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We use resolvent analysis to develop a physics-based, open-loop, unsteady control strategy
to attenuate pressure fluctuations in turbulent flow over a rectangular cavity with a
length-to-depth ratio of 6 at a Mach number of 1.4 and a Reynolds number based on cavity
depth of 10000. Large-eddy simulations (LES) of the baseline uncontrolled flow reveal
the dominance of Rossiter modes II and IV that generate high-amplitude unsteadiness
via trailing-edge impingement and oblique shock waves that obstruct the free stream.
To suppress the oscillations, we introduce three-dimensional unsteady blowing along the
cavity leading edge. We leverage resolvent analysis as a linear model with respect to the
baseline flow to guide the selections of the optimal spanwise wavenumber and frequency of
the unsteady actuation input for a fixed momentum coefficient of 0.02. Instead of choosing
the most amplified resolvent forcing modes, we seek a disturbance that yields sustained
amplification of the primary response mode-based kinetic energy distribution over the
entire cavity length. This necessary but not sufficient guideline for effective mean flow
modification is evaluated using LES of the controlled cavity flows. The most effective
control case reduces the pressure root mean square level up to 52 % along cavity walls
relative to the baseline and is approximately twice that achievable by comparable steady
blowing. Dynamic mode decomposition on the controlled flows confirms that the optimal
actuation input indeed suppresses the formation of the large-scale Rossiter modes. It is
expected that the present flow control guideline derived from resolvent analysis will also
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be applicable at higher Reynolds numbers with the aid of physical insights and further
validation.

Key words: flow control, compressible flows, instability

1. Introduction

Flows over open cavities are full of rich physics owing to the natural feedback mechanism
imposed on top of broadband turbulence. Disturbances arise from the cavity leading
edge and form large vortical structures in the shear-layer region due to the amplification
of Kelvin—Helmholtz instabilities. These large-scale structures impinge on the cavity
trailing edge, generating strong acoustic waves and intense pressure fluctuations. The
acoustic waves propagate upstream over the cavity in subsonic regions, instigate the
Kelvin—Helmholtz instabilities in the shear layer, and produce a self-sustained feedback
oscillation. In the case of supersonic cavity flow, the fluctuations are accentuated by the
appearance of shock waves, which can cause structural damage (Mcgregor & White 1970).
Because cavity flows appear in a wide range of engineering applications, including landing
gear wells, aircraft bays, vehicle sun roofs and high-speed trains, there is a strong interest in
attenuating the pressure fluctuations over the cavity with flow control techniques (Rowley
& Williams 2006; Cattafesta et al. 2008).

A large number of studies have focused on analysing the shear layer over the cavity in
an attempt to explain the cavity flow unsteadiness. Krishnamurty (1955) described the
resonant oscillations associated with acoustic tones in cavity flows. Shortly thereafter,
Rossiter (1964) derived the well known semiempirical formula to predict the frequencies
of the anharmonic resonant tones in cavity flows, which was slightly modified by Heller,
Holmes & Covert (1971). Extensive research has since been carried out to understand
the amplitude and other characteristics of cavity flows for different cavity geometries,
incoming flow conditions and Reynolds numbers (Rockwell & Naudascher 1979; Colonius
2001; Rowley & Williams 2006; Lawson & Barakos 2011).

As visible flow structures emerge in cavity flows, modal analysis techniques have
been applied to extract the dominant flow features and to understand the underlying
flow mechanisms (Taira et al. 2017, 2020a; Taira, Hemati & Ukeiley 2020b). Subsonic
cavity flow fields obtained from experiments have been examined by Murray, Sallstrom &
Ukeiley (2009) with a purely spatial application of the proper orthogonal decomposition
(POD). Their analysis revealed that the most energetic modes are the shear-layer
modes, whose spatial structures remain similar throughout the subsonic regime.
In addition to the primarily two-dimensional shear-layer mode associated with the
Kelvin—Helmholtz instability, a three-dimensional centrifugal instability stemming from
the large recirculation inside the cavity has been analysed with experimental (Plumblee,
Gibson & Lassiter 1962; Maull & East 1963; Faure et al. 2007, 2009; Larchevéque, Sagaut
& Labbé 2007) and numerical approaches (Bres & Colonius 2008; De Vicente et al.
2014; Sun et al. 2017a). Faure et al. (2007) revealed the evidence of three-dimensional
structures inside of the cavity. They showed that the dynamics of the structures were
not due to the secondary shear layer instabilities. Brés & Colonius (2008) used biglobal
instability analysis (Theofilis 2011) to examine three-dimensional (spanwise) instability of
the two-dimensional mean cavity flow. The identified spanwise (centrifugal) instability
within the cavity possesses a frequency that is an order of magnitude lower than
those associated with the two-dimensional shear-layer instabilities. Recent studies have
examined the influence of Mach number and sidewalls on the low-frequency oscillation
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inside the cavity (Beresh, Wagner & Casper 2016; Liu, Gémez & Theofilis 2016; Sun
et al. 2017a,b; Picella et al. 2018).

Numerous passive and active control strategies have been developed with varying
degrees of success to suppress the dominant oscillations (Cattafesta er al. 2008). A few
examples are highlighted below to demonstrate the persistent need for physics-based
studies to guide flow control actuation design. Ukeiley er al. (2004) performed an
experiment with a small cylinder suspended above the leading edge of the cavity following
the work of McGrath & Shaw (1996). The results showed that lifting the shear layer
away from the cavity led to significant suppression of the pressure fluctuations, but the
performance was highly dependent on the placement of the cylinder. Sarno & Franke
(1994) used a static fence along the leading edge of the cavity to manipulate the shear
layer and suppress the cavity flow oscillations. However, the magnitude of suppression was
again highly dependent on the modal frequency and the flow conditions. This phenomenon
of suppression degradation associated with a deviation from the design condition is a
common characteristic of passive flow control strategies.

Active flow control can provide adaptive capability over a wide range of flow conditions
(Colonius 2001; Rowley & Williams 2006; Cattafesta & Sheplak 2011). Vakili & Gauthier
(1994) experimentally studied the effectiveness of steady injection from the leading edge
to control the unsteadiness in supersonic cavity flow. Moreover, recent studies have
investigated the effect of spanwise spatial variations of steady blowing, which showed
that the three-dimensional steady injection outperforms its two-dimensional counterpart in
terms of suppression and efficiency (Lusk, Cattafesta & Ukeiley 2012; George et al. 2015;
Sun et al. 2019; Zhang et al. 2019). Rizzetta & Visbal (2003), for example, performed
a number of large-eddy simulations (LES) on the suppression of cavity flow oscillations
using pulsed injection at very high frequency. This type of control suppresses resonant
acoustic oscillations with even lower energy input compared with steady injection, but
high-frequency forcing at sufficient amplitude in high-speed flows remains a challenge for
current actuators (Cattafesta & Sheplak 2011). While there have been a number of similar
studies on unsteady control of cavity flows, there has not been a systematic investigation on
the input—output characterization of high-speed cavity flows with a focus on both forcing
frequency and three-dimensionality.

To shed light on these open questions, the present study considers the use of
resolvent analysis (Trefethen et al. 1993; Jovanovi¢ & Bamieh 2005) with respect to the
time-averaged base flow (McKeon & Sharma 2010). Nakashima, Fukagata & Luhar (2017)
capitalized on resolvent analysis to elucidate the control mechanism of the suboptimal
control on coherent structures in the wall-bounded turbulent flows. Yeh & Taira (2019)
used the insights from resolvent analysis to design active thermal actuation to suppress
flow separation over an airfoil. They used the response mode and the gain from resolvent
analysis to form a metric to quantify momentum mixing and to select control parameters.
The chosen control parameters were shown to identify effective control set-ups with
companion LES.

Resolvent analysis has also been used by Leclercq et al (2019) to design a
closed-loop strategy to suppress oscillations in a two-dimensional laminar cavity flow.
However, additional progress is required to develop resolvent-analysis-based flow control
approaches for high-speed turbulent cavity flow, which possesses complex physics beyond
the two-dimensional, laminar, incompressible flow. In the present study, we demonstrate
the use of resolvent analysis as a physics-driven approach to systematically design an
effective open-loop control technique for supersonic turbulent cavity flows with rich
three-dimensional turbulence and shock dynamics. A design metric is introduced to
evaluate the effectiveness of perturbation amplification over the length of the cavity,
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which sheds light on the appropriate parameter space for flow control. Thereafter, we
perform LES of controlled flows according to the identified control parameters based
on the resolvent-based design metric. The achieved control effects in terms of pressure
fluctuation reduction over the cavity are evaluated. The design metric in this work is
treated as a necessary condition for effective control but not a sufficient condition to
identify the optimal set-up, which calls for validation with companion LES, albeit being a
reduced number of cases to consider. This is expected as the high-speed cavity flow at the
considered Reynolds number is turbulent (nonlinear) with a broad range of spatiotemporal
scales. We also analyse the underlying control mechanisms by studying the coherent
structures using the dynamic mode decomposition (DMD) (Rowley & Williams 2006;
Schmid 2010).

The current paper is organized as follows. We present in §2 the details of the open
cavity flow problem, the open-loop control set-up and the resolvent analysis framework.
Turbulent supersonic cavity flow characteristics, the properties of the response and forcing
modes from resolvent analysis, and three-dimensional dynamic coherent structures are
presented and examined in §3 to identify effective control parameters for unsteady
cavity open-loop flow control. Based on the insights gained from resolvent analysis,
we then perform a series of controlled cavity flow simulations, illustrate the underlying
control mechanism, and correlate the control effect to the resolvent mode in § 4. Finally,
concluding remarks are offered in § 5.

2. Approaches
2.1. Problem set-up

We consider spanwise-periodic supersonic turbulent flows over a rectangular cavity with a
length-to-depth ratio of L/D = 6 at a free stream Mach number of My, = too/dco = 1.4,
where s, and a are the free stream velocity and sound speed, respectively. The Reynolds
number based on the cavity depth is Re = poolicoD/hoo = 10000 with ps and jteo
being the free stream density and dynamic viscosity, respectively. In the present study, all
variables are non-dimensionalized; namely, lengths by the cavity depth D, temperature by
T, pressure by (,ooougo) /2, density by ps, and time by D/u.. The initial boundary layer
thickness at the leading edge is set to be 6p/D = 0.167. The domain has spanwise periodic
boundary conditions imposed with a spanwise periodicity of W/D = 2. The results using
the present computational set-up exhibited good agreement with experimental results
(Zhang et al. 2019) in which the width of cavity is equal to the spanwise extent of test
section in the wind tunnel. The sidewall effects have been investigated rigorously in
our past study (Sun et al. 2019). The sidewalls influence the amplitudes of the Rossiter
resonant tones but not the frequencies. Moreover, the qualitative control effectiveness is
not significantly influenced by the spanwise boundary condition (spanwise periodicity or
no-slip sidewall). Hence, the use of spanwise periodic boundary conditions in the present
work is appropriate to capture the important flow features.

We study the turbulent cavity flow with LES using a compressible flow solver, CharLES
(Khalighi et al. 2011; Bres et al. 2017). The solver is based on a second-order finite-volume
discretization and a third-order Runge—Kutta time integration scheme. For the present
LES, Vremen’s subgrid scale model (Vreman 2004) is utilized and the Harten—Lax—van
Leer contact scheme (Toro, Spruce & Speares 1994) is used to capture shocks in the
supersonic flows. Random Fourier modes are superimposed to the one-seventh power
law velocity profile to simulate unsteady fluctuations from the inlet (Bechara et al. 1994).
No-slip and adiabatic wall boundary condition is specified along the cavity walls. A sponge
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Figure 1. Set-up for computational domain and boundary conditions. Domain A is used for the baseline and
controlled LES cases. Domain B is used for resolvent and DMD analyses. The right-hand insert depicts the
unsteady actuation control profile for 8. = m. The figure is not to scale.

6D

boundary condition is applied at the far field and outlet boundaries to damp out exiting
waves and prevent numerical reflections.

The computational set-up for the present study is shown in figure 1. A Cartesian
coordinate system is used with its origin placed at the spanwise centre of the cavity leading
edge, with x, y and z denoting the streamwise, wall-normal and spanwise directions,
respectively. The computational domain extends upstream and downstream by three and
seven times of the cavity depth, respectively. The far field extent is set to be nine
times of the cavity depth. The computational domain is discretized with a structured
mesh with 14000000 cells for the baseline and 16000000 cells for the controlled
simulations, for which mesh refinement is applied in the vicinity of the actuators. This
computational set-up has been verified to accurately characterize flow properties observed
in experimental studies (Sun et al. 2019; Zhang et al. 2019). A small three-dimensional
domain, labelled as domain B in figure 1, is used for the modal analyses. It has a upstream
length equal to the cavity depth. The downstream and far field boundaries are placed five
times of cavity depth away. The grid size for domain B is approximately 70 000 cells.

2.2. Unsteady actuation set-up

We perform active control of the cavity flow by introducing unsteady blowing and suction
along the leading edge of the cavity through a mass flux boundary condition, as illustrated
by the blue dashed line in figure 1. The actuator is located at x, = —0.0698/D with a
streamwise slot extent of A, = 0.0175/D following our previous experimental studies
(Lusk et al. 2012; George et al. 2015; Zhang et al. 2019). The unsteady actuation is
prescribed with a wall-normal velocity profile of

Ujer (X, 2, 1) = Asin(wc 1) D (x, X, A¢) cos(Be2), (2.1)

where A is the actuation amplitude, @, and S, are the actuation frequency and spanwise
wavenumber, respectively. In what follows, we report the actuation frequency w, through
its dimensionless cavity length-based Strouhal number St, = w.L/(2Tu,). The spatial
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velocity profile for the actuator is given by

@ (x, xe, Ac) = 7 {1+ tanh [k (x — xc + Ac/k2) ]} {1 — tanh [k (x — xc — Ac/x2)]}
(2.2)

along the streamwise direction to avoid the velocity discontinuity at the edge of the
actuator. Here, we choose x; = 2000 and k2 = 2.6. The actuation frequency and spanwise
wavenumber will be selected based on the resolvent analysis as discussed later in § 2.3.
The actuation efforts in this study are reported in terms of the unsteady momentum
coefficient defined by
J

/
=T e

n (2.3)

where J = (poow/2T) fT[ s tjer (x, 2, )?dsdt is the integral of momentum over the
actuation area S and the period of the unsteady control actuation 7, = 2m/w.. The
denominator is the equivalent incoming free stream momentum through the boundary
layer height at the leading edge of the cavity. In the present study, we set the unsteady
momentum coefficient to be C/, = 0.02, following canonical values from past unsteady
control studies (Shaw 1998; Williams, Cornelius & Rowley 2007; Elimelech, Vasile &
Amitay 2011).

The control effects are assessed using the surface integrated root mean square (r.m.s.)

pressure on the aft and bottom walls (f)) defined as
(ﬁrms,c - larms)

prms

Afrms = . where pyms = f s g (2.4)

and P,y ¢ 1s the surface integrated pressure fluctuation for the controlled cavity flows. The
variable Ap,,;s quantifies the relative change of normalized r.m.s. pressure fluctuations
over the cavity walls. Later in this paper, we show via resolvent analysis that the above
actuator location is indeed appropriate for amplifying the injected perturbation over the
cavity.

2.3. Resolvent analysis

Resolvent analysis is used to reveal the flow response to harmonic forcing input with
respect to a given base state. In the analysis, we assume the flow g(x, ) can be expressed
through Reynolds decomposition

qix, 1) = q(x) + 4 (x, 1), 2.5

where g(x) is the time-invariant base state and ¢’ (x, 7) is the fluctuation. Traditionally, the
base state g is taken to be an equilibrium state (Trefethen ef al. 1993; Jovanovi¢ & Bamieh
2005; Trefethen & Embree 2005). In the present study, we consider the time-averaged
turbulent cavity flow as the base state with fluctuations being statistically stationary
(McKeon & Sharma 2010).

By substituting the Reynolds decomposed state variable (2.5) into the Navier—Stokes
equations, the governing equation for the fluctuation ¢’ becomes

/

d g
3—qt = L@q +f", (2.6)

where L(g) denotes the compressible linearized Navier—Stokes operator about g. Here, f”
is viewed as the forcing input comprised of the sum of remaining terms including the
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nonlinear terms, which can be interpreted as internal forcing in turbulent flow about the
base state due to nonlinear interactions (McKeon & Sharma 2010).

In the present study, we consider the three-dimensional turbulent cavity flow with
spanwise periodic boundary conditions. Hence, the time- and spanwise-averaged flow is
used as the base state g. The fluctuation ¢’ and forcing f” are expressed as Fourier modes
with real spanwise wavenumber 8 and frequency w such that

q(x.0=g(x.y)exp(Bz+wn), f(x.0)=F(y)exp((Bz+on). (27Tab)

Note that the dimensional spanwise wavenumber S, is related to the spanwise wavelength
of the control disturbance by 8. = 21/ A, and is normalized as 8 = B.D such that A./D =

21/B.
Substituting the modal expressions (2.7a,b) into (2.6), we can find the relationship

between the forcing f' (x, y) and the fluctuation g(x, y) for each combination of (w, B):
G p = liol— L@ P f, 5= HG ».p)f, . 2.8)

Here, the operator H(q; w, B) = [iwl — L(gq, ﬂ)]*1 is referred to as the resolvent operator,

which serves as the transfer function between the forcing (input) fw p and the response
(output) g,,. p about the base state g for the given frequency @ and spanwise wavenumber
B (Jovanovi¢ & Bamieh 2005; McKeon & Sharma 2010; Schmid & Henningson 2012).

Since the resolvent operator serves as the transfer function between the response (output)
and the forcing (input), the stability property of the transfer function, more specifically the
linear operator L(g, 8), must be evaluated first. We perform stability analysis on the linear
operator L(g, B) to examine if the flow system is stable or unstable. The analysis forms an
eigenvalue problem as

LG B)ip = Adp. 2.9)

where A = A, + i4; with 4; representing the temporal frequency of the perturbation and A,
being the growth (4, > 0) or decay (4, < 0) rate of the perturbation.

For a stable base state (1, < O for all A), we can directly perform resolvent analysis
to examine asymptotic energy amplification in the flow system to the harmonic forcing.
However, for an unstable base state, perturbations grow exponentially for this linear
framework and overshadow the system response to the harmonic forcing (although the
fluctuations will saturate in the full nonlinear flow). Thus, care is needed to obtain
meaningful physical insight from resolvent analysis. Hence, we focus on highlighting
amplifications that occur on a shorter time scale than any existing instabilities with
respect to the base flow. Here, we consider the use of exponential discounting (Jovanovic¢
2004; Yeh et al. 2020) to analyse the unstable base flow. This discounting approach
applies a temporal damping e *’ to the variables in (2.6) as [q,.f ] =¢"[q,f].
Upon substitution, we arrive at an input—output relation between the Fourier-transformed

discounted variables g, ,, 5 and fk,w, g as

Gewp =H@ Kk 0, B)fr0p. (2.10)
with the discounted resolvent operator
H(G: k. 0, B) = [(k +io) — LG B)] . @2.11)

The discounted resolvent analysis is performed by choosing the discounting parameter
k > max(4,) to characterize the forcing-response process over a shorter time scale than
the dominant base-flow instabilities.
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The discounting approach can be viewed as performing the analysis on a modified
linear operator where all of its eigenvalues are shifted towards the stable plane by the
discounting parameter x (Yeh & Taira 2019). Alternatively, an eddy-viscosity model for the
nonlinear internal forcing can also be considered (Reynolds & Hussain 1972; Morra et al.
2019; Pickering et al. 2019). Compared with the discounting approach where the damping
is a constant over the frequency—wavenumber space, eddy-viscosity models introduce
stronger damping for higher wavenumbers and frequencies. In the present context of
flow control, we choose the discounting approach to focus on energy amplifications
that occur faster than any existing base-flow instabilities, instead of the frequency and
wavenumber-dependent damping technique.

To assess the optimal energy amplification of the system, the resolvent analysis is cast in
the framework of singular value decomposition (SVD) of the resolvent operator H under
the compressible energy norm (Chu 1965)

) — 2

C,T

E:/[%+ﬁ(u2+v2+w2)+pl’ ]ds, (2.12)
sLvpo T

which yields
1 _1
W:H(g; 0, )W, * = QZF*, (2.13)

where W, is the weight matrix based on the compressible energy weight above and S
is the area of analysis as illustrated in figure 1. The matrix Q@ = [q,, ¢, - - -, ,,] holds

the set of response modes and the right matrix F = [ fi S, ..., f,] contains the set of
forcing modes. The superscript * denotes the Hermitian transpose. The singular values
X = diag(oy, 02, ..., 0,) represent the amplification between the response and forcing
modes in descending order. The SVD is performed within the ARPACK package with a
Krylov space of 32 vectors and a residual tolerance of 10~7. The results converge to at
least seven significant figures and verified to be independent with respect to the domain
size and mesh resolution (Sun et al. 2020).

3. Uncontrolled cavity flow
3.1. Baseline flow characteristics

The baseline supersonic turbulent flow over the rectangular cavity at Moo = 1.4 and Re =
10 000 is considered. The instantaneous flow is visualized in figure 2 using an isosurface of
the Q-criterion coloured by the pressure coefficient. The background shows the numerical
schlieren with ||V p| to capture the waves. The incoming flow forms a shear layer that
emanates from the leading edge of the cavity. The shear layer rolls up into large spanwise
vortices at approximately one third of the cavity length, generating large fluctuations over
the cavity. Once the large spanwise vortices reach the middle of the cavity, there is a loss
of spanwise coherence corresponding to the emergence of small-scale vortical structures.
In supersonic cavity flows, the large-scale structures obstruct the free stream and create
compression waves. Moreover, the impingement of these vortical structures onto the aft
cavity wall generates strong waves that travel upstream within the subsonic region. The
vortical and pressure fluctuations produce a high level of unsteadiness in and above the
cavity. Towards the aft of the cavity, there is a complex interplay between the shear layer,
the impingement of the vortical structures on the aft wall, and the recirculation within the
cavity.

High levels of unsteadiness emerge along the aft wall due to the impingement
of vortical structures and within the shear layer from the formation of the large-scale
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Figure 2. Instantaneous cavity flow visualized with the Q-criterion Q(D/u0)* = 10 coloured by
Cp=(p—px)/ ((poougo) /2) at M, = 1.4. Numerical schlieren is shown in the background in greyscale.

(@) (b) o -
: i |[—(0.75,0,0)

-10 ; 5 —3,0,0)
_ ' ' -(5.25,0,0)
B-20 RN
a
wn

y/D -

-1

St;

Figure 3. (a) The r.m.s. pressure, pus/((Poo ugo) /2), along the cavity surfaces and x—y plane along z/D = —1.
(b) Power spectral analysis of pressure p/ ((poougo) /2) at three probe locations along the shear layer. The
shading indicates uncertainty bounds representing 95 % confidence intervals. The predicted Rossiter mode
frequencies from (3.1) are indicated by the black dashed lines.

vortical structures. The normalized r.m.s. pressure fluctuations are presented in figure 3(a).
Here, the large r.m.s. levels along the cavity trailing edge are seen in the shear layer near the
middle (2 < x/D < 4) of the cavity and above the cavity from the unsteady compression
waves.

Power spectral densities of the fluctuations at three representative locations of
(x,y,2/D = (0.75,0,0), (3,0,0) and (5.25,0, 0) along the shear layer are shown in
figure 3(b). Welch’s method is used with a frequency resolution of 16 Hz, a Hanning
window and 75 % overlap. The dominant oscillation frequency shifts as the flow advects
over the cavity. We can compare the spectra with the resonance frequencies predicted by
the modified Rossiter’s semiempirical formula (Heller et al. 1971)

fL n—ao

St = — = s
Uso  1/k+Moo/\/1+ (y — 1)MZ, /2

(3.1
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(a) 2- (b) 2+

Figure 4. Spatial structures of DMD modes visualized with real streamwise velocity isosurface (£0.3) with
(a,c) St = 0.6 and (b,d) St; = 1.33.

where the specific heat ratio is y = 1.4, the average convection speed of disturbances
in shear layer is k = 0.65 and the phase delay o = 0.38 (Zhang et al. 2019) for the
nth Rossiter mode. At x/D = 0.75, the primary oscillation appears at St;, = 0.6 with a
low amplitude. Once the flow reaches x/D = 3, the dominant frequency corresponds to
Rossiter mode IV, whose Strouhal number is St; = 1.33. At the trailing edge, the dominant
frequency shifts to the lower Rossiter mode II frequency St;, = 0.6, with a substantial
reduction in the oscillation amplitude. The shift in the dominant oscillation frequency as
the vortical structures convect over the cavity suggests strong nonlinear interactions in the
flow.

To identify the flow structures corresponding to the peak frequencies, we perform DMD
(Rowley et al. 2009; Schmid 2010) on the snapshots of the flow field. The DMD analysis
is performed on the whole three-dimensional flow field, without decomposing the flow
into spanwise Fourier components. The whole flow field is examined with DMD to study
the possibility of spanwise mixing for each frequency, which becomes important when we
later assess flow control effects. Convergence of the DMD modes was ensured by varying
the number of snapshots used in the analysis. Both the frequencies and modal structures
computed by using the full set of snapshots and half of such data did not exhibit any
significant differences, substantiating the discussions to follow.

Isosurfaces of the streamwise velocity component of the DMD modes at the frequencies
of Sty = 0.6 and 1.33 are shown in figure 4. The DMD modes capture the shear-layer
modes associated with the respective single frequency. By comparing the spatial structures
for these two frequencies, it is observed that the DMD mode for St;, = 0.6 possesses larger
structures in both the streamwise and vertical directions. In contrast, the structures in the
DMD mode for St;, = 1.33 are reduced in size by approximately one half. Noteworthy
here is that these two DMD (shear layer) modes exhibit spatial variations with the same
dimensionless spanwise wavenumber of § = 1 as seen in the top views of figure 4. In
what follows, we perform resolvent analysis on the time-averaged flow and examine the
energy amplification of the system to external forcing. We then use the information from
DMD and resolvent analysis to guide the design of an effective flow control approach.

3.2. Resolvent spectra and modes

As we initiate the resolvent analysis of the turbulent cavity flow, stability analysis is
first performed on L(g; B) to evaluate its stability properties. The eigenspectra and
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Figure 5. (a,b) Eigenspectra and pseudospectra of L(g; B) for spanwise wavenumbers 8 = 7 (a) and 37 (b).
The magenta dots indicate the growth rates and frequencies of L(g; 8). The dashed line indicates the neutral
stability line. The contour plots visualize the pseudospectra. (¢) The (1) centrifugal and (2) shear-layer modes
visualized by the real component of the streamwise velocity. The locations of their eigenvalues are indicated
on panel (a).

pseudospectra are shown in figure 5(a,b) for two representative cases with 8 = m and
37nt. The imaginary part of the eigenvalue A is normalized as 4;L/(21us,) and the real
part is normalized as A,D/u~. The results indicate the linear operator L(g; ) is unstable
with positive growth rates (4,D/us, > 0) of the eigenmodes, including both centrifugal
and shear-layer modes. The spatial structures of two representative unstable modes,
a centrifugal and a shear-layer mode, are shown in figure 5(c). The centrifugal mode is
present inside of the cavity, which corresponds to the recirculation (Brés & Colonius
2008). However, the shear-layer mode appears over the cavity and is formed due to the
Kelvin—Helmholtz instability.

We show the pseudospectra contours (Trefethen & Embree 2005) of the linear operator
L(q; B) as the background in figure 5(a,b). Higher values of contours appear on the
left-hand side planes for both cases of 8§ = 1 and 37, where the stable eigenvalues are
located. For the case of 8 = m, pseudospectral levels protrude far into the unstable plane
at 1 < 4;L/(2mus) < 4 representing non-normal behaviour of the operator. For the case
of f = 3m, the non-normal behaviour of the operator occurs in the frequency range of
2 < 4L/ (2Ttus) < 5. The non-normal behaviour of the operator can cause the flow to
exhibit significant energy amplification.

Because the linear operator L(q; B8) is unstable, we perform a discounted resolvent
analysis. The discounting parameter is associated with temporal windowing of the system
response to examine the dynamics before the instability diverges, as discussed in § 2.3. The
leading and secondary gains for the case of § = 2w using different discounting parameters
of kD/us = 0.1,0.2 and 0.3 are shown in figure 6. We observe that, as x D/u, increases,
the magnitude of resolvent gain decreases. However, the profile of the gain distribution is
not altered by the choice of discounting parameter. In fact, the maximum gain is achieved
at the same Strouhal number of St;, ~ 3.

The large separation between the primary and secondary gains (o1 and o7) for St > 0.5
enables the application of the rank-1 assumption in the present study. By using the rank-1
assumption, we focus on the leading gain and its corresponding forcing and response
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Figure 7. The leading energy amplification o over B and Stz for a discount parameter of kD /us, = 0.2.

modes (McKeon & Sharma 2010; Gomez et al. 2014; Schmidt et al. 2017a). Here we
choose the discounting parameter of x D/ux, = 0.2 in the resolvent analysis to analyse the
unstable system.

The leading singular value versus various combinations of spanwise wavenumber and
frequency is presented in figure 7, revealing the optimal energy amplification of harmonic
forcing. Larger amplification that emerges around 2 < St; <4 and n/2 < B8 < 57m/2
is apparent in this figure. As Rossiter modes primarily stem from two-dimensional
shear-layer instabilities, the gain distribution with 8 = 0 exhibits discrete peaks at the
Rossiter mode frequencies, which are consistent with the power spectral density of
pressure shown in figure 3 from the nonlinear flow simulation. On the other hand, for
spanwise wavenumbers 8 > w, the gain exhibits a smoother distribution versus Strouhal
number.

The representative forcing and response modes are presented in figure 8 for g = m,
271 and 37 at St = 0.6, 2.49 and 5.14 which show the lower, middle and high-frequency
cases. The forcing and response modes are shown with the real streamwise component in
figure 8(a,b), respectively. The influence of frequency and spanwise wavenumber on mode
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Figure 8. Real streamwise velocity component of the (a) forcing and (b) response modes at St;, = 0.6, 2.49
and 5.14 with 8 = 7, 27 and 3.

structures are similar for both forcing and response modes. As the frequency increases,
the streamwise structures exhibit a finer pattern. The structures become more compact in
the transverse direction as the spanwise wavenumber increases. For the forcing modes, the
dominant structures emerge at the leading edge of the cavity. This indicates that the
optimal spatial location for the unsteady forcing input is indeed at the leading edge of
the cavity, substantiating the actuator location discussed in § 2.2. For the response modes,
the structures appear over shear layer region and inside the cavity for the low-frequency
case. As the frequency increases, the response mode structures are confined to the
shear-layer region.

Wave structures emerge at the leading and trailing edges of the cavity for the case of
(B, Str) = (7, 0.6). Such wave structures become weaker and disappear for larger values
of B. This change is due to the two-dimensional property of compression waves. As the
spanwise wavenumber increases, the three-dimensionality suppresses the generation of
two-dimensional compression waves. For the case of St;, = 2.49, the compression waves
structures disappear. For higher frequencies, the compression waves appear at the leading
edge, as shown for the cases of (7, 5.14) and (27, 5.14). The higher frequency forcing
magnifies the obstruction effect at the leading edge, which results in the formation of
compression waves in the response structures.

4. Controlled cavity flows

In this section, the findings from the above resolvent and DMD analyses are used to design
open-loop active flow control strategies for the attenuation of intense pressure fluctuations.
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The performance of the flow control techniques is then assessed through nonlinear LES.
For all controlled cases considered below, the oscillatory momentum coefficient defined
in (2.1) is fixed at 0.02. While the primary effort here is to reduce pressure fluctuations at
Re = 10000, we desire a control approach that can generalize to higher Reynolds numbers,
thereby favouring case with the largest reduction. Therefore, we seek effective control
set-ups, especially those that perform exceptionally well and that can be promising for
more challenging flow set-ups in future studies.

4.1. Resolvent-analysis-based active flow control design

As discussed above, the DMD analysis reveals the coherent structures that are responsible
for large-scale unsteadiness over the cavity. In a complementary manner, the resolvent
analysis identifies structures that can be amplified through sustained forcing. Here, we
look for the means to identify candidate input perturbations that will amplify over the
cavity and inhibit the generation of the natural large-scale spanwise vortical structures
identified by DMD. It should be noted that resolvent analysis is a linear analysis technique
which essentially acts as a model for the nonlinear turbulent cavity flow with active flow
control input. We therefore anticipate some differences but do not consider them to lead
to substantial contradictions that prevent achievement of the objective of determining an
effective control set-up. We emphasize that resolvent-analysis-based guidelines discussed
herein should be treated as a necessary condition, but not as a sufficient condition to
achieve effective flow modification. This means that the control parameter search space
can be significantly reduced but requires careful assessment with companion LES (or
experiments).

The DMD analysis of the uncontrolled flow shows that the primary oscillation at
a frequency of St7, = 1.33 is associated with the dominant spanwise wavenumber of
B = m, as shown in figure 4. The control goal is therefore to force the cavity flow in a
sustained manner to disrupt the formation of this undesirable structure. The optimal input
disturbance should ideally persist over the entire cavity length without spilling its energy
to the naturally energetic structures. It is noteworthy that our previous experiments (Lusk
et al. 2012) indicated that effective three-dimensional steady blowing persisted over the
entire cavity length, while less effective disturbances decayed. A subsequent experimental
companion study (Zhang et al. 2019) showed that steady blowing actuation introduced
counter-rotating vortex pairs in-between blowing slots that distorted the shear layer and
inhibited the growth of the large-scale vortical structures, mitigating the impingement
effect. However, the control modification decayed towards the rear part of the cavity, which
likely limited the control effectiveness. The goal in the present study is hence to select
unsteady three-dimensional forcing inputs that persist over the cavity length and do not
energize the natural 8 = 7 disturbances.

Motivated by these previous studies and the results presented thus far, we introduce a
guiding metric to assess the integrated kinetic energy along the streamwise direction using
the leading response mode,

o
B = / Lo2p [aiit + 157] dy, (@.1)
-D

where o] is the leading gain, p is the time-averaged density, and #; and 0; are the
streamwise and vertical components of the response mode, respectively. Their complex

conjugate counterparts are denoted as #} and 0}. The metric E quantifies the response
kinetic energy and assesses the effectiveness of perturbation amplification over the cavity.
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For an effective amplification mechanism, we should observe a sustained profile of E 1 over
the entirety of the cavity shear layer to ensure that the forcing input remains influential over
the whole extend of the cavity. We emphasize here that both the high value of E| and the
sustained profile over the cavity are sought to mitigate the large-scale fluctuations in cavity
flow, as we discuss in detail below. This metric should be considered in conjunction with
the physical insights gained from baseline LES and DMD analysis, and be viewed as a
necessary condition to expect effective modification of the mean flow. This is due to the
fact that the resolvent analysis is based on a linearization about the mean flow and can
show some differences from the nonlinear cavity flow during the flow control process, for
which we should place some care. Saturation of control performance in terms of reduction
in pressure fluctuations could exist despite the favourable feature of the metric E; due to
nonlinear effects in the cavity flow.

The primary kinetic energy amplification profiles E (x) over the cavity for representative
cases at frequencies of Stz = 0.6, 1.2, 2.49 and 5.14 and spanwise wavenumbers of 8 = T,
27, 3m and 47 are shown in figure 9. For the cases at St; = 0.6, the energy amplification
over the cavity maintains a low magnitude, reaching only up to E; = 1000 compared with
cases with other frequencies. As the front part of the cavity (0 < x/D < 3) is a critical
region for shear-layer roll-ups to develop, the relatively low value of E suggests that
control with St; = 0.6 may not hold sufficient control authority to change the baseline flow
feature. Moreover, the distribution gradually increases from the leading edge to the trailing
edge and is almost identical for the different spanwise wavenumbers, which indicates that
the spanwise wavenumber has limited impact on the magnitude of the primary energy
amplification for Stz = 0.6. For the case of Stz = 1.2, the overall magnitudes of El over
the cavity are higher than those at Sty = 0.6. The primary energy amplification decreases
as the spanwise wavenumber increases and reach its maximum value around x/D ~ 4.

Next, we turn our attention to the primary energy amplification at a higher frequency
of Sty =2.49. Compared with the previous cases at St; = 0.6 and 1.2, the energy
amplification exhibits a sustained profile and much higher magnitude over the cavity. The
perturbations with spanwise wavenumbers of f = 7 and 27 are especially prominent.
For these cases, the primary kinetic energy amplification remains high over the entire
cavity length, with its maximum value attained around the middle of the cavity. Although
the magnitudes of E) decrease as the spanwise wavenumbers increase, they remain high
(~ 0(10°)) compared with the other frequencies, except for the case of f = 4mn with

E) =~ 2500. However, given the prominence of the f = 7 structure in the DMD analysis of
the baseline, we suspect that introducing a 8. = 2 disturbance forcing may be the more
effective of the two.

For the high-frequency cases of St;, = 5.14, the response energy significantly amplifies
in the front of the cavity, but decreases past x/D ~ 1, becoming significantly lower in
magnitude towards the rear part of the cavity. This distribution of the response kinetic
energy, losing its authority in the rear part of the cavity, is suspected to be indicative of a
suboptimal control case. Other coherent structures may emerge when the response kinetic
energy is weak to sustainable forcing. For this reason, it appears that such high-frequency
forcing will be less effective for the suppression of fluctuations in open cavity flows.

4.2. Assessments of resolvent-analysis-based cavity flow control

Unsteady actuation is introduced in LES for the forcing frequency Sz, and spanwise
wavenumber S, identified by the resolvent analysis to be potentially effective for

925 A5-15


https://doi.org/10.1017/jfm.2021.652

https://doi.org/10.1017/jfm.2021.652 Published online by Cambridge University Press

Q. Liu and others

(@ 1000
. 800
E, 600
400
200
0
(b) 10000
8000
£ 6000
Er 4000
2000
0

()
40000
~ 30000
E\ 20000
10000
0

(d)
40000
5 30000
E1 50000
10000

0

x/D

Figure 9. Kinetic energy amplification profiles based on the primary response mode over the cavity at
frequencies of (a) St;, = 0.6, (b) 1.2 (c¢) 2.49 and (d) 5.14 for spanwise wavenumbers of f = m, 2m, 37 and
4.

flow modification. Because practical forcing cannot be introduced globally, local forcing is
imposed along the cavity leading edge, which is where the forcing modes are concentrated,
as shown in figure 8(a). In the above discussion, it was revealed that a forcing frequency
of St; = 2.49 with spanwise wavenumbers between m to 37 exhibits a sustained and

high-valued response kinetic energy E| over the cavity based on the resolvent analysis.
Large-eddy simulations are performed for this choice of parameters and some other
representative cases to assess the effectiveness of the actuation set-up. The resolvent
analysis here aids the study by reducing the control parameter search space. We, in
particular, consider a forcing frequency and spanwise wavenumber in the range of 0.6 <
St. <5.14 and 7 < B, < 4w for the following validation LES cases. Let us note that the
uses of unsteady actuation are likely be effective for many of these cases as long as they
disrupt the formation of the large-scale spanwise vortices in the uncontrolled flow. The key
question here is to find the near-optimal control case, in which the forcing effect remains
influential over the long cavity.

The pressure fluctuations obtained from LES of controlled flows are examined over
the cavity surfaces and the shear layer. Intense pressure oscillations appear over these
regions in the uncontrolled cavity flow. A number of representative controlled cases are
investigated, including the controlled cases with the parameters that are identified to
provide sustained forcing over the cavity by resolvent analysis. The pressure fluctuations
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for the controlled cases are shown in figure 10. Compared with the pressure distribution
for the uncontrolled flow, we observe that some of the controlled cases show significant
attenuation of the fluctuations over the shear layer and on the cavity walls.

For the control cases with St. = 0.6, the pressure fluctuations are reduced over the
shear-layer region and along the cavity walls compared with the uncontrolled cavity flow.
Along the cavity floor, the area experiencing large pressure fluctuations are limited to
the aft third of the cavity, which is reduced in size from the uncontrolled case. Above
the shear layer, actuation is able to modify the flow field to reduce the spatial extent
over which large fluctuations appear, but the unsteady shock-induced fluctuations remain
strong over the rear half of the cavity in the case of forcing spanwise wavenumbers of
Be = mand 27. As the values of metric E; calculated from resolvent analysis for frequency
St. = 0.6 are relatively low (figure 9), the discrepancy in pressure reductions among
those cases from 8 = m to 37 results from nonlinearity of the flow. Although the case
with (8., St.) = (3w, 0.6) has a desirable control performance, this scenario may require
additional guidance beyond resolvent analysis.

Next, the controlled flows with a forcing frequency of Sz. = 2.49 are considered.
All of the forcing spanwise wavenumbers of B, = w, 27 and 3w shown in figure 10
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Cases ﬂC St(? ﬁrms Ai’rms

Baseline — — .37  —

Unsteady control T 0.6 098 —28%
b 1.2 085 —38%
T 249 085 -38%
T 313 094  -31%
T 5.14 1.13 —18%

21 0.6 125 -9%

2 1.2 0.91 —34%
2n 249 066 —-52%
2n 313 096 -30%
2 514 1.05 -23%

3 0.6 082 —40%
37 1.2 0.80 —-42%
3n 249 067 —51%
37 313 .08  —-21%
37 514 144 4+5%

4t 249 088 -36%
Steady control (Sun et al. 2019) 3= 0 0.98 —28 %

Table 1. Summary of flow control cases with unsteady actuation.

significantly reduce the pressure fluctuations over the cavity walls as well as the shear layer.
Most noteworthy here are the cases where the spanwise wavenumbers of the forcing
input are 27 and 37. For these cases, the unsteady forcing is able to shorten the spatial
(vertical) extent of large fluctuations. Due to the stabilizing effect in the shear layer
and weakened impingement of flow structures, we observe remarkable reductions in the
pressure fluctuations above 50 % along the aft and bottom walls of the cavity (see summary
in table 1). Compared with the baseline and the other controlled cases, high levels of
pressure fluctuations are experienced only along the trailing edge of the cavity.

Although at St = 2.49 the metric El for § = 2m is much higher than 8 = 3m, as
shown in figure 9, similar control effectiveness in terms of the level of P, reductions
suggest that the control effects are experiencing saturation due to nonlinearities at the
frequency of St. = 2.49. For the case of 8 = 4m, the reduction level may appear lower in
value, but the E7 value is higher than the those for the case of St = 0.6. The substantial
reduction of pressure fluctuations over the cavity is achieved with the choice of control
parameters identified from the resolvent (response mode)-based kinetic energy based
metric (4.1). This implies that the input—output relationship captured by resolvent analysis
for the turbulent cavity flow can indeed point to an effective set of control parameters
with significantly less computational resources than what is required by an uninformed
parametric LES study.

Forcing at a frequency of St. = 5.14 is also examined, which is higher than the
frequency identified by the resolvent analysis. For these controlled cases, the pressure
fluctuations over the shear layer are higher in magnitude compared with the cases of
St. = 2.49, as shown in figure 10. These results are expected as the forcing to enhance
mixing across the shear layer is not as sustained as in the case of St. = 2.49, which
is indicated by figure 9. In fact, the unsteady control induces the appearance of oblique

925 A5-18


https://doi.org/10.1017/jfm.2021.652

https://doi.org/10.1017/jfm.2021.652 Published online by Cambridge University Press

Cavity flow control

shocks for all spanwise wavenumber cases shown in figure 10, which renders the control
counterproductive. We also observe strong impingement of vortical structures for the
spanwise wavenumber of 31, which increases the pressure fluctuations on the entire aft
wall above that of the uncontrolled case. Note that it is not only the maximum value of E}
but also sustained distribution (flatness) of the E; profile are important.

Looking closer at the flow fields for some of the cases presented in figure 10, we
visualize in figure 11 the instantaneous vortical structures for effective controlled cases
with (B, St.) = (27, 2.49) and (37, 2.49) as well as an ineffective controlled case with
(3w, 5.14). Shown in this figure are the isosurfaces of the Q-criterion coloured by the
pressure coefficient. For the case of (8., St.) = (27, 2.49) shown in figure 11(a), small
streamwise vortices are generated from the leading edge and propagate downstream,
which gradually spread over the shear layer. Large-scale spanwise shear layer roll-ups
disappear in the flow field compared with the uncontrolled cavity flow (recall figure 2). The
modification of the flow field produced by the unsteady actuation greatly attenuates the
large-scale flow structure impingement on the aft-wall by breaking up large structures and
reduces the fluctuations over the cavity. The aft wall only experiences small-scale vortical
structures hitting the wall in an incoherent manner. As the kinetic energy profile (4.1)
foreshadows, the mixing and breakup of the large-scale spanwise vortices are sustained
over the entire cavity length and yield an effective control approach to reduce the pressure
fluctuations.

For the controlled case with (8., St.) = (37, 2.49) presented in figure 11(b), the flow
structure appears similar to those from the case of (8., St.) = (2w, 2.49). With the choice
of a high wavenumber, the structures are generated by the unsteady actuation from the
cavity leading edge in a closely packed manner. These streamwise vortical structures
appear to cancel the vortical influence from each other due to their close proximity and
cannot suppress the spanwise instability from appearing as effectively as the case with
(Be, Ste) = (2m, 2.49). This leads to correspondingly larger fluctuations over the cavity
and local thickening of the shear layer, as visualized by the wider range of pressure values
in figure 11(b).

For the case of (8., St;) = (37, 5.14) shown in figure 11(c), the streamwise vortices
generated from unsteady actuation are truncated to become shorter than what are observed
for the lower frequency actuation. By the middle of the cavity, the shear layer rolls up into
a spanwise vortical coherent structure with a size comparable to the cavity depth that
penetrates both into the free stream and the cavity. The local obstructions of the incoming
flow by these large-scale vortical structures lead to the appearance of strong compression
waves, adding to the increased pressure fluctuations over the shear layer and along the
cavity walls. Compared with the other controlled cases, strong acoustic waves emitted
from the leading edge of the cavity are observable.

The premultiplied pressure spectra visibly exhibit significant pressure fluctuation
reductions for the controlled cases, as shown in figure 12. For the two effective control
cases of (B¢, St.) = (2w, 2.49) and (37, 2.49), the actuation inputs successfully suppress
the tone at Stz = 1.33 in the baseline case and reduce the turbulent pressure fluctuations.
Even with a slight magnitude increase at St;, = 0.6 for the case of (37, 2.49), the actuation
effectively suppresses the overall pressure fluctuations due to the substantial reduction of
magnitude over other frequency bands. For the ineffective case of (31, 5.14), the actuation
suppresses the tone at St; = 1.33. However, the apparent increase of pressure fluctuations
over the frequency band of St < 1 gives rise to strong oscillations over the cavity. Those
strong oscillations with S#;, < 1 are associated with the larger vortical coherent structures
and results in ineffective control outcome.
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(b

Figure 11. Instantaneous controlled cavity flows with (a) (B, St;) = (2m,2.49), (b) (3w, 2.49) and
(¢) (37, 5.14), visualized with the Q-criterion Q(D/us0)? = 10 coloured by C) = (p — poo)/((PoottZ,)/2) at
Moo = 1.4. Numerical schlieren is shown in the background in greyscale.
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Figure 12. Premultiplied pressure spectra at midcavity along the shear layer for the controlled flows shown in
black. The baseline spectra are shown by the blue dashed lines. Here (a) (B, St.) = (27, 2.49), (b) (37, 2.49)
and (¢) (3w, 5.14).

@, ®);, (),
----- Baseline
1.0f—S=06 1.0 1.0
—5t,=12
St.=2.49 |
. 0.8 e i 0.8 0.8
\a 0.6 St.=5.14 \t 0.6 0.6
«
0.4 0.4 0.4
0.2 0.2 0.2|—
- /30—7[ :
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
x/D x/D x/D

Figure 13. Vorticity thickness §,, for the uncontrolled and controlled cases.

It is observed above that the control input influences the shear-layer thickness and
consequently the pressure fluctuation level. For this reason, the vorticity thickness

Uoo
Op = ———— 4.2
(005 mar 4-2)

is considered to quantify the direct influence of the unsteady actuation on cavity flow. Here,
u is the spanwise and time-averaged streamwise velocity. Figure 13 shows the vorticity
thickness of the shear layer from controlled cases at spanwise wavenumbers of 8, = 7, 27
and 3m. For the controlled cases, J,, is thicker at the leading edge compared with the
uncontrolled case. This local thickening of the shear layer at the leading edge reduces
its receptivity to the acoustic disturbances and stabilizes the shear layer as it advects
downstream. For the cases of 8. = 27, a significant reduction of vorticity thickness is
observed in the rear part of the cavity. Note that the sudden decrease in the vorticity
thickness near the trailing edge is due to the effect of impingement on the cavity trailing
edge.

The magnitude of pressure fluctuations inside the cavity is coupled with the pressure
fluctuations occurring above the shear-layer region. We quantify the control effectiveness
by integrating the pressure fluctuations over the floor and aft-wall of the cavity
using (2.4). The unsteady control cases in general achieve significant reductions of
pressure fluctuations compared with the uncontrolled case. Particularly noteworthy is
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Figure 14. Side and top views of the real spanwise velocity of DMD modes for the control cases. Isosurface
values of streamwise velocity are 0.1 (red) and —0.1 (blue). Here (a,b) (B, St.) = (m, 2.49), (¢,d) (27, 2.49)
and (e, f) (37, 2.49).

the control case with (B, St.) = (2x, 2.49) which achieves 52 % reduction in the
pressure fluctuations, as summarized in table 1. Additionally, the present unsteady control
substantially outperforms our previous control efforts using steady three-dimensional
actuation (Sun et al. 2019). The trends summarized in table 1 are consistent with the
predictive metric for control design, which validates the conceptual approach of how to
use the results of the resolvent analysis to determine an effective unsteady flow control
set-up.

4.3. DMD of the controlled flows

Let us further assess the influence of unsteady actuation on the turbulent cavity flow using
DMD analysis. Here, the DMD analysis serves as an a posteriori analysis of the nonlinear
flow with control to assess the control effectiveness and is not meant to provide any
direct comparison with resolvent analysis. We extract the coherent structures produced
at the forcing frequency to examine the persistence of forcing input (perturbation) from
the leading edge of the cavity. Here, the DMD analysis extracts the key flow response
structures around the optimal control case for the forcing frequency of Sz, = 2.49 with
spanwise wavenumbers of S, = w, 21 and 3m. Presented in figure 14 are the spatial
structures of the spanwise velocity associated with the forcing frequency of St = 2.49. We
also note in passing that, while not shown, the DMD modes are in good agreement with
spectral POD modes (Schmidt et al. 2017b; Schmidt & Colonius 2020) extracted from the
controlled flows. By examining the spatial evolution of the DMD modes over the cavity,
we can understand the mechanism by which the forcing input prevents the undesirable
large-scale vortex roll-up from appearing over the cavity.

Consider the controlled flow case of . = m, shown in figure 14(a,b). This forcing
wavenumber is the same as the dominant spanwise wavenumber observed in figure 4
for the uncontrolled flow. From the top view in figure 14(a,b), we notice that the flow
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structures essentially maintain the spanwise wavenumber of B = m, except for some
regions over 1 < x/D < 3 due to nonlinear interactions. The fact that # = 7t remains the
primary wavenumber indicates that the control is ultimately unable to fully attenuate the
undesirable fluctuations.

For the case of controlled flow with B, = 2m, shown in figure 14(c,d), we observe that
the flow structures predominantly possess the spanwise wavenumber of f = 27 almost
over the entire cavity (x/D < 6). This means that the actuation is able to attenuate the
undesirable large-scale unsteady vortical structure with 8 = m. As discussed earlier, the
flow control input for this flow produces a range of small-scale structures, reducing the
spatial fluctuation level over the shear layer. This modification of the flow in turn avoids
the generation of unsteady oblique shock waves over the cavity.

For the higher control input wavenumber of S, = 37, we observe the finer structures
introduced from the leading edge of the cavity, as seen in figure 14(e,f). As the flow
convects downstream, the spanwise vortical structures start merging past x/D ~ 2. Once
this spanwise merging process takes place, the flow relaxes back to the large-scale
structures with 8 = m. However, full relaxation does not appear until x/D ~ 3, which
allows the flow to delay the formation of the large-scale structures. From the insights
gained through the DMD-based analysis, we can assess the spatial extent over which the
actuation input remains effective. The present DMD analysis confirms that the choice of
(Be, St.) = (27, 2.49) is indeed a good choice for attenuating fluctuations generated in the
present supersonic turbulent cavity flow.

4.4. Current status and outlook

The current resolvent-based control design framework is founded on linear assumptions
and requires close examination of how the control input in general may modify the mean
flow through nonlinear mechanisms. While the proposed unsteady control effort with the
use of primary kinetic energy amplification profile effectively suppressed the emergence of
large-scale vortices and the resulting high-amplitude unsteadiness, its application to other
types of flows should be examined with care through computational and experimental
investigations. In the case of shear-layer type flow, the proposed approach will likely
prove effective. However, for oscillatory flow where wake instabilities dominate over
the shear-layer instabilities, the current control metric should be compared with or
complemented with wake-based control metrics. We should also note that the present
analysis model’s control inputs can cause the mean flow to depart from the uncontrolled
reference flow. Precise prediction of how the mean flow becomes modified will require
further considerations to identify and close the nonlinear feedback loop and the ability to
track perturbations over a time-varying base flow (McKeon 2017, 2020).

The control design approach taken in this study lets us determine the appropriate
actuator specifications for effective flow control without having to perform a large
parametric investigation with LES. This is attractive due to the low cost of performing
resolvent analysis, even if the simulations are linearized with prescribed forcing
inputs. More importantly, the resolvent framework provides valuable insights into the
input—output relationship, which can be used to validate actuation set-ups and study
physically important spatial flow features.

With emerging numerical techniques and data-driven approaches, resolvent-analysis-
based approaches should push the envelope toward applications of higher Reynolds
number flows, which require much larger degrees of freedom (i.e. grid size) to describe the
physics (Ribeiro, Yeh & Taira 2020; Yeh et al. 2020; Yeh, Gopalakrishnan Meena & Taira
2021). Combination of these techniques with modern control theory will set the stage to
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enable robust flow control analysis in a feedback manner to tame the dynamics of turbulent
cavity flows.

5. Conclusions

We examined a supersonic turbulent flow over a spanwise-periodic rectangular cavity
at a Mach number of 1.4 and a cavity-depth-based Reynolds number of 10000. The
considered cavity has a length-to-depth ratio of 6 and a spanwise periodic extent of 2.
Large-eddy simulations and DMD of the unsteady turbulent cavity flow were performed
to gain detailed insights on the source of large pressure fluctuations. The formations of
large-scale vortical structures associated with Rossiter modes II and IV were found to be
responsible for the generation of high-amplitude unsteadiness. To attenuate large pressure
fluctuations, it was deduced that the emergence of these Rossiter modes with a spanwise
wavenumber of 8 = 1 should be hindered.

In an effort to develop an effective active flow control technique to reduce the level
of pressure fluctuations over the cavity, resolvent analysis was performed with respect
to the time-averaged supersonic turbulent cavity flow. The resolvent analysis uncovered
the dominant input—output characteristics with a leading pair of forcing and response
modes and the gain that represents the amount of amplification between the two modes
for a combination of forcing frequency and spanwise wavenumber. The results from
the resolvent analysis revealed significant energy amplification can be achieved for the
principal mode pairs for the frequencies of 1.5 < S7;, < 4 and spanwise wavenumbers of
1t < B < 3m. The response modes showed spatial oscillations over the shear layer with the
corresponding forcing mode exhibiting high-amplitude input near the leading edge of the
cavity. These findings suggested that active flow control may effectively alter the flow by
introducing the three-dimensional (spanwise-varying) forcing input along the leading edge
in the identified range of frequency and spanwise wavenumber. However, naively choosing
the modes with the highest gain may not be the optimal control set-up since it does not
suggest how the mean flow can be modified.

To further develop a reliable control guideline, we sought control cases that introduce
actuation input that is sustained over the entire length of the cavity and inhibit the
formation of large-scale structures with g = m. This translates to ensuring that the
streamwise vortices introduced from the unsteady actuation input can effectively suppress
the formation of the dominant spanwise vortical structures over the cavity. In order to
find such an optimal control setting, we assess the kinetic energy distribution from the
primary response mode over the cavity. The combination of the forcing frequency and
spanwise wavenumber, (St7, B.) = (2.49, 2n), that provided the highly amplified and
sustained distribution of the kinetic energy over the cavity was determined to be the
optimal candidate for attenuating the pressure oscillations.

Large-eddy simulations of representative unsteady flow control cases with C, =
0.02 verified that the resolvent-analysis-based control guideline is indeed effective in
determining the appropriate flow control input for attenuating the unsteadiness in cavity
flow. The simulations introduced unsteady blowing with spanwise variation along the
cavity leading edge. The simulated flows showed that the optimal flow control candidate
achieved a remarkable r.m.s. pressure reduction along the cavity walls of 52 %. The control
input reduced the pressure fluctuations by hindering the emergence of large spanwise
vortices and by eliminating the obstructions responsible for creating oblique shock waves
over the cavity. The controlled flow was further studied with DMD analysis, revealing
that modal structures associated with Rossiter modes were eliminated with actuation. It
should be further noted that the present unsteady control technique was able to achieve
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reduction of pressure fluctuations nearly double of what had been achieved via steady
three-dimensional mass injection in our previous study (Sun et al. 2019).

The present study demonstrated that the physical insights gained from resolvent analysis
of turbulent supersonic flow can be used to develop an effective flow control approach.
This formulation provides an attractive alternative to the trial-and-error based parametric
search to determine an effective flow control strategy, which requires considerable
resources in terms of computations and experiments. While the current work was able
to determine a very effective control set-up, actuation parameters in the vicinity of the
identified parameters should also be examined in physical experiments to ensure the
optimality of the control effectiveness. The present approach provides a physics-based path
to perform flow control in which the added control perturbations need to remain effective
in modifying the flow in a sustained fashion. It should be remembered that the current
resolvent-based control design framework is founded on linear assumptions and requires
care when examining how the control input in general may modify the mean flow through
nonlinear mechanisms. Because of the strong nonlinearity that prevails in cavity flow, a
linear resolvent-based control guideline should be considered as a necessary condition
but not a sufficient condition to achieve effective control. The present analysis will
require further considerations to close the nonlinear feedback loop and the ability to track
perturbations over a time-varying base flow (McKeon 2017, 2020). However, extensions
of resolvent-analysis-based control to turbulent flows at higher Reynolds number should
have positive prospects with emerging resolvent-based techniques (Ribeiro et al. 2020;
Yeh et al. 2020, 2021) and synchronization analysis (Taira & Nakao 2018; Khodkar &
Taira 2020) that incorporate numerical algorithms that accelerate computations, save on
computational memory and enable sensor-based examinations.
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