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On the stability of a Blasius boundary layer
subject to localised suction
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In this study the origins of premature transition due to oversuction in boundary layers
are studied. An infinite row of circular suction pipes that are mounted at right angles
to a flat plate subject to a Blasius boundary layer is considered. The interaction
between the flow originating from neighbouring holes is weak and for the parameters
investigated, the pipe is always found to be unsteady regardless of the state of
the flow in the boundary layer. A stability analysis reveals that the appearance of
boundary layer transition can be associated with a linear instability in the form of
two unstable eigenmodes inside the pipe that have weak tails, which extend into the
boundary layer. Through an energy budget and a structural sensitivity analysis, the
origin of this flow instability is traced to the structures developing inside the pipe
near the pipe junction. Although the amplitudes of the modes in the boundary layer
are orders of magnitude smaller than the corresponding amplitudes inside the pipe, a
Koopman analysis of the data gathered from a nonlinear direct numerical simulation
confirms that it is precisely these disturbances that are responsible for transition to
turbulence in the boundary layer due to oversuction.

Key words: boundary layer stability, transition to turbulence

1. Introduction

As the demand for air traffic grows, there is a great need for new techniques and
methods by which the emissions of aircraft can be reduced. One of the ways to
achieve this is to suppress flow separation and thus reduce the friction drag, which
comprises more than 50 % of the total drag on an aircraft (Schrauf 2005). This can
either be done through a proper wing and nacelle design that enables a naturally
laminar flow over the surfaces to be maintained, or via manipulation of the flow
through active or passive control devices. A classical approach to control transition
and separation is through boundary layer suction. Suction causes the boundary layer
velocity profile to become fuller and more stable, which implies that it has a higher
critical Reynolds number and is susceptible to a smaller range of unstable disturbances.
This also means that it generates a thinner boundary layer with a higher local skin
friction (Schlichting 1979). However, due to the large differences between the skin
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friction of a laminar and a turbulent boundary layer, the total effect of suction is
favourable. In order to limit the complexity of the system, suction is often combined
with natural laminar flow (NLF) design, by which the extent of the suction surface
may be reduced to a smaller portion of the wing close to the leading edge. This
approach is termed hybrid laminar flow control (HLFC) (Joslin 1998).

An ideal suction surface consists of a continuously permeable surface that enables
the wall-normal velocity to attain a non-zero value on the wall (Gregory 1961).
However, a porous skin approximating such a surface have proven to be impractical
for a number of reasons, and experiments have shown that it is possible to obtain
laminar flow by instead applying suction through discrete holes positioned in regular
patterns at different positions along the chord (Gregory & Walker 1955). In the
vicinity of a discrete suction perforation, the flow is strongly three-dimensional and
features locally inflectional velocity profiles, streamwise vortices and for closely
spaced perforations horseshoe vortices that bridge neighbouring perforations (Meyer
1955; Gregory 1962; Meitz & Fasel 1994; MacManus & Eaton 1996, 1998, 2000).
Behind each perforation, a pair of streamwise counter-rotating vortices develop that is
connected to a pair of counter-rotating vortices inside the suction pipe (Gregory 1961;
MacManus & Eaton 2000). Their strengths depend on the ratio R between the suction
velocity and the free-stream velocity, as well as on the hole diameter to displacement
thickness ratio, d∗/δ∗h (MacManus & Eaton 1996). The level of streamwise vorticity
is typically highest at the suction perforation and decreases rapidly with downstream
distance (Meitz & Fasel 1994; MacManus & Eaton 1996). However, as the lateral
separation between the vortices tend to grow behind the perforation, interaction
of vortices generated at neighbouring perforations may in some cases increase the
vorticity again further downstream due to lift-up and stretching (Meitz & Fasel 1994).

Given a pair of streamwise vortices in the aft of a suction perforation, streaks
form in the boundary layer. These structures may eventually destabilise and cause
transition. Experiments have reported that for one row of perforations, the transition
position increases linearly with the suction ratio at a rate roughly independent on
the free-stream velocity U∗

∞
, until a critical suction ratio Rcrit is exceeded and the

transition point moves forward abruptly – a phenomenon referred to as oversuction.
An increase in free-stream velocity has further been noted to have an adverse effect
on Rcrit, but by using several rows of perforations, the transition position and Rcrit
may generally be increased relative to the single row configuration (Butler 1955).
Regarding the variation of Rcrit with spanwise hole spacing s∗/d∗, Rcrit seems to have
a local minimum around s∗/d∗ = 2.67 for a single row of perforations. Below this
point the critical suction ratio increases sharply as the holes seemingly behave like
a spanwise slot, and above this the critical suction ratio increases gradually as the
holes become isolated (Butler 1955; Gregory & Walker 1955; Gregory 1961). For
multiple rows of perforations, this minimum of Rcrit is displaced towards larger s∗/d∗
ratios (Gregory & Walker 1955). A diagram illustrating the relationship between Rcrit
and the hole diameter d∗/δ∗h was compiled by MacManus & Eaton (1998, 2000) (see
figure 1a). Their diagram suggests that these parameters are approximately inversely
proportional to each other, where Rcrit goes to zero for large d∗/δ∗h and increases
sharply as d∗/δ∗h approaches 0.6 from above. For d∗/δ∗h . 0.6, a critical R need not
exist at all.

For the boundary layer with localised suction, the transition often begins by
instabilities in the streamwise vortices (Meitz & Fasel 1994; MacManus & Eaton
1998, 2000; Müller 2012). To predict and circumvent these, various design criteria
have been suggested. Some with the aim to propose limiting values for, e.g. d∗/δ∗h ,
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FIGURE 1. (a) Variation of the critical suction ratio Rcrit with d∗/δ∗h for different Reδ∗h ,
adapted from MacManus & Eaton (1998, 2000). The open symbols correspond to transonic
measurements by Blanchard et al. (1991), and the slightly sub- and supercritical suction
ratios investigated in the present study are marked with grey pentagrams (I). The limiting
value d∗/δ∗h = 0.6 is marked with a dashed line. (b) The data in (a) are replotted to show
the variation of Rcrit with Reδ∗h . The symbols are shaded according to d∗/δ∗h and correspond
to the measurements by MacManus & Eaton (1998, 2000) (A), Blanchard et al. (1991) (E)
and the present study (I).

s∗/d∗ and row number that yield laminar flow up to a certain free-stream velocity
(Gregory & Walker 1955). Others have noted that the effect on the flow of a suction
hole in certain aspects is similar to that of a localised roughness element, and hence
tried to invent criteria for transition prediction that are similar to those already existing
in the roughness literature (see Gregory 1961, MacManus & Eaton 1998, 2000 and
the references therein). These criteria have recently been reviewed and discussed by
Müller (2012).

Despite of all these investigations, the origin of the reported premature transition
remains unclear. Butler (1955) suggested that the occurrence of Rcrit could arise due
to cyclic variations of surface pressure in the spanwise direction, as a result of the
row of suction perforations. Such pressure variations that are normal to the free
stream would presumably result in unstable secondary velocity profiles that eventually
break down. Gregory (1961) proposed that since each vorticity line that crosses a
perforation gets sucked into it and the line segment outside of the perforation becomes
stretched as it is advected downstream, an increase in suction ratio would strengthen
the trailing vortex pair, which upon surpassing a certain limit would become unstable
(see MacManus & Eaton 2000 for a discussion on this). Meitz & Fasel (1994) put
forth the hypothesis that for closely spaced holes, the instability could either begin in
the vortices or in the recirculation region that forms between the vortices. MacManus
& Eaton (1998, 2000) observed the development of turbulent wedges around the
trailing longitudinal vortices, and conjectured that the instability were initiated on the
conical surfaces surrounding the vortex cores.

This fundamental question is of major importance for successful implementation
of HLFC. A better understanding of the physical mechanisms and flow structures
involved in the transition process may not only lead to better understanding of the
receptivity process, but to improved design criteria for laminar wings and suction
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FIGURE 2. (a) Sketch of the numerical set-up (not drawn to scale) with the defining
parameters. (b) Close-up of the mesh structure around the pipe orifice. Note that only
the spectral element borders are shown and not the actual grid points.

systems. To address this issue, a three-dimensional stability analysis accompanied by
direct numerical simulations (DNS) and a Koopman analysis is peformed.

The structure of the article is as follows. In § 2, the set-up along with the numerical
methods considered are described. The results of the analysis are given in § 3,
including an account of the characteristic flow structures observed, the results from
the linear stability and sensitivity analysis and finally a comparison between the linear
and the nonlinear dynamics. The article concludes in § 4 with a discussion of the
reported findings.

2. Computational set-up and methodology
2.1. Flow configuration and numerical method

A sketch of the computational set-up is shown in figure 2(a) and consists of a
rectangular box with the extents [−34, 125] × [0, 15] × [−15, 15] (in units of the
displacement thickness δ∗h ) in the x-, y- and z-directions, and a circular pipe mounted
at the origin. In the past, some studies e.g. Meitz & Fasel (1994), have chosen
to disregard the pipe in their computational set-up and replace it with a suitable
Dirichlet boundary condition on the wall. However, since the vortices developing in
the boundary layer have been found to be connected with the pipe orifice (MacManus
& Eaton 2000), and the velocity profile at the pipe inlet be very different from
a Gaussian or a parabolic profile (Müller 2012), neglecting the pipe may yield
erroneous conclusions regarding the origin of the instability. This has been explicitly
investigated for the related flow case ‘jet in cross-flow’ by Peplinski, Schlatter &
Henningson (2015). In that study it was found that replacing a Dirichlet boundary
condition consisting of a Gaussian velocity profile with a pipe destabilised the flow
significantly, i.e. reduced the critical velocity ratio.

Throughout the article, dimensional quantities are denoted with a superscript star,
and quantities at the centre of the hole with a subscript h. Velocities are made
dimensionless with the free-stream velocity U∗

∞
, and lengths with the unperturbed

displacement thickness at the position of the hole δ∗h (i.e. at the origin). The
incompressible Blasius boundary layer subject to localised suction is determined
by five independent dimensionless variables, namely, the boundary layer Reynolds
number Reδ∗h = U∗

∞
δ∗h/ν

∗, the suction ratio (i.e. the velocity ratio) herein defined
as the ratio between the suction centre line velocity and the free-stream velocity
R = |V∗h |/U

∗

∞
, the ratio between the diameter of the pipe and the displacement
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thickness at the pipe position d∗/δ∗h , the spanwise hole spacing to diameter ratio s∗/d∗
and the ratio between the length and the diameter of the pipe L∗/d∗. (Note, however,
that if L∗/d∗ is chosen sufficiently large so that the flow in the pipe becomes fully
developed, the influence of this parameter vanishes.) In the simulations performed,
the dimensionless variables d = d∗/δ∗h = 2, s = 30 (s∗/d∗ = 15), L = 40 (L∗/d∗ = 20)
and Reδ∗h = 1924 will be fixed, and R will be varied. With this spanwise spacing the
holes will act as isolated (see figure 10 in Butler 1955 or figure 10a in Gregory
1961). The hole is positioned a distance x∗h/δ

∗

h = 649.73 from the leading edge so that
the Reynolds number based on the streamwise position and the free-stream velocity
reads Rex∗h = 1.25 × 106. It is emphasised that although this Reynolds number is
above the critical value for Tollmien–Schlichting (TS) waves, no such perturbations
are considered in the present work. For a detailed account of the TS instability, the
reader is referred to Schmid & Henningson (2001).

The flow is described by the time-dependent incompressible Navier–Stokes
equations subject to constant fluid properties

∂u
∂t
+ u · ∇u=−∇p+

1
Reδ∗h
∇

2u+ f in Ω, (2.1a)

∇ · u= 0 in Ω, (2.1b)

where u = (u, v, w)T denotes the velocity components in the x-, y- and z-directions
(see figure 2a for the coordinate system adopted), and Ω is the flow domain. At
the inflow boundary the Blasius profile is specified (Schlichting 1979), at the outflow
boundary a stress-free condition is prescribed Re−1

δ∗h
∂u/∂x − p = 0, Re−1

δ∗h
∂v/∂y = 0,

Re−1
δ∗h
∂w/∂z= 0, on the free-stream boundary a modified stress-free condition is used

u=U∞, Re−1
δ∗h
∂v/∂y− p= 0, w= 0 and in the spanwise direction periodic conditions

are assigned. At the end of the suction pipe, a laminar parabolic velocity profile is
prescribed Vpipe(r)=−R(1− r2) with r=

√
x2 + z2.

The term f in (2.1) represents a volume force containing the sponge term
γ (x, y)(uBl−p − u). (The subscript ‘Bl–p’ refers to a velocity field that satisfies
the Blasius similarity solution in the boundary layer and gives a parabolic profile
inside the pipe.) The sponge is added next to the inflow and outflow as sketched
in figure 2(a) to smoothly dampen perturbations and diminish boundary reflections.
Application of the sponge region next to the inflow thus ensures that there are no
disturbances in the boundary layer upstream of the suction hole. The sponge function
is defined as

γ (x, y)= γmax

[
S
(

x− xstart

∆rise

)
+ S

(
xend − x
∆fall

)
+ S

(
yend − y
∆fall

)]
, (2.2a)

S(x)=


0, x 6 0
[1+ exp(1/(x− 1)+ 1/x)]−1, 0< x< 1
1, x > 1,

(2.2b)

(Chevalier et al. 2007), and in all simulations γmax = 1, ∆rise = 18.75 and ∆fall = 6.75.
The length of the sponge is ∆length = 34, and xstart and xend are chosen such that the
sponge is divided proportionally to ∆rise and ∆fall between the outflow and the inflow.
The variable yend is chosen so that the sponge region inside the pipe has the same
length as that next to the inflow. With these parameters the extents of the domain
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Ref. Dimensions No. elements Polynomial order (N)

M1 [−34, 125] × [−40, 15] × [−15, 15] 63 440 12
M2 [−34, 125] × [−40, 15] × [−15, 15] 63 440 15
M3 [−34, 165] × [−40, 15] × [−15, 15] 76 752 12

TABLE 1. Overview of the different domains and meshes used in the study. The
dimensions of the domains are specified as [xmin, xmax] × [ymin, ymax] × [zmin, zmax] in units
of δ∗h .

outside the sponge region are −25 6 x 6 100 (−25 6 x 6 140 for mesh M3) and
−31 6 y 6 15.

All computations have been performed with the high-order DNS code Nek5000
(Fischer, Lottes & Kerkemeier 2008), which is based on the spectral element method
(SEM) (Patera 1984). Within the SEM, the Navier–Stokes equations are solved in
weak form and the fluid domain is decomposed into hexahedral elements, wherein the
velocities are represented by tensor products of one-dimensional Nth-order Lagrange
interpolants on the Gauss–Lobatto–Legendre quadrature points. The pressure is in
turn represented by tensor products of one-dimensional (N − 2)th-order Lagrange
interpolants on the Gauss–Legendre quadrature points, following PN–PN−2 (Maday &
Patera 1989).

Details and extents of the different meshes used here are given in table 1. The mesh
M1 is the one used for most of the study, whereas mesh M2 and M3 are aimed at
verifying that the flow is sufficiently resolved and that the results are independent of
the domain length, respectively. The mesh structure is visualised in figure 2(b). The
pipe is joined to the boundary layer box through a hemispherical cap that reduces the
effect of the pipe junction on the mesh structure inside the box.

2.2. Linear stability analysis
To investigate the linear stability of the flow, the flow quantities are decomposed into a
steady component and a perturbation according to u=U+ εu′ and p=P+ εp′, where
ε is a small parameter. By substituting these decompositions into (2.1) and equating
terms with the same order of ε, a set of equations for the base flow and the linear
evolution of the perturbation is obtained.

2.2.1. Base flow
The equations governing the base flow are similar to (2.1) and read

∂U
∂t
+U · ∇U=−∇P+

1
Reδ∗h
∇

2U+F in Ω, (2.3a)

∇ ·U= 0 in Ω. (2.3b)

Since the flow under investigation is unsteady, selective frequency damping (SFD)
(Åkervik et al. 2006) is used to obtain a steady solution to (2.3). This implies
appending a term −χ(U− Ū) to the volume force F that corresponds to a differential
low-pass filter

∂Ū
∂t
=

U− Ū
∆

. (2.4)
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The filter dampens temporal oscillations in the velocity field above its cutoff frequency
and forces the flow towards a steady solution Ū. The method requires two calibration
parameters: a filter width ∆ related to the cutoff frequency as ωc= 1/∆, and a control
coefficient χ related to the filter gain. These parameters are related to the frequencies
and the growth rates of the instabilities in the flow and are chosen as ∆= 42/π and
χ = 0.3.

2.2.2. Eigenvalue problem
The linearised Navier–Stokes equations describing the evolution of the perturbation

read

∂u′

∂t
+ u′ · ∇U+U · ∇u′ =−∇p′ +

1
Reδ∗h
∇

2u′ + f ′ in Ω, (2.5a)

∇ · u′ = 0 in Ω, (2.5b)

where f ′ = −γ (x, y)u′. To investigate the sensitivity of the flow, the adjoint of (2.5)
will be considered as well,

−
∂u†

∂t
− (U · ∇)u†

+ (∇U)Tu†
=−∇p†

+
1

Reδ∗h
∇

2u†
+ f † in Ω, (2.6a)

∇ · u†
= 0 in Ω, (2.6b)

where a dagger is used to denote adjoint quantities, and f †
=−γ (x, y)u†. (Details of

the derivation can be found in Barkley, Blackburn & Sherwin 2008.) Homogeneous
Dirichlet boundary conditions are used for u′ and u† on all boundaries except in the
spanwise direction, where periodicity is imposed. In order to satisfy such Dirichlet
conditions, similar sponge regions as in the nonlinear simulations are used.

By assuming that the flow evolves in a divergence-free space, the perturbation
equation (2.5) can be expressed in operator form as

∂u′

∂t
=L u′, (2.7)

with a similar expression for (2.6). Upon discretising (2.7) with the SEM and
introducing the ansatz function u′ = ûe−iωt, where û= (û, v̂, ŵ)T ∈C3 and ω ∈C, the
following generalised eigenvalue problem is obtained

− iωMû= Lû. (2.8)

The discrete operators M and L in this equation represent the spectral element
mass matrix and the discretised linearised Navier–Stokes operator, respectively. The
eigenvalue problem (2.8) is solved using the implicitly restarted Arnoldi method,
which is implemented in the P_ARPACK-library (Maschhoff & Sorensen 1996;
Lehoucq, Sorensen & Yang 1998). Instead of directly acting on a vector with the
operator M−1L (or a subroutine performing the action of this operator), the system is
integrated 1t time units with a time stepper, which realises the action of the matrix
exponential B(1t) = exp(1tM−1L). Given an initial random vector u′0, the algorithm
generates an m-dimensional Krylov space

Km = span{u′0, B(1t)u′0, . . . , B(1t)m−1u′0}, (2.9)
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which through successive orthogonalisation steps yields the Arnoldi factorisation

B(1t)V = VH + reT
m. (2.10)

The vector r is the residual of the factorisation and em is the mth unit vector. The
matrix H ∈ Rm×m, which is upper Hessenberg, is the orthogonal projection of B(1t)
onto the column space of V , represented in the basis of this column space (Trefethen
& Bau 1997). As such, the dominant eigenvalues of B(1t) and the corresponding
eigenvectors may be determined from those of H (see Bagheri et al. 2009 for
more details). A similar technique is used to solve the adjoint eigenvalue problem
arising from (2.6), although now the perturbation ansatz reads u†

= û†eiω∗t, with
û†
= (û†, v̂†, ŵ†)T ∈C3 and ω∗ denoting the complex conjugate of ω.

2.3. Koopman analysis
Koopman analysis is a technique for analysing nonlinear flows that has received much
attention during the past years (see Mezić 2013 for a review). Let {uj} be a time-
discrete sequence of states that reside in a state space M and h be a (nonlinear) flow
map that advances these states in time

uj+1 = h(uj). (2.11)

Consider a vector-valued observable g that acts on the state vectors and define the
Koopman operator U

U g(uj)= g(h(uj)), (2.12)

which evolves the observable g in time (Mezić 2005; Rowley et al. 2009). The
operator U is infinitely dimensional and linear (despite h being nonlinear), which
lends it to spectral analysis. Let U θk(u)=λkθk(u), where (θk,λk) denotes an eigenpair
of U (θk :M→R, λk ∈C). By assuming that all the components of the observable
lie within the span of these eigenfunctions, one has that

g(uj)=U jg(u0)=U j
∞∑

k=1

θk(u0)φk =

∞∑
k=1

λ
j
kθk(u0)φk, (2.13)

where the vectors {φk}, which are referred to as Koopman modes, contain the
coefficients in the above eigenfunction expansion (Rowley et al. 2009).

For the purpose of this paper, the state vectors will correspond to snapshots sampled
(equidistantly in time) from a nonlinear DNS and the observable g is taken to be the
full-state observable uj = g(uj). Consider the following shifted sequences

Υ m−1
0 = [u0, . . . , um−1], Υ m

1 = [u1, . . . , um]. (2.14a,b)

From equations (2.11) and (2.12), these sets can be related to each other as
Υ m

1 =U Υ m−1
0 . Hence, the evolution of the flow may be characterised by the Koopman

operator, and given that equation (2.13) holds, the evolution of the velocity field will
be entirely governed by the eigenvalues of U .

A practical means of approximating the Koopman modes and their corresponding
Koopman eigenvalues, is through the dynamic mode decomposition (DMD) (Schmid
2010). By sampling snapshots of the flow, one may expect the columns of Υ m−1

0 to
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become linearly dependent for large m, such that

Υ m
1 =Υ m−1

0 S + reT
m, (2.15)

in which S ∈Rm×m is a companion matrix, r is a residual vector and em is the mth unit
vector. Instead of directly diagonalising the companion matrix, the DMD algorithm
proposed by Schmid involves diagonalising an approximate similarity transformation
of S given by

S̃ = X TΥ m
1 WΣ−1

≈ (ΣW T)S(ΣW T)−1, (2.16)

wherein Υ m−1
0 =XΣW T is a singular value decomposition (SVD) of the first snapshot

matrix. The eigenvalues of S̃ yield approximations to the Koopman eigenvalues {λk},
from which the frequency of a given Koopman mode is obtained as ω̃k = arg(λk)/1t̃,
where 1t̃ denotes the time difference between the snapshots. The Koopman modes
are computed as Φ = XY , where Y is the normalised right eigenvector matrix of S̃.
To evaluate the (complex) amplitudes of the modes, the formula derived by Sarmast
et al. (2014) is considered

D−1
= TWΣ−1Y , (2.17)

where T is a Vandermonde matrix that corresponds to the left eigenvector matrix of
S, and D is a diagonal matrix containing the amplitudes. More details of the DMD
algorithm and the Koopman analysis can be found in e.g. Rowley et al. (2009),
Schmid (2010), Tu et al. (2014). In this study, an in-house implementation of the
method based on the LAPACK-library (Anderson et al. 1999) is used.

3. Results
3.1. Critical suction parameters

As discussed in § 1, a diagram illustrating the relation between the critical suction
ratio Rcrit and the hole diameter d∗/δ∗h for different Reynolds numbers Reδ∗h , was given
by MacManus & Eaton (1998, 2000) (see figure 1a). The figure gathers results from
their low-speed wind-tunnel measurements as well as transonic results by Blanchard
et al. (1991). (Note that MacManus and Eaton defined Reδ∗h based on the boundary
layer edge velocity, and R as the ratio between the average suction velocity and the
boundary layer edge velocity.) In order to further illustrate the variation of Rcrit with
Reδ∗h , these data are replotted in figure 1(b). As seen, an increase in Reδ∗h tends to
decrease the value of Rcrit. However, whereas all the data points in figure 1(a) collapse
onto a single curve, figure 1(b) shows an appreciable amount of scatter. This suggests
that the boundary layer Reynolds number might have a minor influence on the critical
suction ratio Rcrit compared to the hole diameter d∗/δ∗h .

In the thesis by Müller (2012), three cases were studied with the values d∗/δ∗h = 2,
Reδ∗h = 1924 and R = {0.452, 0.678, 0.905} (based on the same parameter definitions
as in this work). These velocity ratios imply a pipe Reynolds number of Red =

{1739.3, 2608.9, 3482.4} (with Red = |V∗h |d
∗/ν∗). As a starting point for the present

study, the three cases of Müller (2012) are reproduced. The simulations are started
from the synthetic flow field uBl−p (see § 2.1) and integrated forward in time. The
long-time flow responses are visualised in figure 3. For the lowest suction ratio shown
in figure 3(a), an apparently stable boundary layer is obtained featuring a central
high-speed streak and a counter-rotating vortex pair. With increased levels of suction,
the strength of this streak increases, and as seen in figure 3(b), oscillations appear
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FIGURE 3. Flow visualisation of streamwise velocity for (a) R= 0.452, (b) R= 0.678 and
(c) R= 0.905, at y= 0.9 (viewed from above).

on the vortex legs towards the end of the domain. These oscillations are persistent
in time, which is an indication that the flow might have surpassed its critical suction
ratio Rcrit and become unstable. For even higher values of R (figure 3c), the vortices
break down and turbulent flow develops in the wake. Based on these simulations, the
critical suction ratio that precipitates boundary layer transition appears to be in the
interval 0.452< Rcrit < 0.678 (see figure 1 for a comparison with the aforementioned
data available in the literature). The case with suction ratio R= 0.678 is selected for
further analysis. Before considering a spectral analysis of this configuration, some of
its flow characteristics will be further highlighted.

3.2. Flow features
One of the most prominent structures in the flow is the counter-rotating vortex
pair shown in figure 4. This pair of vortices originates inside the pipe and brings
high-velocity fluid in the outer part of the boundary layer towards the plate, where
it creates a high-speed streak behind the suction hole as shown in figure 5. Outside
of the primary vortex pair, there is a weak secondary vortex pair with a sense of
rotation that is opposite to the principal one, followed by a third slightly stronger
vortex pair that co-rotates with the principal one. Similar vortex structures have
also been reported by (Meyer 1955; MacManus & Eaton 1998, 2000). MacManus &
Eaton (1998, 2000) argued that these secondary vortices may arise due to the strongly
inflectional spanwise velocity component (see figure 5).

Regarding the flow within the pipe, a separated zone develops at the upstream side
of the pipe wall close to the pipe junction, as plotted in figure 6. Further down in the
pipe, the counter-rotating vortices create two streaks with fluid moving in the upward
direction that are symmetrically positioned about the xy-plane. These streaks move
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FIGURE 4. Vortex structures for the suction ratio of R = 0.678 visualised by the
λ2-criterion (Jeong & Hussain 1995). The view is from above, and the sense of rotation
of the different vortices are indicated by their colour and the arrows.
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FIGURE 5. Velocity in the yz-plane at x= 10 (x∗/d∗ = 5) for the suction ratio R= 0.678
(viewed from upstream). Isocontours of the streamwise velocity component are shown with
black lines (ranging from 0.0 to 1.0 and separated by 0.04 units) and the spanwise velocity
is shaded.

away from the wall with distance from the inlet and grow into very intricate structures
that eventually destabilise and trip the flow inside the pipe. This breakdown is further
illustrated in figure 7 where typical power spectra (PS) from two probes within the
pipe are shown. These power spectra are computed from the x-velocity component
using Welch’s method of averaged modified periodograms (see e.g. Heinzel, Rüdiger
& Schilling 2002), where each segment has been windowed with a Hann function
using an overlap of 50 %. (The length of each segment was approximately 123 time
units, and the effective noise bandwidth of the window was 0.0122.) Near the inlet
of the pipe (5δ∗h from the pipe inflow), large energetic structures appear with several
amplified frequencies. Further down into the pipe (20δ∗h from the pipe inflow), these
large structures have broken down and consequently their corresponding energies have
decreased.

A separation bubble and a pair of counter-rotating vortices have also been observed
in the simulations presented by MacManus & Eaton (1996). However, for their
comparably low values of R, no unsteadiness of the separation bubble was seen. The
inhomogeneity of the vertical velocity component near the pipe inlet (figure 6a) was
also observed in the compressible simulations by Müller (2012) using flow parameters
comparable to the present ones. However, in contrast to figures 6 and 7, that author
did not report any unsteadiness inside the pipe, but rather argued for the opposite.
The reason for this difference in results is unknown. In fact, a preliminary DNS
study on a coarser grid investigating different parameter combinations of R and Reδ∗h ,
suggests that for the present values of d, s and L, the pipe always transitions for a
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FIGURE 6. Visualisation of the instantaneous flow inside the pipe at various distance from
the pipe inflow. The out-of-plane y-velocity is shaded, and positive and negative y-vorticity
is shown with yellow and blue contours, respectively, and ranges from −29.0 to 29.0 with
1 unit separation.

lower R or Reδ∗h than the boundary layer (Brynjell-Rahkola et al. 2015). Consequently,
the separation bubble and flow conditions in the pipe seem to play a crucial role in
the transition process.

3.3. Linear stability analysis
The eigenvalue spectrum containing the most unstable/least stable eigenvalues for the
case with the intermediate suction ratio R= 0.678 are plotted in figure 8. (Since the
spectrum is symmetric about the imaginary axis, only half of it is shown.) Comparison
of these eigenvalues with the spectra plotted in figure 7 shows a quite good agreement
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FIGURE 7. Power spectra (PS) of the x-velocity (cross-stream component) measured in
the pipe at the positions (0.0,−5.0,−0.5) (——) and (0.0,−20.0,−0.5) (——).
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FIGURE 8. Eigenvalue spectrum for R = 0.678 (the superscripts r and i refer to the
real and the imaginary parts of ω, respectively). The eigenvalues whose corresponding
eigenvectors have their support only in the pipe are marked with filled symbols, whereas
eigenvalues whose eigenvectors have their support in the pipe and in the boundary layer
are marked with open symbols. The eigenvectors have different symmetries and are either
varicose (E) or sinuous (A).

between the linear analysis and the DNS. All of the eigenvectors have their support in
the pipe and a few modes also extend into the boundary layer. As can be seen, many
of the modes inside the pipe are highly unstable, whereas two modes in the boundary
layer (and the pipe) are slightly unstable, and another two are lightly dampened. In
contrast, a preliminary stability analysis (Brynjell-Rahkola et al. 2015) performed on a
coarser mesh suggests that all the modes for R= 0.452 that contain both the boundary
layer and the pipe are stable (in agreement with the nonlinear DNS results of § 3.1).

Two kinds of symmetry are observed among the eigenvectors. One where the
x- and y-components are anti-symmetric and the z-component is symmetric with
respect to the xy-plane, and another where this symmetry is reversed (i.e. the x- and
y-components are symmetric and the z-component is anti-symmetric). Throughout
the rest of this article, modes with these different symmetries will be referred to as
sinuous and varicose, respectively.

In figure 9, the most unstable eigenvector (a sinuous pipe mode) is shown. The
mode resides close to the pipe inlet in the same region where the flow was seen to
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FIGURE 9. Vertical velocity component of the eigenvector corresponding to the most
unstable eigenvalue ω = ±0.4997 + i0.2014. Contours corresponding to ±1 % of the
maximum velocity are plotted in white and black colours, respectively, together with base
flow vortex structures visualised by the λ2-criterion (Jeong & Hussain 1995) (dark grey).

destabilise and break down in the DNS simulation (figure 6). In fact, the five most
unstable (pipe) modes have their maximum amplitude in the interval −6 < y < −3.
This shows that the transition to turbulence observed in the pipe section to a large
extent can be explained by an instability near the pipe inlet. Instabilities that are
restricted to the pipe would, however, not be able to explain the origin of oversuction
since amplification of such modes does not imply disturbance growth within the
boundary layer. This can be realised by considering the lower suction ratio R= 0.452,
for which the pipe flow transitions to turbulence while the boundary layer remains
laminar. Therefore, given the aim of understanding the origin of oversuction, the
boundary layer modes will be studied in greater detail throughout the remainder of
this article.

The eigenvalues whose eigenvectors span both the pipe and the boundary layer are
labelled I–IV in figure 8. Their corresponding eigenvectors are shown in figure 10.
Like the other modes, the modes I–IV are strongest in the pipe, but in contrast to the
other ones, the eigenvectors also have a weak tail that extends into the boundary layer.
Although the amplitudes of these eigenvectors are between O(10−4) and O(10−2) lower
in the boundary layer than in the pipe, our analysis will show that it is precisely these
motions that are responsible for the transition in the boundary layer.

As seen in figure 10, the unstable modes I and II have different symmetries. Since
the growth rate (and the frequency) of these modes are similar to each other, they can
be expected to have similar amplitudes in the flow. Therefore the transition process is
unlikely to exhibit a particular symmetry, as also indicated in figure 3.

Valuable information regarding the mechanisms promoting the growth of these
modes can be obtained by considering the temporal evolution of the perturbation
energy EΩ as described by the Reynolds–Orr equation. This equation is derived
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FIGURE 10. Streamwise velocity component of the eigenvectors corresponding to the
eigenvalues labelled (a) I, (b) II, (c) III and (d) IV in figure 8. Contours corresponding
to ±0.1h of the maximum velocity are plotted in grey and black colours, respectively.

from (2.5) (see Schmid & Henningson 2001) and reads

dEΩ
dt
=−

∫
Ω

u′ju
′

k
∂Uj

∂xk
dΩ −

1
Reδ∗h

∫
Ω

∂u′j
∂xk

∂u′j
∂xk

dΩ −
∫
Ω

γ u′ju
′

j dΩ, (3.1)

wherein two similar indices imply summation, and j, k ∈ {1, 2, 3}. Indices {1, 2, 3}
hence refer to the three spatial directions {x, y, z}, respectively. The first term on the
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(1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2) (1, 3) (2, 3) (3, 3)

I 0.5134 4.3800 0.1775 −0.4034 −0.0763 −0.0748 0.9830 2.7303 1.2153
II 0.4357 1.3757 −0.8905 −0.0287 0.0891 0.0081 1.7763 3.5000 0.1307
III 0.1755 1.7353 −0.1138 0.0056 0.1061 0.0095 0.3053 3.4382 0.2587
IV 0.1078 2.9387 −0.0601 −0.0123 −0.0722 −0.0006 0.1133 0.7226 0.0864

TABLE 2. Relative contributions from the production mechanisms to the growth
rate in (3.2) for the selected modes. The tuples ( j, k) denote the different terms
−E−1

Ω

∫
Ω
(ûr

j û
r
k + ûi

jû
i
k)∂Uj/∂xk dΩ normalised by |ωi

|. The numbering in the first column
refers to the mode labelling introduced in figure 8.

(1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2) (1, 3) (2, 3) (3, 3)

I 0.3558 2.8503 0.7795 0.2518 0.3272 0.1796 0.6861 2.6522 0.3523
II 0.1346 1.4632 0.4109 0.0241 0.0509 0.0194 0.4100 2.4948 0.1380
III 0.0623 1.7535 0.2181 0.0010 0.0076 0.0012 0.1797 1.9777 0.0625
IV 0.0335 1.2508 0.1083 0.0033 0.0263 0.0035 0.1046 1.1557 0.0403

TABLE 3. Relative contributions from the dissipation mechanisms to the growth
rate in (3.2) for the selected modes. The tuples ( j, k) denote the different terms
E−1
Ω Re−1

δ∗h

∫
Ω
[(∂ ûr

j/∂xk)
2
+ (∂ ûi

j/∂xk)
2
] dΩ normalised by |ωi

|. The numbering in the first
column refers to the mode labelling introduced in figure 8.

right-hand side of (3.1) represents the exchange of energy between the perturbation
and the base flow (i.e. energy production), the second term represents dissipation of
energy by viscosity and the third term corresponds to a volume force (here taken
to be the sponge force that makes the disturbance vanish on the inflow and outflow
boundaries). By substituting the mode ansatz of § 2.2.2 into (3.1), an equation for the
growth rate of a mode may be derived

ωi
= −

1
EΩ

∫
Ω

(ûr
j û

r
k + ûi

jû
i
k)
∂Uj

∂xk
dΩ −

1
EΩ

1
Reδ∗h

∫
Ω

[(
∂ ûr

j

∂xk

)2

+

(
∂ ûi

j

∂xk

)2]
dΩ

−
1

EΩ

∫
Ω

γ [(ûr
j )

2
+ (ûi

j)
2
] dΩ, (3.2)

from which the contributions of the different production and dissipation terms to the
growth or decay of a given eigenmode can be evaluated. The superscripts r and i
refer to the real and imaginary parts, respectively, and the energy of the perturbation
in the domain is given by EΩ =

∫
Ω
(ûr2

j + ûi2
j ) dΩ . (In the stability computations the

eigenvectors are normalised to have EΩ = 1.) The results of evaluating the terms in
(3.2) are given in tables 2 and 3, which state the individual production and dissipation
mechanisms, respectively.

By examining table 2, it is noted that the production of energy generally is
dominated by either −E−1

Ω

∫
Ω
(v̂rûr
+ v̂iûi)∂V/∂x dΩ or −E−1

Ω

∫
Ω
(v̂rŵr

+ v̂iŵi)∂V/∂z dΩ .
For mode I and IV it is the former whereas for II and III it is the latter.
This implies that energy is extracted from the base flow and transferred to the
eigenmodes by vertical and horizontal components of the eigenvectors working
against the gradients of the vertical base flow component in the horizontal directions.
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FIGURE 11. Density of the sum of all production (yellow) and dissipation (blue)
mechanisms for (a,b) mode I and (c,d) mode II. Contours corresponding to 10 % of
the maximum production/dissipation of kinetic energy are plotted together with base flow
vortex structures visualised by the λ2-criterion (Jeong & Hussain 1995) (dark grey).

Similarly, by studying table 3, it is observed that the main mechanisms responsible
for dissipation of energy are the horizontal gradients of the vertical eigenvector
component, i.e. E−1

Ω Re−1
δ∗h

∫
Ω
[(∂v̂r/∂x)2 + (∂v̂i/∂x)2] dΩ for modes I and IV, and

E−1
Ω Re−1

δ∗h

∫
Ω
[(∂v̂r/∂z)2 + (∂v̂i/∂z)2] dΩ for modes II and III.

In figure 11 the density functions of the sum of all production and dissipation
mechanisms for modes I and mode II are visualised. As seen, the plotted structures are
symmetric with respect to the xy-plane and have a rather different shape for the two
eigenmodes. For the varicose mode I, the production and dissipation of kinetic energy
are localised close to the pipe inlet beneath the separation bubble that forms on the
upstream portion of the wall. For the sinuous mode II on the other hand, production
and dissipation of kinetic energy seem to be associated with both the aforementioned
region close to the pipe inlet, and the elongated vortex legs that extend through the
pipe.
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Since the instability of the eigenmodes I and II is modest, small changes in the
numerical set-up may have a large impact on the overall character of the boundary
layer. In order to ensure that these modes are converged in terms of resolution, the
polynomial order is increased from N= 12 to N= 15 (mesh M2). This change doubles
the number of grid points, but changes the absolute value of the eigenvalues for the
two modes by less than 1 %. (The changes in the absolute value of the eigenvalues
corresponding to the pipe modes are O(0.1 %).)

Figure 10 shows that all the encountered modes in the boundary layer extend
towards the end of the domain where they are dampened by the sponge function.
Recent three-dimensional stability analyses considering the flow around a cylindrical
roughness element in a Blasius boundary layer have shown that eigenmodes
corresponding to isolated eigenvalues can be rather insensitive to changes in the
domain size, given that sufficiently long domains are considered (Loiseau et al. 2014).
In contrast, eigenvalues corresponding to the flow around a cylindrical roughness
element in a Falkner–Skan–Cooke boundary layer have been shown to be impossible
to converge with respect to the domain size (Brynjell-Rahkola et al. 2017) due to
the presence of acceleration and sweep. In order to verify the sensitivity of this
parameter on the present flow case, the streamwise extent of the boundary layer is
increased by approximately 25 % (mesh M3). However, this changes the eigenvalues
of mode I and II less than 0.1h in absolute value, which suggests that the instability
mechanisms of the boundary layer are independent of the box length and localised
in the domain. (The changes in the absolute value of the eigenvalues corresponding
to the pipe modes are O(0.01h).)

3.4. Sensitivity
Next, the origin of the instability reported in § 3.3 is investigated. This is done through
a structural sensitivity analysis as introduced by Giannetti & Luchini (2007). These
authors considered a spatially localised perturbation to the linearised Navier–Stokes
equations (2.5) in the form of a force–velocity coupling, and they derived an upper
bound for the resulting eigenvalue drift due to this perturbation. Following their
analysis, regions in space where the flow is sensitive and where a localised force
feedback thus will create a large change in a given eigenvalue, may be identified by
evaluating the expression

µ(x)= ‖û†
(x)‖‖û(x)‖, (3.3)

for a pair of direct and adjoint eigenvectors subject to the normalisation

max
x∈Ω
{|û(x)|} = 1,

∫
Ω

|û†
· û| dΩ = 1, (3.4a,b)

(‖ · ‖ is the Euclidean norm in C3). As argued by Chomaz (2005) and Giannetti
& Luchini (2007), regions where µ(x) is non-zero may be ascribed the role of
a ‘wavemaker’ that indicates where in space the instability mechanism resides.
Equation (3.3) and (3.4) evaluated for mode I is visualised in figure 12. As seen, the
‘wavemaker’-region is localised inside the pipe beneath the separation bubble. It is
symmetric about the xy-plane and embraces the vertical elongated vortices that form
in the pipe and were seen to break down in figure 6. Comparing the isocontours
corresponding to 1 % and 10 % of the maximum value, it is noted that the sensitivity
increases towards the centre of the pipe. This implies that the ‘core’ of the instability
lies on the inner sides of the two vortices, and thus that a small control device will
have the largest impact on the instability if placed between the two vortex legs. The
corresponding region for mode II has a similar shape, strength and location.
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FIGURE 12. Structural sensitivity. Contours of µ corresponding to 10 % (blue) and 1 %
(yellow) of the maximum sensitivity for mode I are plotted together with base flow vortex
structures visualised by the λ2-criterion (Jeong & Hussain 1995) (dark grey).

(a) (b)

FIGURE 13. Sensitivity to momentum forcing. Contours corresponding to 5 % (yellow),
15 % (blue) and 50 % (black) of the maximum value of (a) ‖û†

III‖ and (b) ‖û†
IV‖ are plotted

(‖ · ‖ is the Euclidean norm in C3).

Since mode III and mode IV are asymptotically stable, they will ultimately decay
in time unless they are excited by a harmonic driving force. It is therefore of interest
to also consider the sensitivity of these modes to forcing. As described by Hill (1995),
the sensitivity of a given flow to momentum sources may be assessed by studying
the adjoint eigenvectors. The adjoint eigenvectors exhibit the same symmetry as their
corresponding direct eigenvectors. In figure 13 the norm of the adjoint eigenvectors
corresponding to modes III and IV (here denoted û†

III and û†
IV , respectively) are

visualised. By comparing the spatial distribution of the sensitivity of the two modes,
it is seen that both are susceptible to momentum disturbances that enter through
the sucked streamtube. However, the low frequency mode appears more sensitive to
lateral forcing, whereas the high frequency mode is more sensitive to forcing directly
in front of the hole. In addition to the boundary layer, the adjoint eigenvectors
are also seen to reach into the pipe and cover the pipe junction and the separation
bubble. Due to the presence of the unstable modes, excitation of the lightly dampened
modes III and IV can thus be expected to appear through momentum forcing by the
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FIGURE 14. An instantaneous snapshot of the unsteady disturbance component of a
nonlinear DNS. Contours of the streamwise velocity component u − U corresponding to
±10−4 are plotted in grey and black colours, respectively.

unsteady fluctuations in the pipe and around the pipe orifice. As a result, these modes,
although asymptotically stable, are likely to be excited and contribute to the transition
process in the boundary layer.

3.5. Analysis of the nonlinear flow
With this insight into the stability and receptivity of the flow, it is instructive to study
how well the results from the linear analysis apply to the nonlinear flow, and to what
extent they can be used to interpret the transition scenario observed. To obtain a
first qualitative picture of the disturbance field present in the DNS, the steady base
flow solution is subtracted from the instantaneous velocity field shown in figure 3(b).
The resulting unsteady component of the flow is plotted in figure 14. This shows
the presence of an unsteady perturbation with spatially varying wavelength in the aft
of the suction hole that is reminiscent of the modes shown in figure 10. Note that
the velocity in the DNS and the base flow is O(1), and thus that the strength of
the perturbation in the boundary layer is comparable to the relative strength of the
eigenvectors in the boundary layer.

A brief comparison of the frequency content in the DNS and in the linear analysis
was presented in figures 7 and 8. However, in order to make any strong conclusions
regarding the transition of the boundary layer flow, it is important to verify that the
disturbance in the boundary layer has the characteristics of the linear eigenmodes
I–IV. To this end, a Koopman analysis as described in § 2.3 is carried out. Given
the large amplitude ratio of the disturbance between the pipe and the boundary layer,
this analysis will be limited to a smaller subset of the domain, namely [−25, 40] ×
[0, 15]× [−15, 15]. This choice will prevent the strong fluctuations in the pipe as well
as in the downstream portions of the plate from contaminating and overshadowing the
relevant linear mechanisms that initiate the transition process in the boundary layer.
Around 300 snapshots are sampled consecutively in time from the nonlinear DNS with
a separation of 1t̃ = 0.48. (The columns of Υ m

0 span an approximate subspace with
a residual whose Euclidean norm is below 10−5.) The time integration is started from
the flow field visualised in figure 3(b), which corresponds to an arbitrary time instance
after transients have washed away.

The spectral content of the flow in the specified subdomain is plotted in figure 15.
As seen, the flow features several amplified frequencies. Among the frequencies, the
three most amplified ones are seen to be (in order) ω̃ = 0.2258, 0.1112 and 0.1933,
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FIGURE 15. Frequency spectrum of the Koopman operator (the mean flow is omitted).
The amplitudes |Dk| of the different frequencies are computed from (2.17) and normalised
by that of the mean flow, |D1|.

which are in reasonable agreement with the frequencies of the modes I, III and II that
were obtained in the linear analysis, i.e. ωr

= 0.2155, 0.0913 and 0.2062, respectively.
In figure 16, the shape of the Koopman modes corresponding to these frequencies

are visualised. In figures 16(a) and 16(b), the modes corresponding to the frequencies
ω̃ = 0.1933 and ω̃ = 0.2258 are shown, respectively. As seen, the former closely
resemble the sinuous mode visualised in figure 10(b). The latter on the other
hand appears quite noisy and is somewhat difficult to interpret. It appears to be
a combination of a sinuous and a varicose mode. Since the modes I and II from the
linear analysis have similar frequencies and growth rates, it is possible that the DMD
algorithm is unable to fully distinguish between the two, which might explain its
distorted structure. In figure 16(c) the mode corresponding to frequency ω̃ = 0.1112
is shown. The shape of this mode is again in good agreement with the sinuous
mode III visualised in figure 10(c). The Koopman analysis is also able to identify
the frequency ω̃ = 0.4464, which is very close to that of the linear mode IV with
ωr
= 0.4469. However, as seen in figure 10(d), this mode is relatively weak in the

subdomain considered here (−25 6 x 6 40) and can therefore not be expected to
appear as a peak in the current analysis.

4. Discussion and conclusions

In this article, the classical problem of oversuction in a flat plate boundary layer
has been revisited and novel insight into its origin has been presented. The study
focuses on a single infinite row of widely spaced circular suction pipes that act in
isolation. For the cases investigated, unsteady fluctuations and transition are always
observed within the pipe. However, upon increasing the suction ratio while keeping
other parameters fixed, unsteadiness also develops in the boundary layer. A linear
stability analysis shows that these fluctuations correspond to two unstable eigenmodes
that reside in the pipe and extend into the boundary layer. Among the unstable modes,
two symmetries with respect to the xy-plane are distinguished, namely varicose and
sinuous. This implies that the transition in the boundary layer generally can be
expected to be asymmetric.

The computed eigenvalues appear to be rather insensitive to small changes in the
numerics such as resolution and domain size. This means that the instability can
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FIGURE 16. Streamwise velocity component of the Koopman modes corresponding to the
frequencies (a) ω̃ = 0.1933, (b) ω̃ = 0.2258 and (c) ω̃ = 0.1112. Contours corresponding
to ±1 % of the maximum velocity are plotted in grey and black colours, respectively.

be regarded as a robust phenomenon, which enables an upper limit on the suction
ratio to be defined (for a given Reynolds number and hole geometry) at which the
boundary layer will be tripped. In the present study, the sensitivity of the flow with
respect to the pipe length L∗/d∗ has not been explicitly investigated. However, as
seen in figure 12, the region of structural sensitivity for mode I is limited to y>−5,
while the total length of the pipe is L= 40. This suggests that a modification in the
computational set-up far away from the pipe junction will have a minor effect on the
corresponding eigenvalue (Giannetti & Luchini 2007). A similar analysis performed
on the other modes reported in figure 8 leads to the same conclusion, which suggests
that changes in the pipe length will have a negligible influence on the dynamics of
the flow.

In the study by MacManus & Eaton (1996), the impact of the geometry of the
suction hole on the vorticity generated behind the orifice was numerically investigated.
They concluded that the specific shape of the hole (i.e. bore type, rounded inlet,
asymmetrically rounded inlet and rounded raised lip) had little influence on the level
of induced vorticity, and that the largest change was obtained by inclining the holes.
In contrast to these findings, the structural sensitivity presented herein suggests that
the pipe inlet and the associated separation bubble are the regions where the flow is
most sensitive to modifications in the geometry and boundary conditions. In fact, one
may infer from these findings that a proper lip shaping may significantly shift the
eigenvalues, and hence possibly increase the critical suction parameters of the flow.

Over the years, several explanations have been proposed for the origin of
oversuction (see § 1). In this work, it is for the first time shown that, although
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transition becomes visible in the boundary layer far downstream of the suction orifice,
the instability is actually initiated in the pipe section around the elongated vortex pair
and the separation bubble. From an energy budget, the dominating mechanisms that
produce and dissipate kinetic energy are determined. It is shown that the unstable
varicose mode mainly gains energy from the x- and y-components of the perturbation
working against the base flow gradient ∂V/∂x, whereas the unstable sinuous mode
mainly gains energy from the y- and z-components of the perturbation working
against the base flow gradient ∂V/∂z. By increasing the amount of suction, the size
of the recirculation zone near the pipe inlet will decrease, while the strength of the
vortex pair will increase. This suggests that the base flow gradients in these regions
will become sharper, and by increasing the suction levels beyond a given threshold,
a critical level of shear in the x- and z-directions is surpassed, which triggers the
instability. An examination of the density functions for the sum of the production
terms reveals that the varicose mode primarily extracts energy from the region close
to the inlet and the separation bubble. The sinuous mode on the other hand is found
to be able to extract energy from a larger region in space involving not only the
aforementioned region, but also the region between and around the vortex legs further
down into the pipe. This is an indication that the varicose mode (for the present flow
parameters) can be interpreted as an instability of the separation bubble, and that the
sinuous mode can be interpreted as an instability of both the separation bubble and
the vortex legs.

An interesting question is how these unstable modes compare to those obtained
from a stability analysis about a time-averaged mean flow. Such a comparison was for
instance performed by Barkley (2006) for the two-dimensional flow around a cylinder.
Barkley showed that beyond the bifurcation point, the frequency of an unstable mode
deduced from a mean flow analysis closely matched that of a limit cycle oscillation,
whereas the frequency obtained from a base flow analysis did not. This observation
was further analysed by Sipp & Lebedev (2007), who considered a multiple time-scale
analysis of the flow near critical conditions and described the amplitude of the first
unstable mode by a Stuart–Landau equation. These authors showed that the mean flow
analysis does not always predict the frequency of a nonlinear limit cycle correctly, and
proposed necessary conditions for such an analysis to be meaningful. As an alternative
approach, the spectral properties of a nonlinear flow can be analysed using Koopman
analysis (Mezić 2013). Such an analysis has been performed in the present study, and
the resulting Koopman eigenvalues and Koopman modes are found to agree well with
the eigenvalues and the eigenvectors of the linearised operator around the base flow.
Furthermore, the eigenvalue spectrum obtained from the base flow analysis is found to
compare quite well with the frequency spectrum obtained from a velocity probe in the
pipe of the nonlinear DNS. Such agreement may seem surprising given that the flow
inside the pipe transitions, and the vortex structures from which the unstable boundary
layer modes extract energy thus break down. However, as shown in figure 12, the
‘cores’ of the instability mechanisms are localised close to the pipe inlet where the
oscillations typically are small (see figure 6). Hence, the structures of the mean flow
and the base flow in this dynamically important region are likely to be similar, which
explains the observed agreement. This establishes the presence of the computed modes
in the transition process, and corroborates that the premature transition observed in
many experiments indeed can be explained by a linear instability of the flow.
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