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1IUSTI, UMR CNRS 6595, Université Aix-Marseille I, Technopôle de Château Gombert,
5 Rue E. Fermi, 13453 Marseille Cedex 13, France

2Projet SMASH, INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France
3Institut Universitaire de France, 2004 route des Lucioles, 06902 Sophia Antipolis, France

Olivier.Lemetayer@polytech.univ-mrs.fr; Richard.Saurel@polytech.univ-mrs.fr

(Received 8 February 2006 and in revised form 11 April 2006)

When a laser beam of high intensity interacts with a dense material, an ablation
front appears in the high-temperature plasma resulting from the interaction. Such a
front can be used to accelerate and compress the dense material. The dynamics of
the ablation front is strongly coupled to that of the absorption front where the laser
energy is absorbed. The present paper determines analytical solutions of the front
internal structure in the fully compressible case.

1. Introduction
This study deals with ablation fronts that appear when a high laser beam flux

is used to transform a dense material to a lighter one at high velocity and high
temperature. This physical process is often used to accelerate and to compress the
dense material. As shown in figure 1, the laser beam is absorbed in a critical surface,
named the ‘absorption front’, where the density is determined by the plasma frequency
produced. The stored energy is released in the medium by nonlinear thermal diffusion
(Spitzer & Härm 1953) which governs the dynamics of a subsonic front, named the
‘ablation front’, where a high density gradient is present. Through the ablation front,
the dense material transforms into a light and hot plasma moving at high velocity
towards the absorption zone. This paper is devoted to the determination of the
main flow-variable profiles between the ablation front and the absorption front in a
one-dimensional steady compressible flow configuration.

The ablation phenomenon is modelled by the Euler equations with additional
terms corresponding to thermal diffusion and energy deposition from the laser beam
(Clavin & Masse 2004). This energy is stored in the absorption front characterized
by a critical density ρc.

The system under study is

∂ρ

∂t
+

∂ (ρu)

∂x
= 0,

∂ (ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0,

∂ (ρE)

∂t
+

∂ ((ρE + P )u)

∂x
=

∂

∂x

(
λ(T )

∂T

∂x

)
+ Iδ{x=xc(t)},

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)
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Figure 1. Schematic of laser ablation phenomenon.

where ρ, u, P , T represent respectively the density, the material velocity, the pressure
and the temperature of the fluid. The total energy is defined as E = e + u2/2 where e

is the specific internal energy.
The thermodynamic closure of system (1) is given by the following equations of

state (EOS):

e(P, ρ) =
P

(γ − 1)ρ
, (2)

T (P, ρ) =
P

(γ − 1)Cvρ
, (3)

where γ and Cv are constant parameters representing respectively the polytropic
coefficient and the heat capacity at constant volume of the fluid. The thermal diffusion
corresponds to a contribution of radiation and conduction effects in the plasma. The
electronic thermal conductivity obeys the law λ(T ) = CT n where C and n are positive
constant coefficients (Spitzer & Härm 1953).

Also, in (1) I represents the laser flux intensity and δ{x=xc(t)} represents the Dirac
function associated with the laser deposition at the critical surface xc characterized by
ρ = ρc. In system (1), this term is written for a laser beam in the opposite direction
to the axis x. For the analysis we propose in this paper, it is more convenient to
replace the Dirac function with the spatial derivative of the Heavyside function
δ{x=xc(t)} = ∂H{x>xc(t)}/∂x defined by

H{x>xc(t)} =

{
1 if x > xc(t)

0 otherwise.

As a consequence, system (1) can be written in a conservative formulation:

∂U

∂t
+

∂F

∂x
= 0, (4)

where U = (ρ, ρu, ρE)T and F =(ρu, ρu2 + P, (ρE + P )u + q − IH )T with
q = − λ(T )∂T /∂x. The steady solutions of system (4) are obtained by solving the
differential system

dρu

dx
= 0,

dρu2 + P

dx
= 0,

d(ρE + P )u + q − IH

dx
= 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5)

Hence system (5) is valid in the frame of the ablation front which is considered as a
steady front.
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The integration of system (5) leads to the following set of equations:

m = ρu = const,
mu + P = const,

m

(
h +

1

2

m2

ρ2

)
+ q − IH = const,

⎫⎪⎪⎬⎪⎪⎭ (6)

where h = e + P/ρ is the specific enthalpy of the fluid. System (6) is first studied
by neglecting the diffusion term q . This corresponds to the determination of jump
relations across a discontinuity separating two constant states without solving its
internal structure. These states correspond to those on to each side of the ablation
and the absorption fronts. Next, system (6) is studied by considering the diffusion term.
The integration of this system allows the determination of the different flow-variable
profiles between the two preceding constant states.

2. Study of the jump relations connecting two constant states
Neglecting the diffusion term q , system (6) becomes

m = ρu = const,
mu + P = const,

m

(
h +

1

2

m2

ρ2

)
− IH = const.

⎫⎪⎪⎬⎪⎪⎭ (7)

In the rest of the paper, we will denote by the subscript a the constant state located
to the left of the ablation front characterized by knowing ρ = ρa , P = Pa and
H = Ha = 0. The only unknown is the material velocity ua . In the same way, we will
denote by the subscript c the constant state located to the right of the absorption
front characterized by knowing H = Hc = 1 and ρ = ρc which corresponds to the
critical density.

Then, the algebraic system to solve is the following:

m = ρaua = ρcuc,

mua + Pa = muc + Pc,

m

(
ha +

1

2

m2

ρ2
a

)
= m

(
hc +

1

2

m2

ρ2
c

)
− I,

⎫⎪⎪⎬⎪⎪⎭ (8)

where the material velocities ua , uc and the pressure Pc are unknown.
The specific enthalpies are given by

ha =
γPa

(γ − 1)ρa

= CP Ta and hc =
γPc

(γ − 1)ρc

= CP Tc.

An interesting limit of system (8), studied in Clavin & Masse (2004), concerns the low-
Mach-number quasi-isobaric assumption. In this limit the kinetic energies 1

2
m2/ρ2

a and
1
2
m2/ρ2

c in the total energy equation of system (8) are neglected. Thus, the momentum
equation in system (8) is not relevant and only gives an a posteriori estimate of the
pressure drop across the front.

Under this assumption, the system to consider reduces to

m = ρaua = ρcuc, mha = mhc − I. (9)
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The temperature Tc is obtained from the equality Pc = Pa , that is Tc = Taρa/ρc. Then
the mass flow rate is directly determined by

m =
I

hc − ha

=
I

CP (Tc − Ta)
=

I

CP Ta (ρa/ρc − 1)
. (10)

The material velocities ua and uc are given by the relations ua = m/ρa and uc = m/ρc.
In the compressible case, the system to solve is

m = ρaua = ρcuc,

m2

ρa

+ Pa =
m2

ρc

+ Pc,

m

(
ha +

1

2

m2

ρ2
a

)
= m

(
hc +

1

2

m2

ρ2
c

)
− I.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(11)

Unlike the quasi-isobaric model, the mass flow rate m cannot be an explicit function
of the density ρc nor of the temperature Tc. By eliminating the unknown Pc in the
energy equation of system (11), a relation between the variables m and ρc is obtained:

f (m, ρc) =

(
γ + 1

ρc

− γ − 1

ρa

)
m3 − 2γPam +

2(γ − 1)I

(1/ρc − 1/ρa)
= 0. (12)

Since ρc is known, the relation (12) is only a function of the mass flow rate m.
There always exists a solution corresponding to m < 0 and, under some conditions,
two solutions corresponding to m > 0. The negative solution, which is unphysical, is
rejected because the front must be crossed by the matter. In addition, the two positive
solutions exist if the following condition is fulfilled:

ρa

ρc

� 1 +
ρa((γ

2 − 1)I )2

2(γ + 1) (2/3γPa)
3

⎛⎝1 +

√
1 +

8 (2/3γPa)
3

ρa((γ 2 − 1)I )2

⎞⎠ = R∗
ρ. (13)

This inequality is a compatibility condition between the laser intensity, the
thermodynamic state (a) and the critical density ρc. If this condition is not fulfilled,
the two constant states (a) and (c) cannot be connected and the ablation front does
not exist. In particular, for a given thermodynamic state (a) and a given density ratio
ρa/ρc, there exists a maximum value Imax for the laser intensity defined as

Imax =

(
2
3
γPa

)3/2
(ρa/ρc − 1)

(γ − 1)
√

ρa

√
(γ + 1)ρa/ρc − (γ − 1)

. (14)

This important result is not present in the quasi-isobaric case.
Although an explicit solution for the mass flow rate as a function of ρc is not

available from (12), an explicit relation linking m and the pressure Pc is readily
obtained. By eliminating the density ρc in the last two equations of system (11), the
following relation is found:

m2 +
(γ − 1)ρaI

Pa − Pc

m − ρa

2
[(γ + 1)Pc + (γ − 1)Pa] = 0. (15)

The solution of (15) corresponding to a negative mass flow rate is rejected. The
positive one is

m =
(γ − 1)ρaI

2(Pa − Pc)

(√
1 +

2(Pa − Pc)
2 [(γ + 1)Pc + (γ − 1)Pa]

ρa ((γ − 1)I )2
− 1

)
. (16)
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Figure 2. Compressible (solid lines) and quasi-isobaric (dashed lines) solutions representing
different flow variables as a function of ρa/ρc .

To reproduce the compressible curves associated with system (11) it is necessary to
use an iterative procedure to determine all the flow variables for each value of the
ratio ρa/ρc satisfying relation (13). Such a procedure may be applied by combining
relation (16) and the momentum equation of system (11):

Pc = Pa +
m2

ρa

(
1 − ρa

ρc

)
. (17)

Then the material velocities are determined as before with the quasi-isobaric model
by the relations ua = m/ρa and uc = m/ρc.

In figure 2, the compressible and quasi-isobaric solutions are shown using the
following values: γ = 5/3, CP = 5 × 103 J kg−1 K−1, ρa = 104 kg m−3, Pa =9 × 1012 Pa
and I = 1018 W m−2.

In all the graphs of figure 2, the limit point R∗
ρ given by relation (13) is recovered,

showing that no connection between the states (a) and (c) is possible since ρa/ρc < R∗
ρ .

In addition another singular point is visible in the graphs related to the mass flow
rate and the Mach number: the sonic point. This is characterized by u = c where
c is the adiabatic sound speed. At this particular point, the mass flow rate is a
maximum, as for the Chapman–Jouguet point in the deflagration branch (Courant &
Friedrichs 1948; Le Métayer, Massoni & Saurel 2005). However the study of the front
internal structure will show that the supersonic branch of the curves (M � 1) is not
physically admissible.

In the next section the profiles of the flow variables connecting the two states (a)
and (c) are studied and determined considering the whole system (6).
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3. Determination of the internal structure of the front between states (a) and (c)
In this section we determine the profiles of different flow variables between the

ablation front and the absorption front characterized by states (a) and (c). Inside
this diffusion zone we always have H = 0 because ρ > ρc. Consequently, system (6)
becomes

ρu = ρaua = m,

m2

ρ
+ P =

m2

ρa

+ Pa = Q,

m

(
CP T +

1

2

m2

ρ2

)
− λ

dT

dx
= m

(
CP Ta +

1

2

m2

ρ2
a

)
= φ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (18)

where m, Q and φ have been determined thanks to the knowledge of states ‘a’ and
‘c’. The determination of the profiles for the quasi-isobaric model (Clavin & Masse
2004) are first briefly recalled. Then the compressible case is examined.

3.1. Quasi-isobaric model

Under this quasi-isobaric assumption, the system to solve is

ρu = ρaua = m, ρT = ρaTa, mCP T − λ
dT

dx
= mCP Ta, (19)

where the mass flow rate m is given by relation (10). The unknowns of system (19)
are the density ρ(x), the material velocity u(x) and the temperature T (x). The third
relation of system (19) provides the temperature profile inside the front. Combining
equations of system (19), an ordinary differential equation is obtained:

dT

dx
=

mCP (T − Ta)

CT n
. (20)

Once the solution is obtained, the profiles of the density and the material velocity are
easily determined by relations ρ = ρaTa/T and u = m/ρ = mT /ρaTa .

By denoting

T̂ =
T

Ta

and ζ =
mCP

CT n
a

x
def
=

x

da

(da = λa/mCP is the diffusive scale associated with the ablation front), relation (20)
becomes

T̂ n

(T̂ − 1)
dT̂ = dζ. (21)

Using the relation

T̂ n

T̂ − 1
=

1

T̂ − 1
+

n∑
k=1

T̂ k−1

with an integer n > 0, the solution of (21) is

ζ (T̂ ) = ζc + ln
T̂ − 1

T̂c − 1
+

n∑
k=1

(
T̂ k − T̂ k

c

)
k

. (22)

Solutions for particular cases can also be obtained with the help of suitable changes
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Figure 3. Profiles of ρ/ρa for different values of the coefficient n in the quasi-isobaric case.

of variables. For example, with n = 5/2, the solution is

ζ (T̂ ) = ζc + ln
T̂ 1/2 − 1

T̂ 1/2 + 1
− ln

T̂ 1/2
c − 1

T̂
1/2
c + 1

+ 2
(
T̂ 1/2 − T̂ 1/2

c

)
+ 2

3

(
T̂ 3/2 − T̂ 3/2

c

)
+ 2

5

(
T̂ 5/2 − T̂ 5/2

c

)
. (23)

Obviously, T̂ cannot be expressed as a function of ζ because the preceding relations

are not easily invertible. Nevertheless, we can represent the curves T̂ (ζ ) or more
exactly the dimensionless curves as a function of nx/dc where dc = λc/mCP is the
diffusive scale associated with the absorption front. This scaling process is used to
compare different curves obtained with various values of the coefficient n in a common
scale with the same ratio ρa/ρc. For example, with ρa/ρc = 50, the profile ρ/ρa is
represented in figure 3 for the values n = 1, n = 5/2 and n = 4 with the origin ζc = 0.
The values associated with the thermodynamic state (a) and the laser intensity are
those given in § 2. In this figure, we can see that the profile ρ/ρa steepens as the
coefficient n increases, justifying the term ‘ablation front’.

3.2. Compressible case

In the compressible case, the system to study is

ρu = ρaua = ρcuc = m,

m2

ρ
+ P =

m2

ρa

+ Pa =
m2

ρc

+ Pc = Q,

m

(
CP T +

1

2

m2

ρ2

)
− λ

dT

dx
= m

(
CP Ta +

1

2

m2

ρ2
a

)
= m

(
CP Tc +

1

2

m2

ρ2
c

)
− I = φ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(24)

where m, Q and φ have been computed by relations (16) and (17). The unknowns of
system (24) are the density ρ(x), the material velocity u(x), the pressure P (x) and the
temperature T (x). To obtain an ordinary differential equation for the temperature T

as in the quasi-isobaric case, the density ρ, present in the energy equation of system
(24), must be expressed as a function of the temperature T .
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By using the momentum equation of system (24) and the EOS P = (γ − 1)ρCvT ,
an explicit relation between the temperature and the density may be found:

T =
1

(γ − 1)Cvρ

(
Q − m2

ρ

)
. (25)

Before inverting relation (25) to obtain the density ρ as a function of the temperature
T , this relation should be analysed, as some important results related to the admissible
values of flow variables in state (c) and inside the front internal structure may be
deduced. In particular the subsonic character of the flow may be demonstrated.

Subsonic character of the flow inside the front internal structure

By dividing relation (25) by the critical temperature Tc, we obtain:

T

Tc

=
1

C2
c

(
Q

ρ
− m2

ρ2

)
(26)

where C is the isothermal speed of sound defined by C2 = (∂P/∂ρ)T = (γ − 1)CvT .
On using relations m = ρcuc and Q = ρcu

2
c +Pc = ρc(u

2
c + C2

c), equation (26) becomes

T

Tc

=
(
1 + M2

c

)ρc

ρ
− M2

c

(
ρc

ρ

)2

(27)

with the thermal Mach number Mc = uc/Cc.
The curve associated with relation (27) has a maximum that depends only on

the thermal Mach number at state (c). The values associated with this extremum,
represented by superscript ∗, are given by

ρc

ρ∗ =
M2

c + 1

2M2
c

and
T ∗

Tc

=

(
M2

c + 1
)2

4M2
c

.

Now let us assume that the flow is supersonic at the absorption front (Mc > 1). In
this case, we have ρc/ρ

∗ < 1, which means that this particular point belongs to the
internal structure of the front between states (a) and (c) because ρc < ρ∗ < ρa . Then,
the temperature T reaches the value T ∗. Since the flow is assumed to be supersonic
(Mc > 1), we have T ∗ > Tc. So the temperature inside the internal structure of the
front reaches a value greater than Tc. Consequently, the heat flux q = −λdT /dx is
positive near the absorption zone.

On the other hand, by using the limits T → Tc and ρ → ρc in the energy equation
of system (24), we get a negative value for the heat flux qc = −λc(dT /dx)c = −I

in the absorption zone, which is in contradiction with the preceding result. This
means that the assumption Mc > 1 is impossible since the ablation front exists.
Consequently, the flow must be subsonic at the absorption front (Mc � 1) and the
admissible values of the ratio ρa/ρc must correspond to the subsonic branch (with
respect to the isothermal speed of sound) of the different curves presented in the
figure 2. Then no points corresponding to the supersonic branch (with respect to the
adiabatic speed of sound) are physically admissible.

Another consequence of this analysis is that the flow must be subsonic (with
respect to the isothermal speed of sound) inside the internal structure of the front;
the extremum point related to relation (27) divides the associated curve into two
parts. One part corresponds to a subsonic branch (M < 1) when ρc/ρ < ρc/ρ

∗ and
the other corresponds to a supersonic branch (M > 1) when ρc/ρ > ρc/ρ

∗. Since
the flow is assumed to be subsonic at the absorption front (Mc � 1), the extremum
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point does not belong to the internal structure of the front because ρc/ρ < 1 < ρc/ρ
∗.

Consequently, the flow inside the front is always subsonic. This important result leads
to selection of the appropriate branch (M < 1) when relations (25) and (27) are
inverted.

Analytical compressible solutions

With the help of the above analysis, an explicit relation may be obtained from
equation (25) expressing the density as a function of the temperature:

m

ρ
=

Q

2m
−

((
Q

2m

)2

− (γ − 1)CvT

)1/2

. (28)

To obtain the profiles of the flow variables between the ablation and absorption
fronts, relation (28) is substituted into the energy equation of system (24). We obtain
an ordinary differential equation in the temperature, as in the quasi-isobaric case:

CT n

m

dT

dx
=

γ + 1

2
Cv(T − Ta) +

C2
a

4M2
a

(
1 − M4

a

) (
1 −

√
1 − 4M2

a(γ − 1)Cv(T − Ta)

C2
a

(
1 − M2

a

)2

)
(29)

where Ca and Ma are respectively the isothermal speed of sound and the Mach
number at the ablation front.

By denoting T̂ = T/Ta and ζ = (mCP /CT n
a )x, relation (29) becomes

T̂ n dT̂

dζ
=

γ + 1

2γ
(T̂ − 1) +

γ − 1

4γ

(
1 − M4

a

)
M2

a

(
1 −

√
1 − 4M2

a(
1 − M2

a

)2
(T̂ − 1)

)
. (30)

This ODE can be put into the following form:

T̂ n

AT̂ + B −
√

β − αT̂

dT̂ = dζ (31)

where the coefficients are given by

A =
γ + 1

2γ
, B =

γ − 1

4γ

(
1 − M4

a

)
M2

a

− A,

α =

(
γ − 1

2γ

)2
(
1 + M2

a

)2

M2
a

, β =

(
γ

γ − 1

)2

α2.

Now using the change of variable X =

√
β − αT̂ , equation (31) becomes

Aαn

2
dζ =

(β − X2)
n
X

(X + D)(X + E)
dX (32)

with

D =
γ

γ + 1
α

⎛⎝1 +

√
1 +

(
γ + 1

γ − 1

)2

+ 2
γ + 1

γ

B

α

⎞⎠ ,

E =
γ

γ + 1
α

⎛⎝1 −

√
1 +

(
γ + 1

γ − 1

)2

+ 2
γ + 1

γ

B

α

⎞⎠ .
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Figure 4. Profiles of different flow variables for different values of n in the quasi-isobaric
(dashed lines) and the compressible (solid lines) cases.

Solving this ODE is much harder than in the quasi-isobaric case. No simple general
formulae are available for an arbitrary value of the coefficient n. Nevertheless, when
n is assumed to be an integer, explicit solutions may be found using the following
decomposition:

(β − X2)
n
X

(X + D)(X + E)

=

E(β − E2)
n

X + E
− D(β − D2)

n

X +D
+

n∑
k=0

2k∑
l=0

n!

k!(n − k)!
βn−k (−1)3k−l (D2k−l − E2k−l)Xl

E − D
.

Then the integration of relation (32) for an integer n � 0 leads to

(E − D)Aαn

2
(ζ − ζc) = E(β − E2)n ln

(
X + E

Xc + E

)
− D(β − D2)n ln

(
X + D

Xc + D

)
+

n∑
k=0

2k∑
l=0

n!

k!(n − k)!
βn−k (−1)3k−l (D2k−l − E2k−l)

Xl+1 − Xl+1
c

l + 1
. (33)

In figure 4, the curves corresponding to the solutions of equation (31) and those
associated with the quasi-isobaric model are compared for the same ratio ρa/ρc = 50.
Again, the values associated with the thermodynamic state (a) and the laser intensity
are those given in § 2.

In all the plots of figure 4, as in the quasi-isobaric case, we can see that the profiles
of the different flow variables steepen at the ablation front level when the coefficient
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n increases. For the same value of ρa/ρc = 50, the mass flow rate m = ρaua = ρcuc is
higher in the compressible case than in the quasi-isobaric case. For this reason, the
Mach numbers associated with the states (a) and (c) are greater in the compressible
case as we can see in the corresponding graph of figure 4, leading to significant
differences at the absorption front level. This result is also visible in the pressure
profiles, where the pressure drop is more important in the compressible cases.

We can also see that there are small differences between compressible and quasi-
isobaric cases in the density and temperature profiles. The main differences concern
the locations of the ablation front and the thickness of the internal structure layer
between states (a) and (c).

It is also important to remark that if the value of the ratio ρa/ρc is less than 50 then
the differences between compressible and quasi-isobaric curves are more important
because the Mach numbers are much higher in this case, as we can see in figure 2.

4. Conclusion
The ablation front structure of a dense fluid irradiated by a high-energy laser

beam has been solved analytically in one space dimension with full compressible
effects. Conditions of existence of such fronts have been determined. In particular the
subsonic character of the flow at the laser absorption front has been demonstrated
leading to conditions for the admissible density jumps at the ablation front. The
solutions developed in this paper contain no extra assumptions other than those
already involved in the initial flow model. An important aspect of this work is to
account for the multidimensional instabilities. In order to carry out such analysis
with the same compressible flow model the development of accurate numerical tools
is essential. The compressible exact solutions presented herein can be used for the
validation and improvement of advanced numerical methods.

The authors are grateful to Professor Clavin for fruitful discussions.
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