(a) indicates that the active stress acts as a kinetic-energy source at all
scales on spatial average, with the maximum mean of T̂ A occurring at scales of
the same order as the integral length. Conversely, the viscous flux T̂ V is a sink of
kinetic energy and has a trend that is exactly opposite to T̂ A, as shown in figure 6(b),
which indicates that the active energy is mostly dissipated locally in spectral space
by viscosity. The spatial localization of the transfer, which is illustrated by the
unbracketed versions of Ek, Eω, Eq and T̂ , is represented by the variabilities of the
PDFs shown in figures 5(d–f ) and 6. Specifically, the PDFs in figure 6 reveal that the
viscous transfer flux is spatially correlated with the active one (correlation coefficient
−0.73 at s = 4), suggesting that upon deployment the active energy is dissipated
mostly locally also in physical space.

The physical picture implied by figure 6 provides no evidence for an energy cascade
in momentum where the sink ε and main source ζ 〈QijSij〉 of mean kinetic energy
could act in disparate ranges of scales interacting through a crossing long-range
mechanism. This is in contrast to high-Reynolds-number turbulence and its clear
separation of scales between the large-scale forcing range and the small-scale
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molecular dissipation range. These conclusions could, however, be different for the
nematic-order energy, in that the transport description of the latter is highly nonlinear
and involves cross-triadic terms with the velocity as in (2.2). These aspects will be
the subject of future research.

4. Conclusions

The multi-scale statistical analysis of DNS presented in this study provides
quantitative comparisons between active and classic turbulent flows beyond superficial
visual similarities, demonstrating clear distinctions in the intermittency characteristics
and mechanisms of inter-scale energy transfer. It is shown that increasing activities
lead to increasingly packed and dissipating structures that have increasingly larger
departures from Gaussian statistics. For the same activity, the 3-D flow has a
larger integral length and smaller kinetic energy compared to its 2-D counterpart. A
velocity-gradient invariant analysis of the 3-D flow indicates that straining structures
dominate the topology as a collective result of the embedded stresslets induced by
each individual extensile active particle. A wavelet-based, scale-dependent flatness
analysis shows the occurrence of intermittency in the small scales, particularly in
the 3-D vorticity field. However, the spectral energy content associated with the
small-scale velocity gradients is small in all cases. The work of the active stress is
spectrally deployed near the integral scales and mostly dissipated locally by viscosity
in both physical and spectral spaces.
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