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Bounding Selmer Groups for the
Rankin–Selberg Convolution of Coleman
Families

Andrew Graham, Daniel R. Gulotta, and Yujie Xu

Abstract. Let f and g be two cuspidal modular forms and letF be a Coleman family passing through

f, defined over an open affinoid subdomain V of weight space W. Using ideas of Pottharst, under

certain hypotheses on f and g , we construct a coherent sheaf overV ×W that interpolates the Bloch–

Kato Selmer group of the Rankin–Selberg convolution of two modular forms in the critical range

(i.e, the range where the p-adic L-function Lp interpolates critical values of the global L-function).
We show that the support of this sheaf is contained in the vanishing locus of Lp .

1 Introduction

In [LLZ14] (and more generally [KLZ15]) Kings, Lei, Loeffler, and Zerbes constructed
an Euler system for the Galois representation attached to the convolution of two
modular forms. �is Euler system is constructed from Beilinson–Flach classes, which
are norm-compatible classes in the (absolute) étale cohomology of the fibre product
of two modular curves. It turns out that these Euler system classes exist in families in
the sense that there exist classes

cBF
[F,G]
m ,1 ∈ H1 (Q(µm),Dla(Γ,M(F)∗⊗̂M(G)∗))

that specialise to the Beilinson–Flach Euler system at classical points. Here, F and
G are Coleman families with associated Galois representations M(F) and M(G),
respectively, and Dla(Γ,−) denotes the space of locally analytic distributions on
Γ ≅ Z×p .

�e above classes are constructed in [LZ16] and shown to satisfy an “explicit
reciprocity law” relating the bottom class (m = 1) to the three variable p-adic
L-function constructed by Urban [Urb14]. �is relation can then be used to prove
instances of the Bloch–Kato conjecture for the Galois representation attached to the
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convolution of two modular forms (including the case of an elliptic curve twisted by
an Artin representation).

Building on the work of Nekovář, Pottharst [Pot13] describes how one can put the
Bloch–Kato Selmer group of a Galois representation into a family. More precisely,
given a family of GQ-representations over a rigid analytic space X, he constructs a
coherent sheaf S on X which specialises to the Bloch–Kato Selmer group at certain
“crystalline” points of X, i.e., points where the Galois representation is crystalline at p.
�is gives rise to the natural question:

• Do the Beilinson–Flach classes cBF
[F,G]
m ,1 (and hence the three-variable p-adic

L-function) control the behaviour of S?

In this paper, we provide a partial answer to this question.

1.1 Summary of Results

Fix an odd prime p ≥ 5. To explain the results, we introduce the following notation. Let
N ≥ 1 be an integer prime to p and let f and g be two normalised cuspidal newforms
of levels Γ1(N1) and Γ1(N2) and weights k + 2 and k′ + 2 respectively, such that N1 ,N2

both divide N and k′ , k ≥ 0.
We assume that k ≠ k′, and that one of the p-stabilisations of f and both of

the p-stabilisations of g are noble (Definition 3.2.2). �is implies that all three of
these modular forms can be put into Coleman families. We denote the weight space
parameterising all continuous characters Z×p → C×p by W, and for an integer i, we

denote the character x ↦ x i simply by i.
Let E be a p-adic field and F and G two Coleman families over affinoid domains

V1 ⊂WE and V2 ⊂WE passing through p-stabilisations of f and g , respectively (see
Definition 3.1.2 for the definition of WE). We impose the following hypotheses on f
and g:

(a) �e image of the Galois representation attached to the convolution of f and g is
big (see (BI) in Section 7.3).

(b) �e inertia invariants at ramified primes of the Galois representation attached to
the convolution of f and g is free (flatness of inertia, see §8.1).

(c) f and g are not congruentmodulo p to forms of a lower level (minimally ramified,
see §8.1).

(d) �e p-adicL-function attached to the convolution of f and g does not have a trivial
zero, which is a condition on the Fourier coefficients of f and g (condition (NLZ)
for the point x corresponding to f and g in §7.3).

Under these hypotheses, there exists a coherent analytic sheaf S on X ∶= V1 × V2 ×W,
such that for all x = (k1 , k2 , j) ∈ X with k1 , k2 , j integers and 1 ≤ k2 + 1 ≤ j ≤ k1, the
specialisation of S satisfies

Sx ≅ H1
f (Q, [M(Fk1)⊗M(Gk2)](1 + j))∗ ,

where M(−) denotes the Galois representation attached to a modular form (in
the sense of Deligne) and the right-hand side is the (dual of the) Bloch–Kato
Selmer group. We recall the construction of this sheaf in Section 8 following [Pot13,

https://doi.org/10.4153/S0008414X2000019X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000019X


Bounding Selmer Groups for the Rankin–Selberg Convolution 807

§3.4]; the construction relies on the machinery of Selmer complexes developed by
Nekovář [Nek06] and Pottharst [Pot13].

To bemore precise, one can construct a familyD of overconvergent (φ, Γ)-modules
corresponding to the representation M ∶= [M(F)∗⊗̂M(G)∗](−j), where −j denotes
the twist by the inverse of the universal character ofW, and it is shown in [Liu15] that
this family has a canonical triangulation (provided that V1 and V2 are small enough).
In Section 8, we define a Selmer complex with unramified local conditions away from

p, and at p we choose local conditions defined by the cohomology of a family D
+
of

two-dimensional sub (φ, Γ)-modules appearing in the triangulation of D; at classical
weights, the local condition at p specialises to a so-called Panchishkin submodule, i.e.,

the Hodge–Tate weights for D
+

x (resp. Dx/D+x ) are positive (resp. non-positive).�en,
under some very mild conditions, this local condition corresponds to the Bloch–Kato
local condition for the specialisation of the representationM. We define S to be H2 of
this Selmer complex.

In [Urb14] (and [AI17, Appendix II]) Urban constructs a three variable p-adic
L-function, denoted Lp , associated to F and G over X ∶= V1 × V2 ×W. �is p-adic L-
function is constructed via the theory of families of nearly overconvergent modular
forms and interpolates the critical values of the Rankin–Selberg L-function at classical
specialisations. We recall the interpolation property of Lp in Section 3.6. In analogy
with the Bloch–Kato conjecture—which predicts that the Bloch–Kato Selmer group
is controlled by the L-function for the corresponding representation—we expect that
the sheaf S is controlled by the three variable p-adic L-function.

More precisely, the ringO(X) is a disjoint union of p − 1 integral domains indexed
by characters η of the group (Z/pZ)× (each of which correspond to an irreducible
component ofW). For each character η, let eη denote the corresponding idempotent
of O(X) projecting to the domain indexed by η. Since X is quasi-Stein, a coherent
sheaf on X is determined by its global sections, so we will pass between these two
perspectives freely. We expect the analogue of [KLZ17, �eorem 11.6.4] to hold in our
situation, namely

Conjecture Suppose that eη ⋅ Lp ≠ 0. Under the hypotheses on f and g above, we expect
that:

• eη ⋅ S is a torsion eη ⋅O(X)-module;
• the 0-th Fitting ideal Fitt0(eη ⋅ S) divides the ideal sheaf generated by the p-adic L-
function eη ⋅ Lp .

Note that the factor Ω appearing in loc. cit. is unnecessary for our formulation,
since it is invertible in O(X). A particular case of this conjecture is that the support
of the sheaf is contained in the vanishing locus of the p-adic L-function. We prove a
partial result in this direction.

�eorem A Let Sk′ denote the specialisation of the above sheaf at k′ in the second
variable. If V1 is small enough and the above hypotheses hold for f and g, then

suppSk′ ⊂ {x ∈ V1 × {k′} ×W ∶ Lp(x) = 0}
where “ supp” denotes the support of a sheaf.
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Remark 1.1.1 By Krull’s principal ideal theorem, the vanishing locus of the three-
variable p-adic L-function has codimension ≤ 1 in X. Furthermore, since Lp ≠ 0, there
exists a character η such that eη ⋅ Lp ≠ 0. In this case, the vanishing locus of eη ⋅ Lp has
codimension one in V1 × V2 ×Wη , whereWη denotes the component of weight space
indexed by η.

To prove �eorem A, we actually show that if x is a point in V1 × {k′} ×W and

Lp(x) ≠ 0, then the group H̃2

f (Q,Mx) vanishes. Here, H̃2

f (Q,Mx) is the cohomology

in degree 2 of a certain Selmer complex attached to the representation Mx (see §7.2),
which will be shown to coincide with the specialisation of S at x. To show that this
group vanishes, we generalise the proof of [LZ16, �eorem 8.2.1] to non-classical
specialisations; this relies heavily on the theory of (φ, Γ)-modules and involves a
careful analysis of the Perrin–Riou logarithm (see Section 6).

Unfortunately, with the current methods, we were unable to prove a three-variable
version of this result. Indeed, a crucial step in the proof relies on the fact that Gk′ is
the p-stabilisation of a classical modular form of level N2, whose other p-stabilisation
is noble. By putting the other p-stabilisation into a Coleman family, we obtain two
linearly independent Euler systems that can be used to bound the Bloch–Kato Selmer
group, rather than just the strict Selmer group (this is also the technique used in
the proof of [LZ16, �eorem 8.2.1]). For a general (non-classical) weight k2, the
specialisation Gk2 will be the unique point on the eigencurve with associated Galois
representation M(Gk2), so the above strategy will not work.

1.2 Notation

�roughout the paper fix a prime p ≥ 5. IfK is a field, then we o�en denote its absolute
Galois group by GK = Gal(Ksep/K), where Ksep denotes a fixed maximal separable
closure of K.

Let R be a topological ring andG a topological group.We sayM is aG-module over
R (or an R[G]-module) if M is a continuous R-module equipped with a continuous
homomorphism ρ ∶ G → AutR M. We will o�en work within the category of R[G]-
modules. �is is not an abelian category in general, but it is additive and has kernels
and cokernels, so we can still talk about its derived category. IfM is an R[G]-module
and the action is commutative (i.e., the map ρ factors through Gab), then we write
M ι to mean the moduleM with the action given by g ⋅m = ρ(g−1)m for all g ∈ G and
m ∈ M.

We will o�en take R to be a Qp-Banach algebra (or more generally, the global
sections of a rigid analytic space). In this case, we write R○ for the subring of power-
bounded elements. When R is a reduced affinoid algebra, this coincides with the unit
ball with respect to the supremum norm.

For an R[G]-moduleM, letM∗ ∶= Homcont(M , R) denote the dual representation
ofM and, where appropriate, we write M(n) to mean the representationM tensored
with the n-th Tate twist. We fix a compatible system of p-th power roots of unity in
Q̄p , so in the case where M is a Galois representation, M(1) is just M twisted by the
cyclotomic character χcycl. In this paper, the cyclotomic character will always have
Hodge–Tate weight 1.
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IfM is an R[G]-module, then we denote its i-th group cohomology by Hi(G ,M).
If GK is the absolute Galois group of a field K , then we will also sometimes write
Hi(K ,M) for Hi(GK ,M).

When talking about le� (resp. right) exact functors F, we write RF (resp. LF) for
the right (resp. le�) derived functors of F. In particular, ifM is a R[G]-module, then
we write RΓcont(G ,M) for the image of the complex of continuous cochains ofM in
the derived category of R-modules.

If X is an object defined over a ring R and we have a homomorphism R → R′, then
we denote the base change of X to R′ by XR′ .

For a positive integerm, we let µ○m denote the group scheme (overQ) ofm-th roots
of unity.

Finally, we note that throughout the paper, any étale cohomology group refers to
continuous étale cohomology in the sense of Jannsen [Jan88].

2 Modular Curves

In this section we will define the modular curves that will be used throughout the
paper. Let H± ∶= C −R denote the upper and lower complex half-space and denote
the finite adeles ofQ by A f . For a compact open subgroup K ⊂ GL2(A f ), we let

YK ∶= GL2(Q)/ [H± ×GL2(A f )/K] .(2.0.1)

We assume thatK is sufficiently small so thatYK has the structure of a Shimura variety.
�is Shimura variety has a canonical model overQ (which we will also denote by YK),
and we will refer to this as themodular curve of levelK. In this paper, we are interested
in the following choices of K.

Let m,N be two positive integers such that m(N + 1) ≥ 5. �en the subgroup

Km ,N ∶= {(a b
c d

) ∈ GL2(Ẑ) ∣ a ≡ 1, b ≡ 0 mod mẐ

c ≡ 0, d ≡ 1 mod mNẐ
}

is sufficiently small, andwe denote the correspondingmodular curve byY(m,mN) ∶=
YKm ,N

. If m = 1 we simply denote this curve by Y1(N). �e modular curve Y(m,mN)
represents the contravariant functor taking a Q-scheme S to the set of isomorphism
classes of triples (E , P,Q), where E/S is an elliptic scheme, P is a torsion section
of order m, and Q is a torsion section of order mN , such that P and Q are linearly
independent, in the sense that the map Z/mZ ×Z/mNZ→ E(S) given by (a, b)↦
aP + bQ is injective.�ere is a natural morphism Y(m,mN)→ µ○m given by theWeil
pairing on the points P,NQ, and the fibres of this map are smooth, geometrically
connected curves.

For an integer N ≥ 1 not divisible by p, we also set

K1(N(p)) ∶= {(a b
c d

) ∈ GL2(Ẑ) ∣ c ≡ 0 mod pNẐ, d ≡ 1 mod NẐ}.
�is is a sufficiently small subgroup, and we denote the corresponding modular curve
by Y1(N(p)). �is has a moduli interpretation as the contravariant functor taking a
Q-scheme S to the set of isomorphism classes of triples (E , P,C), where E/S is an
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elliptic scheme, P is a torsion section of order N , andC is a finite flat subgroup scheme
of E[p] (the p-torsion of E) of order p.

It will also be useful to introduce several maps between these modular curves.

• For a positive integer d, we define the following map:

Ξd ∶Y(dm, dmN) Ð→ Y(m,mN)(2.0.2)

as the morphism that sends a triple (E , P,Q) to the triple (E/⟨mP⟩, P mod mP,
dQ mod mP), where ⟨mP⟩ denotes the cyclic subgroup generated by mP.

• Recall that µ○m denotes the group scheme (overQ) ofm′-th roots of unity.We define
the following map

tm ∶Y(m,mN)Ð→ Y1(N) ×Q µ○m(2.0.3)

as the morphism given by (E , P,Q)↦ ((E/⟨P⟩,mQ mod P), ⟨P,NQ⟩), where
⟨−,−⟩ denotes the Weil pairing on E[m] and ⟨P⟩ is the subgroup generated by P.

• Let N ′ be a positive integer dividing N. We define the following map:

sN ′ ∶Y1(Np)Ð→ Y1(N ′(p))(2.0.4)

to be the morphism sending (E ,Q) to (E , Np
N ′
⋅ Q , ⟨N ⋅ Q⟩), where ⟨N ⋅ Q⟩ denotes

the cyclic group scheme generated by the p-torsion section N ⋅ Q.

�e first two maps are compatible in the following sense.

Lemma 2.0.5 Let m,N be two positive integers with m(N + 1) ≥ 5 and let d be a
positive integer.�en we have the following commutative diagram:

where the bottom map is induced from the d-th power map µ○dm → µ○m .

Proof �is is immediate from the definitions. ∎

3 Families of Modular Forms and Galois Representations

3.1 Weight Space

Definition 3.1.1 Let Λ ∶= Zp [[Z×p]]. �e weight space W is defined to be the rigid
generic fibre of the formal spectrum Spf Λ. It represents the functor taking a rigid
analytic space X over SpQp to the set Homcont(Z×p ,OX(X)×). Let

κ∶Z×p Ð→ Λ× ⊂ OW(W)×
denote the tautological character.

�e spaceW is isomorphic to a union of p − 1 wide open discs (recall that we have
assumed p > 2).
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Definition 3.1.2 Let E be a finite extension ofQp with ring of integers OE , and let U
be a wide open disc inWE ∶=W ×Sp(Qp) Sp(E). Define ΛU ∶= OW(U)○, the subring of
power-bounded elements ofOW(U) (so Λ is non-canonically isomorphic toOE [[t]]),
and write

κU∶Z×p → Λ×U

for the map induced by κ.

Definition 3.1.3 �em-accessible part of the weight space, denotedWm , is the union
of wide open discs defined by the inequality

∣κ(1 + pm+1) − 1∣p−1 < ∣p∣.
We will eventually restrict our attention toW0.

Definition 3.1.4 A classical point ofW is a point corresponding to the character z ↦
zk for some nonnegative integer k.

Remark 3.1.5 �e previous definition is an abuse of notation, since the weight z ↦
χ(z)zk , for χ a finite order character, can be the weight of a point on the eigencurve
corresponding to a classical modular form. But we will not need to consider this more
general class of weights.

3.2 Families of Overconvergent Modular Forms

Definition 3.2.1 Let E be a finite extension of Qp with ring of integers OE , and let
U ⊆ (W0)E be a wide open disc containing a classical point. A Coleman family F

over U (of tame level N) is formal power series ∑∞n=1 an(F)qn ∈ qΛU [[q]] satisfying
the following properties:

(i) a1(F) = 1 and ap(F) ∈ ΛU[ 1p ]×.
(ii) For all but finitely many classical weights k contained in U, the restriction of

F to k is the q-expansion of a classical modular form of weight k + 2 and level
Γ1(N) ∩ Γ0(p) that is a normalized eigenform for theHecke operators (away from
Np).

We denote the character associated with F by εF , so that for all but finitely many
classical weights k in U, the specialisation of εF at k coincides with the nebentypus of
Fk .

�e following definition gives a criterion for when a modular form lies in a
Coleman family.

Definition 3.2.2 We say that a cuspidal eigenform f of level Γ1(N) ∩ Γ0(p) and
weight k + 2 is noble if the following two conditions are satisfied.
• f is the p-stabilisation of normalised cuspidal newform f ′ of level Γ1(N) such that
the roots {α f ′ , β f ′} of the Hecke polynomial

X2 − ap( f ′)X + pk+1ε f ′(p)
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are distinct. Here, ap( f ′) is the p-th Fourier coefficient of f ′ and ε f ′ is the
nebentypus.

• If the Up-eigenvalue of f has p-adic valuation k + 1, then the local Galois represen-
tation attached to f ′ at p is not the direct sum of two characters.

Lemma 3.2.3 Let f be a noble eigenform of weight k + 2.�en for any sufficiently small
U ∋ k inW, there is a unique Coleman family F over U such that Fk = f .

Proof �is is essentially proved in [Bel12, Lemma 2.8]. In particular, the lemma
shows that if x is an E-point on the eigencurve of weight k + 2, then there is a
neighborhood V ∋ x and an open disc U ⊆W such that V→ U is finite flat of degree
dimM†

k+2,(x)
, whereM†

k+2,(x)
is the space of overconvergentmodular forms of weight

k + 2 that areHecke eigenformswith eigenvalues given by x. Suppose x is noble; then it
has slope less than k + 1, so Coleman’s control theorem [Col96, �m. 6.1] implies that
M†

k+2,(x)
consists of classical modular forms. Moreover, x corresponds to a newform,

so the subspace of classical modular forms is one-dimensional (see, for example,
[Lan95, �m.VIII.3.3]). ∎

3.3 Locally Analytic Distribution Modules

Now we begin defining a family of Galois representations onW as in [LZ16, §4].
Let Y = Y1(N(p)) be the modular curve at level Γ1(N) ∩ Γ0(p), and let π∶E→ Y

be the universal elliptic curve over Y. Let

H ∶= R1π∗Zp(1)
be the relative Tate module of E. We will define several pro-sheaves of “functions and
distributions on H .” By this, we mean the following. Let Y(p∞, p∞N) denote the
pro-scheme lim

←Ðn
Y(pn , pnN) and t∶Y(p∞ , p∞N)→ Y the natural projection; it is

a Galois covering, and its Galois group can be identified with the Iwahori subgroup
U0(p) ⊂ GL2(Zp) (with respect to the standard Borel).

�e pro-sheaf t∗H is canonically isomorphic to the constant pro-sheaf H, where
H = Z2

p . We will define several spaces of functions and distributions on subsets of H
that are equipped with actions ofU0(p). Since aU0(p)-module determines aU0(p)-
equivariant pro-sheaf onY(p∞, p∞N), these spaces will descend to pro-sheaves onY.

First, we recall the definition of two locally analytic distributionmodules following
[LZ16, §4.2].

Definition 3.3.1 Let T0, T
′
0 be the subsets of H defined by

T0 ∶= Z×p ×Zp and T ′0 ∶= pZp ×Z×p ,
and let Σ0(p), Σ′0(p) be the submonoids of M2(Zp) defined by

Σ0(p) ∶= ( Z×p Zp

pZp Zp
) and Σ′0(p) ∶= ( Zp Zp

pZp Z×p
) .

�e monoids Σ0(p) and Σ′0(p) act on the right on T0 and T ′0, respectively.
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Let R be a complete topological Zp-algebra, and let w∶Z×p → R× be a continuous
homomorphism. Suppose there exists an integer m ≥ 0 such that the restriction of w
to 1 + pm+1Zp is analytic. We are primarily interested in the following cases:

(a) R = ΛU, w = κU for some finite extension E/Qp and some U ⊂ (Wm)E .
(b) R = OE ,w(z) = zk for some finite extension E/Qp and some nonnegative integer

k.

Definition 3.3.2 Let T be either T0 or T
′
0. Let A

○
w ,m(T) denote the space of functions

f ∶T → R satisfying the following properties:

(i) �e function f is homogeneous of weightw, i.e. f (λv) = w(λ) f (v) for any v ∈ T ,
λ ∈ Z×p .

(ii) �e function f is analytic on discs of radius p−m , i.e. for any v ∈ T , the restriction
of f to v + pmT is given by a power series with coefficients in R.

Let

D○w ,m(T) ∶= HomR ,cont(A○w ,m(T), R),
Dw ,m(T) ∶= D○w ,m(T)[1/p].

When R = ΛU, w = κU, we will denote the modules by A○U,m , D
○
U,m , DU,m . When

R = OE , w(z) = zk , we will denote the modules by A○k ,m , D
○
k ,m , Dk ,m .

�e modules A○w ,m(T), D○w ,m(T), Dw ,m(T) inherit an action of Σ0(p) or Σ′0(p)
from the action on T. If the disc U contains the point corresponding to the homo-
morphism z ↦ zk , then the specialization map ΛU → Zp induces a homomorphism

D○U,m → D○k ,m

and similarly there are specialization maps with D○ replaced by A○ or D.
As mentioned at the beginning of this subsection, each of the modules defined

above determines a pro-sheaf on Y. We let D○w ,m(H 0), D○w ,m(H ′
0), be the pro-

sheaves corresponding to D○w ,m(T0), D○w ,m(T ′0), respectively.
3.4 Galois Representations

Nowwe define families of Galois representations coming from the cohomology of the
sheaves defined above. For a wide open disc U ⊂ (W0)E we set BU ∶= ΛU[ 1p ].
Definition 3.4.1 As before, let Y = Y1(N(p)) denote the modular curve of level
Γ1(N) ∩ Γ0(p). Set

M○w ,m(H 0) ∶= H1
ét(YQ ,D○w ,m(H 0))(−κU)

M○w ,m(H ′
0) ∶= H1

ét(YQ ,D○w ,m(H ′
0))(1).

Proposition 3.4.2 [LZ16,�m. 4.6.6] Let f0 be a noble eigenform of weight k0 + 2, and
let F be the Coleman family passing through f0. If the disc U ∋ k0 is sufficiently small,
then the following hold.

https://doi.org/10.4153/S0008414X2000019X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000019X


814 A. Graham, D. R. Gulotta, and Y. Xu

(i) �e modules

MU(F) ∶= MU,0(H 0)[Tn = an(F) ∀n ≥ 1]
MU(F)∗ ∶= MU,0(H ′

0)[T ′n = an(F) ∀n ≥ 1]
are direct summands (as BU-modules) of MU,0(H 0) and MU,0(H ′

0) respectively,
where [−] stands for isotypic component and T ′n is the transpose of the usual Hecke
operator. Each is free of rank 2 over BU.

(ii) �e Ohta pairing (see [LZ16, §4.3]) induces an isomorphism of BU[GQ]-modules

MU(F)∗ ≅ HomBU
(MU(F), BU).

Given two Coleman families F and G defined over U1 ,U2 ⊂WE , respectively, we
will write M ∶= MU1

(F)∗⊗̂MU2
(G)∗ for the family of Galois representations on U1 ×

U2 given by the BU1
⊗̂BU2

-module

MU1
(F)∗⊗̂EMU2

(G)∗,
and to ease notation, we will o�en omit the subscripts when the spaces U1 and U2 are
clear. Furthermore, we will o�en restrict this representation to open affinoids V1 ⊂ U1

andV2 ⊂ U2; in this case,M is a Banachmodule over the affinoid algebraOW(V1 × V2)
that is free of rank four.

Definition 3.4.3 Let A be a Qp-affinoid algebra and let M be an A-valued (con-

tinuous) representation of GQ. Let D
la(Γ,A) denote the space of locally analytic

distributions with values in A; this comes equipped with an action of GQ given by

∫
Γ
f d(g ⋅ µ) ∶= ∫

Γ
f ([g]−1x) dµ(x),(3.4.4)

where [g] denotes the image of g ∈ GQ in Γ = Gal(Q(µp∞)/Q), and is isomorphic (as
A[GQ]-modules) to OW(W)ι⊗̂A. �e cyclotomic deformation ofM is defined to be

M(−κ) ∶= Dla(Γ,M) ∶= M⊗̂Qp
Dla(Γ,A).

with the diagonal Galois action.
Similarly, for any λ ∈ R≥0, let Dλ(Γ,Qp) be the space of Qp-valued distributions

on Γ of order λ as in [Col10, §II.3], with Galois action given by the same formula in
(3.4.4). Define Dλ(Γ,M) ∶= Dλ(Γ,Qp)⊗̂Qp

M.

3.5 Some Properties of Locally Analytic Distribution Modules

We mention some properties of the modules defined above that will be useful in
Section 4.

Definition 3.5.1 Define Λ(H) to be the space of continuousZp-valued distributions
on H, and let Λ(H ) be the corresponding pro-sheaf on Y. �is coincides with the
sheaf of Iwasawa modules for H , i.e., Λ(H ) is the pro-system of étale sheaves
corresonding to the inverse system (Z/pnZ[H /pnH ])n≥1 with the natural transition
maps.
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For any nonnegative integer k, let TSymk H be the space of degree k symmetric
tensors over H, i.e., it is the subgroup of H⊗k that is invariant under the action of the
symmetric group Sk . Let TSym

k
H be the corresponding pro-sheaf on Y.

For j ≥ 0, set Λ[ j](H ) ∶= Λ(H )⊗ TSym j
H and Λ[ j, j] = Λ[ j](H ) ⊠ Λ[ j](H ).

�en there is a Clebsch–Gordon map (see [LZ16, §3.2])

CG[ j]∶Λ(H )Ð→ (Λ[ j](H )⊗̂Λ[ j](H ))(− j).
For any U,m, there is a natural restriction map

Λ(H )Ð→D
○
U ,m(T)

and for any nonnegative integer k, TSymk H can be identified with the space of
distributions on homogeneous degree k polynomial functions onH. Hence, there is a
natural surjection

D
○
k ,m(T)Ð→ TSymk

H .

3.6 The Three-variable p-adic L-function

Let f and g be two normalised cuspidal eigenforms of weights k + 2, k′ + 2 and levels
Γ1(N1) and Γ1(N2), respectively, where k > k′ ≥ 0. Let χ be a Dirichlet character of
conductor Nχ and suppose that p does not divide N1 ⋅ N2. With this data, one has the
associated (imprimitive) Rankin–Selberg L-function, defined as

L( f , g , χ, s) = L(N1N2N χ)(ε f εg χ2 , 2s − 2 − k − k′) ⋅ ∑
n≥1

(n ,N χ)=1

an( f )an(g)χ(n)n−s

for Re(s) sufficiently large. Here the subscript (N1N2Nχ) denotes the omission
of the Euler factors at primes dividing N1N2Nχ . �is L-function differs from the
automorphic L-function attached to the representation π f ⊗ πg ⊗ χ by only finitely
many Euler factors. Since we have assumed k ≠ k′, the function L( f , g , χ,−) has
analytic continuation to all of C (see [Loe18, §2.1]).

Using the theory of nearly overconvergent families of modular forms as described
in [AI17], Urban has constructed a three-variable p-adic L-function that interpolates
critical values of the above Rankin–Selberg L-function. More precisely, suppose
that there exist noble p-stabilisations of f and g (as in Definition 3.2.2) and let F
and G be Coleman families over affinoid domains V1 and V2, passing through these
p
-stabilisations. We can shrink V1 and V2 to ensure that all classical specialisations of
F and G are noble (see Remark 8.2.5)—if Fk1 denotes such a specialisation, then we
let F○k1 denote the associated newform, and similarly for G.

�eorem 3.6.1 (Urban) �ere exists an element Lp(F,G, 1 + j) ∈ O(V1 × V2 ×W)
satisfying the following interpolation property:

• For all integers k1 , k2 , j satisfying k i ∈ Vi and 0 ≤ k2 + 1 ≤ j ≤ k1, and all Dirichlet
characters χ of p-power conductor, we have
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Lp(Fk1 ,Gk2 , 1 + j + χ) = C(Fk1 ,Gk2 , 1 + j + χ)
⋅ j!( j − k2 − 1)!ik1−k2
π2 j+1−k222 j+2+k1−k2⟨F○k1 ,F○k1⟩N1

L(F○k1 ,G○k2 , χ−1 , 1 + j),
where C(Fk1 ,Gk2 , 1 + j + χ) is an explicit product of Euler factors and Gauss sums.

Proof �is follows from the interpolation property in [Urb14, �eorem 4.4.7]
(which is valid by the results of [AI17, Appendix II]).�e calculation is only for N = 1,
but its generalisation is immediate. See also the computation of the Rankin–Selberg
period in [Loe18, Prop 2.10]. ∎

In the following section, we will recall the construction of the Beilinson–Flach
classes in families. It turns out that this p-adic L-function Lp is closely related to the
images of these Beilinson–Flach classes under Perrin–Riou’s “big logarithm”.�is will
be important in Proposition 6.2.2 later on.

4 Beilinson–Flach Classes

In this section, we recall the construction of classes

cBF
[F,G]
m ,1 ∈ H1 (Q(µm),Dla(Γ,M)),

where M = MV1
(F)∗⊗̂MV2

(G)∗ following [LZ16]. �ese classes are obtained from
so-called Rankin–Iwasawa classes under the pushforward of a certain sequence of
morphisms. In particular we show that these classes satisfy certain norm relations
that interpolate the (tame) Euler system relations at classical weights.

None of the results in this section are new, apart from perhaps Proposition 4.3.1
and §4.4, although we suspect this is already known to the experts.

4.1 Rankin–Iwasawa Classes

Let (E, P,Q) denote the universal triple over the curve Y ∶= Y(m,mN) as defined in
Section 2, and recall that

H =H Zp
∶= R1π∗Zp(1)

denotes the relative p-adic Tate module of E/Y . Here, π∶E→ Y denotes the structure
map, andZp(1) is the Tate twist by the cyclotomic character.�is is a locally free étale
pro-sheaf on Y of rank 2.

Let c ≥ 1 be an integer prime to 6mN . In [Kin16], Kings constructs Eisenstein
classes c Eis

k
Qp

arising from motivic classes whose de Rham realisations recover the

usual Eisenstein series of weight k + 2 (see also [KLZ15, §4]). In addition to this, he
constructs so-called Eisenstein–Iwasawa classes

cEIm ,mN ∈ H1
ét (Y(m,mN), Λ(H )(1)),

which interpolate c Eis
k
Qp

via the “moment maps”

momk ∶Λ(H )Ð→ TSymk
H .
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From these classes, one obtains Rankin–Iwasawa classes in the following way.

Definition 4.1.1 Let c ≥ 1 be an integer that is coprime to 6mN . We define the
Rankin–Iwasawa class to be

cRI
[ j]
m ,mN ,1 ∶= [(u1)∗ ○ ∆∗ ○CG[ j] ](cEIm ,mN),

which lies in the cohomology group H3
ét(Y(m,mN)2 , Λ[ j, j](2 − j)). Here

• CG[ j] is the Clebsch–Gordon map described in Definition 3.5.1.
• ∆∶Y(m,mN)→ Y(m,mN)2 denotes the diagonal embedding where, by abuse of
notation, we write Y(m,mN)2 for the fibre product

Y(m,mN) ×µ○m Y(m,mN).
• u1∶Y(m,mN)2 → Y(m,mN)2 denotes the automorphism that is the identity on
the first factor and acts on the moduli interpretation as

(E , P,Q)z→ (E , P + NQ ,Q)
on the second factor.

�e Rankin–Iwasawa classes satisfy the following norm compatibility relations.

Proposition 4.1.2 Let c ≥ 1 be an integer prime to 6Np and let m be an integer prime
to 6cN. Let l be a prime not dividing 6cNp and recall that we have defined the following
morphism Ξ l ∶Y(lm, lmN)→ Y(m,mN) in (2.0.2).

(i) If l divides m, then the Rankin–Iwasawa classes satisfy the following norm compat-
ibility relation

(Ξ l × Ξ l)∗(cRI[ j]lm , lmN ,1
) = (U ′l ,U ′l) ⋅ cRI[ j]m ,mN ,1 .

(ii) If l does not divide m, then the Rankin–Iwasawa classes satisfy the following norm
compatibility relation

(Ξ l × Ξ l)∗(cRI[ j]lm , lmN ,1
) = Q̃ l ⋅ cRI[ j]m ,mN ,1 ,

where Q̃ l is the operator

−l jσl + (T ′l , T ′l ) + ((l + 1)l j(⟨l⟩−1[l]∗ , ⟨l⟩−1[l]∗) − (⟨l⟩−1[l]∗ , T ′2l ) − [l]∗ , T ′2l )
− (T ′2l , ⟨l⟩−1[l]∗))σ−1l + (⟨l−1⟩[l]∗T ′l , ⟨l−1⟩[l]∗T ′l )σ−2l
− l 1+ j([l 2]∗⟨l−2⟩, [l 2]∗⟨l−2⟩)σ−3l

and

• T ′l (resp. U
′
l ) is the transpose of the usual Hecke operator Tl (resp. U l ) on Y(m,mN);

• [a]∗∶Λ[ j](H )→ Λ[ j](H ) is the map induced from multiplication by a on the first
factor and the identity on the second;

• ⟨b⟩ is the diamond operator on Y(m,mN) that acts on the moduli interpretation as(E , P,Q)↦ (E , b−1P, bQ);
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• σl is the automorphism of Y(m,mN) that acts on the moduli interpretation as(E , P,Q)↦ (E , lP,Q).
Proof In the notation of [KLZ17, §5], the map (Ξ l × Ξ l)∗ is the composition(pr1 ×pr1)∗(p̂r2 × p̂r2)∗, and if l ∣m, one can check that (pr1 ×pr1)∗ commutes with(U ′l ,U ′l). �e first part then follows by combining the norm relations in �eorem
5.3.1 and �eorem 5.4.1 in op. cit. For the second part, this is just Proposition 5.6.1 in
op. cit. ∎

4.2 Beilinson–Flach Classes in Families

Let E be a finite extension of Qp with ring of integers OE , and U1 ,U2 ⊂ (W0)E two
wide open discs, whereW0 ⊂W is the wide open subspace of 0-accessible weights (see
Definition 3.1.3). Recall that Λ(H ′

0) andD○Ui
(H ′

0) ∶=D○Ui ,0
(H ′

0) are the sheaves of
continuous (resp. locally analytic)Zp-valued (resp. ΛUi

-valued) distributions onH
′
0,

the subsheaf of H which is locally isomorphic to T ′0.
Consider the map of sheaves

Λ[ j, j](H ′
0)Ð→D[U1 ,U2](H ′

0) ∶= (D○Ui
(H ′

0) ⊠D○U2
(H ′

0))[ 1p ](4.2.1)

induced from the composition

Λ(H ′
0)⊗ TSym j

H Ð→D
○
Ui− j
(H ′

0)⊗ TSym j
H

δ∗j
Ð→DUi

(H ′
0)(4.2.2)

described in [LZ16, Definition 5.3.1]. We will not need an explicit description of these
maps, but we do note that we have the following commutative diagram.

Lemma 4.2.3 We have the following commutative diagram of sheaves

where the horizontal arrows are the composition in (4.2.2) and, as usual, l is a prime not
dividing Np and κi is the universal character of Ui .

Proof One can check this étale locally and this follows from the homogene-
ity condition in the definition of D○Ui

and the fact that δ∗j ○ ([l]∗ ⊗ id) = l− j
([l]∗ ⊗ id) ○ δ∗j . ∎

We are now in a position to define the Beilinson–Flach classes. Consider the
following composition, which we will denote by τm

τm ∶Y(m,mNp)2 tm×tm
ÐÐÐ→ Y1(Np)2 × µ○m → Y1(N1(p)) × Y1(N2(p)) × µ○m

where tm ∶Y(m,mNp)→ Y1(Np) × µ○m is the map defined in (2.0.3), and the second
map is induced from the maps sN i

∶Y1(Np)→ Y1(N i(p)) as defined in (2.0.4).
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Definition 4.2.4 We define the Beilinson–Flach class

cBF
[U1 ,U2 , j]
m ,1 ∈ H3

ét (Y1(N1(p)) × Y1(N2(p)) × µ○m ,D[U1 ,U2](H ′
0)(2 − j))

to be the pushforward of cRI
[ j]
m ,mNp,1 under τm composed with the map in (4.2.1).

Let F and G be Coleman families over U1 and U2 respectively. To specialise the
Beilinson–Flach classes at F and G one introduces the following differential operators(∇i

j
) on ΛUi

[1/p] given by the formula

(∇i

j
) ∶= 1

j!

j−1

∏
k=0

(∇i − k),

where∇i is given by (∇i f )(x) = d
dt
f (tx) ∣t=1 (see [LZ16, Proposition 5.1.2] for more

details). Let V1 and V2 be open affinoid subdomains in U1 and U2 respectively and
j ≥ 0 an integer not contained in either V1 or V2. �en the operators (∇1

j
) and (∇2

j
) are

injective and there exist unique classes

cBF
[F,G, j]
m ,1 ∈ H1 (Q(µm), [MV1

(F)∗⊗̂MV2
(G)∗](− j))

such that (∇1

j
)(∇2

j
)cBF

[F,G, j]
m ,1 equals the image of cBF

[U1 ,U2 , j]
m ,1 under the Abel–Jacobi

map AJF,G defined below.

Definition 4.2.5 �e Abel–Jacobi map AJF,G is defined to be the composition

H3
ét (Y1(N1(p)) × Y1(N2(p)) × µ○m ,D[U1 ,U2](H ′

0)(2 − j))
Ð→ H1 (Q(µm), H2

ét(Y1(N1(p))Q̄ × Y1(N2(p))Q̄ ,D[U1 ,U2](H ′
0)(2 − j))

∼

Ð→ H1(Q(µm), H1
ét(Y1(N1(p))Q̄ ,DU1

(H ′
0)(1))

⊗̂H1
ét(Y1(N2(p))Q̄ ,DU2

(H ′
0)(1))(− j))

Ð→ H1 (Q(µm), [MV1
(F)∗⊗̂MV2

(G)∗](− j)),
where the first map arises from the Leray spectral sequence (using the fact that
Y1(N1(p))Q̄ × Y1(N2(p))Q̄ is an affine scheme, so its étale cohomology vanishes in
degree 3 and above); the second isomorphism is the Künneth formula (again using
the fact that Y1(N i(p))Q̄ is affine), and the third map is the projection down to the
Galois representations associated with F and G.

�e Beilinson–Flach classes associated with F and G satisfy norm compatibility
relations similar to those for the Rankin–Iwasawa classes.

Proposition 4.2.6 Let c ≥ 1 be an integer prime to 6Np and let m be an integer prime
to 6cN. Let l be a prime not dividing 6cNp and let F and G be two Coleman families
over the affinoid subdomains V1 and V2 , respectively. Suppose that j ≥ 0 is an integer not
contained in V1 or V2.
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(i) If l divides m, then the Beilinson–Flach classes satisfy the following norm-
compatibility relation

cores
Q(µml )

Q(µm)
(cBF

[F,G, j]
ml ,1

) = (a l(F)a l(G))cBF
[F,G, j]
m ,1 .

(ii) If l does not divide m, then the Beilinson–Flach classes satisfy the following norm-
compatibility relation

cores
Q(µml )

Q(µm)
(cBF

[F,G, j]
ml ,1 ) = Ql(l− jσ−1l ) ⋅ cBF

[F,G, j]
m ,1 ,

where Ql(X) ∈ O(V1 × V2)[X , X−1] is the polynomial

Ql(X) = − X−1 + a l(F)a l(G)
+ ((l + 1)lκ1+κ2 εF(l)εG(l) − lκ1 εF(l)a l(G)2 − lκ2 εG(l)a l(F)2)X
+ lκ1+κ2 εF(l)εG(l)a l(F)a l(G)X2 − l 1+2κ1+2κ2 εF(l 2)εG(l 2)X3 ,

where, as before, σl is the image of the arithmetic Frobenius at l inGal(Q(µm)/Q).
Proof Consider the composition

H3
ét (Y(m,mNp)2 , Λ[ j, j](2 − j))

τm ,∗

ÐÐ→ H3
ét(Y1(N1(p)) × Y1(N2(p)) × µ○m , Λ[ j, j](H ′

0))
Ð→ H3

ét (Y1(N1(p)) × Y1(N2(p)) × µ○m ,D[U1 ,U2](H ′
0)).

By applying Lemma 2.0.5, themorphisms (Ξ l)∗ and coresQ(µ lm)

Q(µm)
are compatible under

the map

H3
ét(Y(m,mN)2 , Λ[ j, j](2 − j))Ð→ H1(Q(µm), [M(F)∗⊗̂M(G)∗](− j))(4.2.7)

obtained by composing the above map with AJF,G.
Immediately we see that if l dividesm, then

(∇1

j
)(∇2

j
) coresQ(µml )

Q(µm) cBF
[F,G, j]
lm ,1

= coresQ(µml )

Q(µm)
(∇1

j
)(∇2

j
)cBF

[F,G, j]
lm ,1

= (a l(F)a l(G))(∇1

j
)(∇2

j
)cBF

[F,G, j]
m ,1 ,

where the second equality follows from Proposition 4.1.2(i) and the fact that T ′l acts
as multiplication by a l(F) (resp. a l(G)) on M(F)∗ (resp. M(G)∗). Note that under
the morphism tm the operators U ′l and T ′l are compatible. Since j is not contained in

V1 or V2, the operator (∇1

j
)(∇2

j
) is invertible, and we have the required relation.
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For the second part, recall that by Proposition 4.1.2(ii), the Rankin–Iwasawa classes

satisfy (Ξ l × Ξ l)∗(cRI[ j]lm , lmN ,1
) = Q̃ l ⋅ cRI[ j]m ,mN ,1. We have the following commuta-

tive diagram:

where the horizontal arrows are the maps in (4.2.7). Indeed,M(F)∗ can be described
as the quotient of

H3
ét (Y1(N1(p))Q̄ ,DV1

(1))
such that T ′l acts as multiplication by a l(F) and ⟨l⟩ acts as multiplication by εF(l)−1.
We have a similar description for M(G)∗. Furthermore, the action of σl becomes
the natural action of σl under the horizontal map in the above diagram (this is
an application of the push-pull lemma for étale cohomology). Finally, by Lemma
4.2.3, [l]∗ becomes multiplication by lκi− j . �is shows that the above diagram is
commutative and completes the proof of the proposition. ∎

4.3 Interpolation in the Cyclotomic Variable

In this section, we recall how to interpolate the Beilinson–Flach classes cBF
[F,G, j]
m ,1

in the cyclotomic variable j. As a consequence, we show that the three-variable
Beilinson–Flach classes satisfy a norm-compatibility relation closely related to the
Euler system relations.

Let p−λ1 = ∥ap(F)∥ (resp. p−λ2 = ∥ap(G)∥) where ∥ ⋅ ∥ denotes the canonical supre-
mum norm on O(Vi) (which exists because we have restricted our Coleman families
to reduced affinoid subdomains). Let λ = λ1 + λ2 and h ≥ λ a positive integer. Define
the following elements

xn , j ∶= (ap(F)ap(G))−n cBF
[F,G, j]
mpn ,1

(−1) j j!
for 0 ≤ j ≤ h, n ≥ 1, and set

x0, j ∶= (1 − p j

ap(F)ap(G))
cBF

[F,G, j]
m ,1(−1) j j!

for 0 ≤ j ≤ h.�ese elements are compatible under corestriction and satisfy a certain
growth bound (see [LZ16, Proposition 5.4.1]), so by Proposition 2.3.3 in op. cit. there
exists a unique element

cBF
[F,G]
m ,1 ∈ H1 (Q(µmp∞),Dλ(Γ,M))Γ ≅ H1 (Q(µm),Dλ(Γ,M))

satisfying

∫
Γn
χ
j
cycl cBF

[F,G]
m ,1 = xn , j
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for all n, j. Here,M = MV1
(F)∗⊗̂MV2

(G)∗ and Γn ⊂ Γ is the unique subgroup of index
pn−1(p − 1) (we set Γ0 = Γ).�e class cBF

[F,G]
m ,1 is independent of the choice of h.

Proposition 4.3.1 �e Beilinson–Flach classes cBF
[F,G]
m ,1 satisfy the following norm

compatibility relations:

• If l divides m, then

cores
Q(µ lm)

Q(µm)
(cBF

[F,G]
lm ,1
) = (a l(F)a l(G)) ⋅ cBF

[F,G]
m ,1 .

• If l does not divide m, then

cores
Q(µ lm)

Q(µm)
(cBF

[F,G]
lm ,1
) = Ql(l−jσ−1l ) ⋅ cBF

[F,G]
m ,1

where Ql(X) is the polynomial defined in Proposition 4.2.6 and j is the universal
character Γ → Dλ(Γ, E) ( i.e., the homomorphism taking x ↦ evx where evx is the
evaluation-at-x map).

Proof Let Ql(X) denote the polynomial appearing in Proposition 4.2.6 and let l be
a prime not dividing 6mpNc. Set

νm = Ql(l−jσ−1l ) ⋅ cBF
[F,G]
m ,1 − coresQ(µ lm)

Q(µm)
(cBF

[F,G]
lm ,1
) .

�en for all n, j ≥ 0 the specialisation ∫Γn χ jνm is zero; so νm interpolates only
zero classes. By uniqueness, this implies that νm = 0. A similar argument works
for l ∣m. ∎

4.4 Euler System Relations in Families

In Proposition 4.3.1, we showed that the Beilinson–Flach classes satisfy norm compati-
ble relations. It turns out that we can adjust these classes so that we obtain cohomology
classes satisfying the Euler system relations.

As before, let M = MV1
(F)∗⊗̂MV2

(G)∗ and let Pl(X) denote the polynomial
det (1 − Frob−1l X∣M∗(1)), where Frobl denotes any li� of the arithmetic Frobenius
at l.�en one can observe that

Ql(X) = X−1((l − 1)(1 − lκ1+κ2+2εF(l)εG(l)X2) − lPl(X)),
so in particular, Ql(X) ≡ −X−1Pl(X) modulo l − 1. Such a congruence allows us to

adjust the classes cBF
[F,G]
m ,1 so that we obtain Euler system relations.

Proposition 4.4.1 Let c ≥ 1 be an integer prime to 6pN and let A denote the set of all
square-free positive integers that are coprime to 6pNc. �en for all m ∈ A, there exist
cohomology classes cZ

[F,G]
m ∈ H1(Q(µm),Dla(Γ,M)) such that
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(i) �e bottom class satisfies cZ
[F,G]
1 = cBF

[F,G]
1,1 .

(ii) If l is a prime such that lm ∈ A (so in particular l ∤ m), we have the following Euler
system relation:

cores
Q(µ lm)

Q(µm) cZ
[F,G]
lm = Pl(l−jσ−1l ) ⋅ cZ[F,G]

m .

Note that Pl(l−jX) = det(1 − Frob−1l X∣M∗(1 + j)).
Moreover, cZ

[F,G]
m differs from cBF

[F,G]
m ,1 by an element of O(V1 × V2 ×

W)○[(Z/mZ)×].
Proof �is follows from the same argument in [LLZ14, §7.3]. ∎

Unfortunately, in general, there is no way to force these classes to lie in a Galois
stable lattice insideDla(Γ,M), sowe do not get an Euler system for this representation.
However, this is possible a�er specialisation so long as we use a weaker notion of an
Euler system.

Corollary 4.4.2 Let x = (k1 , k2 , η) ∈ V1 × V2 ×W defined over a finite extension
E/Qp , and let T(η−1) be a Galois stable lattice inside ME(Fk1)∗ ⊗ME(Gk2)∗(η−1).
Assume that k1 ≠ k2. Let c ≥ 1 be an integer prime to 6Np and let N be a finite product
of primes containing all primes dividing 6cNp. Let S denote the set of positive integers
divisible only by primes not dividing N. �en for m ∈ S and V1 and V2 small enough,
there exist cohomology classes

cm ∈ H1 (Q(µm), T(η−1))
that satisfy

cores
Q(µ lm)

Q(µm)
c lm =

⎧⎪⎪⎨⎪⎪⎩
cm if l ∣m,

Pl(η−1(l)σ−1l ) ⋅ cm if l ∤ m,

where l is a prime not dividing N and Pl(η−1(l)X) is the specialisation of Pl(l−jX) at(k1 , k2 , η). Furthermore, the bottom class c1 is a non-zero multiple of cBF
[F,G]
1,1 .

Proof First, note that H0(Q(µmp∞),Mx) = 0 for all m ∈ S, where
Mx = ME(Fk1)∗ ⊗ME(Gk2)∗(η−1).

Indeed this is true, because we have assumed k1 ≠ k2, for the following reason.
Shrinking V1 and V2 if necessary, we can assume that Mx is (absolutely) irreducible.
Hence, any twist ofMx by a character is also irreducible. But ifMx has any non-trivial
invariants under the groupGQab then there is a one-dimensional submodule ofMx on
which GQ acts via a character.�is is a contradiction to irreducibility.

�erefore, by applying [LZ16, Proposition 2.4.7], there exists a constant R > 0
independent of m such that R ⋅ cBF

[F,G]
m ,1 specialised at x lands in the cohomology

of the Galois stable lattice T(η−1).
But since cZ

[F,G]
m differs from cBF

[F,G]
m ,1 by an element of O(V1 × V2 ×

W)○[(Z/mZ)×], this implies that the specialisation of R ⋅ cZ[F,G]
m lands in the coho-
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mology of the Galois stable lattice T(η−1). We set cm to be the specialisation of

R ⋅ cZ[F,G]
m at x.

By Proposition 4.4.1, we obtain the Euler system relations for the classes cm , and this
proves the corollary for all m ∈ A, where A is the subset of S consisting of all square-
free integers.

But we can extend the classes {cm ∶ m ∈ A} to a collection of classes indexed over
the set S by defining cm to be

cm ∶=∏
l ∣m

1

lv l (m)−1
res

Q(µm)

Q(µm′)
cm′ ,

where m′ is the radical of m (i.e., the product of all prime factors that divide m) and
v l(m) is the l-adic valuation ofm. We do not lose integrality of the classes because all
integers in S are coprime to p. ∎

5 Preliminaries on (φ, Γ)-modules

5.1 Period Rings

In this section, we (briefly) recall the period rings that will be used throughout the
paper. Since we only work with representations of GQp

, we specialise immediately to
this case and refer the reader to [Ber03] for the definitions over more general p-adic
fields; proofs and their corresponding references for all of the assertions in this section
can also be found in op. cit..

Let Cp denote a fixed completed algebraic closure of Qp and let vp denote the
unique valuation on Cp such that vp(p) = 1. Set O♭Cp

∶= lim
←Ð

OCp
/p, where the inverse

limit is over the p-th power map, and fix ε ∶= (εn) ∈ O♭Cp
a compatible system of p-th

roots of unity, i.e., εn is a p
n-th root of unity such that ε

p
n+1 = εn .

Let Ã
+
denote the (p-typical) Witt vectors of O♭

Cp
and let B̃

+
= Ã

+[ 1
p
]. One has a

canonical homomorphism θ∶ B̃+ → Cp whose kernel is a principal ideal of B̃
+
gener-

ated by ω ∶= ([ε] − 1)/([ε′] − 1) where ε′ = (εn+1)n≥0 and [⋅] denotes the Teichmüller
li�. We set t ∶= log([ε]) to be the period of Fontaine.

We define the de Rhamperiod ringsB+dR andBdR to be the (ker θ)-adic completion

of B̃
+
and the fraction field of B+dR, respectively. Similarly, we define the crystalline

period rings B+cris and Bcris to be the divided-power envelope of B̃
+
(with respect to

ω) andBcris = B+cris[t−1], respectively.�e fieldBdR comes equipped with a decreasing
filtration given by Fili BdR = t iB+dR, and since Bcris ⊂ BdR, the ring Bcris also inherits
a filtration from BdR. Furthermore, Bcris comes equipped with a Frobenius endomor-

phism φ extending the natural Frobenius on B̃
+
.

In addition to these constructions, we define overconvergent period rings as

follows. For r, s two positive rational numbers, let Ã
[r ,s]

denote the p-adic completion

of Ã
+[ p
[ε−1]r

,
[ε−1]s

p
] and set B̃

[r ,s]
= Ã

[r ,s][1/p]. We define B̃
†,r

rig to be the intersection

B̃
†,r

rig ∶= ∩r≤s<+∞B̃[r ,s], and if we set π = [ε] − 1, then this ring contains the following
subring:
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B†,r
rig,Qp

∶= { f (π) = ∞

∑
k=−∞

akπ
k ∶ ak ∈ Qp

f (x) converges for 0 < vp(x) ≤ 1
r

}.
Note that the period t defined previously is equal to log(1 + π).

�e union of these rings, namely B†
rig,Qp

∶= lim
Ð→

B†,r
rig,Qp

, is the Robba ring associated

to the p-adic field Qp and can be identified with all power series in Qp [[π, π−1]]
that converge on an annulus of the form {x ∈ Cp ∶ 0 < vp(x) ≤ 1/r} for some positive
rational number r. We let B+rig,Qp

⊂ B†
rig,Qp

denote the subring of power series which

converge on the whole open unit disc, i.e., f (x) converges for all vp(x) > 0. Both of
these rings come equipped with an action of Frobenius given by the formula

(φ ⋅ f )(π) = f ((1 + π)p − 1)
and Γ ∶= Gal(Qp(µp∞)/Qp) given by the formula

(γ ⋅ f )(π) = f ((1 + π)χcycl(γ) − 1),
where γ ∈ Γ and χcycl ∶ Γ → Z×p is the cyclotomic character.�e morphism φ has a le�
inverse, denoted by ψ, which satisfies the following relation:

(φψ ⋅ f )(π) = 1

p
∑
ξp=1

f ((1 + π)ξ − 1),

where the sum is over all p-th roots of unity.
IfA is an affinoidQp-algebra, we define the Robba ring overA to be the completed

tensor product B†
rig,Qp

⊗̂A, and similarly, we denote the subring of bounded power

series by B+rig,Qp
⊗̂A. As above, both of these rings come equipped with an action of φ,

ψ, and Γ by the exact same formulae.

5.2 Overconvergent (φ, Γ)-modules Over Affinoid Algebras

Definition 5.2.1 Let A be an affinoid algebra over Qp . We say that D is a(φ, Γ)-module over B†
rig,Qp

⊗̂A if D is a finite projective (B†
rig,Qp

⊗̂A)-module with

commuting semilinear actions of φ and Γ, such that φ(D) generates D as a(B†
rig,Qp

⊗̂A)-module.

If M is a Galois representation over an affinoid algebra A (i.e., a finite projective
A-module with a continuous A-linear action of GQ), then Berger and Colmez [BC08]
(and more generally Kedlaya and Liu [KL10]) have constructed a functor

M ↦ D†
rig(M)

that associates with a Galois representation a (φ, Γ)-module over the Robba ring
B†
rig,Qp

⊗̂A.�is agrees with the usual functor as constructed by Berger [Ber02] when

A is a finite field extension ofQp .
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For the rest of this section let A = E be a finite field extension of Qp and let D
be a (φ, Γ)-module over B†

rig,Qp
⊗̂E. By taking the “stalk at ζpn − 1”, one can define a

Qp(µp∞)((t))-module Ddif with a semilinear action of Γ (see [Nak14]). We set

DdR ∶= DΓ
dif and Dcris ∶= D[t−1]Γ

and note that both DdR and Dcris are finite-dimensional vector spaces over E.

Definition 5.2.2 Let E/Qp be a finite extension and D a (φ, Γ)-module over
B†
rig,Qp

⊗̂E.
(i) We say thatD is de Rham (resp. crystalline) if theE-dimension ofDdR (resp.Dcris)

is equal to the rank of D as a B†
rig,Qp

⊗̂E-module.

(ii) If D is de Rham then DdR comes equipped with a decreasing filtration induced
from the t-adic filtration on Qp(µp∞) [[t]]. �e Hodge–Tate weights of D are
defined to be the negatives of the jumps in the filtration on DdR (so in particular
the cyclotomic character has Hodge–Tate weight 1).

If D is a crystalline (φ, Γ)-module, then one can associate a sub- (B+rig,Qp
⊗̂E)-

module ofD, denotedNrig(D), that is free of rank equal to the rank ofD and is stable
under Γ. Furthermore, φ restricts to a morphism

φ∶Nrig(D)Ð→ Nrig(D)[q−1],
where q = φ(π)/π; and ifD has non-negative Hodge–Tate weights, thenNrig(D) is in
fact stable under φ.�is submodule is called theWach module associated withD and
will be important in Section 6 when we recall the construction of the Perrin–Riou
logarithm. For more details on the construction and properties of this module, see
[Pot12, §3]. Note that ifD comes from a crystalline p-adic representationV andN(V)
denotes the usual Wach module (over B+Qp

) associated with V, then Nrig(D) satisfies
the relation

Nrig(D) = N(V)⊗B+
Qp

B+rig,Qp
.

Here, B+Qp
is a period ring that can be identified with the subring Zp [[π]] [1/p] ⊂

B+rig,Qp
.

5.3 Cohomology of (φ, Γ)-modules

If D is a (φ, Γ)-module over B†
rig,Qp

⊗̂A, then we define the Herr complex

C●φ ,γ(D) ∶= D φ−1,γ−1
ÐÐÐÐ→ D ⊕ D

1−γ ,φ−1
ÐÐÐÐ→ D

concentrated in degrees 0, 1, 2, where γ is a choice of topological generator for Γ (such
an element exists because we have assumed p > 2). We define RΓcont(Qp ,D) to be
the corresponding object in the derived category of bounded complexes of (contin-
uous) A-modules, and we denote the cohomology of this complex by Hi(Qp ,D) ∶=
Hi(C●φ ,γ(D)).
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By [Pot13,�m. 2.8], for any A-representationM ofGQp
there is a canonical quasi-

isomorphism

RΓcont(Qp ,M) ≅ RΓcont(Qp ,D
†
rig(M)) .

Since φ(D) generates D as an B†
rig,Qp

⊗̂A-module, the map φ∶D → D has a unique

semilinear le� inverse ψ. As the following lemma shows, the cohomology of D can be
computed with ψ in place of φ.

Lemma 5.3.1 [KPX14, Proposition 2.3.6] Let C●ψ ,γ(D) be the bottom row of the
commutative diagram

(here the top row is C●φ ,γ(D)). �en the map C●φ ,γ(D)→ C●ψ ,γ(D) defined above is a
quasi-isomorphism.

We finish this section by stating an Euler–Poincaré characteristic formula for(φ, Γ)-modules, which will be used in the proof of�eorem 7.3.3.

Proposition 5.3.2 [Liu08, �eorem 5.3] Let A = E be a finite field extension of Qp

and let D be a (φ, Γ)-module over B†
rig,Qp

⊗̂E.�en, for i = 0, 1, 2,Hi(Qp ,D) are finite-
dimensional vector spaces over E and

χ(D) ∶= 2

∑
i=0

(−1)i dimE H
i(Qp ,D) = − rankD,

where rankD is the rank of D as a (B†
rig,Qp

⊗̂E)-module.

5.4 Iwasawa Cohomology

Recall that for an affinoid algebra A, we denote its unit ball by A○. Let M be a Galois
representation over A and let T be a Galois stable lattice inside M (i.e., a sub- A○-
module that is stable under the action of GQ and satisfies T[1/p] = M). �e classical
Iwasawa cohomology ofM is defined to be

Hi
cl.Iw(Q∞,M) ∶= ( lim

←Ð
n

Hi(Q(µpn), T))[ 1
p
],

where the inverse limit is over the corestriction maps, and the (analytic) Iwasawa
cohomology ofM is

Hi
Iw(Q∞,M) ∶= Hi(Q,Dla(Γ,M)),

where Dla(Γ,M) denotes the space of locally analytic distributions on Γ, valued
in M. For a finite place v of Q, the Iwasawa cohomology groups Hi

cl.Iw(Qv ,∞,M)
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and Hi
Iw(Qv ,∞,M) are defined analogously. �ese two constructions satisfy the

relation

Hi
Iw(Q∞,M) = Hi

cl.Iw(Q∞,M)⊗̂Zp[[Γ]]D
la(Γ,A).

Remark 5.4.1 Our notation for Iwasawa cohomology differs from that in [LZ16]; in
op. cit., HIw denotes classical Iwasawa cohomology, whereas in this paper it refers to
analytic Iwasawa cohomology.

Definition 5.4.2 Let D be a (φ, Γ)-module over B†
rig,Qp

⊗̂A. �e Iwasawa Herr

complex is defined to be

C●Iw(D)∶D ψ−1
ÐÐ→ D

concentrated in degrees 1 and 2, where ψ is the le� inverse to φ as discussed in the
previous section. We denote the cohomology of this complex by Hi

Iw(Qp ,D).
We have the following relation between Iwasawa cohomology forM and Iwasawa

cohomology for D†
rig(M).

Proposition 5.4.3 Let M be a Galois representation over an affinoid algebra A. �en
one has the following isomorphism

Hi
Iw(Qp,∞,M) ≅ Hi

Iw (Qp ,D
†
rig(M)).

In particular ,Hi
Iw(Qp,∞,M) vanishes for i ≠ 1, 2.

Proof See [KPX14, Corollary 4.4.11]. ∎

6 Some p-adic Hodge Theory

In this section, we recall the construction of the Perrin–Riou logarithm following
[Pot12, §3] and use this map to show that if the p-adic L-function does not vanish,
then we obtain two linearly independent classes in H1(Qp ,D

−(η−1)), where D−(η−1)
is a certain 2-dimensional (φ, Γ)-module defined in (6.2.1).�roughout this section,
E is a finite extension of Qp and D will denote a (φ, Γ)-module over the Robba ring
B†
rig,Qp

⊗̂E.
Recall from Section 5.2 that if D is a crystalline (φ, Γ)-module, then one can

associate toD the Wach moduleNrig(D).�is is a sub (B+rig,Qp
⊗̂E)-module ofD that

is free of rank equal to the rank of D and is stable under Γ. It will be useful to impose
the following hypothesis on D:

(H) �e Hodge–Tate weights of D are non-negative and pn is not an eigenvalue of φ
on Dcris for all integers n ≥ 0.

�e reason for imposing this hypothesis is to ensure that the “big logarithm” as
constructed in [Pot12, §3] lands in the lattice Dcris ⊗ Λ∞.
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Lemma 6.0.4 Let D be a crystalline (φ, Γ)-module satisfying hypothesis (H).

(i) �e inclusionNrig(D)→ D induces an isomorphismNrig(D)ψ=1 ≅ Dψ=1, where ψ
is the le� inverse to φ coming from the trace map (see §5.2).

(ii) Let φ∗Nrig(D) denote the sub (B+rig,Qp
⊗̂E)-module of D generated by φ(Nrig(D)).

�en there is an inclusion

(φ∗Nrig(D))ψ=0 ⊂ Dcris ⊗E (B+rig,Qp
⊗̂E)ψ=0 .

(iii) We have an inclusion

Nrig(D) ⊂ qh1φ∗Nrig(D) ⊂ φ∗Nrig(D),
where h1 is the smallest Hodge–Tate weight of D and q = φ(π)/π.

Proof Let h1 ≤ h2 ≤ ⋯ ≤ hd be the Hodge–Tate weights of D. Since D has non-
negative Hodge–Tate weights and pn is not an eigenvalue for φ for all n ≥ 0, the
quantity a(D) ∶=max{−h1 , λ(D) + 1} is non-positive, where λ(D) is the largest
integer (or −∞ if there is no such one) such that φ − pλ(D) is not bijective on Dcris.
�e first part then follows from [Pot12,�eorem 3.3].

For the second part, we note that from the second bullet point in �eorem 3.1 in
op. cit.

Nrig(D) ⊂ ( t
π
)h1(Dcris ⊗ (B+rig,Qp

⊗̂E)) ⊂ (Dcris ⊗ (B+rig,Qp
⊗̂E)),

where the last inclusion follows, because the Hodge–Tate weights are non-negative.
Since φ is an isomorphism onDcris,ψ is also an isomorphism, andwe have φ∗(Dcris ⊗(B+rig,Qp

⊗̂E)) = (Dcris ⊗ (B+rig,Qp
⊗̂E)). Combining these facts we obtain the inclusion

in (ii).
Similarly, the third part follows from the third bullet point in �eorem 3.1 in loc.

cit., using the fact that h1 ≥ 0 and that q ∈ B+rig,Qp
. ∎

6.1 Perrin-Riou’s Big Logarithm

Let Λ∞ denote the global sections ofWE ; this can be identified with a subring of the
ring of power series E[∆] [[γ − 1]], where ∆ is the torsion subgroup of Γ and γ is a
topological generator of Γ/∆.�e ring (B+rig,Qp

⊗̂E)ψ=0 has an action of Γ that extends
to an action of Λ∞ via the Mellin transform:

M∶Λ∞ ∼

Ð→ (B+rig,Qp
⊗̂E)ψ=0

f (γ − 1)↦ f (γ − 1) ⋅ (1 + π).
�erefore, (B+rig,Qp

⊗̂E)ψ=0 can be viewed as a free Λ∞-module of rank one.

Definition 6.1.1 Suppose that D is a crystalline (φ, Γ)-module satisfying hypothesis
(H).�e Perrin-Riou logarithm L = LD ∶ H1

Iw(Qp ,D)→ Dcris⊗̂Λ∞ is defined as the
composition of the following maps:
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H1
Iw(Qp ,D) ≅ Dψ=1 = Nrig(D)ψ=1

1−φ
ÐÐ→ (φ∗Nrig(D))ψ=0
Ð→ Dcris⊗̂E(B+rig,Qp

⊗̂E)ψ=0 ∼Ð→ Dcris⊗̂EΛ∞,

where the second, third, and fourth maps exist by Lemma 6.0.4. Here the last map is
given by the inverse of the Mellin transform described above. Since all of the maps
above are functorial inD, we see thatL is a map of Λ∞-modules that is also functorial
in D.

In the case where D comes from a crystalline p-adic representation, the map L

is a special case of a more general construction by Perrin-Riou ([PR00]), which was
later interpreted using (φ, Γ)-modules by Lei, Loeffler, and Zerbes ([LLZ11]). �is
was generalised to potentially crystalline (φ, Γ)-modules by Pottharst ([Pot12]) and
to de Rham (φ, Γ)-modules by Nakamura ([Nak14]). �e key property of this map
is that it interpolates the Bloch–Kato logarithm and dual exponential maps at certain
classical specialisations. More precisely, let η∶ Γ → (E′)× be a continuous character,
where Γ = Gal(Qp(µp∞)/Qp), and consider the induced map Λ∞ → E′ , which we
will also denote by η. �en we have two specialisation maps: the first on Iwasawa
cohomology

H1
Iw(Qp ,D) prη

Ð→ H1 (Qp ,DE′(η−1))
induced from the map on the Herr complexes C●Iw(D)→ C●ψ ,γ(D(η−1)) which
in degree one is given by x ↦ (0, x) (recall that by Lemma 5.3.1 the cohomology of
a (φ, Γ)-module can be calculated with ψ in place of φ). �e second specialisation
map is

Dcris⊗̂Λ∞ evη
Ð→ Dcris ⊗Qp

E′

induced from η∶Λ∞ → E′.�en for classical η (i.e., η = χ jcycl for some integer j) there

is a commutative diagram

where the dotted arrow is (up to some Euler factors) the Bloch–Kato logarithm in
the range j < h1, and the dual exponential map in the range j ≥ h1, where h1 is the
smallestHodge–Tateweight ofD (see [Nak14]).Wewill study thismap at non-classical
specialisations.

Proposition 6.1.2 Let D be a crystalline (φ, Γ)-module that satisfies hypothesis (H).
�e map L = LD satisfies the following properties:

https://doi.org/10.4153/S0008414X2000019X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000019X


Bounding Selmer Groups for the Rankin–Selberg Convolution 831

(i) Let k ≥ 0 be an integer and let ω−k denote the automorphism of Λ∞ which sends
γ ∈ Γ to the element χcycl(γ)−kγ.�en we have a commutative diagram

where for a Λ∞-module M, ω∗−kM denotes the pull-back M ⊗Λ∞ ,ω−k Λ∞.
(ii) For any character η∶ Γ → (E′)×, there exists a Λ∞-linear morphism making the

following diagram commute:

where E′ is a finite extension of E.

Proof �e first part follows from carefully tracing through the definitions.
For the second part, it is enough to show that if prη(x) = 0, then evη(L(x)) = 0,

because then we can just define the map by taking a li� to H1
Iw(Qp ,D). If prη(x) = 0,

then there exists y ∈ Dψ=1 such that

x = (γ − η(γ))y.
But L is Λ∞-linear so (a�er base-changing D and Λ∞ to DE′ and (Λ∞)E′ , respec-
tively)

L(x) = (γ − η(γ))L(y).
But this is precisely mapped to zero under evη . ∎

From the above proposition, we obtain the following corollary, which will be useful
in later sections.

Corollary 6.1.3 Let D be a (φ, Γ)-module satisfying hypothesis (H) and D1 ,D2 ⊂ D
two sub- (φ, Γ)-modules satisfying Dcris = (D1)cris ⊕ (D2)cris. Let x1 and x2 be two
elements ofH1

Iw(Qp ,D) that lie in the images of the mapsH1
Iw(Qp ,D1)→ H1

Iw(Qp ,D)
and H1

Iw(Qp ,D2)→ H1
Iw(Qp ,D), respectively. �en for any character η∶G → E× the

elements prη(x1) and prη(x2) are linearly independent if both evηL(x1) and evηL(x2)
are non-zero.

Proof �is follows from functoriality of L and the existence of the bottom map
in Proposition 6.1.2(ii). Indeed, if both evηL(x1) and evηL(x2) are non-zero, then
because they lie in different direct summands of Dcris , they must be linearly indepen-
dent in Dcris⊗̂Λ∞. ∎
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6.2 Application to Beilinson–Flach Classes

Returning to the situation in the paper, let f and g denote eigenforms satisfying the

assumptions in Section 1.1, so we have Coleman families F,Gα ,Gβ over V1 ,V
α
2 ,V

β
2

passing through the p-stabilisations fα , gα , gβ respectively. Here fα denotes the p-
stabilisation of f that satisfies Up f = α f ; and similarly for gα and gβ . Since we have
assumed that the weights of f and g are not equal, we can choose V1 such that it does
not contain the character k′. In this subsection, G and V2 will denote either Gα and
V α
2 or Gβ and V

β
2 , respectively.

Let MV1
(F) and MV2

(G) denote the Galois representations associated with F

and G and let D†
rig(F)∗ and D†

rig(G)∗ denote the (φ, Γ)-modules of MV1
(F)∗ and

MV2
(G)∗ , respectively. If V1 and V2 are small enough, both of these modules come

with a canonical triangulation, which we will denote as

0Ð→F
+D†

rig(?)∗ Ð→ D†
rig(?)∗ =F

oD†
rig(?)∗ Ð→F

−D†
rig(?)∗ Ð→ 0

for ? = F or ? = G. In fact, there is an explicit description for both the kernel and the
cokernel (see [LZ16,�eorem 6.3.2]).

Let k1 be a (not necessarily classical) weight in V1 and let η be a character of
Γ = Gal(Qp(µp∞)/Qp), and let E be a finite extension of Qp that contains the fields
of definition of k1 and η. Recall that k′ + 2 denotes the weight of g. Let M(Fk1) and
M(Gk′) denote the specialisations of MV1

(F) and MV2
(G) at k1 and k′ respectively,

and note that we have isomorphisms

M((Gα)k′) prα

Ð→ ME(g),
M((Gβ)k′) prβ

Ð→ ME(g)
both of which follow from the fact that g is classical and theGalois representation does
not change a�er p-stabilisation. We let D†

rig(Fk1)∗, D†
rig(Gk′)∗, and D†

rig(g)∗ denote
the (φ, Γ)-modules associated withM(Fk1)∗,M(Gk′)∗ andME(g)∗, respectively. By
specialising the triangulation above and applying prα or prβ if necessary, we obtain
triangulations for these three (φ, Γ)-modules.

Let D− be the (φ, Γ)-module

D− =F
−D†

rig(Fk1)∗ ⊗F
oD†

rig(g)∗ .(6.2.1)

Since g is classical, D− is crystalline with Hodge–Tate weights 0, 1 + k′ and by the
explicit description in [LZ16,�eorem 6.3.2], pn is not an eigenvalue for φ onD−cris for
any integer n ≥ 0 (so D− satisfies hypothesis (H)). Consider the following submodules

D1 = Dα = prα(F −D†
rig(Fk1)∗ ⊗F

+D†
rig((Gα)k′)∗),

D2 = Dβ = prβ(F −D†
rig(Fk1)∗ ⊗F

+D†
rig((Gβ)k′)∗),

where prα and prβ are the isomorphisms described above. Again, by the explicit
description in loc. cit., (D1)cris and (D2)cris are both rank one sub φ-modules of D−cris
on which φ acts by multiplication by α−1Fk1

β−1g and α−1Fk1
α−1g respectively. Since we have

assumed that g is p-regular (i.e., αg ≠ βg), we must have D−cris = (D1)cris ⊕ (D2)cris.
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Let c > 6 be an integer that is coprime to 6Np and let zα1 be the image of the

Beilinson–Flach class cBF
[F,Gα]
1,1 (see §4.3) under the composition

H1 (Q,Dla(Γ,M(Fk1)∗ ⊗M((Gα)k′)∗))
Ð→ H1

Iw (Qp,∞,M(Fk1)∗ ⊗M(g)∗)Ð→ H1
Iw(Qp ,D

−)
and similarly for z

β
1 , where the first map is restriction to the decomposition group at

p composed with the isomorphism prα . Recall that Lp(F, g , 1 + j) is the two-variable
p-adic L-function associated with the Coleman family F and the universal twist j (see
[Urb14] or [LZ16, §9]).

Proposition 6.2.2 Wecan choose the auxiliary integer c such that, if Lp(Fk1 , g , 1 + η) ≠
0, then prη(zα1 ) and prη(zβ1 ) are linearly independent inH1(Qp ,D

−(η−1)).
Proof Recall thatD− is a crystalline (φ, Γ)-module satisfying hypothesis (H).�ere-
fore, we have the Perrin–Riou logarithm

L∶H1
Iw(Qp ,D

−)Ð→ D−cris⊗̂Λ∞.

By Proposition 6.1.2(i), this map agrees with the map (also denoted byL) constructed
in [LZ16, �eorem 7.1.4] a�er specialising at (k1 , k′). Indeed, the map in loc. cit. is
defined as the pull back of LD−(−1−k′) under the automorphism ω−1−k′ .

By the “explicit reciprocity law” of�eorem 7.1.5 in op. cit.,we see that evη(L(zα1 ))
and evη(L(zβ1 )) are both non-zero if the quantity

(c2 − c−(k1+k′−2η)εFk1
(c)−1εg(c)−1)(−1)1+ηλN(Fk1)−1Lp(Fk1 , g , 1 + η)(6.2.3)

is non-zero, where λN(Fk1) denotes the specialisation of the Atkin–Lehner pseudo-
eigenvalue of F (see [KLZ17, §2.5] for the definition of the Atkin–Lehner operators).
Since our assumption at the start of §6.2 implies that k1 ≠ k′, we can choose the integer
c such that the first factor in (6.2.3) is non-zero. �e result then follows by applying
Corollary 6.1.3. ∎

7 Bounding the Selmer Group

Let f and g be two cuspidal new eigenforms satisfying the assumptions in section 1.1,
and let F be a Coleman family over V1 ⊂WE passing through a p-stabilisation of f. In
this section, we show that, if V1 is taken to be small enough and certain hypotheses

are satisfied, then the cohomology group H̃
2

f (Q,Mx) vanishes if Lp(x) = 0. Here,
x = (k1 , k′ , η) ∈ V1 × {k′} ×W is a tuple of weights, Mx denotes the representation

[M(Fk1)∗ ⊗M(g)∗](η−1) and H̃
2

f (Q,Mx) is the second cohomology group of the
Selmer complex defined in Section 7.2.

7.1 Cohomological Preliminaries

In [Nek06], Nekovář defined the concept of a Selmer complex: an object in a certain
derived category whose cohomology is closely related to the usual definition of Selmer
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groups.�is construction is useful because the resulting complex has nice base-change
and duality properties; attributes that one does not necessarily have for the classical
Selmer groups. In [Pot13], Pottharst extends this construction to families of Galois
representations over well-behaved rigid analytic spaces. �is is the tool we will use
to construct a sheaf interpolating the Bloch–Kato Selmer groups. We now summarise
this construction.

Let A be an affinoid algebra over Qp and let M be an A-valued representation
of GQ = Gal(Q̄/Q) (i.e., a finitely generated, projective A-module with a continuous
action of GQ). Let Σ be a set of places ofQ containing p,∞ and all primes whereM is
ramified, and assume that Σ is finite. Let GΣ denote the Galois group of the maximal
algebraic unramified-outside- Σ extension ofQ and, for a place v ∈ Σ, let Gv denote a
fixed decomposition group in GΣ associated with the place v.

Definition 7.1.1 A collection of local conditions ∆ for M is a set of pairs {(∆v , ιv) ∶
v ∈ Σ} where ∆v is an object in the derived category of bounded complexes of
(continuous) A-modules, and ιv is a morphism

∆v
ιv
Ð→ RΓcont(Gv ,M).

One defines the Selmer complex RΓ̃(GΣ ,M; ∆) in the following way.

Definition 7.1.2 Let ∆ be a set of local conditions for M. �en the Selmer complex
RΓ̃(GΣ ,M; ∆) is the mapping fibre

RΓ̃(GΣ ,M; ∆) ∶= Cone(RΓcont(GΣ ,M)⊕⊕
v∈Σ

∆v
resv −ιv
ÐÐÐÐ→⊕

v∈Σ

RΓcont(Gv ,M))[−1].
We denote the i-th cohomology of this complex by H̃ i(GΣ ,M; ∆).

If ∆v is quasi-isomorphic to a complex of finitely generated A-modules concen-
trates in degrees [0, 2] (all our local conditions in this paper will satisfy this), then
RΓ̃(GΣ ,M; ∆) is quasi-isomorphic to a complex of finitely generated A-modules,
concentrated in degrees [0, 3] (see [Pot13, §1.5]).

�is construction alsoworks inmore general situations. For example, ifX is a quasi-
Stein rigid analytic space, then RΓ̃(GΣ ,M; ∆) is quasi-isomorphic to a complex of
coherent OX-modules, concentrated in degrees [0, 3] (this is situation (4) described
in [Pot13, §1.5]).

Proposition 7.1.3 Selmer complexes satisfy the following properties:

(i) (Duality, [Pot13, �eorem 1.16]) Suppose that the local condition ∆v is quasi-
isomorphic to a perfect complex of A-modules concentrated in degrees [0, 2], for
all v ∈ Σ. We define the dual local conditions ∆∗(1) to be {(∆∗v (1), j∗v [−2])}, where

∆∗v (1) ∶= Q∗v [−2] j∗v [−2]
ÐÐÐ→ RΓcont(Gv ,M)∗[−2] ≅ RΓcont(Gv ,M

∗(1))
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and Qv is the mapping cone of ιv , we write jv ∶ RΓcont(Gv ,M)→ Qv for the natural
map and (−)∗ denotes the dual (in the underived sense).One has an isomorphism

RΓ̃(GΣ ,M
∗(1); ∆∗(1)) ≅ RΓ̃(GΣ ,M; ∆)∗[−3].

(ii) (Comparison of local conditions) If ∆′ = {(∆′v , ι′v) ∶ v ∈ Σ} is another set of local
conditions and {τv} are morphisms such that ι′v is equal to the composition

∆′v
τv
Ð→ ∆v

ιv
Ð→ RΓcont(Gv ,M),

then we obtain a Poitou–Tate style long exact sequence

⊕
v∈Σ

H0(Qv)Ð→ H̃1(GΣ ,M; ∆′)Ð→ H̃1(GΣ ,M; ∆) ξ
Ð→⊕

v∈Σ

H1(Qv)Ð→
Ð→ H̃2(GΣ ,M; ∆′)Ð→ H̃2(GΣ ,M; ∆)Ð→⊕

v∈Σ

H2(Qv),
where Qv is the mapping cone of τv .

Proof For the second part, this is immediate from the definition of the Selmer
complexes associated with the local conditions ∆ and ∆′. ∎

In §7.3 we will use the Poitou–Tate long exact sequence described above to show
that the cohomology of the Selmer complex vanishes in degree two if the correspond-
ing value of the p-adic L-function is non-zero. In particular we will use the following
result:

Proposition 7.1.4 If the map ξ in Proposition 7.1.3 (ii) is surjective, then we have an
injective map

H̃2(GΣ ,M; ∆′)↪ H̃2(GΣ ,M; ∆).
In particular, if H̃2(GΣ ,M; ∆) vanishes, then so does H̃2(GΣ ,M; ∆′).

7.2 Convolution of Two Coleman Families

Let x = (k1 , k′ , η) ∈ V1 × {k′} ×W be a tuple of weights defined over a finite extension
E/Qp .

Let Mx denote the representation [M(Fk1)∗ ⊗M(g)∗](η−1) and let Σ be a finite
set of places of Q that contains p,∞ and all the primes where Mx ramifies. Let
Dx ∶= D†

rig(Mx) denote the (φ, Γ)-module associated with Mx and recall that we

have a two dimensional quotient D†
rig(Mx)→ D−(η−1) =∶ D−x , where D− is defined

as in (6.2.1). We denote the kernel of this quotient by D+x . For v ∈ Σ/{p}, we call

(RΓcont(Gv/Iv ,Mx
Iv ), ιv) the unramified local condition at v, where ιv is the natural

map induced by inflation. We are interested in the following examples of local
conditions:

• (Relaxed) For v ∈ Σ, take ∆rel to be the set of unramified local conditions for v ≠ p
and
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∆rel,p ∶= RΓcont(Gp ,Mx) ∼Ð→ RΓcont(Gp ,Mx).
We denote the cohomology of the associated Selmer complex by H̃

i

rel(Q,Mx).
• (Strict) For v ∈ Σ, take ∆str to be the set of unramified local conditions for v ≠ p and

∆str,p ∶= 0Ð→ RΓcont(Gp ,Mx).
We denote the cohomology of the associated Selmer complex by H̃

i

str(Q,Mx).
• (Panchishkin) For v ∈ Σ take ∆ f to be the set of unramified local conditions for v ≠ p
and

∆ f ,p ∶= RΓcont(Gp ,D
+
x )Ð→ RΓcont(Qp ,D

†
rig(Mx)) ≅ RΓcont(Gp ,Mx).

We denote the cohomology of the associated Selmer complex by H̃
i

f (Q,Mx). �e
reason for choosing this local condition is because it is closely related to the Bloch–
Kato local condition when x lies in the critical range (the range where the p-adic
L-function interpolates critical values of the global L-function).Wewill discuss this
relation in §7.4.

Remark 7.2.1 (i) All three of the above Selmer complexes do not change if we
enlarge the set Σ, so we suppress this auxiliary set from the notation.

(ii) �e relaxed and strict conditions are dual to each other. �e dual of the Pan-
chishkin local condition is a Panchishkin local condition for D†

rig(Mx)∗(1) =
D†

rig(Mx
∗(1)).

Let c > 6 be an integer prime to 6Np and recall from §4.3 that, for an integer m
coprime to 6Ncp, there is a Beilinson–Flach class

cBF
[F,G]
m ,1 ∈ H1 (Q(µm),Dla(Γ,M)),

where M = MV1
(F)∗⊗̂MV2

(G)∗. By specialising these Beilinson–Flach classes at x
and identifying M((Gα)k′) and M((Gβ)k′) with ME(g) as before, we obtain classes

in H1(Q(µm),Mx).
In Section 4.4, we showed that these classes satisfy certain norm relations and that

we could produce an Euler system from these classes.More precisely, let Tx be aGalois
stable lattice inside Mx. �en there exist collections {cαm ∈ H1(Q(µm), Tx) ∶ m ∈ S}
and {cβm ∈ H1(Q(µm), Tx) ∶ m ∈ S} satisfying the Euler system relations, and cα1 and

c
β
1 are equal to non-zero multiples of the specialisations of cBF

[F,Gα]
1,1 and cBF

[F,Gβ]
1,1

at x respectively.
We choose the integer c in such a way that the conclusion of Proposition 6.2.2 holds

at the point x (this choice may depend on x). A�er making this choice, the classes

cαm , c
β
m satisfy the following local conditions.

Proposition 7.2.2 Keeping the same notation as above, the classes cαm , c
β
m satisfy the

following properties:
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(i) Both cαm and c
β
m are unramified outside p. In particular, both cα1 and c

β
1 lie in

H̃
1

rel(Q,Mx). �is implies that the collection {cm ∶ m ∈ S} forms an Euler system
in the sense of [Rub00, Definition 2.1.1], with condition (ii) replaced by (ii)’(b) (see
§9.1 in op. cit. ).

(ii) Let c̄α1 , c̄
β
1 denote the images of cα1 , c

β
1 under the map

H̃
1

rel(Q,Mx) ξ
Ð→ H1(Qp ,D

−
x ),

where ξ is given by first restricting to p and thenmapping to the quotient (this map is
the samemap as in Proposition 7.1.4 if we compare the relaxed and Panchishkin local

conditions defined above). �en, if c̄α1 and c̄
β
1 are both non-zero, they are linearly

independent. In particular, this happens when Lp(Fk1 , g , 1 + η) ≠ 0.
Proof �e first part is the same proof as in [LZ16, �eorem 8.1.4]. For the second

part, note that c̄α1 and c̄
β
1 are two elements satisfying the conditions of Corollary 6.1.3.

�e result then follows from Proposition 6.2.2. ∎
7.3 A Vanishing Result

LetF be aColeman family over an affinoid domainV. For ease of notationwe set αF ∶=
ap(F) and similarly for specialisations of F. Moreover, recall that if the specialisation
of F at k1 is a noble eigenform (so it is the p-stabilisation of an eigenform h), then
αFk1

= αh and βh denote the roots of the Hecke polynomial at p associated with h,

and satisfy αhβh = pk1+1εh(p). In this case, we will also write βFk1
∶= βh (although the

notation βF is, of course, meaningless).
�e goal of this section is to show that if the p-adic L-function does not vanish at x

then the Selmer group H̃
2

f (Q,Mx) is trivial.�e strategy is to combine Propositions
7.1.4 and 7.2.2 by comparing the Panchishkin and relaxed local conditions. In partic-
ular, we must show that the hypothesis in Proposition 7.1.4 is satisfied. Unfortunately
this is not true in general and fails whenMx has a “local zero”, i.e., the local Euler factor
of Mx at p vanishes at s = 1.�erefore, we impose the following hypothesis on Mx:

(NLZ) None of the products

{αFk1
αg , αFk1

βg , α−1Fk1
εFk1
(p)αg , α−1Fk1

εFk1
(p)βg}

are equal to p j for some integer j (recall that x = (k1 , k′ , η)).
Remark 7.3.1 �e (NLZ) hypothesis is an open condition, i.e., if it holds at the point
x, then it also holds for all specialisations in an open neighbourhood of x. In particular,
if F is a Coleman family passing through a p-stabilisation of f defined over an affinoid
subdomain V1 ⊂WE , and if the (NLZ) hypothesis holds for f and g, i.e., none of the
products

{α f αg , α f βg , β f αg , β f βg}
are equal to a power of p, then we can shrink V1 so that the (NLZ) hypothesis holds
for all specialisations of M at x = (k1 , k′ , η) ∈ V1 × {k′} ×W.
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�e second ingredient to proving the vanishing result is to apply the “Euler system
machine” to the representation Mx. To be able to apply this we need to assume the
following “Big Image” hypothesis.

(BI) �ere exists an element σ ∈ Gal(Q̄/Q(µp∞)) such that Mx/(σ − 1)Mx is one-
dimensional (over E).

Remark 7.3.2 It turns out that for the “Big Image” hypothesis to hold, we only need
to assume that the image of the mod p representation of Mx is sufficiently large, and
this is almost always the case provided that Fk1 and g are not of CM type and Fk1 is
not Galois conjugate to a twist of g. In particular, since the mod p representation of a
Coleman family is locally constant, this implies that the “Big Image” hypothesis will
hold in an open neighbourhood of the point x. We provide justifications for this in the
appendix (§A).

Under these two assumptions, we have the following vanishing result.

�eorem 7.3.3 Keeping the same notation at the start of Section 7.2, assume that the

(NLZ) and (BI) hypotheses hold. If Lp(Fk1 , g , 1 + η) ≠ 0, then H̃
2

f (Q,Mx) = 0.
Proof Consider the local conditions ∆ = ∆rel and ∆′ = ∆ f and suppose for the
moment that, as in the statement of Proposition 7.1.4, the map ξ is surjective. �en
there is an injective map

H̃
2

f (Q,Mx)↪ H̃
2

rel(Q,Mx),
so it is enough to show that H̃

2

rel(Q,Mx) = 0.
Let Tx be a Galois stable lattice inside Mx and set A = M

∗

x (1)/T∗x (1). �en by

the duality of the relaxed and strict local conditions, we see that H̃
2

rel(Q, Tx)∨ ∶=
HomOE

(H̃2

rel(Q, Tx), E/OE) is equal to H̃
1

str(Q,A) (see [Nek06] for more details).

Furthermore, since H̃
2

rel(Q,Mx) = H̃2

rel(Q, Tx)[1/ϖ], where ϖ is a uniformiser for

OE , it is enough to show H̃
1

str(Q,A) is finite.
Recall that {cαm} forms an Euler system for Tx and the bottom class cα1 is non-

zero because Lp(Fk1 , g , 1 + η) is non-zero. Coupling this with the (BI) assumption,

we can apply [Rub00, �eorem 2.2.3] and conclude that H̃
1

str(Q,A) is finite. Indeed,
by comparing the strict and relaxed local conditions, the group H̃

1

str(Q,A) differs
from the strict Selmer group in op.cit. by the groupH0(Qp ,A), which is finite because
H0(Qp ,M

∗

x (1)) = 0. So we are le� to show the map ξ is surjective.
�e mapping cone Qp is precisely the same thing as the image of the Herr complex

C●φ ,γ(D−x ) and by the local Euler characteristic formula (Proposition 5.3.2) for

(φ, Γ)-modules, we have χ(D−x ) = −2. �erefore, if we show that H0(Qp ,D
−
x ) and

H2(Qp ,D
−
x ) both vanish, then this would imply that H1(Qp ,D

−
x ) is two-dimensional.

Combining thiswith Proposition 7.2.2(ii), thiswould imply that themap ξ is surjective.
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By duality, we have H2(Qp ,D
−
x ) ≅ H0(Qp , (D−x )∗(1))∗ and from the explicit

description of the triangulation ([LZ16,�eorem 6.3.2]), we have the following short
exact sequences:

0Ð→ [B†
rig,Qp

⊗̂E](α−1Fk1
αgεg(p)−1)(χ1+k′cycl ⋅ η−1)Ð→ D−x

Ð→ [B†
rig,Qp

⊗̂E](α−1Fk1
α−1g )(η−1)Ð→ 0,

0Ð→ [B†
rig,Qp

⊗̂E](αFk1
αg)(χcycl ⋅ η)Ð→ (D−x )∗(1)

Ð→ [B†
rig,Qp

⊗̂E](αFk1
α−1g εg(p))(χ−k′cycl ⋅ η)Ð→ 0,

where we denote by [B†
rig,Qp

⊗̂E](λ)(ω) the one-dimensional (φ, Γ)-module over

B†
rig,Qp

⊗̂E with a basis e such that φ(e) = λe and γ ⋅ e = ω(γ)e for all γ ∈ Γ.
From the above sequences, one sees that if either H0(Qp ,D

−
x ) or H2(Qp ,D

−
x ) did

not vanish then this would contradict the (NLZ) hypothesis. ∎
Remark 7.3.4 To prove the above theorem, we only needed to assume that the two
products αFk1

αg and αFk1
βg are not equal to a power of p. However, in the following

section, we will relate H̃
2

f (Q,Mx) to the usual Bloch–Kato Selmer group at classical
specialisations, and for this, we will need to assume that all four products in the
statement of (NLZ) are not equal to a power of p.

Furthermore, for most non-classical specialisations, we do not have to impose a
(NLZ) condition. Indeed by [Col08, Proposition 2.1 and �éorème 2.9], it is o�en
the case that H1(D−x ) is automatically two-dimensional unless the weights in x are
classical.

7.4 Relation to the Bloch–Kato Selmer Group

�eorem 7.3.3 is a generalisation of [LZ16,�eorem 8.2.1] to non-classical specialisa-

tions. Indeed, suppose that k1 and η = χ jcycl are classical, and we have k′ + 1 ≤ j ≤ k1.
�en by the duality property of Selmer complexes and the fact that the Panchishkin

condition is self-dual, we have H̃
2

f (Q,Mx)∗ ≅ H̃1

f (Q,M
∗

x (1)). But by the (NLZ)
hypothesis, we have the following equalities:

• H0(Qp , (D+x )∗(1)) = 0,
• H0(Qp ,Dx/D+x ) = H0(Qp ,D

−
x ) = 0.

Indeed, by the conditions on the Hodge–Tate weights, we have

• H0(Qp , (D+x )∗(1)) = (D+x )∗(1)φ=1cris ,

• H0(Qp ,Dx/D+x ) = (Dx/D+x )φ=1cris .

But φ has eigenvalues {p−1− jβFk1
αg , p

−1− jβFk1
βg} and {p jα−1Fk1

α−1g , p jα−1Fk1
β−1g } on(D+x )∗(1)cris and (Dx/D+x )cris , respectively, and these products can never be equal

to 1 by the (NLZ) hypothesis.�erefore, by [Pot13, Proposition 3.7], we see that

H̃
1

f (Q,M
∗

x (1)) = H1
f (Q,M

∗

x (1)),
where the latter is the Bloch–Kato Selmer group. �is recovers �eorem 8.3.1 in
[LZ16]. In fact the proof of�eorem 7.3.3 is modelled on the proof in loc. cit..
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8 The Selmer sheaf

In the previous section,we showed that (under certain hypotheses) if the specialisation

of Lp is non-zero, then H̃
2

f (Q,Mx) = 0. It turns out that we can package together all of
these cohomology groups into a coherent sheaf overV1 × V2 ×W using themachinery
of Selmer complexes. We follow closely the construction in [Pot13].

8.1 Assumptions

Recall thatW/Qp denotes the rigid analytic space parameterising continuous charac-
ters Γ = Gal(Q(µp∞)/Q)→ C×p . Let V1 and V2 be two affinoid subdomains of (W)E
and set X = V1 × V2 ×W.�en X has admissible cover U = (Yn)n≥1 given by

Yn = V1 × V2 ×Wn ,

where Wn is the open affinoid subdomain of W parameterising all characters η

that satisfy ∣η(γ)pn−1 − 1∣p ≤ p−1, where γ is a topological generator of Γ/Γtors . �e
restrictionmapsO(Yn+1)→ O(Yn) have dense image. Hence,X is a quasi-Stein space.

Let A∞ ∶= O(X), An ∶= O(Yn). Note that for all n ≥ 1, An is flat over A∞.
Let F and G be two Coleman families over V1 and V2 passing through

p-stabilisations of f and g , respectively, and let M denote the representation
M(F)∗⊗̂M(G)∗. Fix a Galois stable lattice T inside M, i.e., a free rank four O(V1 ×
V2)○-submodule that is stable under the action of GQ.

Let M = Dla(Γ,M) denote the cyclotomic deformation of M, and for any n ≥ 1
we set Mn = M(−κn), where (−κn) denotes the twist by the inverse of the universal
character ofWn .�en we also obtain a Galois stable lattice Tn ∶= T(−κn) inside Mn .

Let Σ be a finite set of places containing p,∞ and all primes where M ramifies.
�en M is a family of GΣ-representations over the space X and we place ourselves in
situation (4) in [Pot13, §1.5].

By an OU-module we mean a compatible system of An-modules. Let
RΓcont(GΣ ,M) denote the image of the complex of continuous cochains
C●cont(GΣ ,M) in the derived category of OU-modules. Explicitly, C●cont(GΣ ,M)
is defined by the rule

Yn ↦ C●cont(GΣ ,Mn),
where we note that Mn = Γ(Yn ,M).
Lemma 8.1.1 (i) RΓcont(GΣ ,M) is a perfect complex, in the sense that it is quasi-

isomorphic to a complex D●, concentrated in finitely many degrees, such that
Γ(Yn ,D

●) is a finite projective An-module.
(ii) Let ιn ∶ Yn ↪ X denote the inclusion.�en

Lι∗nRΓcont(GΣ ,M) ≅ RΓcont(GΣ ,Mn).
Proof For the first part, this follows from the discussion in [Pot13, §1.2], and the
second part is just�eorem 1.6 in op.cit. ∎

Since X is a quasi-Stein space, we also have an alternative description of
RΓcont(GΣ ,M), namely as the image of the complex lim

←Ðn
C●cont(GΣ ,Mn) in the
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derived category of A∞-modules. By the above lemma and Kiehl’s theorem,
RΓcont(GΣ ,M) is quasi-isomorphic to a complex of locally free (of finite rank)
OX-modules, so in particular, its cohomology groups are coherent sheaves on X.
Furthermore, since X is quasi-Stein, a coherent sheaf on X is determined by its global
sections, so we will o�en use these two descriptions interchangeably. We say an A∞-
module is coadmissible if it arises as the global sections of a coherent sheaf on X.

As in §7.1, for a collection ∆ = {∆v}v∈Σ of local conditions

∆v
ιv
Ð→ RΓcont(Gv ,M) ∆v ∈ D

[0,2]
ft (A∞-Mod),

whereD
[0,2]
ft (A∞-Mod) is the derived category of complexes of A∞-modules concen-

trated in degrees [0, 2]whose cohomology groups are coadmissible, we can construct
the Selmer complex RΓ̃(GΣ ,M; ∆) which is an object in the derived category of A∞-
modules, concentrated in degrees [0, 3], whose cohomology groups are coadmissible
(see [Pot13, §1.5]).

We impose the following assumptions on f and g. Let x0 = (k, k′ , 0) ∈ X, where
k + 2 and k′ + 2 are theweights of f and g , respectively, and choose n such that x0 ∈ Yn .

(a) (Flatness of inertia) If p0 denotes the prime ideal of A○n corresponding to the point
x0, then we let A○n ,p0

and Tn ,p0
denote the localisations of A○n and Tn at p0. For

every place v ∈ Σ not equal to p, we let Iv denote the inertia subgroup of the fixed
decomposition group at v. �en we assume that T Iv

n ,p0
is a flat A○n-module, for all

v ∈ Σ/{p}. Since A○n is a commutative Noetherian local ring, this is equivalent
to T Iv

n ,p0
being free.In particular, by generic flatness this implies that there exists

a Zariski open subset U of Yn containing x0 such that (Tn)IvU is a flat O(U)○-
module.

(b) (Minimally ramified) Let m0 denote the maximal ideal in A○n containing a uni-
formiser ϖ of E and the prime ideal p0 corresponding to x0. �en A○n/m0 = k,
where k is the residue field of OE , and the “mod p representation” of Tn at the
point x0 is defined to be

TF̄p
∶= (Tn ⊗A○n F̄p)ss ,

where ss stands for semi-simplification and the tensor product is via the map
A○n → A○n/m0 ↪ F̄p .

We assume that we have the following equality

dimk T
Iv
n /m0 = dimF̄p

(TF̄p
)Iv ,

for all v ∈ Σ/{p}. In other words, f and g are not congruent to forms of a lower
level.

Remark 8.1.2 We give examples of pairs of modular forms satisfying the above
assumptions in the appendix (§1.2).

Lemma 8.1.3 Assume that conditions (a) and (b) above hold. �en, a�er possibly
shrinking V1 and V2, we have
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• for all n ≥ 1 and v ∈ Σ/{p}, T Iv
n is a flat A○n-module;

• let η ∈Wn be a closed point and let x = (k, k′ , η) (so x ∈ Yn). Ifm denotes themaximal
ideal of A○n containing ϖ and the prime ideal associated with x, then for all v ∈ Σ/{p},

dimk T
Iv
n /m = dimF̄p

((Tn ⊗A○n F̄p)ss)Iv ,
where k = A○n/m and the tensor product in the right-hand side is via the map A○n →
k ↪ F̄p .

Proof By shrinkingV1 andV2 if necessary, we can assume that the setU in (a) above
contains V1 × V2 ×U ′ for some open affinoidU ′ ⊂Wn .�e lemma then follows from
the fact that any character of Γ restricted to Iv is trivial, for v ≠ p. ∎

8.2 The Selmer Sheaf

We first fix some notation. If D1 and D2 are rank two (φ, Γ)-modules over B†
rig,Qp

⊗̂E
equipped with a triangulation

0Ð→F
+D i Ð→ D i Ð→F

−D i Ð→ 0,

where F
±D i are rank one (φ, Γ)-modules, then we set

F
♢♣D =F

♢D1⊗̂F
♣D2

for ♢,♣ ∈ {+,−, o}, where D = D1⊗̂D2.
Let D†

rig(M) denote the (φ, Γ)-module over B†
rig,Qp

⊗̂A associated with the rep-

resentation M, where A = O(V1)⊗̂O(V2). As in Section 6.2, assuming V1 and V2 are
small enough, we have two possible triangulations for D†

rig(M), namely,

{0} ⊂F
++D†

rig(M) ⊂F
+oD†

rig(M) ⊂F
+oD†

rig(M) +F
o+D†

rig(M) ⊂ D†
rig(M)

and

{0} ⊂F
++D†

rig(M) ⊂F
o+D†

rig(M) ⊂F
+oD†

rig(M) +F
o+D†

rig(M) ⊂ D†
rig(M)

differing only by the middle term in the filtration.
Let x = (k1 , k2 , j) be a classical point in X satisfying 0 ≤ k2 < k1 and denote the

specialisation of M at x by Mx.�e Hodge–Tate weights of Mx are

− j, k2 + 1 − j, k1 + 1 − j, k1 + k2 + 2 − j

Wewant to define a sheaf that interpolates the classical Bloch–Kato Selmer group; the
correct local condition that we will need to take will therefore depend on the range we
want to interpolate over. For example:

• Suppose that x lies in the geometric range, i.e., one has 0 ≤ j ≤min{k1 , k2}.�en one
can take the local condition at p to be the cohomology of F +o +F

o+. Indeed, this
specialises to a Panchishkin submodule at x (recall that a Panchishkin submodule
of a de Rham (φ, Γ)-module D is a submodule D+ such that D+ (resp. D/D+) has
positive (resp. non-negative) Hodge–Tate weights).

• Suppose that x lies in the critical range, i.e., one has k2 + 1 ≤ j ≤ k1. �en one can
take the local condition at p to be the cohomology of F +o .
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In this paper, we are interested in interpolating in the critical range, since it is precisely
the range where the p-adic L-function interpolates (critical) values of the global L-
function.

We denote by D†
rig(M) the family of (φ, Γ)-modules over X satisfying

Γ(Yn ,D
†
rig(M)) = D†

rig(Mn). �is comes equipped with the triangulations

F
♢♣D†

rig(M) defined previously, i.e., F ♢♣D†
rig(M) is the family of (φ, Γ)-modules

satisfying

Γ(Yn ,F
♢♣D†

rig(M)) =F
♢♣D†

rig(M)(−κn),
where (−κn) denotes the twist by the inverse of the universal character ofWn .

We consider the following set of local conditions ∆ = {∆v}v∈Σ where

• for v ≠ p, ∆v is the unramified condition, i.e. ∆v is the complex

∆v ∶= RΓcont(Gv/Iv ,M Iv )→ RΓcont(Gv ,M);
• for v = p we take ∆p to be the Panchishkin local condition given by

∆p ∶= RΓcont(Gp ,F
+oD†

rig(M))→ RΓcont(Gp ,D
†
rig(M)) ≅ RΓcont(Gp ,M),

whereRΓcont(Gp ,F
+oD†

rig(M))denotes the image of the family ofHerr complexes

C●φ ,γ(F +oD†
rig(M)) in the derived category of OU-modules, as defined in §5.3.

By Lemma 8.1.3, if V1 and V2 are small enough (which we will assume from now

on), then the above local conditions lie inD
[0,2]
ft (A∞−Mod) so we can talk about the

corresponding Selmer complex.

Remark 8.2.1 We have defined the local conditions in terms of OU-modules, but
this is equivalent to specifying local conditions in terms of coadmissible modules by
[Pot13,�eorem 1.13] and the discussion preceding it.

Definition 8.2.2 Let RΓ̃f (GΣ ,M) denote the Selmer complex associated to M and

the local conditions ∆, with cohomology groups denoted by H̃ i
f (Q,M).

As explained in the paragraph preceding Proposition 7.1.3, the groups H̃ i
f (Q,M)

are coherent sheaves on X and satisfy H̃ i
f (Q,M) = 0 for i ≠ 0, 1, 2, 3.

�eorem 8.2.3 We can take V1 and V2 small enough such that the following hold:

(i) For each n ≥ 0, An is a flat A∞-module and the natural map

RΓ̃f (GΣ ,M)⊗A∞ An → RΓ̃f (GΣ ,Mn)
is an isomorphism, where RΓ̃f (GΣ ,Mn) denotes the Selmer complex associated

to Mn = Γ(Yn ,M) with unramified local conditions at v ≠ p and the Panchishkin
condition C●φ ,γ(F +oD†

rig(Mn)) at p.
(ii) Let x be an E′-valued point in Yn and v a prime in Σ not equal to p.�en the natural

map

(M Iv
n )x → (Mx)Iv
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is an isomorphism and hence we have an isomorphism

RΓ̃f (GΣ ,Mn)⊗L
An ,x

E′ ≅ RΓ̃f (GΣ ,Mx)
where RΓ̃f (GΣ ,Mx) is the Selmer complex associated to Mx with unramified local

conditions away from p and the Panchishkin condition C●φ ,γ(F +oD†
rig(Mx)) at p

(compare with the definition in Section 7.2).

Wewill prove this theorem in the next section. Combining this with�eorem 7.3.3,
we obtain the following corollary.

Corollary 8.2.4 Let f and g be two modular forms as in Section 1.1 and let F and
G be Coleman families over V1 and V2 passing through p-stabilisations of f and g
respectively. Let M denote the cyclotomic deformation of M(F)∗⊗̂M(G)∗ as above, and
let S = H̃

2

f (Q,M) denote the coherent sheaf obtained as the second cohomology group

of the Selmer complex attached to M.

(i) Suppose that the (NLZ) hypothesis holds for f and g and that the “flatness of
inertia” and “minimally ramified” hypotheses hold for M and x0 = (k, k′ , 0).�en,
shrinking V1 and V2 if necessary, for all x = (k1 , k2 , j) ∈ X with k1 , k2 , j integers
satisfying 1 ≤ k2 + 1 ≤ j ≤ k1, the specialisation of S satisfies

Sx ≅ H1
f (Q, [M(Fk1)⊗M(Gk2)](1 + j))∗

where the right-hand side is the (dual of the) Bloch–Kato Selmer group.
(ii) (�eorem A) Suppose that the (NLZ) hypothesis holds for f and g, and that the

(BI), “flatness of inertia” and “minimally ramified” hypotheses hold for M and
x0 = (k, k′ , 0).�en, shrinking V1 if necessary, we have the following inclusion

suppSk′ ⊂ {Lp = 0},
where “ supp” denotes the support of a sheaf, Lp is the three-variable p-adic L-
function, and Sk′ denotes the specialisation of S at k′ in the second variable.

Remark 8.2.5 If we take V2 to be small enough, then the conclusion of Corollary
8.2.4(ii) holds for all classical specialisations inV2 (provided that the same hypotheses
also hold). More precisely, if k2 is a classical weight in V2, then

suppSk2 ⊂ {Lp = 0},
or to put it another way, the “slices” of S in the second variable are controlled by the
p-adic L-function Lp provided that the weight in the second variable is classical.

�e reason for this is as follows. By [Bel12, Lemma 2.7], if V2 is small enough, then
any classical specialisation of G is the p-stabilisation of a new eigenform h of level
Γ1(N2), and both p-stabilisations of h are noble.�is allows us to prove the analogue
of�eorem 7.3.3 for the pair f , h of modular forms (instead of f and g). Here we are
crucially using the fact that k ≠ k′.
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Proof Let x ∈ X be an E′-valued point. By �eorem 8.2.3, we have the following
isomorphism

RΓ̃f (GΣ ,M)⊗L
A∞ ,x E

′ ∼
Ð→ RΓ̃f (GΣ ,Mx),

which gives the following Tor-spectral sequence

E
i , j
2 ∶TorA∞−i (H̃ j

f (Q,M), E′)Ô⇒ H̃
i+ j
f (Q,Mx).

If x does not lie in the support of H̃3
f (Q,M), then, since H̃ i

f (Q,M) = 0 for i ≥ 4, we
see that

H̃2
f (Q,M)⊗A∞ ,x E

′ ≅ H̃2
f (Q,Mx).

If x = (k1 , k2 , j) where k1 , k2 , j are integers satisfying 1 ≤ k2 + 1 ≤ j ≤ k1, then by the
discussion in Section 7.4, we see that the right-hand side of the above isomorphism is

isomorphic to the dual of the Bloch–Kato Selmer group for the representationM
∗

x (1).
�is proves part (i) assuming that x does not lie in the support of H̃3

f (Q,M).
Now let x = (k1 , k′ , η) ∈ X with k1 and η not necessarily classical. Assume that

Lp(x) ≠ 0.�en we can apply�eorem 7.3.3, which says that H̃2
f (Q,Mx) = 0.

Letm denote the kernel of the map A∞ → E′ and let A∞,m denote the localisation
of A∞ atm. Since S = H̃2

f (Q,M) is a coadmissible module,

S⊗A∞ A∞,m

is a finitely generated A∞,m-module; so by Nakayama’s lemma we must have S⊗A∞

A∞,m = 0. But this precisely means that x is not in the support of S (because the set
of points where the stalk of a coherent sheaf is non-zero is automatically closed).�is

proves part (ii) for the points that don’t lie in the support of H̃
3

f (Q,M).
But since M(F) and M(G) are irreducible, we have H̃3

f (Q,M) = 0. Indeed by
duality

H̃3
f (Q,Mn)∗ ≅ H̃0

f (Q,M∗n(1)) ⊂ H0(Q,M∗n(1))
andH0(Q,M∗n(1)) = HomGQ

(M(F)∗,M(G)(κn + 1)). If this group is non-zero, then
because M(F)∗ and M(G)(κn + 1) are irreducible, they must be isomorphic as
representations. But (taking V1 and V2 to be small enough) the generalised Hodge–
Tate weights of these representations can never be the same (because k ≠ k′). ∎

8.3 Proof of Theorem 8.2.3

We start by proving the following lemma.

Lemma 8.3.1 Suppose that V1 and V2 are small enough so that T Iv
n is a flat A○n-module,

and suppose that the “minimally ramified” hypothesis is satisfied.�en for any maximal
idealm in An , the natural map

(M Iv
n )/mÐ→ (Mn/m)Iv

is an isomorphism.

Proof As explained previously (see Lemma 8.1.3 following the “minimally ramified”
assumption), the result is invariant under twisting in the third variable, so we may
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assume that we are working over the space

V = V1 × V1 × {0}.
ShrinkingV1 andV2 if necessary, we can assume thatV is an irreducible affinoid space
over E. Let R denote its global sections; this is an integral domain. Let I = Iv be an
inertia group and set M = M(F)∗⊗̂M(G)∗, thought of as a representation over R. It
is enough to prove that the natural map

(M I)/mÐ→ (M/m)I
is an isomorphism, for all maximal idealsm of R.

Let ∣ ⋅ ∣E denote the norm on E (normalised so that ∣p∣E = 1/p) and for any finite
field extension E′ of E, let ∣ ⋅ ∣E′ denote the unique norm on E′ extending ∣ ⋅ ∣E . Since R
is a reduced affinoid algebra it comes with a Banach norm given by

∥ f ∥ ∶= sup
m
∣ f mod m∣k(m)

where k(m) denotes the residue field ofm.
Let R○ denote the unit ball insideR and fromnowon E′ will denote the residue field

of a maximal idealm inside R. If R → E′ is the continuous surjective homomorphism
corresponding to m then, by the description of ∥ ⋅ ∥ above, we see that R○ is mapped
into the unit ball OE′ inside E

′. Let p = m ∩ R○. We also let m0 denote the maximal
ideal corresponding to the point (k, k′ , 0), and let p0 = m0 ∩ R○.

Since OE embeds isometrically into R○, we have

OE ↪ R○/p↪ OE′ .

Now R○/p is an integral domain with fraction field E′, so R○/p is anOE-algebra that is
finite free of rank [E′ ∶ E] as anOE-module ( R○/p is torsion-free andOE is a principal
ideal domain). Let ϖ′ be a uniformiser of E′ and set J = (ϖ′) ∩ R○/p.�is corresponds
to a maximal ideal of R○ , which we will denote by n.

Let k and k′ denote the residue fields of OE and OE′ respectively.�en we have

k ↪ R○/n↪ k′ .

Take T ⊂ M to be a Galois stable R○-lattice (which exists by compactness). �e
representation T/pT ⊗OE′ is a Galois stable lattice inside M/mM and the “mod p
representation” attached to M/mM is

(((T/pT ⊗OE′)⊗OE′/ϖ′)⊗ F̄p)ss = (T/nT ⊗R○/n F̄p)ss ,
where ss stands for semi-simplification. Since the “mod p representation” for a
Coleman family is constant, we have

(T/nT ⊗R○/n F̄p)ss ≅ (T/n0T ⊗R○/n0
F̄p)ss .

Here, we are using the property that if ν and ν′ are two representations, then (ν ⊗
ν′)ss = (νss ⊗ (ν′)ss)ss. Now consider the short exact sequence

0Ð→ nT Ð→ T Ð→ T/nT Ð→ 0.
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Taking inertia invariants and using the fact that (nT)I = nT I , we see that

T I/nT I
↪ (T/nT)I .(8.3.2)

Similarly we have two more injective maps

T I/pT I
↪ (T/pT)I(8.3.3)

(T/pT)I/J ↪ (T/nT)I .(8.3.4)

�e map in (8.3.2) factors as (8.3.3) modulo J followed by (8.3.4); i.e., it factors as

T I/nT I
→ (T/pT)I /J ↪ (T/nT)I ,

and the first map is injective. We then have

T I/nT I ⊗R○/n F̄p ↪ (T/nT)I ⊗ F̄p ↪ (T/nT ⊗ F̄p)I ,
and we obtain the following sequence of inequalities:

dimR○/n T
I/nT I ≤ dimR○/n(T/nT)I

≤ dimF̄p
(T/nT ⊗ F̄p)I

≤ dimF̄p
((T/nT ⊗ F̄p)ss)I

= dimF̄p
((T/n0T ⊗ F̄p)ss)I .(8.3.5)

All of these inequalities become equalities when n = n0 by the “minimially ramified”
assumption.

Nowwe use the fact that T I is a flat R○-module. In particular, the localisation (T I)n
is free, and so

dimR○/n T
I/n = dimR○/n(T I)n/n = dimK T I ⊗R○ K,

where K denotes the fraction field of R○ (recall that R○ is an integral domain).
Hence, the quantity dimR○/n T

I/n is constant and so all inequalities in (8.3.5) become
equalities, for general n.�is implies that the map

T I/nT I
↪ (T/pT)I /J

is an isomorphism.
Consider the exact sequence

0Ð→ T I/pT I
Ð→ (T/pT)I Ð→W Ð→ 0,

whereW is a finitely generated R○/p-module.�enwe haveW/JW = 0, which implies
thatW[ 1

ϖ
] = 0. Indeed,W is a finitely generatedOE-module andϖ ∈ J. Since inverting

ϖ commutes with taking inertia invariants, we localise the above sequence, and we see
that the natural map

M I/mM I
Ð→ (M/mM)I

is an isomorphism, as required. ∎
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We are now in a position to prove�eorem 8.2.3.

Proof It is clear from the definition of An as the global sections of Yn that An is a
flat A∞-module. So for the first part we need to check that taking cohomology and
constructing the local conditions both commute with −⊗A∞ An .

By Lemma 8.1.1(ii) and finiteness, we have

RΓcont(G ,M)⊗A∞ An ≅ RΓcont(G ,Mn)
forG = GΣ orG = Gv . SimilarlyM

Iv
is a family of representations over X of the group

Gv/Iv and, a�er shrinking V1 and V2, we can assume that M
Iv
is a flat family, in the

sense that

Γ(Yn ,M
Iv ) = M Iv

n

is a flat An-module, for all n.�e pair (Gv/Iv ,M Iv
n ) satisfies “hypothesis A” in [Pot13],

so in fact (by the same proof) the conclusion in Lemma 8.1.1(ii) holds for Gv/Iv and
M

Iv
in place of Gv and M, i.e.,

Lι∗nRΓcont(Gv/Iv ,M Iv ) ≅ RΓcont(Gv/Iv ,M Iv
n ).

Again by finiteness, this implies that

RΓcont(Gv/Iv ,M Iv )⊗A∞ An ≅ RΓcont(Gv/Iv ,M Iv
n ).

To complete the proof of part (i), we just need to check that the local condition
at p commutes with base change to An . By [Pot13, �eorem 2.5], the Herr complex
C●φ ,γ(F +oD†

rig(M)) is quasi-isomorphic to a complex C● of coadmissible A∞-
modules. Since An is a flat A∞-module, we have

C●⊗̂A∞An ≅ C●⊗̂L
A∞An ≅ C●φ ,γ(F +oD†

rig(Mn)).
By finiteness of cohomology, this implies that the natural map

RΓcont(Qp ,F
+oD†

rig(M))⊗A∞ An → RΓcont(Qp ,F
+oD†

rig(Mn))
is an isomorphism.

Let x be an E′-valued point in Yn . We now restrict ourselves to the setting where we
have a representationMn overAn that comes from aA○n-lattice Tn ⊂ Mn . ShrinkingV1

and V2 if necessary, we can assume that T Iv
n is a flat A○n-module for all v ∈ Σ not equal

to p. Furthermore, by Lemma 8.3.1, specialisation at x commutes with taking inertia
invariants. �e result then follows from [Pot13, §3.4] (see, in particular, equation
(3.3)). ∎
Appendix A Justification of hypotheses

In this appendix, we give justifications for the hypotheses made throughout the paper.

A.1 The “Big Image” Hypothesis

Let f and g be normalised new cuspidal eigenforms of levels Γ1(N1) and Γ1(N2),
weights k + 2, k′ + 2 and characters ε f and εg respectively. Let L f and Lg be the
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coefficient fields of f and g. Assume that f and g are not of CM type and that f is not
a Galois twist of g, i.e., there does not exist an embedding γ ∶ L f → C and a Dirichlet
character χ such that f γ = g ⊗ χ.

Let V be a p-adic representation of GQ with coefficients in a finite extension E of
Qp . Recall the “Big Image” hypothesis from Section 7.3:

(BI) �ere exists an element σ ∈ Gal(Q̄/Q(µp∞)) such that V/(σ − 1)V is one-
dimensional (over E).

Let p be a prime in the compositum L = L f Lg and consider the representation
V = MLp

( f )∗ ⊗MLp
(g)∗. �en it is shown in [Loe17] that for all but finitely many

primes p, the “Big Image” hypothesis holds for the representation V. Let p be such a
prime (lying above a prime p ≥ 7 say) and suppose that we have a Coleman family
F defined over V1 passing through a p-stabilisation of f. �en it is not immediately
obvious whether we can shrink V1 such that the “Big Image” hypothesis holds for the
representation

M(Fk1)∗ ⊗M(g)∗
for all specialisations k1 ∈ V1, even if we were to restrict k1 to just classical weights.
In this section we show that this is indeed possible by using the fact that the mod p
reduction of the above representation is constant, for V1 small enough.

Lemma A.1.1 Let G be a profinite group, let ρ∶G → GLn(OE) be a continuous
representation, and let ρ̄∶G → GLn(kE) be the corresponding residual representation.
Suppose there exists g0 ∈ G so that ρ̄(g0) has eigenvalue 1 with multiplicity one. �en
there exists g ∈ G such that ρ(g) has eigenvalue 1 with multiplicity one.

Proof Take g = limn→∞(g0)pn! . Indeed, to show this sequence converges in G , it is
enough to show that its image in any finite quotient of G is eventually constant, and
this is a routine check. Furthermore, the eigenvalues of ρ(g) are the Teichmüller li�s
of the eigenvalues of ρ̄(g0), so 1 is an eigenvalue for ρ(g) with multiplicity one. ∎

In particular, the above lemma can be applied to the tensor product of a pair of
Galois representations whose residual representations are “good” in the following
sense.

DefinitionA.1.2 For i = 1, 2 let σi ∶ GQ → GL2(F̄p) be (continuous) Galois represen-
tations. We say the pair (σ1 , σ2) is good if
• χ i ∶= det ○σi ∶ GQ(µp∞) → F̄×p is a Dirichlet character of conductor N i , and p does
not divide the order of the group (Z/NZ)×, whereN is the lowest commonmultiple
of N1 and N2.

• �ere exists an element u ∈ (Z/NZ)× such that the group

{(σ1(g), σ2(g)) ∈ GL2(F̄p) ×GL2(F̄p) ∶ g ∈ GQ(µp∞)}
contains the subgroup generated by SL2(Fp) × SL2(Fp) and the element

((1 0
0 χ1(u)) ,(

1 0
0 χ2(u))).

If we want to specify the element u, we also call (σ1 , σ2 , u) good.
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Lemma A.1.3 Assume p ≥ 7 and let E be a finite extension of Qp. Let ρ1 , ρ2∶GQ →

GL2(OE) be two p-adic representations, and let ρ̄1, ρ̄2 denote the corresponding residual
representations. If there exists an element u ∈ (Z/NZ)× such that (ρ̄1 , ρ̄2 , u) is good and
χ1(u)χ2(u) ≠ 1, then ρ1 ⊗E ρ2 satisfies condition (BI).

Proof Since p ≥ 7, there exists x ∈ F×p such that x−2 χ1(u) and x2 χ2(u) are different
from 1. Since (ρ̄1 , ρ̄2 , u) is a good triple, there exists an element g0 ∈ GQ(µp∞) such that

ρ̄1(g0) = (x 0
0 x−1 χ1(u)) ρ̄2(g0) = (x−1 0

0 x χ2(u)) .

�e eigenvalues of ρ̄1(g0)⊗ ρ̄2(g0) are {1, x−2 χ1(u), x2 χ2(u), χ1(u)χ2(u)}, so the
eigenvalue 1 has multiplicity one and we may apply Lemma A.1.1. ∎

A.1.1 Examples of Good Triples (σ1 , σ2 , u)
Returning to the situation at the start of Section 1.1, let p be a prime of the compositum
L = L f Lg lying above a prime p ≥ 7. We have Galois representations

ρ∗f ,p∶GQ Ð→ GL(MLp
( f )∗)

ρ∗g ,p∶GQ Ð→ GL(MLp
(g)∗)

which satisfy det ○ρ∗f ,p = ε−1f χ1+kcycl and det ○ρ∗g ,p = ε−1g χ1+k
′

cycl . Let σ1 and σ2 denote the

reductions modulo p of ρ∗f ,p and ρ∗g ,p, respectively.

�en it is shown in [Loe17] that, for a very large amount of primes p, (σ1 , σ2) is a
good pair.1 In particular, for all but finitely many p that split completely in L/Q the
triple (σ1 , σ2 , u) is a good triple for any u ∈ (Z/NZ)×, where N = 4 lcm(N1 ,N2).

Now suppose that F and G are two Coleman families over open affinoids V1 ,V2

passing through p-stabilisations of f and g respectively. Let

M = MV1
(F)∗⊗̂MV2

(G)∗
be the tensor product of theGalois representations attached toF andG and takeV1 and
V2 to be small enough such thatM is constantmodulo p. Note that the representations

ρ∗F ∶GQ Ð→ GL(MV1
(F)∗),

ρ∗G∶GQ Ð→ GL(MV2
(G)∗)

satisfy det ○ρ∗F(g) = ε−1F (g) and det ○ρ∗G(g) = ε−1G (g), for all g ∈ GQ(µp∞). In partic-
ular, we can shrink V1 and V2 so that εFk1

= ε f and εGk2
= εg for all specialisations

x = (k1 , k2) ∈ V1 × V2.
�en, assuming ε f (u)εg(u) /≡ 1 modulo p, by Lemma A.1.3 we have that the (BI)

condition holds for the representation Mx for any specialisation at x ∈ V1 × V2.

1�e Galois representations considered in [Loe17] are actually ρ f ,p and ρg ,p, but the results easily
carry over to our situation.
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A.2 The “Flatness of Inertia” and “Minimally Ramified” Hypotheses

An example of a pair of modular forms f and g that satisfy the “flatness of inertia” and
“minimally ramified” hypotheses are as follows. Let ℓ1 and ℓ2 be two distinct primes
≥ 7 both different from p, and let f and g be two normalised cuspidal new eigenforms
of levels Γ1(ℓ1) and Γ1(ℓ2), weights k + 2 and k′ + 2, and characters ε f = ε1 and εg = ε2
respectively. Suppose that ε1 and ε2 are both non-trivial modulo p. Let E be a p-adic
field containing an( f ), an(g) and the images of ε1 and ε2, and suppose that aℓ1( f )
and aℓ2(g) are both non-zero.

Let ρ1 and ρ2 denote the restriction of ME( f ) and ME(g) to the inertia group
at ℓ1 and ℓ2 respectively. By [LW12, §5], the local components at ℓi of the auto-
morphic representations associated to f and g are prinicipal series representations;
therefore by the local Langlands correspondence (and local-global compatibility)
we have

ρ i ≅ 1⊕ ε−1i

where 1 is the trivial character.
Let F and G be Coleman families over V1 and V2 passing through p-stabilisations

of f and g , respectively. LetM denote the representation MV1
(F)∗⊗̂MV2

(G)∗ and let
M i denote the restriction ofM to the inertia group Iℓi .

Since inertial types are locally constant, we can shrink V1 and V2 so that for every
classical weight k = (k1 , k2) ∈ V1 × V2 the specialisation ofM satisfies

M i ,k ≅ 1⊕ 1⊕ ε i ⊕ ε i

for i = 1, 2. It is not hard to see that the action of Iℓi on M factors through a finite
quotient isomorphic to (Z/ℓiZ)× (it is true on a Zariski dense subset) and that M i

must decompose as

M i ≅ 1⊕ 1⊕ ε i ⊕ ε i .

Indeed the action factors though a finite group and we can define idempotents
corresponding to each direct summand. Taking Σ = {ℓ1 , ℓ2 , p,∞}, we see that the
“flatness of inertia” and “minimally ramified” hypotheses hold for f and g (provided
that V1 and V2 are small enough).

A similar argument can be applied if either (or both) of ε i are trivial, except now the
local component can be an unramified twist of the Steinberg representation and the
action of inertia factors through a (not necessarily finite) abelian quotient. However
we are primarily interested in the case ε1 ⋅ ε2 ≠ 1 anyway, otherwise the “Big Image”
hypothesis would not hold for the representation ME( f )∗ ⊗ME(g)∗.
Acknowledgment �is paper grew out of our group project at the 2018 Arizona
Winter School.Wewould like to thankDavid Loeffler and Sarah Zerbes for suggesting
the project that led to this article and for offering us their invaluable advice and
guidance. We are grateful for their continued encouragements during the preparation
of this paper. We also thank Rodolfo Venerucci for many helpful conversations and
suggestions. Special thanks are also due to the organizers of the Arizona Winter
School for making the winter school an enjoyable and fruitful experience. AG would

https://doi.org/10.4153/S0008414X2000019X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000019X


852 A. Graham, D. R. Gulotta, and Y. Xu

like to thank Ashwin Iyengar and Pol van Ho�en for their helpful comments and
suggestions.�e authors would like to thank the anonymous referees for their helpful
suggestions.

References

[1] F. Andreatta and A. Iovita, Triple product p-adic L-functions associated to finite slope p-adic
families of modular forms, with an appendix by Eric Urban. arXiv:1708.02785

[2] J. Bellaïche, Critical p-adic L-functions. Invent. Math. 189(2012), no. 1, 1–60.
https://doi.org/10.1007/s00222-011-0358-z

[3] L. Berger and P. Colmez, Familles de représentations de de Rham et monodromie p-adique.
Représentations p-adiques de groupes p-adiques I: Représentations galoisiennes et
(φ,Γ)-modules, vol. 319, Astérisque, 2008, pp. 303–337.

[4] L. Berger, Représentations p-adiques et équations différentielles. Invent. Math. 148(2002), no. 2,
219–284. https://doi.org/10.1007/s002220100202

[5] L. Berger, Bloch and Kato’s exponential map: three explicit formulas. Doc. Math (2003), Extra
Vol., 99–129. http://eudml.org/doc/124694

[6] R. F. Coleman, Classical and overconvergent modular forms. Invent. Math 124(1996), no. 1-3,
215–241.

[7] P. Colmez, Représentations triangulines de dimension 2. Astérisque (2008), no. 319, 213–258.
[8] P. Colmez, Fonctions d’une variable p -adique. Astérisque 330(2010), 13–59. MR 2642404
[9] U. Jannsen, Continuous étale cohomology. Math. Ann. 280(1988), no. 2, 207–245.

https://doi.org/10.1007/BF01456052

[10] K. S. Kedlaya and R. Liu, On families of (φ, Γ)-modules. Algebra. Number �eory 4(2010), no. 7,
943–967. https://doi.org/10.2140/ant.2010.4.943

[11] K. S. Kedlaya, J. Pottharst, and L. Xiao, Cohomology of arithmetic families of (φ, Γ)-modules. J.
Amer. Math. Soc. 27(2014), no. 4, 1043–1115.
https://doi.org/10.1090/S0894-0347-2014-00794-3

[12] G. Kings, On p -adic interpolation of motivic Eisenstein classes. Elliptic curves, modular forms
and Iwasawa theory, Springer Proc. Math. Stat, 188, Springer, Cham, 2016, pp. 335–371.

[13] G. Kings, D. Loeffler, and S. Livia Zerbes, Rankin–Eisenstein classes for modular forms. Amer. J.
Math (2015), to appear. https://arxiv.org/abs/1501.03289

[14] G. Kings, D. Loeffler, and S. Livia Zerbes, Rankin-Eisenstein classes and explicit reciprocity laws.
Camb. J. Math. 5(2017), no. 1, 1–122. https://doi.org/10.4310/CJM.2017.v5.n1.a1MR3230818

[15] S. Lang, Introduction to modular forms. Grundlehren der Mathematischen Wissenscha�en
[Fundamental Principles of Mathematical Sciences], 222, Springer-Verlag, Berlin, 1995, with
appendixes by D. Zagier and Walter Feit. Corrected reprint of the 1976 original.

[16] A. Lei, D. Loeffler, and S. Zerbes, Coleman maps and the p-adic regulator. Algebra. Number
�eory 5(2011), no. 8, 1095–1131. https://doi.org/10.2140/ant.2011.5.1095

[17] A. Lei, D. Loeffler, and S. L. Zerbes, Euler systems for Rankin-Selberg convolutions of modular
forms. Ann. of Math. (2) 180(2014), no. 2, 653–771. https://doi.org/10.4007/annals.2014.180.2.6

[18] R. Liu, Cohomology and duality for (ϕ, Γ) -modules over the Robba ring. Int. Math. Res. Not.
IMRN (2008), no. 3, Art. ID rnm150. https://doi.org/10.1093/imrn/rnm150

[19] R. Liu, Triangulation of refined families. Comment. Math. Helv. 90(2015), no. 4,
831–904. https://doi.org/10.4171/CMH/372

[20] D. Loeffler, Images of adelic Galois representations for modular forms. Glasg. Math. J. 59(2017),
no. 1, 11–25. https://doi.org/10.1017/s0017089516000367

[21] D. Loeffler, A Note on p-adic Rankin–Selberg L-functions. Canad. Math. Bull 61 (2018), no. 3,
608–621. https://doi.org/10.4153/CMB-2017-047-9

[22] D. Loeffler and J. Weinstein, On the computation of local components of a newform. Math. Comp.
81(2012), no. 278, 1179–1200. https://doi.org/10.1090/s0025-5718-2011-02530-5

[23] D. Loeffler and S. L. Zerbes, Rankin-Eisenstein classes in Coleman families. Res. Math. Sci.
3(2016), Art. ID 29. https://doi.org/10.1186/s40687-016-0077-6

[24] K. Nakamura, Iwasawa theory of de Rham (φ, Γ)-modules over the Robba ring. J. Inst. Math.
Jussieu 13(2014), no. 1, 65–118. https://doi.org/10.1017/S1474748013000078
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