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The suction force at the leading edge of a round-nosed aerofoil is an important indicator of
the state of the flow over the leading edge and, often, the entire aerofoil. The leading-edge
suction parameter (LESP) is a non-dimensional version of this force. In recent works,
the LESP was calculated with good accuracy for attached flows at low Reynolds numbers
(10 000–100 000) from unsteady aerofoil theory. In contrast to this ‘inviscid’ LESP, results
from viscous computations and experiments are used here to calculate the ‘viscous’ LESP
on aerofoils undergoing pitching motions at low subsonic speeds. The LESP formulation
is also updated to account for the net velocity of the aerofoil. Spanning multiple aerofoils,
Reynolds numbers and kinematics, the cases include motions in which dynamic stall
occurs with or without leading-edge vortex (LEV) formation. Inflections in the surface
pressure and skin-friction distributions near the leading edge are shown to be reliable
indicators of LEV initiation. Critical LESP, which is the LESP value at LEV initiation,
was found to be nearly independent of pivot location, weakly dependent on pitch rate and
strongly dependent on Reynolds number. The viscous LESP was seen to drop to near-zero
values when the flow is separated at the leading edge, irrespective of LEV formation. This
behaviour was shown to correlate well with the loss of streamline curvature at the leading
edge due to flow separation. These findings serve to improve our understanding and extend
the applicability of the leading-edge suction behaviour gained from earlier works.

Key words: boundary layer separation, vortex dynamics, vortex shedding

1. Introduction

It has been known for several decades that the onset of reversed flow at the leading
edge of an unsteady aerofoil and the subsequent formation of a leading-edge vortex (LEV)
are governed by criticality of flow parameters at the leading edge (Evans & Mort 1959;
Beddoes 1978; Ekaterinaris & Platzer 1998; Jones & Platzer 1998). A flow parameter
of particular interest is the leading-edge suction force, a non-dimensional version of
which is termed the leading-edge suction parameter (LESP) (Ramesh et al. 2014). For
low-order modelling, the instantaneous value of the LESP is calculated from unsteady
aerofoil theory (Ramesh et al. 2014). This ‘inviscid’ LESP, however, is valid only for
attached-flow conditions. Here we calculate a ‘viscous’ version of the LESP by surface
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900 A25-2 S. Narsipur and others

pressure integration of experimental and viscous-computational results to understand
the effects of flow separation on the variation of leading-edge suction. We present a
correction factor that updates the formulation of the LESP using the magnitude of the
instantaneous net velocity of the aerofoil. We focus on events before, during and after
flow separation from the leading edge, both in cases with LEV formation and in cases
in which there is no LEV formation. We draw on the flow field results to provide
explanations for these trends. By studying a large set of computational results from
unsteady Reynolds-averaged Navier–Stokes (RANS) simulations of pitching aerofoils, we
present the effects of Reynolds number, pitch rate and pivot location on the criticality of
the LESP. The improved understanding resulting from this work is helpful in extending the
range of Reynolds numbers and pitch rates over which the LESP criterion and low-order
modelling of Ramesh et al. (2014) are applicable.

The relevant applications for LEV-dominated unsteady aerodynamics span a wide range
that include, but are not limited to, dynamic stall in helicopters and wind turbines (Huyer,
Simms & Robinson 1996; Corke & Thomas 2015), bio-inspired flight (Ellington et al.
1996), micro air vehicle design (MAV) (Ellington 1999), LEVs in delta wings (Gursul
2005) and flow-energy harvesting devices (Young, Lai & Platzer 2014). While theoretical
work in unsteady aerodynamics, primarily by Wagner (1925) and Theodorsen (1935),
dates back to the 1920s and 1930s, the late 1960s saw a renewed interest in unsteady fluid
flows due to the dynamic stall problem in helicopters (Crimi 1973). Although analytical
studies by Carta (1967a,b) and Ericsson & Reding (1971) helped us understand and predict
dynamic stall, the methods were restricted to low pitch-rate motions and the availability of
static experimental data. Extensive experimental studies by McCroskey, Carr & McAlister
(1976), McAlister, Carr & McCroskey (1978), Carr, McAlister & McCroskey (1977), and
McAlister & Carr (1978) provided major leaps in understanding and predicting dynamic
stall. McCroskey (1981, 1982) characterized the phenomenon of dynamic stall by a delay
in the onset of flow separation and the shedding of concentrated vorticity, popularly known
as dynamic-stall vortex or LEV, from the leading edge of the aerofoil. McCroskey et al.’s
three-part review of experimental studies of dynamic stall showed that while pitch rate and
aerofoil shape, specifically the leading-edge profile, had major effects on the aerodynamic
loads and strength of the LEV, the Reynolds number effects were small (McCroskey et al.
1982; McAlister et al. 1982; Carr et al. 1982).

Improvements in supercomputing capabilities allowed for various aspects of dynamic
stall to be extensively studied using computational methods (Visbal & Shang 1989;
Choudhuri, Knight & Visbal 1994; Choudhuri & Knight 1996; Wernert et al. 1996; Akbari
& Price 2003; Hill, Shaw & Qin 2004; Spentzos et al. 2004; Geissler & Haselmeyer 2006;
Sharma & Visbal 2019; Visbal & Garmann 2019). Recent research interest in insect/bird
flight and MAV aerodynamics have pushed the boundaries of unsteady aerodynamics to
include time-dependent motions at lower Reynolds numbers and higher pitch rates, and has
spurred many computational and experimental studies on the subject (Eldredge, Wang &
Ol 2009; Ol et al. 2009; Eldredge & Wang 2010; Granlund et al. 2010). Meanwhile, based
on the findings of experimental and computational studies, theoretical models have been
developed and improved for use in rapid design and analysis activities (Gormont 1973;
Dat, Tran & Petot 1979; Katz 1981; Leishman & Beddoes 1989; Peters, Karunamoorthy
& Cao 1995; Larsen, Nielsen & Krenk 2007; Sheng, Galbraith & Coton 2006, 2008; Yan,
Taha & Hajj 2014).

One specific aspect of dynamic stall that has continued to receive some attention is the
criticality of leading-edge flow as a causal factor for LEV formation. Based in part on
the work by Evans & Mort (1959), which showed that leading-edge separation is directly
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Variation of leading-edge suction during stall 900 A25-3

related to the strong adverse pressure gradient that follows the suction peak at the leading
edge, Beddoes (1978) showed the correspondence between leading-edge separation and
the flow velocity at the leading edge. This idea was subsequently incorporated in the
Leishman–Beddoes dynamic-stall model (Leishman & Beddoes 1989) for modelling LEV
formation. Jones & Platzer (1998) showed that, at the initiation of dynamic stall, indicated
by the first occurrence of laminar separation at the leading edge of the aerofoil, the
leading-edge flow characteristics (pressure distributions, pressure-gradient distributions,
and locations of stagnation and laminar-separation points) are invariant with pitch rate
(see also Ekaterinaris & Platzer 1998). However, the value of this critical angle of attack
itself was seen to increase with pitch rate, a result that was in qualitative agreement with
experimental results of Chandrasekhara, Ahmed & Carr (1993).

More recently, Ramesh et al. (2013, 2014) proposed the concept of LESP for predicting
LEV formation in unsteady aerofoils at low Reynolds numbers (Re = 10 000–100 000).
They showed that, when using unsteady thin-aerofoil theory to predict the aerodynamics
in attached-flow conditions, the value of the A0 term in the Fourier series representation
of the bound-vortex-sheet strength can be used as the instantaneous LESP. By comparison
with computational fluid dynamic (CFD) solutions and experimental results for LEV
initiation on aerofoils undergoing high-rate motions, they further showed that for any given
aerofoil and Reynolds numbers, there is a critical value of LESP that always corresponds
to LEV initiation, and that this critical value is largely independent of motion kinematics.
The benefit of the LESP concept is that, once the critical LESP is obtained through
calibration with CFD or experiment for one motion, it can be used to predict initiation
of LEV formation for any other motion.

The LESP idea was used to develop a low-order method in which unsteady thin-aerofoil
theory was extended to handle intermittent LEV shedding. In this method, named
LESP-modulated discrete vortex method (LDVM), unsteady thin-aerofoil theory was
augmented with discrete vortex shedding from the leading edge. At any time step, if the
instantaneous LESP was predicted to be greater than the predetermined critical value,
a discrete vortex was shed so as to bring the LESP back to the critical value. The idea
was that a leading edge at some operating condition is able to support a certain limiting
amount of suction, and any attempt at increasing the suction beyond that limiting value
would result in shedding of vorticity to bring the suction back to the limiting value. This
assumption was built upon the observation by Katz (1981) that a leading edge can support
some amount of suction even when experiencing separation. With this assumption, in the
LDVM code, the LESP value is held constant at the critical value during LEV shedding.
Although there was no proof at that time for the constant value of leading-edge suction
during LEV shedding, the predictions for the low-Reynolds-number cases from the LDVM
code using this implementation agreed well with CFD and experimental results for a
variety of pitch and plunge motions (Ramesh et al. 2014). Since then, the LESP criterion
for modelling LEV formation has been successfully used to study aeroelastic problems
(Ramesh, Murua & Gopalarathnam 2015), flow-energy harvesting approaches (Liu et al.
2016), machine-learning approaches to modelling separated flows (Eldredge & Jones 2019;
Hou, Darakananda & Eldredge 2019), finite-wing LEV formation (Hirato et al. 2019) and
to also explain some experimental results (Ansell & Mulleners 2020).

More recently, our efforts have been focused on better understanding the behaviour
of LESP during LEV shedding. The current work resulted from the recent realization
that a ‘viscous’ LESP can be deduced from experiments and viscous computations by
integrating the leading-edge pressure distribution. Using this approach, we present here
the variation of the viscous LESP during all phases of unsteady motions, including before,
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900 A25-4 S. Narsipur and others

during and after LEV shedding. With the ability to calculate LESP from CFD results,
we focus on answering three important questions to advance the LDVM method beyond
the work of Ramesh et al. (2014). (i) How does critical LESP vary with an increase in
Reynolds numbers to helicopter-relevant conditions, and will the critical LESP remain
largely motion independent at the higher Reynolds numbers as well? (ii) How does critical
LESP vary when the pitch rate is reduced to those similar to helicopter-relevant conditions
at which LEV formation is preceded by trailing-edge separation? (iii) How does the
instantaneous LESP vary during a motion while LEV shedding is taking place, and does
the LESP in fact stay constant at the critical value during LEV shedding?

In this work a large set of computational results from unsteady RANS simulations of
pitching aerofoils in incompressible flow, supplemented with a few experimental results
from literature, are studied to examine the behaviour of the viscous LESP at various
stages during the dynamic-stall process. Effects of aerofoil shape, Reynolds number, pivot
location and non-dimensional pitch rate on the LESP behaviour are quantified. The results
from these studies are used to seek answers to the questions posed above.

A brief background of the LESP concept is presented in § 2. The next section (§ 3)
briefly describes the computational methodology (§ 3.1), presents validation of the CFD
against experimental data (§ 3.2), describes a method for extracting the LESP from viscous
surface pressure data (§ 3.3) and presents surface signatures for consistent identification
of LEV initiation (§ 3.4). Details of the unsteady motions studied in the current work are
presented in § 4. In § 5 the variation of the original LESP at LEV initiation is presented
for several motions. A large scatter in LESP values is seen for the high-Re motions. In
§ 6 an updated formulation for the LESP is presented using a motion-dependent velocity
ratio. This updated LESP is then shown in § 7 to be successful in reducing the scatter
in the LESP values for the high-Re cases. Motions that do not evince LEV formation
are briefly presented in § 8, followed by a discussion of post-leading-edge-separation
behaviour in § 9. The final section (§ 10) presents the conclusions drawn from the current
research.

2. Background

This section presents background information on the LESP in § 2.1, its connection to
LEV initiation in § 2.2 and its behaviour after LEV formation in § 2.3.

2.1. Leading-edge suction parameter
Classical thin-aerofoil theory approximates the aerofoil using its camberline with no
thickness and, hence, zero leading-edge radius. This assumption requires the flow to turn
around the sharp leading edge, giving rise to a theoretically infinite flow velocity (VLE)
and a force (F LE) at the leading edge of a thin aerofoil (figure 1). The perpendicular and
parallel components of the leading-edge force with respect to the camberline direction at
the leading edge give the normal (FN,LE) and suction (FS,LE) forces, respectively. While
the normal component of the force can either be positive or negative, depending on the
location of the stagnation point and direction of the flow around the aerofoil’s leading
edge, the suction force always acts in the forward (positive) direction on the aerofoil, as
illustrated in figures 1(a) and 1(b). When the stagnation point coincides with the leading
edge of the camberline, the suction force is zero.

Following the unsteady thin-aerofoil theory of Katz & Plotkin (2001) as implemented in
Ramesh et al. (2013, 2014), the chordwise distribution of the time-dependent vortex-sheet

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

46
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.467
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Stagnation pointFS,LE
(+ve)

FN,LE
(+ve)FLE

Stagnation point

FN,LE
(−ve)

FS,LE
(+ve)

FLE

(a) (b)

FIGURE 1. Depiction of flow around, and forces on, the leading edge of a thin aerofoil.
(a) Stagnation point on the lower surface. (b) Stagnation point on the upper surface.

strength over the aerofoil, γ (x, t), is expressed as a Fourier series as

γ (θ, t) = 2Uref

[
A0(t)

1 + cos θ

sin θ
+

∞∑
n=1

An(t) sin(nθ)

]
, (2.1)

where θ is a variable of transformation related to the chordwise coordinate x as

x = c
2
(1 − cos θ), (2.2)

and A0(t), A1(t), . . . , An(t) are the time-dependent Fourier coefficients, c is the aerofoil
chord, t is time and Uref is the reference velocity. This reference velocity is usually
invariant with time, and is selected based on the problem. In the current formulation,
Uref is set equal to the forward velocity, which is the component of the aerofoil’s velocity
in the negative X direction. Although recent research efforts (Xia & Mohseni 2017; Epps
& Greeley 2018; Epps & Roesler 2018; Taha & Rezaei 2019) have provided updates to
the Kutta condition at the trailing edge, the current formulation, which is based on the
approach of Katz and Plotkin (Katz & Plotkin 2000), assumes zero vortex-sheet strength
at the trailing edge, and implicitly enforces the Kutta condition by imposing a zero vortex
strength at each time step at the trailing edge. The Fourier coefficients are determined
using the instantaneous local downwash on the aerofoil due to all bound and shed vorticity
by enforcing the boundary condition that the flow must remain tangential to the aerofoil
surface:

A0(t) = − 1
π

∫ π

0

W(x, t)
Uref

dθ, (2.3)

An(t) = 2
π

∫ π

0

W(x, t)
Uref

cos(nθ) dθ. (2.4)

It has been known for several decades that the onset of separation at the leading edge is
governed by criticality of flow parameters at the leading edge. Several researchers (Evans
& Mort 1959; Beddoes 1978; Ekaterinaris & Platzer 1998; Jones & Platzer 1998; Morris
& Rusak 2013) have correlated leading-edge flow criticality to onset of leading-edge
separation and/or static/dynamic stall. The LESP idea of Ramesh et al. (2014), inspired
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900 A25-6 S. Narsipur and others

in part by these works, was the result of the search for an appropriate parameter that could
be determined as a part of an unsteady aerofoil theoretical calculation.

The LESP is a measure of the suction at the leading edge, which is correlated with
the flow velocity around the leading edge, VLE. Ramesh et al. (2014) observed that the
determining factor for the leading-edge suction and the flow velocity at the leading edge
(VLE) for an aerofoil is the circulation at the leading edge, γ (0, t), which is represented
by the first coefficient A0(t). Furthermore, using matched asymptotic expansion, Ramesh
(2020) showed that VLE is directly proportional to the A0 coefficient in (2.1) as

VLE =
√

2
r

Uref A0, (2.5)

where r is the aerofoil leading-edge radius non-dimensionalized by the chord. It may
therefore be argued that the instantaneous A0 value could serve as the LESP. The
instantaneous LESP, denoted generally by L, at any time instant is therefore set equal to
the value of A0(t) at that time. Because A0 is defined using the reference velocity, Uref , this
LESP is based on the reference velocity, and is denoted specifically by Lref (to distinguish
it from an updated LESP that is introduced later). We get

Lref (t) = A0(t) (2.6)

with a positive value of Lref corresponding to when the stagnation point is on the lower
surface (figure 1a) and a negative value when the stagnation point is on the upper surface
(figure 1b).

2.2. The LESP hypothesis for LEV initiation
As discussed by Katz (1981), real aerofoils have rounded leading edges which can
support some suction even when the stagnation point is away from the leading edge.
The amount of suction that can be supported is dependent on the aerofoil shape and the
operating Reynolds number. Drawing on the observation that the LESP is a measure of
the suction/velocity at the leading edge, Ramesh et al. (2014) made the logical choice
to develop a correlation for initiation of LEV formation to be based on the LESP. The
advantage of this approach is that the instantaneous Lref can be calculated for any unsteady
motion from unsteady thin-aerofoil theory.

The LESP hypothesis proposed by Ramesh et al. (2014) is that, for a given aerofoil and
Reynolds number combination, the critical LESP, which is the Lref value corresponding
to LEV initiation, is independent of motion kinematics. This hypothesis is based in part
on the argument that for a rounded leading edge of an aerofoil that is operating at a given
chord Reynolds number, attached flow around the leading edge is supported so long as
leading-edge suction is below a critical value. When this critical value is exceeded, the
flow at the leading edge will separate, resulting in the shedding of vorticity from the
leading edge. Because the LESP is a motion-independent, non-dimensional measure of
the leading-edge suction, it should be a good predictor of LEV initiation for any motion.
The major benefit of this hypothesis being true is that the critical LESP (i.e. Lref

crit) can be
determined for one motion from CFD or experiment and can then be used for prediction
of LEV initiation for any other motion.

As mentioned in the work of Ramesh et al. (2014), an important limitation of the LESP
hypothesis is that the Lref in that approach is determined using inviscid/attached-flow
theory (unsteady thin-aerofoil theory), in which the flow over the aerofoil surfaces
is assumed to be attached. Thus, as discussed by Ramesh et al. (2017), in situations
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Variation of leading-edge suction during stall 900 A25-7

characterized by trailing-edge flow separation, this ‘inviscid LESP’ is unlikely to be a true
measure of the leading-edge suction. Furthermore, the Lref

crit value derived from unsteady
inviscid theory for high pitch-rate motions with negligible trailing-edge boundary-layer
separation is not applicable for much lower pitch-rate motions where trailing-edge flow
separation is present. The inability of the inviscid LESP to account for the effects of
trailing-edge separation was postulated as the reason for the small variation of Lref

crit with
pitch rate observed in Ramesh et al. (2017). With a new approach to determine the ‘viscous
LESP’ using RANS CFD solutions in the current work, an important aim is to study the
viscous Lref

crit behaviour to examine if accounting for the effects of trailing-edge separation
will collapse the viscous Lref

crit values for all motions into a small range, irrespective of
whether or not boundary-layer separation is present during initiation of LEV formation.

2.3. Previous hypothesis for the behaviour of LESP after LEV initiation
In the LDVM low-order method algorithm, Ramesh et al. (2014) assumed that once Lref

reaches Lref
crit and LEV shedding starts, the LESP remains constant at Lref

crit until termination
of LEV formation. During the LEV shedding process, the strength of the discrete LEV
shed during any time step is determined so that the Lref after the discrete LEV is shed is
brought to this Lref

crit value. LEV shedding is terminated once the instantaneous LESP value
drops below Lref

crit.
The justification to hold the LESP at its predetermined critical value during the shedding

process was based in part on the argument proposed by Katz (1981) that leading edges hold
a certain amount of suction even when flow is separated. Based on the understanding at
that time, it sounded like a reasonable argument that the leading edge had a capacity to
hold a certain amount of suction even during LEV shedding, and the excess would be
shed as vorticity. Furthermore, there did not seem to be any other guidance on how the
suction behaves post-LEV initiation. Finally, and most importantly, when that hypothesis
was implemented in the LDVM, the predictions for flow and forces agreed well with CFD
and experimental results for all cases (Ramesh et al. 2014), which were at low Reynolds
numbers of 100 000 and below. One of the objectives of the current work is to carefully
test this hypothesis given that the viscous LESP is being determined in the current work
using RANS CFD solutions and experimental data.

3. Methodology

In this section, a brief description of the unsteady RANS (URANS) CFD code used in
this work is presented in § 3.1, followed by the validation of the numerical scheme with
existing experimental data in § 3.2. A procedure to obtain the suction force and LESP
from computational pressure distributions is provided in § 3.3. An improved approach to
determine LEV initiation from CFD and experimental methods is discussed in § 3.4.

3.1. CFD method
CFD calculations were performed using North Carolina State University’s REACTMB-INS
code, which solves the time-dependent incompressible Navier–Stokes equations
using a finite-volume method. The governing equations are written in arbitrary
Lagrangian/Eulerian form, which enables the motion of a body-fitted computational mesh
in accord with prescribed rate laws. Spatial discretization of the inviscid fluxes uses a
low-diffusion flux-splitting method valid in the incompressible limit (Cassidy, Edwards
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FIGURE 2. (a) NACA0012 and (b) SD7003m aerofoil geometries.

& Tian 2009). This method is extended to higher-order spatial accuracy using piecewise
parabolic method interpolations of the primitive variables [p, u, v, w]T and transported
variable for the S-A model, ν̃. Viscous terms are discretized using second-order central
differences. A dual time-stepping method is used to integrate the equations in time.
An artificial compressibility technique, discretized in a fully implicit fashion and solved
approximately using ILU decomposition, is used to advance the solution in pseudo-time.
Typically, eight sub-iterations per physical time step were needed to reduce the residual
errors two orders of magnitude. The Spalart–Allmaras model (Spalart & Allmaras
1992), as implemented by Edwards & Chandra (1996), is used for turbulence closure.
The geometries for the two aerofoils used in this work, NACA 0012 and SD7003m,
are shown in figure 2. The SD7003m is a modified version of the original SD7003
(Selig, Donovan & Fraser 1989), in which the leading-edge radius is twice that of the
original SD7003. Two-dimensional body-fitted O-grids for the NACA 0012 and SD7003m
aerofoils containing 140 400 and 92 400 cells, respectively, were generated. Two additional
high-density grids for the NACA 23012 and SD7003 aerofoils, containing 284 400 and
108 900 cells, respectively, were generated for validation purposes. The wall y+ for all the
grids generated in the current study was < 5. Additionally, a grid sensitivity study, carried
out to ensure grid convergence, showed that decreasing the y+ to a tenth of that used in
the final grids does not alter the results noticeably.

3.2. CFD validation
Three test computations were performed to establish the accuracy of the numerical code.
Steady simulations were performed for the NACA 0012 aerofoil at a free stream Reynolds
number (Re) of 2.5 million and the computed coefficient of lift (Cl) variation with angle
of attack (α) was compared with experimental data from Carr et al. (1977). The results
in figure 3 show that computed Cl is within 5 % of experimental data for all pre-stall
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FIGURE 3. Comparison for a stationary aerofoil: steady Cl vs α from computations compared
with experimental results of Carr et al. (1977) for the NACA 0012 aerofoil at Re = 2.5 × 106.

angles of attack. The CFD overpredicts the stall angle by approximately 1 degree and
maximum Cl by approximately 0.08. Next, the NACA 23012 aerofoil pivoted at the quarter
chord was simulated for an unsteady sinusoidal motion (20◦ ± 10◦ sin(Ωt), where Ω is the
angular frequency) at a free stream Reynolds number of 1.5 million and reduced frequency
(k = Ωc/(2U)) of 0.10, where U is the free stream velocity in this situation. The computed
Cl vs α is compared with experimental data from Leishman (1990) in figure 4. The results
show that LEV initiation, generally associated with the nonlinear increase in Cl, occurs
at a higher angle of attack in the computations. The computational and experimental
results exhibit similar trends after lift stall has occurred. Lastly, an unsteady simulation
was performed for the SD7003 aerofoil at a free stream Reynolds number of 30 000 and
pivoted about the leading edge at a non-dimensional pitch rate (K = α̇c/(2U)) of 0.11,
where α̇ is the dimensional pitch rate, for a pitch-up-hold-return motion defined using
the Eldredge function (Eldredge et al. 2009; Eldredge & Wang 2011). Figure 5 compares
computed Cl vs t∗ data with experimental data obtained from the US Air Force Research
Laboratory’s Horizontal Free-Surface Water Tunnel (Ramesh et al. 2014), where t∗ is the
convective time given by t∗ = tU/c. The computed Cl agrees well with experiment in the
pitch-up phase but is slightly overpredicted in the hold and return phases of the motion.
The computation also correctly captures the time instants and intensities of the spikes due
to apparent-mass effects.

3.3. Determination of suction force and LESP from CFD
The determination of the leading-edge suction force and LESP for a thin aerofoil from
unsteady theory was discussed in § 2.1. Because the theory assumes attached flow over
the aerofoil (i.e. no trailing-edge separation), that LESP is referred to in this work as
the ‘inviscid LESP.’ Motivated by the desire to understand the behaviour of the suction
force on rounded leading-edge aerofoils in real flows, an approach was developed in the
current work to calculate the suction force from RANS CFD solutions. Because the LESP
calculated from this CFD-derived suction force accounts for trailing-edge separation and
other viscous phenomena, this LESP is referred to as the ‘viscous LESP.’ Gaining an
understanding of the behaviour of the viscous LESP would allow for careful evaluation of
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FIGURE 4. Comparison for a sinusoidal pitching aerofoil: computed Cl vs α compared with
the experimental results of Leishman (1990) for the NACA 23012 aerofoil at Re = 1.5 × 106,
k = 0.10, α(t) = 20◦ ± 10◦ sin(Ωt).
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FIGURE 5. Comparison for a low-Re pitching aerofoil: computed Cl vs t∗ compared with
experimental results in Ramesh et al. (2014) for the SD7003 aerofoil at Re = 30 000, K = 0.11,
αmax = 25◦.

the LESP-related hypotheses in §§ 2.2 and 2.3, and enable improved modelling of LEV
shedding.

When the stagnation point is not at the geometric leading edge of the aerofoil, the
flow is forced to travel around the rounded leading edge. This flow curvature gives
rise to a low-pressure region near the leading edge. As done in § 2.1, the net force
acting on the leading edge is resolved into components acting along and normal to
the direction of the camberline at the leading edge. The component of force along the
camberline is often a ‘suction’ force acting in the forward direction. The curvature of the
streamlines around the leading edge, the resulting suction near the leading edge and the
leading-edge forces are illustrated in figure 6. In the current work, the leading-edge force
on the aerofoil is calculated from CFD by integrating the surface pressure on the forward
portion of the aerofoil from the leading edge to a predefined chordwise location, denoted
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Variation of leading-edge suction during stall 900 A25-11
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FIGURE 6. Representation of the leading-edge force, F LE, resolved into suction force (FS,LE)
parallel to the camberline, and normal force (FN,LE) perpendicular to the camberline at the
leading edge.

by (x/c)max . This force is then split into its suction and normal components, which when
non-dimensionalized by the dynamic pressure (qref = ρU2

ref /2, where ρ is the free stream
density) and chord, give the coefficients of suction, Cref

s,LE, and normal force, Cref
n,LE, on the

leading edge. The superscript ‘ref ’ is used here to differentiate these force coefficients
from those defined later using a different velocity:

Cref
s,LE = FS,LE/qref c, (3.1)

Cref
n,LE = FN,LE/qref c. (3.2)

Figure 7 shows the temporal variation of the coefficient of suction (referred to as Cref
s

instead of Cref
s,LE from here onward) calculated from the unsteady RANS CFD solution

using various values of (x/c)max for a NACA 0012 aerofoil undergoing a pitch-up-return
motion with K = 0.1 at a Reynolds number of 3 million. We observe that for (x/c)max ≥
0.30, the suction force is relatively independent of the selected (x/c)max . We note that
the x/c location of the maximum thickness of the NACA 0012 aerofoil is at 0.30. While
there is no theoretical guidance on a correct value of (x/c)max to use for integration of
CFD pressures to calculate Cref

s , we have found that using the (x/c)max corresponding to
the maximum thickness location on the chord works well. The calculated value of Cref

s is
relatively insensitive to the chosen (x/c)max around this value because the aerofoil surfaces
are typically nearly parallel to the chord in the vicinity of the maximum thickness location
and the pressure contributions from these portions of the aerofoil to the suction force are
small. Thus, the leading-edge suction and normal forces in this work are defined as the
appropriate components of the net force acting on the forward portion of the aerofoil from
the leading edge to the x/c for the maximum thickness location. Also co-plotted in figure 7
is the time variation of the inviscid Cref

s calculated from the unsteady aerofoil theory for
this motion. We see that the CFD-derived Cref

s agrees well with the theoretical Cref
s for

small pitch angles at which the flow on the upper surface is fully attached, which shows
that the CFD-derived Cref

s is a good equivalence for the theoretical Cref
s in attached-flow

conditions. At t∗ >≈ 14, which corresponds to α >≈ 42 degrees, when LEV shedding is
active, the theoretical Cref

s is seen to be much larger than the CFD-derived Cref
s . This large

difference is because the theoretical Cref
s does not account for any viscous effects, while

the CFD-derived Cref
s is a measure of the suction force from simulations of the real viscous

flow.
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FIGURE 7. Time variation of Cref
s for representative motions for various (x/c)max values used

for the integration.

The inset in figure 7 shows the surface pressure coefficient (Cref
p ) variation plotted

against y/c for the forward portion of the aerofoil (for 0 ≤ x/c ≤ 0.30) at an example
time instant of t∗ = 12 when the flow is fully attached. This pressure coefficient is defined
using the reference dynamic pressure as Cref

p = ( p − p∞)/qref . This plot has the y/c scale
on the vertical axis so that the area inside the curve gives a visual representation of the
leading-edge suction force acting in the horizontal (chordwise) direction. The vertical
distribution of the Cref

p along the y/c in this plot provides information on whether the
suction is concentrated on the upper or lower surface of the aerofoil. Such Cp vs y/c plots
are used later in this manuscript to discuss the suction behaviour for various situations.

As shown by Ramesh et al. (2013), aerofoil theory gives the relationship between Cref
s

and LESP as

Cref
s = 2π(Lref )2. (3.3)

As discussed in § 2.1, the suction force (FS,LE) and the suction-force coefficient (Cref
s ),

when calculated from theory, cannot be negative. However, because Cref
s calculated from

CFD may not perfectly match up with that from ideal flow, there are a few situations in
which, when the theoretical Cref

s value is zero or a small positive value, the CFD-derived
Cref

s has a small negative value. To ensure compatibility with the theoretical Cref
s and to

avoid problems when calculating the LESP, the CFD-derived LESP is set to zero at the
few time instants when the viscous Cref

s has a negative value. Furthermore, the sign of
the LESP is set to be the same as that of the Cref

n,LE, so that positive Cref
n,LE is assumed to

correspond to a flow with stagnation point on the lower surface, and vice versa. Thus, the
CFD-derived viscous LESP is calculated from the CFD-derived Cref

s as

Lref =
{

sgn(Cref
n,LE)

√
Cref

s
2π

, for Cref
s > 0,

0, for Cref
s � 0.

(3.4)

The time histories of the viscous Cref
s and Cref

n,LE calculated from integration of the
CFD pressure distribution over the leading-edge region of a NACA 0012 aerofoil at a
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Variation of leading-edge suction during stall 900 A25-13
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FIGURE 8. Variation of CFD-derived leading-edge quantities for an example sinusoidal
motion: (a) viscous Cref

s and Cref
n,LE, and (b) viscous Lref vs t∗.

Reynolds number of 3 million, undergoing sinusoidal pitching (α(t) = 0◦ ± 30◦ sin(Ωt))
with a reduced frequency of k = Ωc/(2Uref ) = 0.1 and pivoted at the half-chord is
shown in figure 8(a). The viscous LESP for this case, calculated using (3.4), is shown
in figure 8(b). The few flat spots and abrupt jumps when the LESP is close to zero are
the result of conversion of viscous Cref

s to viscous LESP using (3.4). These flat spots are
inconsequential because the flow events related to leading-edge stall occur only when the
LESP is at high values.

3.4. Improved determination of LEV initiation from CFD and experiment
An important part of the current work is to examine the events leading to LEV formation
for multiple aerofoils, a large set of motion kinematics, and over a range of Reynolds
numbers. Although LEV initiation can be qualitatively inferred from CFD flow-field
images by marking the time instant at which the first sign of an LEV structure appears
during a motion, such a process is subjective and results in noise when comparisons are
made for a large number of cases. Furthermore, it is desirable that the approach involve
surface quantities and be straightforward to implement so that the data processing can
be automated. In earlier work involving low-Reynolds-number unsteady aerofoil flows,
a signature in the surface skin-friction coefficient (Cref

f , defined using Uref ) distribution
was used for identifying the time instant of LEV initiation (Ramesh et al. 2014; Hirato
et al. 2019). An improved approach that works well at both low and high Reynolds
numbers is presented in this section. In this illustration, a NACA 0012 aerofoil undergoing
a pitch-up motion about the quarter chord at K = 0.4 is considered at Reynolds numbers
of 30 000 and 3 million. Results from CFD at five time instants are considered to illustrate
the events from slightly before to slightly after LEV formation.

For the flow field results from CFD presented in this section and in the remainder of the
paper, the colour bars used for all the non-dimensional velocity-magnitude plots (contours
of Umag/U∞, where Umag is the velocity magnitude) and non-dimensional vorticity plots
(contours of ωc/U∞, where ω is the vorticity) are shown in figure 9.

Figure 10 shows the motion history and the time-variation of the inviscid and
viscous LESP for the low-Reynolds-number case (Re = 30 000). Only a small time
range from slightly before to slightly after initiation of LEV formation is presented
here. It is emphasized that the inviscid LESP variation is calculated using attached-flow
assumptions, with neither LEV shedding (unlike in the LDVM low-order method (Ramesh
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FIGURE 9. Colour bars for the CFD flow field plots presented in this paper:
(a) non-dimensional velocity magnitude (Umag/U∞) and (b) non-dimensional vorticity
((ωc)/U∞).
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FIGURE 10. Events around LEV initiation for the low-Re case: variation of Lref with t∗ for an
unsteady NACA 0012 aerofoil at Re = 30 000, K = 0.4, pivoted at the half-chord.

et al. 2014)) nor trailing-edge separation (unlike in the unsteady trailing-edge separation
method (Narsipur, Gopalarathnam & Edwards 2019)), and is therefore valid only until the
onset of LEV shedding even though the LESP variation is plotted for the entire motion.
The time instants for the five events are marked in this plot. For each of the five events,
figure 11 shows in each row the vorticity contours around the entire aerofoil, a zoomed-in
plot of the vorticity variation around the leading-edge region for 0 � x/c � 0.25, the
surface-Cref

f for the leading-edge region and a plot of the leading-edge Cref
p vs y/c. The

events are labelled as follows: ‘A’ for attached flow; ‘O’ for onset of flow reversal on
the surface, identifiable by the first occurrence of a small region of negative Cref

f near the
leading edge; ‘I’ for the first appearance of an inflection point within the negative-Cref

f
region; ‘P’ for the first instant at which the inflection grows to become a positive spike
within the negative-Cref

f region; and ‘L’ for the first instant at which the LEV structure
is clearly identifiable from the vorticity contour. Mathematically, the inflection point for
event I is identified as the first time instant in the motion at which the second derivative of
the surface-Cref

f , ∂2Cref
f /∂(x/c)2, near the leading edge becomes negative. In earlier work

(Ramesh et al. 2014), the Cref
f signature from CFD results associated with the P event was

used as the quantitative criterion to determine the instant of LEV initiation for any given
motion. This signature works well for low-Reynolds-number situations.

Figure 12 shows the motion history and the time variations of inviscid and viscous
LESP for the high-Reynolds-number case (Re = 3 million). Each row of figure 13 shows
the vorticity plot around the aerofoil, vorticity around the leading-edge region (0 �
x/c � 0.25), the surface-Cref

f for the leading-edge region and the Cref
p variation vs y/c
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Variation of leading-edge suction during stall 900 A25-15
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FIGURE 11. Events around LEV initiation for the low-Re case: LEV events for an unsteady
NACA 0012 aerofoil at Re = 30 000, K = 0.4, pivoted at the half-chord.

for the five events. A noticeable difference between the low-Reynolds-number behaviour
(figures 10 and 11) and the high-Reynolds-number behaviour (figures 12 and 13) is
that, in the high-Reynolds-number case there is already evidence of an LEV structure
in the vorticity plot for event P. This behaviour is consistently seen in all the
high-Reynolds-number CFD results from the current work, and indicates that event P is
not the best choice for LEV initiation for these cases. Based on these observations, event
I – the instant at which an inflection point is first observed within the negative-Cref

f region
near the leading edge, is chosen as the event corresponding to LEV initiation for both
low- and high-Re cases. It is emphasized that the surface-Cref

f signature corresponding to
event I is merely used as a consistent identifier of the time instant of LEV initiation from
CFD results for the many cases studied in this work. Although the overall observations
presented here are somewhat specific to the RANS CFD method used in this work and
earlier related efforts (Ramesh et al. 2013, 2014; Hirato et al. 2019), they are in general
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FIGURE 12. Events around LEV initiation for the high-Re case: variation of Lref with t∗ for an
unsteady NACA 0012 aerofoil at Re = 3 × 106, K = 0.4, pivoted at the half-chord.

agreement with the LEV-formation flow physics discussed by other researchers (Visbal &
Shang 1989; Choudhuri et al. 1994; Mulleners & Raffel 2012; Gupta & Ansell 2019).

Finally it is worth mentioning that, in both low-Re and high-Re cases, between events
O and I, there is also the appearance of an inflection point in the Cref

p vs y/c variations.
This observation points to the potential use of the inflection in the Cref

p distribution as
a signature for LEV initiation from experimental data in which surface shear stress is
not measured, but surface-Cref

p distributions are available from a pressure-tapped aerofoil
model. However, a reasonably high density of pressure taps would be required to detect
the occurrence of the inflection point.

4. Motions

For the current work, a total of 115 cases, divided between two aerofoils (NACA 0012
and SD7003m, shown earlier in figure 2), two Reynolds numbers, five pivot locations
and multiple pitch rates, were simulated using the URANS CFD code described in § 3.1,
and are listed in table 1. The five pivot locations correspond to the leading edge, quarter
chord, half chord, three quarter chord and trailing edge, respectively denoted by LE, QC,
HC, TQ, and TE in the figure legends. All motions are of pitch-up-return type generated
using Eldredge’s canonical formulation (Eldredge et al. 2009; Wang & Eldredge 2013).
A smoothing function, G(t), is defined as

G(t) = ln
[

cosh(aU∞(t − t1)/c) cosh(aU∞(t − t4)/c)
cosh(aU∞(t − t2)/c) cosh(aU∞(t − t3)/c)

]
, (4.1)

where a is a smoothing parameter from Granlund, Ol & Bernal (2011), given by

a = π2K
2αamp(1 − σ)

, (4.2)

and the times t1 to t4 are: t1 = time from reference 0 until the start of the ramp; t2 =
t1 + αamp/2K; t3 = t2 + παamp/4K − αamp/2K; and t4 = t3 + αamp/2K, where αamp is the
amplitude of the pitching motion and K is the non-dimensional pitch rate. The variation
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Variation of leading-edge suction during stall 900 A25-17
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FIGURE 13. Events around LEV initiation for the high-Re case: LEV events for an unsteady
NACA 0012 aerofoil at Re = 3 × 106, K = 0.4, pivoted at the half-chord.

Study Aerofoil Reynolds Number Pitch Rate (K) Pivot

LEV initiation NACA 0012 3 × 104 0.05–0.6 LE, QC, HC,
SD7003m 3 × 106 (medium to high pitch rates) TQ, TE

No LEV initiation NACA 0012 3 × 106 0.005–0.01 LE, QC, HC,
(low pitch rates) TQ, TE

Post-LEV behaviour NACA 0012 3 × 104 0.05–0.6 LE, QC, HC,
SD7003m 3 × 106 (medium to high pitch rates) TQ, TE

TABLE 1. Summary of the cases for which results are presented.
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FIGURE 14. Variation of α with t∗ for three representative motions: low-K, medium-K, and
high-K.

of pitch during the motion is then given by

α(t) = αamp
G(t)

max(G(t))
. (4.3)

Three pitch-up-return motions representative of a low pitch-rate motion (K = 0.005), a
moderate pitch-rate motion (K = 0.05) and a high pitch-rate motion (K = 0.4) are plotted
in figure 14. It is seen that the motions are smoothed pitch-up-return motions in which the
dα/dt∗ varies during the pitch-up and pitch-down portions of the motions.

5. Variation of Lref at LEV initiation

Aerofoils with rounded leading edges evince LEV formation at medium and high pitch
rates, as observed for the NACA 0012 and SD7003m aerofoils in the current work. In this
first set of results, the variation of LESP at the time instants corresponding to events O and
I for the 25 medium and high pitch-rate cases are studied to examine if the critical value
of LESP is independent of motion kinematics. The earlier results of Ramesh et al. (2014)
showed that, for low Reynolds numbers (Re in the range of 1000 to 100 000) and pitch,
plunge, and combination motions at medium to high rates, the critical LESP was largely
motion independent. The systematic study of pitching motions in Ramesh et al. (2017)
further showed that, although there is a small variation in critical LESP with K over the
range 0.05 ≤ K ≤ 0.4, the use of a single average value of critical LESP in a low-order
model such as LDVM (Ramesh et al. 2014) produced an acceptable error of ±2.5 degrees
in the predicted pitch angle for LEV initiation. For pitching aerofoils, LEV formation is
accompanied by significantly greater trailing-edge separation for low-K motions than for
high-K motions. In these earlier works, however, the inviscid LESP was calculated using
attached-flow theory which does not account for any separation. The small, but noticeable,
variation in critical LESP with K was attributed in Ramesh et al. (2017) to the different
extents of trailing-edge separation with pitch rate.

The study in the current effort differs from the earlier works in three main respects:
(i) viscous LESP, derived from CFD solutions, which, therefore, takes into account
the effects of trailing-edge separation, are used; (ii) the range of motion parameters is
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Variation of leading-edge suction during stall 900 A25-19

expanded to include more pivot locations and a higher K value of 0.6; and (iii) the variation
of LESP at events O and I is also examined at a high Reynolds number of 3 million (in
addition to the low Reynolds number of 30, 000, which is close to those used in Ramesh
et al. (2014, 2017)).

In this section the variation of Lref with motion parameters, xp/c and K, are presented
for the two aerofoils, first for the low Reynolds number of 30 000 in § 5.1 and next for the
high Reynolds number of 3 million in § 5.2. Because the motions used in the current work
are smoothed pitch ramps having considerable variation of α̇ during the motion, these
variations for events O and I are plotted against the instantaneous values of dα/dt∗ for
those events rather than against the motion K.

5.1. Low-Reynolds-number cases
The values of viscous LESP at events O and I for the 25 medium and high pitch-rate
motions for Re = 30 000 are shown in figure 15, with the results for the NACA 0012 and
SD7003m aerofoils shown in figures 15(a) and 15(b), respectively. The data points for
event O are shown as open symbols and those for event I are shown as filled symbols.
Lines joining the data points for the half-chord pivot cases are included to show the
trends of Lref with dα/dt∗. An error bar is shown to indicate the typical error in Lref

of 0.015 for each event due to the discrete time steps at which the CFD pressure data is
available. Also plotted in figure 15(b) are the data points for the critical Lref vs dα/dt∗
from Ramesh et al. (2017) for the SD7003 aerofoil undergoing pitch-up motions about
a quarter-chord pivot at a Reynolds number of 20 000. These data points from Ramesh
et al. (2017) are the inviscid LESP values for LEV initiation, determined using the LDVM
code assuming attached flow, for the time instants corresponding to when the surface-Cref

f
signature for event P was observed in the CFD result for pitch-up motions. These data
points were also shown in Ramesh et al. (2017) to qualitatively agree with experimental
results from dye-flow visualization of the corresponding unsteady motions in water-tunnel
experiments. This experimental confirmation was achieved by showing that, for each
motion, there was a formation of distinct LEV structure in the dye-flow visualization
just after the time instant at which LEV initiation was observed from the surface-Cref

f

signature in the CFD result. Even though the aerofoil, Reynolds number and the event used
for identifying the LEV initiation for this data from Ramesh et al. (2017) are all slightly
different from those used in the current work for the SD7003m cases, it is seen that the
variation in Lref for event I with instantaneous pitch rate from the current work is very
similar to those for the data points from Ramesh et al. (2017), except for the small offset
in Lref .

Comparing the results for the two aerofoils from the current effort, it is seen that the
values and trends are very similar. The Lref values for the non-half-chord pivot locations
for each event are seen to fall within a small range of the corresponding trend line. The
two trends lines are seen to have an increase in Lref of approximately 0.10 for a change in
dα/dt∗ from 0.1 to 1.0. The observation that there is a change in viscous Lref with pitch rate
from the data in the current effort, and that it is nearly the same as the variation in inviscid
Lref from the data of Ramesh et al. (2017), shows that this effect of pitch rate on Lref is
not due to different amounts of trailing-edge separation, as postulated in Ramesh et al.
(2017). Although the critical Lref of the trend line is not constant with dα/dt∗, it is noted
that the range of K (and, hence, the range of dα/dt∗) examined here is very large, with
applications spanning from helicopter dynamic stall at the very low values of K to insect
and flapping-wing MAV flight at the very high end of the range examined. In practice,
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NACA 0012, Re = 3 × 104 SD7003m, Re = 3 × 104
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FIGURE 15. LEV initiation at low Reynolds numbers: variation of Lref at events O and I with
instantaneous pitch rate for the (a) NACA 0012 and (b) SD7003m aerofoils at Re = 30 000. Data
points from Ramesh et al. (2017) are also included in (b).

within the much smaller range of pitch rates typically used in any single application, the
critical LESP can be considered as essentially a constant.

5.2. High-Reynolds-number cases
The values of Lref at events O and I for the higher-Re cases (Re = 3 million) are shown
in figures 16(a) and 16(b) for the NACA 0012 and SD7003m aerofoils, respectively.
It is seen that the Lref values for the high-Re cases are, in general, approximately 0.3
higher than those for the low-Re cases. The higher Lref values indicate that, for a given
motion, the high-Re LEV initiation is delayed to a higher pitch angle compared with
the low-Re LEV initiation. This behaviour is to be expected, as the predicted level of
boundary-layer separation at higher Reynolds numbers is typically delayed compared with
lower Reynolds numbers due to the energizing effects of modelled turbulence. In our cases,
the turbulence model was applied without a transition model, meaning that the boundary
layer is predicted to be turbulent from the leading edge at the higher Reynolds number.
Because the Lref for event I is taken as the critical Lref for modelling initiation of LEV
formation in low-order methods like the LDVM (Ramesh et al. 2014), it is noted that the
Lref

crit varies with Reynolds number and needs to be determined using CFD computations
at the Reynolds number of interest for the problem at hand.

Compared with the low-Re variations, the trend lines for the half-chord pivot cases in
the high-Re results are seen to have much smaller slopes. However, the spread in Lref

values for the other pivot locations relative to the corresponding trend lines is significantly
larger than those seen in the low-Re cases. This spread in Lref due to pivot location is
especially large for the higher-K cases, and reaches a LESP change of almost 0.3 between
the leading-edge and trailing-edge pivot locations for the K = 0.6 cases. In comparison,
the same change for the low-Re case is only 0.05. Furthermore, the variation in Lref with
pitch rate is seen to depend on the pivot location. For the leading-edge pivot cases, for
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FIGURE 16. LEV initiation at high Reynolds numbers: variation of Lref at events O and I with
instantaneous pitch rate for the (a) NACA 0012 and (b) SD7003m aerofoils at Re = 3 million.

instance, Lref is seen to increase with pitch rate, while for the trailing-edge pivot cases,
the Lref is seen to decrease with pitch rate. The results show conclusively that the Lref ,
as defined in the earlier works (Ramesh et al. 2014, 2017) and thus far in this paper, fails
to have anywhere close to a constant value at either event O or I, negating its utility in
low-order prediction of LEV initiation for the high-Re situations.

6. An updated LESP formulation using the net velocity

A careful examination was made of the possible reasons for the failure of the original
LESP formulation for the high-Re cases, leading to large variations in Lref between
motions. This effort led to the realization that the problem was in the use of the single
reference velocity, Uref , used in the definition of A0(t) (2.3) and, therefore, of Lref (t), which
is set equal to A0(t) (2.6). Because LESP is being used to compare LEV initiation due to
unsteady motions with vastly different non-dimensional rates, the traditional approach of
using a single reference velocity, Uref , is unlikely to work unless the motion rates are small
at LEV initiation. As noted earlier, Uref is set here to the forward speed, U, following
normal practice. For an aerofoil that has a high non-dimensional pitch or plunge rate,
the magnitude of the net velocity of the aerofoil relative to the undisturbed fluid, which
we denote here by Unet, could be significantly different from the magnitude of the single
reference velocity, Uref . In general, the net-velocity magnitude would also be time varying,
Unet(t). The pressures, surface shear stresses and loads on the aerofoil, including the
leading-edge suction force, are proportional to the square of the net-velocity magnitude.
To further illustrate this idea, we consider two unsteady motions of an aerofoil. These two
motions comprise the same forward speed, U, and the same reference velocity, Uref = U,
but one motion has a slow pitch/plunge rate and the other has a fast pitch/plunge rate. To
properly compare the instantaneous leading-edge aerodynamic condition at a time instant
in the first motion with that at a different time instant in the second motion, it is necessary
to use non-dimensional force coefficients and parameters that have been referenced in
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each case to the corresponding instantaneous values of the net-velocity magnitude of the
aerofoil, Unet(t).

It now remains to develop an expression for Unet(t) for any given motion. In a general
case, the contributions to Unet(t) arise not only due to the kinematics, i.e. the velocity
of the aerofoil relative to the undisturbed fluid, but also due to velocities induced at
the aerofoil due to any vortical structures in the fluid. For the problem at hand, these
vortical structures include the wake vorticity that was shed from the trailing edge of
the aerofoil. For the purpose of developing a correction to the LESP formulation due to
motion kinematics, we assume here that the contributions to Unet(t) due to kinematics is
significantly larger than those due to the wake vortical structures, allowing us to ignore
the latter. The expression for Unet(t) is straightforward for plunge motions. For an aerofoil
with a horizontal velocity U(t) along the −x direction and a vertical plunge velocity ḣ(t)
along the positive y direction, the Unet(t) is simply: Unet(t) =

√
U(t)2 + ḣ(t)2. For pitch

motions, the calculation of Unet(t) is more complicated because the velocity due to the
pitch rate varies along the chord depending on the distance from the pivot location. In
the search for a theoretical basis for the velocity contribution due to the pitch rate, we get
some direction from the expression for A0 from quasi-steady thin-aerofoil theory (QSTAT)
(Leishman 2002; Ramesh 2020). This theory provides expressions for the thin-aerofoil
theory Fourier terms, lift and pitching-moment coefficients by applying the quasi-steady
assumptions of negligible contributions from the wake vorticity. From Ramesh (2020) we
get the expression for A0(t) for a symmetric aerofoil at a pitch angle of α(t) undergoing
unsteady motion with a time-varying forward velocity, U(t), upward plunge velocity, ḣ(t),
and pitch rate α̇(t) about a non-dimensional pivot location xp/c as

A0(t) = U(t)
Uref

sin α(t) − ḣ(t)
Uref

cos α(t) + α̇(t)c
Uref

(
1
2

− xp

c

)
. (6.1)

The last term of this expression gives the pitch-rate contribution to A0(t) from QSTAT.
We see that this contribution becomes zero when the pivot is at the half-chord location. We
also see that the last term is the ratio of the velocity of the half-chord point due to pitch
rate to the reference velocity. Because LESP is strongly connected to A0, the pitch-rate
contribution to Unet is taken as the velocity of the half-chord point on the aerofoil due to
the pitch rate, Upitch. Therefore, as illustrated in figure 17, the net velocity is the vector sum
of the forward velocity, plunge velocity and the velocity of the half-chord point due to the
pitch rate. The ratio Unet/Uref can be expressed as

Unet(t)
Uref

=
√[

U(t)
Uref

+ α̇(t)c
Uref

(
1
2

− xp

c

)
sin α(t)

]2

+
[

ḣ(t)
Uref

− α̇(t)c
Uref

(
1
2

− xp

c

)
cos α(t)

]2

,

(6.2)

which, for the current work in which U(t) is a constant and Uref = U, can be rewritten in
terms of non-dimensional pitch rate,

∗
α = ∂α/∂t∗ = α̇c/U, and non-dimensional plunge

rate,
∗
h = ∂(h/c)/∂t∗ = (ḣ/c)c/U, as

Unet(t)
Uref

=
√[

1 + ∗
α(t)

(
1
2

− xp

c

)
sin α(t)

]2

+
[∗

h(t) − ∗
α(t)

(
1
2

− xp

c

)
cos α(t)

]2

.

(6.3)
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FIGURE 17. Contributions to half-chord velocity from the horizontal velocity (U(t)), plunge
(ḣ(t)), and pitch (Upitch).
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FIGURE 18. Plot of Unet(t)/Uref for the LE, HC and TE pivot cases at (a) K = 0.05 and
(b) K = 0.4.

We note that this definition of Unet as the magnitude of the velocity of the half-chord
point relative to the undisturbed fluid is an approximation. Relying on the QSTAT
expression for A0, it ignores the contributions of induced velocities due to shed vorticity.
Furthermore, the choice of the half-chord point was made purely using the argument that
pivoting about this location makes the QSTAT-calculated A0 independent of pitch rate.
Future work may result in a better estimate for Unet using advanced theories. The main
aim in the current work, however, is to use a more representative velocity that, when
used for calculating the leading-edge suction-force coefficient and LESP, will allow for
proper comparison of unsteady aerofoils having different motion kinematics. It is worth
mentioning that, when considering the QSTAT expression for the lift coefficient, Cl,
instead of that for the A0 term, the pitch-rate contribution becomes zero when the pivot is
at the three-quarter-chord location. It is for this reason that the three-quarter-chord location
is often considered as the ‘neutral point’ for calculating the effective angle of attack for
pitch-rate effects. In the current work, however, the emphasis is on the leading-edge flow,
which is governed by A0 rather than by Cl. For this reason, the velocity of the half-point
point is a more appropriate choice for defining the Unet in the current work for comparing
leading-edge flows between motions.

Figure 18 shows the variations of Unet(t)/Uref with t∗ for pitching motions about the
leading edge, half chord and trailing edge for two example pitch rates: K = 0.05 and
K = 0.4. For both the pitch rates, it is seen that Unet(t)/Uref = 1 for the half-chord pivot
cases, as expected. For the leading-edge cases, Unet(t)/Uref > 1 during pitch-up and vice
versa for the trailing-edge cases. For the leading-edge cases, the maximum Unet(t)/Uref
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is seen to be much smaller for the lower-K motion (approximately 1.03) than for the
higher-K motion (approximately 1.33). These variations show the effect of K on the
velocity correction for pivots that are not at the half-chord location.

Using this formulation of Unet(t)/Uref , we present updated definitions for the
leading-edge suction-force coefficient, pressure-coefficient and skin-friction coefficient
distributions along the aerofoil arc length, s, and the LESP, using superscript ‘net’ to
denote the use of the net-velocity magnitude for non-dimensionalization, as follows:

Cnet
s (t) = Cref

s (t)(
Unet(t)/Uref

)2 , (6.4)

Cnet
p (s/c, t) = Cref

p (s/c, t)(
Unet(t)/Uref

)2 , (6.5)

Cnet
f (s/c, t) = Cref

f (s/c, t)(
Unet(t)/Uref

)2 , (6.6)

Lnet(t) = A0(t)(
Unet(t)/Uref

) = Lref (t)(
Unet(t)/Uref

) . (6.7)

We note that, for unsteady motions with constant forward velocity, zero plunge velocity
and only pitching kinematics, if the pivot is at the half-chord location, Unet is always equal
to U, and results in Cnet

s (t) = Cref
s (t), Cnet

p (s/c, t) = Cref
p (s/c, t) and Lnet(t) = Lref . For this

reason, the results for Cref
s , Cref

p , Cref
f and Lref shown earlier in figures 7–13 are all valid

with both the original and updated LESP formulations, as they are for pitching motions
pivoted at the half-chord location.

7. Variation of the Lnet at LEV initiation

This section presents the Lnet values for the various cases, first for the
low-Reynolds-number cases in § 7.1 and then for the high-Reynolds-number cases in § 7.2.
The objective is to assess the effectiveness of the velocity correction used in the definition
of Lnet. Additional detailed results of LESP vs t∗ and Unet/Uref vs t∗ variations along with
vorticity and velocity flow fields for NACA 0012 aerofoil for the medium- and high-K
cases at the low and high Reynolds numbers for three pivot locations are presented in the
appendix.

7.1. Low-Reynolds-number cases
Figures 19(a) and 19(b) show the variation of Lnet with instantaneous dα/dt∗ for the low-Re
cases of the NACA 0012 and SD7003m aerofoils, respectively. It is seen that the results
for the half-chord trend lines for Lnet are identical to those presented earlier for Lref in
figure 15. This is to be expected, as Lnet and Lref are identical for pitching motions about
the half-chord pivot location. In other words, the velocity correction used in the definition
of Lnet has not resulted in any improvement to the variation of LESP with pitch rate. Also
seen is that the scatter in Lnet relative to the trend lines is a little greater than that seen for
Lref in figure 15. In particular, for the SD7003m, the Lnet values for the trailing-edge pivot
cases for K = 0.4 and K = 0.6 and the three-quarter-chord pivot case for K = 0.6 are
noticeably higher than the corresponding trend lines by approximately 0.05 to 0.15. These
deviations in Lnet for the three outliers are discussed in more detail in § 7.3, and can be
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FIGURE 19. LEV initiation at low Reynolds numbers: variation of Lnet at events O and I with
instantaneous pitch rate for the (a) NACA 0012 and (b) SD7003 aerofoils at Re = 30 000. Data
points from Ramesh et al. (2017), converted to Lnet, are also included in (b).

traced to deviations for these cases in the flow behaviour at LEV formation. Ignoring these
three outliers for both the aerofoils, the spread in the Lnet values from the corresponding
trend lines is close to the spread in Lref from the trend lines in figure 15.

7.2. High-Reynolds-number cases
Figures 20(a) and 20(b) show the variation of Lnet with instantaneous dα/dt∗ for high-Re
cases of the NACA 0012 and SD7003m aerofoils, respectively. Comparing against the Lref

variation in figure 16, we see that the velocity correction to the LESP has resulted in a
dramatic improvement. The large scatter of Lref values seen in figure 16 has instead been
replaced by Lnet values that fall in a small band around the two trend lines. This result
demonstrates the importance of the velocity scaling used in the updated formulation of
the Lnet.

It is interesting to note that, while the updated LESP formulation has resulted in
substantially different results for the critical LESP for the high-Re cases, it has not resulted
in significant change to the results for the low-Re cases. The reason for this difference can
be understood by examining the detailed results presented in the appendix. It is seen that,
although the time variation of Unet/Uref for a given motion is independent of the Reynolds
number, the value of Unet/Uref at LEV initiation is very much dependent on the Reynolds
number. For the high-K motions, LEV initiation occurs at much larger pitch angles at the
higher Reynolds number than at the lower Reynolds number. Consequently, the value of
Unet/Uref at LEV initiation is close to the value of 1 for the low-Reynolds-number cases,
causing Lnet at LEV initiation to be close to the corresponding Lref . For the same motion at
the higher Reynolds number, however, Unet/Uref at LEV initiation is not close to the value
of 1, causing the Lnet at LEV initiation to be substantially different from the corresponding
Lref .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

46
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.467


900 A25-26 S. Narsipur and others

Symbols (pivots):

Colours (K):

Fill (events):

Line (HC trend):

TELE QC HC TQ

event I

event I

0.05 0.10 0.25 0.40 0.60

event O

event O

0.20 0.4 0.6 0.8 1.0 1.2

Instantaneous dα/dt* Instantaneous dα/dt*
0.20 0.4 0.6 0.8 1.0 1.2

(b)

0.15

0.30

0.45

0.60

0.75(a)

Lnet

0.15

0.30

0.45

0.60

0.75

SD7003m, Re = 3 × 106NACA 0012, Re = 3 × 106

Error in Lnet

FIGURE 20. LEV initiation at high Reynolds numbers: variation of Lnet at events O and I with
instantaneous pitch rate for the (a) NACA 0012 and (b) SD7003m aerofoils at Re = 3 million.

7.3. Discussion of the outliers
Figure 21 compares the vorticity plots at event I for trailing-edge pivot cases of the
SD7003m aerofoil for K = 0.10–0.60 for the low-Re cases on the top row and for the
high-Re cases on the bottom row. For the low-Re cases, although theα values vary
considerably with K for these cases, it is seen that the general flow pattern at the leading
edge looks similar for K = 0.10 and 0.25. However, for the K = 0.40 and 0.60 cases,
small, but noticeable, vortical structures are seen on the lower surface of the leading-edge
region. For the high-Re cases, all the four cases including K = 0.60 have similar flow
features. Although not shown, a similar vortical structure is also seen in the K = 0.60
three-quarter-chord pivot case for this aerofoil. This result shows that these three cases
have leading-edge flows at LEV initiation that deviate from all the other low-Re LEV
initiation cases for this aerofoil. It is for these three cases that the data points also form
outliers in figure 19(b). This deviation is not seen in the high-Re case, and neither is there
an outlier in the data points in figure 20(b). The reasons for these deviations are not clear
and need further study. Nevertheless, the observation that the low-Re flow solutions for
these three cases have deviations in the leading-edge flow behaviour at LEV initiation,
and that these cases also show up as the outliers in the Lnet scatter plot, but not in the Lref

scatter plot, provides support to the argument that the Lnet is an improvement over the Lref

even for the low-Re cases.
For the NACA 0012 aerofoil, the leading-edge vortical structure that comprises the

deviation from the flows for all the other low-Re cases is visible only for the K = 0.6
trailing-edge pivot case. However, as the data points for K = 0.6, three-quarter-chord pivot
and K = 0.4, trailing-edge pivot cases deviate sufficiently from the trend lines in figure 19,
that they are labelled as outliers.

8. Motion without LEV formation

In this section the variation of LESP is studied for a representative low-K motion that
does not evince LEV formation. Figure 22 shows the vorticity and velocity-magnitude
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FIGURE 21. Flow features in the outliers: L and flow contours for the SD7003m aerofoil for the
trailing-edge pivot cases and K = 0.1–0.6 for Re = 30 000 (top row) and Re = 3 million (bottom
row).

plots for the NACA 0012 aerofoil undergoing a pitch-up motion about the quarter-chord
location with K = 0.005 at Re = 3 million. The flow images are shown for three time
instants: (i) when the flow is fully attached, with f = 1, where f is the x/c location
of the start of upper-surface boundary-layer separation; (ii) when f = 0.5; and (iii) at a
pitch angle when the flow is fully detached, with f = 0. It is seen that, when the aerofoil
pitches to a high angle, the flow becomes massively separated with no LEV formation.
This behaviour is typical of low-K motions, of which steady flow (K = 0) is a subset.
Figure 23 shows the variation of inviscid and viscous LESP with t∗ for this motion. Also
marked in this plot are the t∗ values corresponding to the three time instants depicted in
figure 22. It is seen that the maximum viscous LESP in this case is 0.31, which is less
than the lowest LESP value of 0.39 seen in the curves in figure 20(a). This representative
example confirms that, for a motion for which the LESP never exceeds Lnet

crit, no LEV
formation occurs. Instead such motions evince massively separated flows.

9. Post-leading-edge-separation behaviour of LESP

As discussed in § 2.3, based on the understanding and knowledge available then, the
LDVM low-order model (Ramesh et al. 2014) assumed that after initiation of LEV
formation, the LESP remains constant until termination of the LEV formation. This
assumption worked well for the low-Re cases used in that work. One of the objectives
of the current work, in which the LESP is calculated from RANS CFD solutions, was
to study the behaviour of leading-edge suction after LEV initiation, and to improve the
low-order model based on the understanding gained. With this aim, this section presents
the results for the LESP behaviour after flow separation from the leading edge in cases
with and without LEV formation.

To understand the behaviour of the LESP, it is useful to recall how the suction
force is generated. Consider an aerofoil with attached flow at the leading edge, at a
positive angle of attack, as illustrated in figure 24. The stagnation point is located on
the lower surface. The upper-surface flow travels from the stagnation point towards the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

46
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.467


900 A25-28 S. Narsipur and others

f = 0.0, α = 26.9°, Lnet = 0.09

f = 10, α = 12.5°, Lnet = 0.19

f = 0.5, α = 21.6°, Lnet = 0.31

FIGURE 22. Vorticity (left) and velocity-magnitude (right) plots for the NACA 0012 aerofoil
(Re = 3 million, K = 0.005) for a case with no LEV.
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FIGURE 23. Variation of LESP with t∗ for the low-K motion (K = 0.005) of the NACA 0012
aerofoil at Re = 3 million.

leading edge and turns around the leading edge before flowing over the upper surface.
This flow curvature (κ) at the leading edge is associated with a low pressure region
which exerts a forward ‘suction force’ on the aerofoil. In analysing the behaviour of
the suction force as the leading-edge flow undergoes separation, we use the variation
of this outer-streamline curvature at the leading edge to provide an explanation for the
leading-edge suction behaviour. The outer-streamline curvature is estimated from the CFD
results by considering three points on a streamline just outside the boundary layer or shear
layer near the leading edge (shown in figure 24) to calculate the curvature.

The following sections are organised as follows. In § 9.1 we first present results for
cases with LEV formation and then in § 9.2 we present the low-K cases for which the
aerofoil stalls without LEV formation for the NACA 0012 aerofoil. Then § 9.3 draws
parallels between the LESP trends observed for the cambered SD7003m aerofoil with
those for the symmetric NACA 0012 aerofoil for the range of motions and Reynolds
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Variation of leading-edge suction during stall 900 A25-29
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FIGURE 24. Representation of the flow streamline curvature around the leading edge.

numbers covered in this work. To illustrate the importance of correctly modelling the
post-separation behaviour of LESP, § 9.4 presents an example result from a low-order
calculation of LEV shedding using the new insight gained from the current work. Finally,
§ 9.5 presents the trends in the slope of the LESP drop after leading-edge separation for
all cases simulated in this work to guide future efforts in modelling the LESP in low-order
methods.

9.1. Cases with LEV formation
Figures 25(a) and 25(b) show the variation with t∗ of inviscid and viscous LESP, and
streamline curvature, κ , respectively, for a NACA 0012 aerofoil at a Reynolds number of 3
million, pitching at K = 0.4, for the period of time starting from just prior to the initiation
of LEV formation to the termination of LEV formation. On these plots are marked eight
points corresponding to a sequence of events. The vorticity contours and streamline plots
for these eight time instants are shown in figure 26. From these two figures we see that at
event (a) the viscous LESP is nearly equal to the inviscid value because the leading-edge
flow is attached and the curvature is at a high value. At (b) and (c) we see the early
stages of an LEV being formed, resulting in the progressive deviation of the viscous LESP
from the inviscid curve, and the beginnings of a sharp drop in streamline curvature at
the leading edge. At points (d), (e) and ( f ) there is a shear layer at the leading edge that
feeds a growing LEV structure. As a result of the flow separation at the leading edge, the
streamline curvature is close to zero, and the viscous LESP values have large deviations
from the corresponding inviscid values. By the time instants corresponding to points (g)
and (h), the pitch angle of the aerofoil has started to decrease, resulting in the beginning
of the termination process for the LEV. From the flow images (figure 26), it is seen that
the streamline curvature has started to increase, which is also reflected in the κ variation
and in the decreasing difference between the inviscid and viscous LESP values (figure
25a). This example shows that (i) soon after LEV initiation, there is a drop in LESP, and
(ii) the reason for this drop is that the separation of the leading-edge flow results in a loss
in streamline curvature for the leading-edge flow.

Similar inferences regarding the suction behaviour post-LEV initiation can be made for
the NACA 0012 aerofoil undergoing a high-K motion with LEV shedding at a low-Re
by observing the trends in LESP and κ from figure 27, and the vorticity contours and
streamline plots from figure 28 for six time instants. Event (a) shows attached flow at the
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FIGURE 25. Variation of LESP and curvature with t∗ for the NACA 0012 aerofoil at Re = 3
million, K = 0.4, and pivoted at the quarter chord.

(e) (g) (h)

(a) (b) (c) (d )

( f )

FIGURE 26. Vorticity and streamline plots for the leading-edge region at eight time instants
corresponding to figure 25.

leading edge, negligible difference between viscous LESP from inviscid predictions and
a high curvature value. As the LEV starts to initiate at event (b), the deviation between
viscous and inviscid LESP starts to increase and a gradual drop in curvature is observed.
As the LEV grows (event (c)), figure 27(b) displays a sharp drop in curvature, with the
low value being maintained as the shear layer continues to feed into the LEV structure
(event (d)). Correspondingly, figure 27(a) shows an increasing difference between inviscid
and viscous LESP as the motion progresses from event (c) to (d). As LEV shedding
starts to terminate (event (e)) and flow starts to reattach at the leading edge (event
( f )), the deviation of viscous LESP from inviscid behaviour reduces and the curvature
increases. Overall, this example confirms the correlation between leading-edge suction
and streamline curvature, even for the low-Re cases.
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FIGURE 27. Variation of LESP and curvature with t∗ for the NACA 0012 aerofoil at
Re = 30 000, K = 0.4, and pivoted at the quarter chord.

(e)

(a) (b) (c)

(d ) ( f )

FIGURE 28. Vorticity and streamline plots for the leading-edge region at the six time instants
corresponding to figure 27.

9.2. Cases without LEV formation
For low pitch-rate cases (of which steady flow (K = 0) is a subset) in which LEV shedding
does not occur, a drop in LESP similar to that observed for the high-K case in § 9.1
occurs when flow separation reaches the vicinity of the leading edge. Figure 29 shows
the variation of (a) inviscid and viscous LESP and (b) leading-edge flow curvature (κ)
for a NACA 0012 aerofoil undergoing a low-K motion. Each row in figure 30 shows the
velocity-magnitude contour around the aerofoil, vorticity around the leading-edge region
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FIGURE 29. Variation of LESP and curvature for a low pitch-rate simulation without LEV
formation (NACA 0012, Re = 3 × 106, K = 0.005, 0◦ − 35◦ − 0◦ pitch-up-return, quarter-chord
pivot).

up to x/c = 0.25, the upper surface-Cnet
f at the leading edge and the Cnet

p vs y/c variation
up to the quarter chord for the eight time instances marked in figure 29(b). Figures 29
and 30 show that, at events (a) and (b), where there is boundary-layer separation on the aft
portion of the upper surface but flow at the leading edge is attached, the difference between
inviscid and viscous LESP is negligible and the curvature is high and constant. At event
(c), as flow starts to separate at the leading edge, viscous LESP starts to deviate from
inviscid behaviour and curvature starts to decrease. Further increase in the angle of attack
(event (d)) results in increased deviation of the viscous LESP from inviscid predictions and
a corresponding decrease in curvature. At event (e), when the angle of attack is maximum
and the degree of flow separation is at its highest for the motion, the deviation in LESP
reaches a peak value and the curvature is close to zero and is at its minimum. As the
aerofoil pitches down and the angle of attack decreases (events ( f ) and (g)), a favourable
pressure gradient is re-established on the upper surface, leading to flow reattachment
at the leading edge. A corresponding decrease in the difference between inviscid and
viscous LESP and an increase in flow curvature is observed. Once flow fully reattaches
at the leading edge at event (h), viscous LESP reaches a local maximum and proceeds
to return to inviscid behaviour with the flow curvature once again reaching its maximum
value. Observations from the current low-K case correspond well with the high-K example
discussed in § 9.1 in that, similar to cases where LEV shedding occurs, leading-edge flow
separation also causes a loss in streamline curvature, which in turn leads to a drop in
leading-edge suction. It is noted that, in these cases where there is no LEV formation, the
LEV signatures of inflection in the surface-Cnet

f and the surface-Cnet
p distributions are also

not present, confirming that the absence of those signatures are reliable indicators of the
absence of LEV formation.

9.3. Post-leading-edge-separation LESP behaviour for the SD7003m aerofoil
Figure 31 shows the time histories of the LESP for the SD7003m aerofoil undergoing (a)
a high-K motion with LEV shedding and (b) a low-K motion without LEV shedding for
both low- and high-Re cases.

As seen with the NACA 0012 aerofoil, the viscous LESP shows a more gradual deviation
from inviscid behaviour upon LEV initiation for the low-Re case as compared with the
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FIGURE 30. Velocity magnitude, vorticity, skin friction and pressure plots at the eight time
instants in figure 29 for the low pitch-rate simulation without LEV (NACA 0012, Re = 3 × 106,
K = 0.005, 0◦–35◦–0◦ pitch-up-return, quarter-chord pivot).
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FIGURE 31. Post-separation LESP trends for the SD7003m aerofoil: (a) high-K motion and
(b) low-K motion.

high-Re case for the high-K motion (figure 31a). For the low-K motion without LEV
shedding (figure 31b), the peak LESP does not exceed the Lnet

crit values of 0.14 and 0.41
(from figures 19b and 20b) for the low- and high-Re cases, respectively, reaffirming
the hypothesis that no LEV formation occurs when LESP does not exceed Lnet

crit for
the given aerofoil and Reynolds number. Additionally, the behaviour of the LESP after
leading-edge separation for the different motions of the SD7003m aerofoil is similar
to that observed for equivalent motions of the NACA 0012 aerofoil at both Reynolds
numbers.

9.4. Effect of the LESP drop on low-order modelling accuracy
To illustrate the importance of the insight gained here on the drop in LESP after LEV
initiation, an example high-Reynolds-number and high-K motion of the SD7003m aerofoil
is analysed using a version of the LDVM code (Ramesh et al. 2014) with the original and
modified implementations of the post-LEV behaviour of the LESP. The results from these
low-order implementations are compared with the computational results for this case in
figure 32. In the original implementation, labelled LOM1, the LESP is maintained at a
constant value of Lnet

crit during LEV shedding. In the modified implementation, labelled
LOM2, the LESP drops linearly from LESPcrit at LEV initiation to zero using a d(Lnet)/dt∗
slope that is close to the slope seen in the CFD result. Figure 32(a) compares the
LESP variations from the CFD and the two low-order implementations. Figure 32(b)
compares the low-order discrete-vortex plot from LOM1 with the vorticity distribution
from CFD, showing that the original low-order implementation results in an inaccurate
prediction of the location of the LEV structure. With the drop in LESP modelled, as seen
in figure 32(c), the location of the LEV structure predicted by the modified low-order
method (LOM2) agrees well with that seen in the CFD result. Although the d(Lnet)/dt∗
used in LOM2 was obtained from the CFD result, this example nevertheless illustrates
the importance of correctly modelling the post-separation behaviour of LESP, especially
for the high-Reynolds-number cases in which the critical LESP is high (usually > 0.4),
resulting in a significant drop. On the other hand, for low-Reynolds-number cases, because
the critical LESP is quite low (≈0.25 or less), not modelling the small drop did not
affect the accuracy of the low-order model noticeably. It is because of this reason that
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FIGURE 32. Effect of modelling the post-separation LESP drop on low-order results for the
SD7003m aerofoil at Re = 3 × 106, pitching about the quarter chord at K = 0.6: (a) LESP
variations from CFD, original model (LOM1) and modified model (LOM2); (b) discrete-vortex
plot from LOM1 compared with the vorticity plot from CFD at t∗ = 12.2; and (c) discrete-vortex
plot from LOM2 compared with the vorticity plot from CFD.
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FIGURE 33. Scatter plot of d(Lnet)/dt∗ after leading-edge separation for all cases.

the results in Ramesh et al. (2014) (all low-Reynolds-number cases) agreed well with the
experimental and CFD results even with the original implementation of the post-separation
LESP behaviour.

9.5. Rate of LESP drop after leading-edge separation
As demonstrated in § 9.4, in order to accurately model the LESP behaviour in
low-order methods, the data on the rate of LESP drop is useful. The compiled
post-leading-edge-separation d(Lnet)/dt∗ data for all the cases simulated in the current
work (table 1) have been plotted against instantaneous dα/dt∗ in figure 33. The
instantaneous dα/dt∗ used for the data corresponds to the value at initiation of LEV
formation (for cases in which the stall was the result of LEV formation) or the value at
which separation reached the leading edge (for cases in which stall occurred without LEV
formation). For the symmetric NACA 0012 and cambered SD7003m aerofoils at Reynolds
numbers 30 000 and 3 million, the d(Lnet)/dt∗ ranges from −0.25 to −0.008 for various
motion kinematics. This information can be used in future research to develop extensions
of LDVM-like low-order methods (Ramesh et al. 2014; Hirato et al. 2019; Narsipur et al.
2019) in which the post-separation LESP drop is modelled without the need to acquire
it from a CFD solution of that problem. An early version of such a low-order method is
described in Narsipur (2017) and Narsipur, Gopalarathnam & Edwards (2018).
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FIGURE 34. Comparison of CFD predictions with the experimental results of Gupta & Ansell
(2019) for a NACA 0012 aerofoil undergoing a constant pitch-up motion about the quarter chord
with k = 0.05 and Re = 0.50 × 106: (a) LESP vs t∗ and (b) Cl vs t∗.

9.6. Verification of trends in leading-edge suction with experimental data
All the data and resulting analysis presented in the above sections are based on
computational results. It is therefore prudent to verify the trends observed in LESP
behaviour with experimental data.

Figure 34 compares CFD results with experimental data from Gupta & Ansell (2019)
for a NACA 0012 aerofoil undergoing a constant pitch-up motion about the quarter chord
at a Reynolds number of 500 000. The LESP and Cl predictions from CFD simulations
are compared with experimental data in figures 34(a) and 34(b), respectively. Figure 35
compares the vorticity contour data from CFD simulations with the vorticity fields from
time-averaged particle image velocimetry measurements from the experiment at the instant
of LEV initiation (event I) and at a point where the LEV is well formed (event L). As
explained in § 3.4, the inflection in the Cnet

p could be used to identify the point of LEV
initiation (event I). However, due to the sparsity of pressure ports at the leading edge in
the experimental investigation, the Cnet

p distributions could not be reliably used to identify
event I. For the current case, the experimental vorticity field data was used to identify
event I.

It is seen that the LESP measurements from the experiment before LEV initiation
are higher when compared with CFD predictions. Experimental vorticity measurements
(figure 35) indicate the first sign of an LEV at α = 18.2◦ while the signature of event I
from the CFD solution was found to occur at a higher angle of attack (α = 25.2◦). After
LEV initiation, both CFD and experimental results show a drop in the suction force and a
continuous decrease as the LEV grows.

Lift results from the computations compare well with experimental measurements
(figure 34b). Both experimental and computational Cl show a linear increase in lift until the
point of LEV initiation, after which both methods show a nonlinear rise in lift. Overall,
while CFD predicts LEV initiation at a higher angle of attack, trends in LESP, lift and
vorticity flow fields compare very well with experimental measurements.

Next we consider experimental results for an S801 aerofoil undergoing a sinusoidal
pitching motion (αmean = 14◦, αamplitude = 10◦) about the quarter chord with k = 0.107
at a Reynolds number of 750 000 from wind tunnel experiments conducted by Ramsay,
Gregorek & Hoffmann (1996). Figure 36 shows (a) the leading edge Cnet

p vs y/c data
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I

L

FIGURE 35. Flow visualization data at events I and L from experiments (left) and CFD (right)
for a NACA 0012 aerofoil undergoing a constant pitch-up motion about the quarter chord with
k = 0.05 and Re = 0.50 × 106.

for three frames centred about event I, (b) the Cl variation and (c) the Lnet variation for
this case. The availability of a fine distribution of leading-edge pressure data helped in
accurately identifying the time instant of event I at t∗ = 4.44 from the inflection in the
Cnet

p vs y/c data (shown in figure 36a). The inset in figure 36(a) shows the evolution of
the inflection in Cnet

p at event I by plotting the Cnet
p vs y/c distribution at time instants

immediately before and after said event. An error of Δt∗ = 0.74 is assumed due to the
discrete time steps at which the experimental pressure data is available. An additional
confirmation of LEV initiation and development is available from figure 36(b) at the
point where a nonlinear increase in Cl occurs during the aerofoil’s upstroke, a behaviour
typically attributed to LEV formation (Leishman 2002), which in the current case lies
within the error bounds of the time instant at which the leading edge Cnet

p distribution
indicates event I. At and following event I, figure 36(c) shows a drop in LESP as the
LEV initiates and develops, thereby confirming the trends observed in the numerical
simulations.

In other experimental investigations, Deparday & Mulleners (2019) and Ansell &
Mulleners (2020) estimated the LESP from surface pressure and time-resolved particle
image velocimetry measurements of a sinusoidally pitching OA209 aerofoil (α = 20◦ ±
8◦, k = 0.05, quarter-chord pivot) at a Reynolds number of 920 000. The trends from
their work are similar to those seen in the current work, providing further experimental
confirmation for the observations made in the current work.

10. Conclusions

A large set of computational results from unsteady RANS simulations of pitching
aerofoils in incompressible flow, supplemented with a few experimental results from
the literature, were studied to examine the behaviour of the LESP before, during and
after flow separation from the leading edge, both in cases with LEV formation and in
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FIGURE 36. Experimental data for an S801 aerofoil undergoing a sinusoidal pitch motion of
14◦ ± 10◦ about the quarter chord with k = 0.107 and Re = 0.75 × 106 (Ramsay et al. 1996):
(a) Cnet

p vs y/c, (b) Cl vs t∗ and (c) Lnet vs t∗.

cases in which there is no LEV formation. Effects of aerofoil shape, Reynolds number,
pivot location and non-dimensional pitch rate on the LESP behaviour were quantified.
The instantaneous LESP for any case was extracted from the computational results by
integrating the instantaneous pressure distribution on the leading-edge portion of the
aerofoil, and this value was shown to match with the theoretical LESP for attached-flow
conditions. When flow separation is present, the CFD-derived ‘viscous LESP’ value takes
into consideration the viscous effects and, hence, deviates from the theoretical ‘inviscid
LESP’ value. It is this capability to extract the viscous LESP from CFD that provided the
ability to study the LESP behaviour even after leading-edge separation.

For all cases with LEV formation, the time instant for the initiation of LEV formation
could be reliably identified from inflections in the surface Cf and Cp distributions near
the leading edge. Conversely, for all cases without LEV formation, these signatures were
absent. For the former set of cases, the LESP values at LEV initiation, or critical LESP,
for a given aerofoil at a low Reynolds number of 30 000 were found to be independent of
pivot location and had a small dependence on the instantaneous pitch rate. These trends
agree with those in recent literature. For a high Reynolds number of 3 million, although the
variation with pitch rate was similar to that seen for the low-Re case, a considerable scatter
in the critical LESP was seen due to variation in the pivot location at high pitch rates. A
careful study of the problem led to the realization that, at high motion rates, the net velocity
of the aerofoil relative to the undisturbed fluid varies considerably with time during the
motion, and it is significantly different from the constant reference velocity typically
used for non-dimensionalizing pressures, forces and LESP. Using an expression derived
from theory for the ratio of the net velocity to the forward velocity, an updated LESP
formulation was developed. With this updated LESP, the scatter due to the effect of pivot
location on the high-Re critical LESP values for LEV initiation is dramatically reduced,
leaving only the small variation of critical LESP with pitch rate. For the low-Re cases,
the updated LESP formulation did not change the results for LEV initiation appreciably
except for cases with high pitch rates and aft pivot locations, which form outliers in the
data. It was shown that these outliers also had leading-edge flow features not present in
the other cases. The reasons for these deviations are not clear and need further study.
Nevertheless, this correlation between the deviation in the leading-edge flow from that
for other cases and the deviation in the updated-formulation critical LESP values from
expected trends provides support for the validity of the updated LESP formulation. In
earlier work, the small increase in critical LESP with increase in pitch rate was attributed
to the fact that the inviscid LESP does not take into consideration the effect of trailing-edge
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flow separation, which is increasingly present as the pitch rate reduces. The current work,
however, shows that this trend is present even in the CFD-derived viscous LESP values,
leading to the conclusion that a decreasing amount of trailing-edge flow separation alone
does not explain the increase in critical LESP with pitch rate. For any given aerofoil,
the critical LESP was seen to increase with Reynolds number. This behaviour is to be
expected, as the predicted level of boundary-layer separation at higher Reynolds numbers
is typically delayed compared with lower Reynolds numbers due to the energizing effects
of modelled turbulence.

At low pitch rates, the aerodynamic behaviour is characterized by boundary-layer flow
separation moving from the trailing edge towards the leading edge, resulting in massive
separation with no LEV formation. For these cases, the peak LESP value was seen to be
less than the critical LESP for LEV initiation, demonstrating that the LESP reaching the
critical value is necessary for formation of the LEV. Irrespective of whether or not an LEV
formed, soon after leading-edge flow separation, the LESP was seen to drop sharply to a
value close to zero. By estimating the curvature of the outer-flow streamline at the leading
edge, it is shown that this decrease in LESP is correlated with the decrease in streamline
curvature due to the leading-edge flow separation. More specifically, the deviation of
the viscous LESP from the inviscid value is seen to be well correlated with the loss in
streamline curvature due to leading-edge flow separation. When the leading-edge flow
reattaches due to a reduction in the pitch angle during the downstroke, the leading-edge
streamline curvature increases again, and the viscous LESP again becomes close to the
inviscid value. The observation that the LESP drops after leading-edge separation is an
important finding because it can be used to improve the accuracy of low-order models for
unsteady aerofoils with LEV shedding.

While the LESP behaviours determined using the results of unsteady RANS simulations
are in agreement with those determined from experiments, future work could focus on
verification of these results using high-fidelity CFD methods like large-eddy simulations.
Three interesting research questions that could form the focus of a future investigation
are as follows. (i) What is the fundamental reason for the variation in critical LESP
with aerofoil shape and Reynolds number? (ii) What is the reason for the small, but
nevertheless noticeable, change in critical LESP with non-dimensional pitch rate? (iii)
What factors affect the rate of decrease in LESP after leading-edge separation? Addressing
these questions would help further advance our understanding of leading-edge flows and
improve our ability to model aerofoil stall.

The surface data from CFD and time histories of the inviscid and viscous forces and
LESP for all 115 motions presented in this paper have been provided in the supplementary
material at https://doi.org/10.1017/jfm.2020.467.
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Supplementary material

Supplementary material are available at https://doi.org/10.1017/jfm.2020.467.

Appendix. Detailed LESP and flow results for LEV initiation

This appendix presents detailed results for the NACA 0012 aerofoil at two Reynolds
numbers, Re = 30 000 and 3 million, in figures 37 and 38, respectively. In each of the
figures, subfigure (a) presents the results for the medium pitch-rate motions (K = 0.05)
and subfigure (b) for the high pitch-rate motions (K = 0.4). The results are co-plotted for
three pivot locations for each subfigure: leading edge (LE), half-chord (HC), and trailing
edge (TE). In each case, the plots focus only on the t∗ from shortly before LEV initiation
to shortly after LEV formation. For each pitch rate (each subfigure), the top row shows the
variation of inviscid and viscous Lref with t∗ for the three pivot locations, with the time
instants of event I marked for each. The next row shows the time variation of Unet/Uref ,
with the time instants for event I (LEV initiation) marked for each pivot location. The
third row presents the time variations of the inviscid and viscous Lnet for the three pivot
locations. The last three rows present vorticity and velocity-magnitude plots at event I for
the leading-edge, half-chord, and trailing-edge pivots, respectively.

Examining the results for the low-Re, medium-K cases in figure 37(a) first, we see that
Unet/Uref does not deviate much from the value of 1 at any time during the motion, because
of which there is no noticeable difference between the time variations of the Lref and the
Lnet curves. The three flow-field subfigures show that, although there is an increase in
pitch angle for event I from 11.5 to 16.2 degrees with change in the pivot location from
leading edge to trailing edge, the LESP values are the same.

When examining the results for the low-Re, high-K cases in figure 37(b) next, we see that
the Unet/Uref curves for the leading- and trailing-edge cases have maximum deviations of
±0.3 from the value of 1. As a result, the Lnet curves for the leading-edge and trailing-edge
cases are noticeably different from the corresponding Lref curves. However, whether or not
there is a substantial difference between Lnet and Lref for LEV initiation for any particular
pivot location depends on the value of Unet/Uref at event I. Because event I occurs at a
low pitch angle of 15 degrees for the leading-edge case, Unet/Uref is close to 1, at 1.08,
and there is little difference between Lnet and Lref for event I for this pivot location. On
the other hand, for the TE pivot, event I occurs at a large pitch angle of 58 degrees at
which Unet/Uref is 0.7. This deviation of Unet/Uref from the value of 1 results in a larger
difference between Lnet and Lref for event I for this case. In general, except for the high-K,
aft-pivot cases which form the outliers in figure 19, event I for the low-Re cases occurs
at low pitch angles at which Unet/Uref is close to 1, resulting in only small differences
between Lnet and Lref for LEV initiation.

For the high-Re condition, examining the results for the medium-K cases in figure 38(a),
we see similarity with the low-Re, medium-K results. Because Unet/Uref (t), which is
independent of Re, does not deviate much from the value of 1 at any time during the
motion, there is no noticeable difference between the time variations of the Lref and the
Lnet curves. However, the values of L for event I for all three pivot cases for the high-Re,
medium-K cases are higher than those for the corresponding low-Re, medium-K cases. As
already mentioned in § 5.2, this difference can be attributed to the delayed boundary-layer
separation at the higher Reynolds numbers due to the energizing effects of modelled
turbulence.

The most significant effect of the updated LESP formulation is seen at the high-Re and
high-K conditions. Examining the results in figure 38(b), it is seen that event I occurs
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FIGURE 37. Plots of L and Unet/Uref vs t∗ variations, and flow contours for the NACA 0012
aerofoil at Re = 30 000 for three pivot locations for (a) K = 0.05 and (b) K = 0.40.

at high pitch angles of between 43 and 76 degrees. As a result, the values for Unet/Uref
for event I for the LE and TE pivot cases (which are 1.3 and 0.75, respectively) deviate
substantially from the value of 1, and result in substantial differences between the Lref

and the Lnet for event I for the non-half-chord pivot locations. It is as a result of this
velocity scaling that the large scatter in Lref for event I for different pivot locations seen
in figure 16 is substantially removed in figure 20 when the updated formulation with Lnet

is used.
Finally, it is also interesting to note that the Lnet(t) curves for the three high-K pivot

cases (at either Reynolds number) all have maximum values that are close to each other.
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HC, Event I: α = 62.2°, Lnet = 0.51
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FIGURE 38. Plots of L and Unet/Uref vs t∗ variations, and flow contours for the NACA 0012
aerofoil at Re = 3 million for three pivot locations for (a) K = 0.05 and (b) K = 0.40.

This behaviour is not seen with the Lref (t) curves. This result shows that the Lnet(t) better
captures the maximum possible suction that the aerofoil leading edge can support at a
given Reynolds number even between different motion cases.
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