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In this paper, sparsity-promoting regression techniques are employed to automatically
identify from data relevant triadic interactions between modal structures in large
Galerkin-based models of two-dimensional unsteady flows. The approach produces
interpretable, sparsely connected models that reproduce the original dynamical behaviour
at a much lower computational cost, as fewer triadic interactions need to be evaluated.
The key feature of the approach is that dominant interactions are selected systematically
from the solution of a convex optimisation problem, with a unique solution, and no
a priori assumptions on the structure of scale interactions are required. We demonstrate
this approach on models of two-dimensional lid-driven cavity flow at Reynolds number
Re = 2 × 104, where fluid motion is chaotic. To understand the role of the subspace
utilised for the Galerkin projection in the sparsity characteristics, we consider two
families of models obtained from two different modal decomposition techniques. The
first uses energy-optimal proper orthogonal decomposition modes, while the second
uses modes oscillating at a single frequency obtained from discrete Fourier transform
of the flow snapshots. We show that, in both cases, and despite no a priori physical
knowledge being incorporated into the approach, relevant interactions across the hierarchy
of modes are identified in agreement with the expected picture of scale interactions in
two-dimensional turbulence. Yet, substantial structural changes in the interaction pattern
and a quantitatively different sparsity are observed. Finally, although not directly enforced
in the procedure, the sparsified models have excellent long-term stability properties and
correctly reproduce the spatio-temporal evolution of dominant flow structures in the
cavity.

Key words: computational methods, low-dimensional models

1. Introduction

In the classical description of developed turbulent flows (Lumley 1979; Pope 2001;
Jiménez 2018), energy is transferred across the hierarchy of coherent structures via
nonlinear triadic interactions. Implicit in this picture is the fact that not all interactions have
the same importance, but they occur in preferential patterns. In fact, extensive numerical
evidence suggests that the nonlinear interaction pattern among coherent structures is
sparse. The evolution of structures at a certain length scale depends predominantly upon a
subset of all other structures (Kraichnan 1971; Ohkitani 1990; Brasseur & Wei 1994) and
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the influence of interactions with the complementary set of structures can be generally
neglected with minor global effects.

Successful attempts to construct a reduced set of equations that exploit this
sparsity have been made in the past, often for canonical geometries where triadic
interactions are conveniently examined in Fourier space and using a coarse-grained
partitioning of the hierarchy of scales. Laval, Dubrulle & Nazarenko (1999) considered
two-dimensional homogeneous decaying turbulence and developed a reduced set of
coupled partial differential equations governing the evolution of the large and small
scales. In this model, only dominant terms were retained based on observations from
direct numerical simulation. With the goal of identifying fundamental mechanisms
underlying wall turbulence, Thomas et al. (2015) developed nonlinear reduced models
of plane Couette flow directly from the governing equations by first partitioning
the flow into a streamwise-averaged mean and a perturbation field, and then
neglecting nonlinear interactions among the streamwise varying perturbations, i.e.
the perturbation–perturbation nonlinearity (Thomas et al. 2014). The models captured
well-established roll–streak dynamical features of wall turbulence and its statistics in a
computationally efficient framework. The models also sustained turbulent dynamics down
to minimal configurations where interactions between the streamwise mean flow and only
one single streamwise wavenumber are retained.

When reduced-order dynamical representations are derived using Galerkin projection
on a low-dimensional subspace identified by a set of modal structures (Fletcher 1984;
Rowley & Dawson 2017), triadic interactions are conveniently studied in modal space by
examining a third-order coefficient tensor arising from projection of the basis function
on the convective term of the Navier–Stokes equations (Noack et al. 2008; Noack,
Morzynski & Tadmor 2011). Sparsity characteristics have also been observed in this
reduced-order setting. Couplet, Sagaut & Basdevant (2003) constructed Galerkin models
of the separated turbulent flow past a backward-facing step using proper orthogonal
decomposition (POD) modes (Lumley 1970; Sirovich 1987) and observed that the energy
transfer pattern in modal space shares many properties with its counterpart in isotropic
homogeneous three-dimensional turbulent flows (Yeung, Brasseur & Wang 1995). For
instance, the authors observed that interactions are local in modal space and that a direct
energy cascade exists. Analogously, Rempfer & Fasel (1994a) examined the power budget
of POD modes in a transitional boundary layer and observed that interactions in modal
space occur predominantly between triads of modes whose sum of modal indices is equal
to zero, similar to energy interactions between Fourier modes in homogeneous turbulence.
However, classical model order reduction techniques (Rowley & Dawson 2017) have not
traditionally exploited this feature. In fact, when modal decompositions such as POD are
employed, densely connected models are usually obtained, as the third-order coefficient
tensor is dense (i.e. most coefficients are different from zero) for inhomogeneous flows
without particular symmetries. This hinders the interpretation of the underlying physics of
scale interactions and increases computational costs, since all triadic interactions have to
be evaluated for advancing the model forward in time.

The first contribution of this work is that we propose to apply data-driven techniques
(Blum & Langley 1997; Brunton, Proctor & Kutz 2016; Loiseau & Brunton 2018; Brunton,
Noack & Koumoutsakos 2019) as a means to identify relevant triadic interactions in
Galerkin models of turbulent flows. Our aim is to generate reduced-order models resolving
a wide range of scales while preserving computational efficiency and interpretability
by pruning weak interactions that are not relevant for the dynamics. The cornerstone
of the proposed approach is l1-regularised regression (Friedman, Hastie & Tibshirani
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2008; Tibshirani 2013), widely used in the statistical community to extract parsimonious
representation of complex datasets containing a subset of predominant features. The
non-differentiable, yet convex, nature of the l1 regularisation allows transforming of the
interaction selection problem into a convex optimisation problem that can be solved
efficiently, with a unique solution. Since no a priori knowledge of the dynamics is utilised,
the approach is fine grained and relevant interactions are identified in a mode-by-mode
fashion across the hierarchy of modes. Sparsity-promoting regression techniques have
been recently proposed by Brunton and coworkers (Brunton et al. 2016; Kaiser, Kutz &
Brunton 2018) in the SINDy framework (sparse identification of nonlinear dynamics), as
a means to discover parsimonious dynamical representations of systems whose underlying
(but hidden) evolution equations are sparse in the space of possible functions (Brunton
et al. 2016). Our work deviates from these efforts in the perspective. When formulated
in partial differential form, the Navier–Stokes equations for incompressible flows are
indeed structurally sparse, as only few terms – convection, viscous diffusion and pressure
forces to conserve mass – participate in the overall equilibrium. However, when Galerkin
models are derived, such structural sparsity is generally lost. What is preserved is the
sparsity in the interaction pattern between scales of motion that emerges a posteriori in
turbulent realisations. Fundamentally, we aim to exploit this feature and distil a structurally
sparse model that reproduces the original behaviour. In addition, sparsity identification
methods have been applied, so far, to relatively small Galerkin models (Loiseau &
Brunton 2018), and it is not yet understood if these can be utilised to identify and extract
relevant interactions in larger models in agreement with the established picture of energy
interactions in turbulent flows. In this sense, our approach is closer to the recent work of
Nair & Taira (2015), Taira, Nair & Brunton (2016) and Nair, Brunton & Taira (2018). These
authors employed network-theoretic sparsification approaches (Newman 2018) to identify
key vortex-to-vortex interactions in two-dimensional homogeneous turbulence, obtaining
sparse models that capture the essential physics of unsteady fluid flow with a reduced
number of interactions between the same large number of states.

The second contribution of this paper is that we examine how sparsity of energy
interactions depends on the subspace used to generate the Galerkin model. Finding an
appropriate subspace for projection is recognised as a challenging task (Noack et al. 2016),
and several modal decompositions have been proposed differing in spirit and approach
(see Taira et al. (2017) for a recent review). However, the role of the subspace on the
organisation of energy interactions has not been explored in the past. To address this
question, we examine and compare in this paper energy interactions and sparsity features
of two families of Galerkin models. The first uses energy-optimal POD modes while the
second uses modes oscillating temporally at a single frequency, obtained using a procedure
based on spectral proper orthogonal decomposition (Sieber, Paschereit & Oberleithner
2016) and equivalent to a discrete Fourier transform (DFT) of the velocity snapshots. Here,
we aim to understand if the optimal data-representation property of POD also provides the
best description in terms of sparsity, even if POD is known to couple flow structures at
different spatial or temporal scales (Noack et al. 2016; Towne, Schmidt & Colonius 2018).

This manuscript is organised as follows. For completeness, § 2 summarises the
methodology utilised to generate reduced-order models using Galerkin projection, and
then discusses how energy interactions in Galerkin models can be examined. Subsequently,
the l1-based sparse regression approach is outlined and conceptual differences between
our approach and the SINDy approach proposed in Brunton et al. (2016) are reported. In
§ 3, we demonstrate this methodology by considering relatively large Galerkin models
of two-dimensional lid-driven cavity flow at a Reynolds number Re = 2 × 104, where

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.707


905 A15-4 R. Rubini, D. Lasagna and A. Da Ronch

the dynamics is chaotic (Auteri, Parolini & Quartapelle 2002). We first focus on
modal decomposition of the flow and then move to energy analysis and sparsification.
Conclusions are offered in § 4.

2. Methodology

2.1. Reduced-order modelling
We consider a space of square integrable velocity vector fields defined over a spatial
domain Ω , endowed by the standard inner product

(u, v) :=
∫

Ω

u · v dΩ, (2.1)

where u, v are two elements of such a space. The resulting L2(Ω) norm is denoted as
‖u‖ = √

(u, u). Using the time averaged velocity field ū(x) as a base flow, and denoting
by u′(t, x) the velocity fluctuation u(t, x) − ū(x), an N-dimensional expansion expressed
by the ansatz

u(t, x) = ū(x) + u′(t, x) = ū(x) +
N∑

i=1

ai(t)φi(x), (2.2)

is introduced to describe the space–time velocity field, where ai(t) and φi(x), i =
1, . . . N are the temporal and global spatial modes, respectively, with ‖φi(x)‖ = 1. These
modes may be computed a posteriori from numerical or experimental data or a priori
from a characteristic operator of the system (Taira et al. 2017) or from completeness
considerations (Noack & Eckelmann 1994). Reduced-order models are then derived by
projecting the governing equations onto the subspace defined by the modes (Rowley &
Dawson 2017). Restricting our analysis to configurations where the boundaries are either
no-slip walls or periodic, this procedure results in an autonomous system of coupled
nonlinear ordinary differential equations

N∑
j=1

M ijȧj(t) = C̃i +
N∑

j=1

L̃ijaj(t) +
N∑

j=1

N∑
k=1

Q̃ijkaj(t)ak(t), i = 1 . . . , N, (2.3)

defining the temporal evolution of the coefficients ai(t). Here, we only report the
definitions of the quadratic coefficients

Q̃ijk = (φi,φj · ∇φk), (2.4)

while expressions for the tensors C̃ and L̃ can be found in Noack et al. (2011). The matrix
M , with entries M ij = (φi,φj), takes into account the fact that the spatial modes may not
be orthogonal and is introduced here for generality.

If the N modes span collectively an N-dimensional subspace, M ij is invertible and the
system (2.3) can be rearranged as

ȧi(t) = Ci +
N∑

j=1

Lijaj(t) +
N∑

j=1

N∑
k=1

Qijkaj(t)ak(t) i = 1 . . . , N, (2.5)
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with

Ci =
N∑

q=1

M−1
iq C̃q, Lij =

N∑
q=1

M−1
iq L̃qj and Qijk =

N∑
q=1

M−1
iq Q̃qjk. (2.6a–c)

As observed by Rempfer & Fasel (1994a), the infinite-dimensional matrix M ij should be
first inverted and then truncated to maintain a good prediction accuracy. For the cases
discussed in this paper, we have not followed this procedure as we observed that the matrix
M ij has a strong diagonal structure. Hence, the error performed by truncating it to size
(N, N) and then inverting it can be reasonably assumed to be small.

Since the spatial modes satisfy automatically the boundary conditions, the expansion
(2.2) provides a suitable foundation to examine interactions between coherent structures
in complex geometries. Here, we follow established approaches (Rempfer & Fasel 1994b)
and analyse such interactions by introducing the modal energies ei(t) = 1

2 ai(t)ai(t), i =
1 . . . , N. The instantaneous rate of change is given by

ėi(t) = Ciai(t) +
N∑

j=1

Lijai(t)aj(t) +
N∑

j=1

N∑
k=1

Qijkai(t)aj(t)ak(t), i = 1, . . . , N, (2.7)

obtained by multiplying (2.5) by ai(t). Note that, in a general case where the modes do not
form an orthonormal set, the domain integral of the kinetic energy of velocity fluctuations
is given by

E(t) = 1
2

∫
Ω

u′(t, x)2 dΩ = 1
2

N∑
i=1

N∑
j=1

M ijai(t)aj(t), (2.8)

and not by a straightforward sum of the terms ei(t). The right-hand side of (2.7) is
composed of three terms describing energy transfers between the hierarchy of modes.
The first two describe variations of energy due to production/dissipation arising from
interactions with the mean flow and from viscous effects (Noack et al. 2011). The third
term defines variations of energy arising from inviscid nonlinear interactions between
triads of modes. Following Rempfer & Fasel (1994a), these are defined in a time-averaged
sense by the quadratic interaction tensor N with entries

N ijk = Qijkaiajak, (2.9)

where the overbar denotes temporal averaging. The study of this term is the principal focus
of the current analysis.

Spatial modes obtained from classical decompositions have generally global support
over the domain (see e.g. Taira et al. 2017). The result is that the evolution equations
(2.5) are not strictly sparse in the sense employed by Brunton et al. (2016). In fact, unless
particular symmetries apply, the tensor Q is generally dense, i.e. most of its entries are
different from zero and the right-hand side of (2.5) contains all monomial terms in the
modal amplitudes ai(t) up to order two.

However, as anticipated in the introduction, in turbulent realisations of the
Navier–Stokes equations only a subset of all triadic interactions contributes to a significant
degree to the overall energy budget (Rempfer & Fasel 1994b; Couplet et al. 2003). In
this sense, sparsity is a primarily an a posteriori feature of solutions, i.e. a feature of the
quadratic interaction tensor N .
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The approach developed in this work starts from this fundamental observation and aims
to generate a sparse Galerkin model, defined by a sparse coefficient tensor Qs that is a good
approximation of the original dynamical system in the sense that the mismatch between
the transfer tensors N s and the original N obtained from the definitions (2.4) and (2.6a–c)
is as small as possible across the hierarchy of modes.

2.2. Sparse regression
To construct a sparse Galerkin system, we use a procedure akin to that utilised in previous
work for calibrating Galerkin models from data (Perret, Collin & Delville 2006; Cordier,
El Majd & Favier 2010; Xie et al. 2018) and more recently for the identification of sparse
dynamical systems (Brunton et al. 2016). In the first step, we assume that Nt snapshots
of the velocity field are available from simulation and arrange samples of the temporal
coefficients ai(tj), i = 1, . . . , N and j = 1, . . . , Nt, into the data matrix A ∈ �Nt×N , with
entries Aij = ai(tj). Similarly, we construct the modal acceleration matrix Ȧ ∈ �Nt×N ,
containing the time derivative of the temporal coefficients obtained by projecting the
modes φi(x) on snapshots of the Eulerian acceleration field ∂tu(tj, x) and correcting such
projections with M when modes are not orthogonal (see also Rempfer & Fasel 1994b). We
then exploit the polynomial structure of the Galerkin system (2.5) to construct the database
matrix Θ(A) ∈ �Nt×q

Θ(A) =

⎛
⎜⎜⎝

1 a1
1 a1

2 . . . a1
N a1

1a1
1 . . . a1

Na1
N

...
...

...
...

...
...

1 aNt
1 aNt

2 . . . aNt
N aNt

1 aNt
1 . . . aNt

N aNt
N

⎞
⎟⎟⎠ , (2.10)

called the nonlinear feature library in Brunton et al. (2016), where q = (N + 1)

+ N(N + 1)/2 is the total number of features, the sum of constant, linear and quadratic
interactions. The number of quadratic coefficients is only N(N + 1)/2 because the
interaction between mode i and j is considered only once in (2.10). As discussed later on
in the paper, this avoids columns of Θ(A) becoming linearly dependent, which would in
turn result in numerical stability issues in the solution regression problem (see e.g. Perret
et al. 2006; Cordier et al. 2010).

Arranging the projection coefficients tensors C, L and Q associated with the ith mode
into a coefficient vector β i ∈ �q, the Galerkin system (2.3) can be equivalently expressed
as

Ȧi = Θ(A)β i, i = 1, . . . N, (2.11)

where Ȧi is the ith column of the modal acceleration matrix. The key idea is that if some
nonlinear interactions are more important than others, then the corresponding entries
of the coefficient vector β i can be shrunk to zero with minor effects on the predictive
ability of the resulting model. The challenge is to find a systematic method to identify the
dominant interactions and prune unnecessary coefficients whilst calibrating the remaining
model coefficients such as to preserve the overall energy budget. Here, we adopt an
established sparsity-promoting regression technique known as LASSO regression (least
absolute shrinkage selection operator, see Tibshirani 1996). In short, it leads to a set of N
optimisation problems of the form

min
β i

‖Θ(A)β i − Ȧi‖2
2 + γi‖β i‖1, i = 1, . . . , N, (2.12)
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one for each mode, where ‖ · ‖p denotes the lp norm of a vector. The first term in the
objective function in (2.12) produces calibrated models that have minimum prediction
error on the modal acceleration (see discussion in Couplet, Basdevant & Sagaut 2005;
Cordier et al. 2010). The second term penalises large model coefficients, regularises the
regression and encourages sparsity in the solution by shrinking exactly to zero coefficients
in β i corresponding to columns of Θ(A) with little dynamical influence. Ideally, to
prune unnecessary coefficients, a penalisation term proportional to the cardinality of
β i, card(β i), would formally be more correct (Jovanović, Schmid & Nichols 2014).
However, the resulting optimisation problem would be computationally intractable even
for Galerkin models of modest dimensions. In fact, this penalisation is usually relaxed to
the computationally tractable l1 term (Ramirez, Kreinovich & Argaez 2013). Regardless,
the optimisation problems (2.12) are convex and thus have an unique solution. In addition,
the approach lends naturally to parallelisation, since the optimisation problems can be
solved independently for each mode. In initial stages of the research, we have found
approaches based on sequential thresholded least squares (Brunton et al. 2016; Loiseau
& Brunton 2018; Zhang & Schaeffer 2019) to be not sufficiently robust. Hence, solutions
of (2.12) have been computed using the sklearn (Pedregosa & Varoquaux 2011) library,
which implements a sub-gradient descent algorithm to manage the non-differentiability of
the l1 norm.

The weights γi in (2.12) are arbitrary and can be tuned to trade prediction ability
(when they are small) for sparsity (when they are large). To formalise these concepts,
we introduce the global reconstruction error ε

ε =
N∑

i=1

‖Θ(A)β i − Ȧi‖2
2

‖Ȧi‖2
2

, (2.13)

and the system density ρ

ρ = 1
Nq

N∑
i=1

card(β i). (2.14)

In (2.13), the absolute reconstruction error ‖Θ(A)β i − Ȧi‖2
2 is normalised with the mean

squared acceleration ‖Ȧi‖2
2 to balance the global reconstruction error across the hierarchy,

which would be otherwise dominated by the most energetic modes. On the other hand, the
density ρ ranges from 0, when all interactions have been pruned, to 1, for a fully connected
model. Note that for large models, the density is dominated by the quadratic tensor Q. A
one-parameter family of models can be generated by varying the regularisation weights
γi, producing a Pareto front (Schmidt & Lipson 2009) on the ρ–ε plane. Since only a
subset of triadic interactions is relevant, the expectation is that a sweet spot appears on
this curve, defining ‘optimal’ penalisation coefficients γi. It is important to observe that
the penalisation coefficient γi can be chosen independently for each index i, implying
that reconstruction error and sparsity can be modulated arbitrarily across the spectrum of
modes. In our analysis we consider two different modulation strategies. In strategy S1,
the weight is constant for all modes, γi = γ . This strategy sparsifies more aggressively
the equations of motion of low-energy modes, because the l1 penalisation term has a
higher importance than the l2 component. In this work we observed that the lowest global
reconstruction error is obtained when γi is kept constant across the modes. We also
introduce strategy S2, where the weight is normalised with respect to the mean squared
modal acceleration as γi = ‖Ȧi‖2

2γ . This is equivalent to solving problem (2.12) using the
relative error in (2.13) as least-squares component of the objective function. This strategy
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905 A15-8 R. Rubini, D. Lasagna and A. Da Ronch

results in a more balanced sparsification across the hierarchy of modes and avoids earlier
truncation, i.e. when all coefficients of a high-index mode are set to zero. Other strategies
can be, of course, devised. Here, we mention, for instance, the possibility to tune the
penalisation coefficients to obtain a uniform sparsification across the spectrum or to obtain
a uniform relative reconstruction error. Analysing these strategies is an interesting avenue
for future work.

One potential modification of this approach is that discussed in Loiseau & Brunton
(2018), namely to enforce that the nonlinear term in the sparsified Galerkin model
conserves energy exactly (see e.g. Balajewicz, Dowell & Noack (2013) and Noack et al.
(2008) for a formal definition). In practice, this can be achieved by introducing a set
of constraints on the coefficients vectors β i. The constraints, however, couple together
the regression problems of all modes, resulting in one optimisation problem of larger
dimension. As we will demonstrate later in the paper, the energy conservation error of
models obtained from the unconstrained approach is small in relative terms. This occurs
because the temporal coefficients in A are originally obtained from an energy conserving
nonlinearity, and the regression ‘discovers’ this property from data. Hence, throughout this
paper we always solved problems (2.12) independently, without additional constraints.

3. Results

We now apply this methodology to two-dimensional unsteady flow in a lid-driven square
cavity. This is an established test case for the development and validation of model order
reduction techniques (Cazemier, Verstappen & Veldman 1998; Terragni, Valero & Vega
2011; Balajewicz et al. 2013; Arbabi & Mezić 2017; Fick et al. 2018), and we thus consider
it here as an exemplar to demonstrate the ideas discussed in the introduction.

The Reynolds number is defined as Re = LU/ν where L, U are the cavity dimension and
the lid velocity, respectively, while ν is the kinematic viscosity. These quantities are used
to make the equations of motion non-dimensional. We purposefully investigate a regime at
Re = 2 × 104, where the flow evolves in a chaotic manner (Auteri et al. 2002; Peng, Shiau
& Hwang 2003, see also the animation of the vorticity field in the supplementary movie
is available at https://doi.org/10.1017/jfm.2020.707). The chaotic nature of the problem
ensures that the frequency spectrum of velocity fluctuations is continuous and energy
transfers are scattered in modal space, rather than being highly organised as for periodic
flows (Noack et al. 2011). The domain is defined by the non-dimensional Cartesian
coordinates x = (x, y) and the velocity vector u(t, x) is defined by the components
u(t, x) and v(t, x)). For visualisation purposes, we introduce the out-of-plane vorticity
ω = ∂v/∂x − ∂u/∂y.

Direct numerical simulations (DNS) were performed in OpenFOAM with the
incompressible flow solver icofoam. The convective and viscous terms are spatially
discretised with a second-order finite-volume technique and the temporal term with a
semi-implicit Crank–Nicholson scheme. Special treatments of the singularities developing
at the top corners due to the discontinuity in the velocity boundary conditions (Botella
& Peyret 1998) were not deemed necessary. A grid independence study was initially
performed, examining average and unsteady flow quantities on increasingly finer meshes.
The final mesh is composed of 300 × 300 cells, with refinement at the four cavity
boundaries. This mesh is sufficiently fine to resolve the unsteady high shear regions
bounding the main vortex, the high vorticity filaments characteristic of two-dimensional
turbulence as well as the spatial structure of the lowest-energy modes utilised for the
projection. Similar grid resolutions have been used by Cazemier et al. (1998) at similar
Reynolds numbers.
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FIGURE 1. Vorticity field ω of three different snapshots separated by one non-dimensional time
unit, increasing from left to right. An animation of the vorticity field, illustrating the chaotic
nature of the dynamics and the dominant flow features is available as a supplementary movie.

Three snapshots of the vorticity field obtained from these simulations are shown in
figure 1 (see also the animation in the supplementary movie). Most of the dynamically
interesting features in this regime originate at the bottom-right corner of the cavity.
Specifically, the secondary vortex in the recirculation zone is shed erratically, producing
wave-like disturbances advected along the shear layer bounding the primary vortex.
The characteristic non-dimensional frequency of this wave-like motion is f = 0.7. From
simulation, we extract Nt = 1500 velocity snapshots using a non-dimensional sampling
period Δt = 0.1. These settings are sufficient to adequately time resolve the fast scales as
well as to include many shedding events at the bottom-right corner, making the regression
problems (2.12) statistically reliable.

3.1. Modal decomposition
First, we consider models generated using POD modes. POD produces economic
reduced-order models, but has the well-known shortcoming of mixing together fluid
motions at different temporal/spatial scales (Mendez, Balabane & Buchlin 2019). Second,
we consider models generated from modes oscillating at a single frequency obtained
from a procedure that is equivalent to a DFT of the velocity snapshots. For practical
convenience, we obtain the two distinct sets of modes using the same computational
technique, based on the approach proposed by Sieber et al. (2016) which only operates
on the temporal correlation matrix. Briefly, the method considers the temporal correlation
matrix R ∈ R

Nt,Nt , with entries

Rij = 1
Nt

(u′(ti, x), u′(tj, x)), (3.1)

and then defines a filtered correlation matrix S, with elements

Sij =
k=Nf∑

k=−Nf

gkRi+k,j+k, (3.2)

given by the application of the filter coefficient vector g along the diagonals of the
correlation matrix. An ordered set of temporal coefficients ai = [ai(t1), . . . , ai(tNt)] and
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associated mode energies λi is then obtained from the eigendecomposition of S,

Sai = λiai, (3.3)

so that λiδij = a�
i · aj. As discussed in Sieber et al. (2016), when the filter is extended over

the entire dataset and in the limit of number of samples tending to infinity, the filtered
correlation matrix converges to a Toeplitz, circulant matrix. Then, its eigenvalues trace
the power spectral density of the underlying dataset. On the other hand, the eigenvectors
ai corresponds to the Fourier basis. This procedure generates conjugate pairs of modal
structures with same energy oscillating at a single frequency. These can be viewed as a set
of modal oscillators exhibiting periodic fluctuations (Taira et al. 2017) and tracing fluid
motion at on a two-dimensional subspace. In practice, for a finite-length dataset, we filter
the temporal correlation matrix assuming periodicity using a box-car filter, as suggested
in Sieber et al. (2016). Hereafter, we will refer to the modal structures identified by this
procedure as DFT modes.

One important consideration is that, unlike dynamic mode decomposition (see Rowley
et al. 2009; Schmid 2010; Chen, Tu & Rowley 2012), DFT lacks the ability to discern and
identify dominant frequency components. Instead, a number of modes equal to the number
of snapshots utilised is produced, oscillating in conjugate pairs at specific frequencies
determined by the sampling period Δt and observation time T (Mendez et al. 2019). This
property, picket fencing, results in frequencies that are integer multiples of the fundamental
frequency f1 = T−1, up to the Nyquist component fNyq = (2Δt)−1. In addition, unlike
for POD, as the length of the dataset is increased, the number of energy-relevant
modes increases and low-frequency modes with little dynamical importance appear. The
approach we use here is to divide the dataset into five partition of thirty time units, covering
an average of 20 cycles of the dominant oscillatory component, and providing sufficient
frequency resolution to distinguish small scale spectral features. In addition, two possible
ways of sorting pairs of modal structures are possible, i.e. by energy content (using the
eigenvalues λi) or by frequency. Models obtained with the two sorting schemes will be
referred to as DFTe and DFTf , respectively.

We now focus on the characteristics of the modal structures obtained by these two
methods. We denote the normalised cumulative sum of the eigenvalues λi of the (filtered)
correlation matrix as

e(n) =
n∑

i=1

λi

/
Nt∑

i=1

λi, (3.4)

describing the fraction of the fluctuation kinetic energy captured by the first n elements of
the expansion (2.2).

This quantity is shown in figure 2(a) for the POD and for the two possible DFT
sorting schemes. As expected, a larger energy is captured by the POD basis. For the DFT
decomposition, the energy-based sorting is more efficient at data compression, although
the difference vanishes for large n, since for low-energy modes the two sorting schemes are
equivalent. The modal energies associated with the DFTf modes are shown in figure 2(b)
as a function of the modal index i. The distribution is characterised by a continuous
component, with modal energy decaying with frequency, and a discrete component, with
a fundamental peak for the pair of modes (31, 32) and its first few harmonics. The peak,
at a non-dimensional frequency f = 0.7, is physically originated from the high-energy
structures transported along the shear layer by the rotation of the main vortical structure.

This can be observed in figures 3(a) and 3(b), showing the vorticity field ω of the
DFT mode pair (31, 32).This pair of modes describes a vorticity perturbation having
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FIGURE 2. (a) Cumulative sum of the first 100 eigenvalues of Sij for the three decompositions
considered. (b) Distribution of the modal energies of DFT modes sorted by frequency.

the form of a wave travelling along the edge of the main vortex. Hence, the spatial
structure of the two modes is shifted in the direction of the shear layer by half-wave.
Travelling-wave structures in cavity flows have already been observed in simulation by
Poliashenko & Aidun (1995); Auteri et al. (2002) and characterised by global stability
analysis and Koopman analysis by Boppana & Gajjar (2010) and Arbabi & Mezić (2017),
respectively. The two leading POD modes, reported in figure 3(c,d), have the same
energy and capture the same travelling-wave pattern described by the leading DFT mode
pair.

3.2. Energy analysis
To provide a more robust foundation to understand the sparsification results reported
in §§ 3.3 and 3.6, we first focus on the analysis of the average energy interactions.The
structure of the interaction tensor N for a large POD-based model with N = 75,
reconstructing more than 99 % of the fluctuation kinetic energy, is reported in figure 4,
showing the magnitude of the interactions for three slices for i = 1, 10 and 75, in panels
(a), (b) and (c), respectively. All entries of the tensor N are generally non-zero, although
the strength of the interactions varies across several orders of magnitude. This is a
combined result of the projection coefficients tensor Q (shown later), whose entries are
typically non-zero, and of the complex spectral structure of the temporal coefficients ai(t).
The most important feature of figure 4 is that interactions are highly organised and there
exists a subset of interactions that are more active. Specifically, for any mode i, triadic
interactions can be classified as illustrated in panel (a) in four different categories by
introducing a cutoff modal index n. The subset of interactions denoted as LL corresponds
to nonlinear energy transfer involving pairs of low-index modes, HL and LH denote
interactions involving high–low/low–high index modes, while HH denotes the subset of
interactions involving pairs of high-index modes. We observe that the areas corresponding
to LL and HL/LH are the most active. If we map low/high modal indices to large/small
scales, this result is in agreement with the picture of energy transfer between scales in
homogeneous isotropic two-dimensional turbulence (Ohkitani 1990; Laval et al. 1999),
where the large scales interact with the small ones in a non-local fashion. In addition,
interactions are not symmetric with respect to a swap of indices j, k. This can be quantified
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FIGURE 3. Vorticity field of the most energetic pair of DFT modes, panels (a,b), and of the
first two POD modes, panels (c,d).

by computing the coefficient

χi(n) =
n∑

j=1

N∑
k=1

N ijk

/
N∑

j=1

n∑
k=1

N ijk, (3.5)

representing the relative dynamical importance of the subset of interactions LL + HL and
LL + LH. Figure 4(d) shows χi for i = 1, 10 and 75 as a function of the normalised cutoff
n. The interaction subset HL is up to four times more important than the subset LH. This
is a consequence of the asymmetry of the projection coefficients Qijk, which arise from
the fact that the convective transport of structure φk(x) operated by the structure φj(x) is
more intense when the modal structure φj(x) describes large-scale flow features.

We now consider energy analysis of a large, full-resolution DFTf model constructed
from five partitions of thirty time units as discussed in § 3.1. The model is composed
of all N = 300 modes, corresponding to 150 distinct frequencies. We perform modal
decomposition and energy analysis on each partition separately, and then average the mean
energy transfer rate tensor N over the five partitions. Figure 5(a) shows the mean transfer
rate distribution for mode i = 100. Energy interactions in the DFT model are very sparsely
distributed on a thin horseshoe-shaped structure composed of three branches (denoted
in the figure as L, C and U) of 2 × 2 blocks, and all other mean energy transfer rates
interactions are identically zero. This pattern results from the joint effect of the oscillatory
nature of the temporal coefficients and the quadratic nonlinearity of system (2.3), which
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FIGURE 4. Magnitude of the average interaction tensor coefficients N ijk for three POD modes
across the spectrum, i = 1, 10 and 75 in panels (a), (b) and (c) respectively, for a model resolving
99 % of the fluctuation kinetic energy. Panel (d) shows the coefficient χi(n) as a function of the
normalised cutoff n for the same three modes.

can only be satisfied by triads of modes having matching temporal wavenumbers. A less
pronounced horseshoe-shaped distribution of the energy interactions has been previously
observed in energy analysis of POD-based models of three-dimensional transitional
boundary layers Rempfer & Fasel (1994a,b). These authors noticed that low-energy modal
structures resemble Fourier modes in the spanwise direction (justified by the spanwise
periodic domain) and thus coefficients Qijk and energy interactions are non-zero only for
specific triads of modes. In the present case, this pattern is determined exclusively by
the temporal coefficients as the tensor Q constructed from projection modes does not
possess any sparsity structure and its coefficients have a similar statistical distribution to
that obtained using the POD modes. This is illustrated in figure 6 showing maps of the
first slice of the tensor Q of the largest Galerkin models considered here, constructed from
the POD and the DFT decompositions, in panels (a) and (b) respectively. We observe
that no underlying structure is present except for the asymmetry already observed in the
energy analysis in figure 4. This property is confirmed in the probability distribution of
the coefficients, shown in panel (c).

To facilitate the interpretation of the energy interaction pattern, we follow Rempfer &
Fasel (1994b) and Arbabi & Mezić (2017) and define oscillatory modal structures

ul(t, x) = a2l−1(t)φ2l−1(x) + a2l(t)φ2l(x), (3.6)

numbered by the index l and tracing fluid motion at a single frequency on a
two-dimensional subspace. Their modal energy is

el(t) = 1
2(a

2
2l−1(t) + a2

2l(t)) + a2l−1(t)a2l(t)(φ2l−1(x),φ2l(x)). (3.7)

Numerical experiments show that, for large number of snapshots, pairs of modes φ2l−1(x)
and φ2l(x) tend to be orthogonal. Hence, considering the evolution equation for the modal
energy el(t) ∼ 1

2(a
2
2l−1(t) + a2

2l(t)) leads to the condensed triadic interaction tensor N̂ of
size (N/2, N/2, N/2) with entries

N̂ lmn =
l+1∑
i=l

m+1∑
j=m

n+1∑
k=n

N ijk, (3.8)
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FIGURE 5. (a) Magnitude of the average interaction tensor N ijk for i = 100, with the three
characteristics branches, showing that active interactions come in 2 × 2 blocks corresponding
to matching triads of modes. The small inset focuses on the interactions of branches C and U.
(b) Magnitude of the average interaction tensor (3.8) where the three branches of panel (a) have
been unfolded on a larger plane spanned by the coordinates l and η. The inset shows details of
the interactions of the branch U in the plane η − l.
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FIGURE 6. Maps of Q1jk for Galerkin models constructed from the POD and the DFTf
decompositions, in panels (a) and (b), respectively. Panel (c) shows the probability distribution
of all quadratic coefficients for these two models.

lumping together the 2 × 2 blocks of interactions at matching triads of figure 5(a). In
addition, the three branches L, C and U can be unfolded and conveniently visualised
on a two-dimensional plane spanned by the coordinate l, the modal structure index,
and η = m − n, representing the distance in modal space between pairs of temporal
wavenumbers. This unfolding process is shown in panel (b) of figure 5, and when repeated
for all modal structures leads to the distribution shown in figure 7(a). In figure 7(b), we
report the average transfer rate N̂ lmn normalised with the total average transfer rate for each
structure, the quantity

T̂l =
N/2∑
m=1

N/2∑
n=1

N̂ lmn, l = 1, . . . , N/2, (3.9)

to illustrate more clearly the relative strength of the interactions. In figure 7(c), the
normalised mean transfer rate for l = 1 and 150 is reported. Interactions between
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FIGURE 7. (a,b) Absolute and relative strength of the energy interactions between pairs of DFT
modes for a model with N = 300 visualised on the plane m, n, with the additional coordinates l
and η. (c) Relative energy interactions for the first and last mode pairs.

triads of pairs of DFT modes are organised in agreement with the physics of scale
interactions previously discussed for POD models. In absolute terms, the most relevant
interactions are clearly those located near the origin of the coordinates. These correspond
to low-index modes where nonlinear interactions with other low-index modes dominate,
while interactions with the high-index modes, for larger η, are less important. This
suggests that a sparsification approach based on pruning the interactions involving the
high-index modes, i.e. the small scales, would be effective. By contrast, for high-index
modes, relevant energy interactions are organised in bands along the axes m and n and
involve energy exchange between low-index modes and high-energy, high-index modes.
This suggests that the dynamics of the small scales is driven primarily by non-local
interactions with the largest structures of the flow and not by small-scale/small-scale
quadratic interactions. The slight asymmetry visible in panel (c) arises from the structure
of the coefficients tensor Qijk and has the same physical origin as that observed in figure 4
for the POD model.

3.3. Sparsification of POD-based models
We now apply the methodology presented in § 2 to three POD-based models resolving
90 %, 95 % and 99 % of the kinetic energy, respectively (see table 1 for details). Because
the size of the database matrix Θ(A) grows quadratically with the number of modes, the
number of possible interactions q can easily become larger than the number of available
snapshots Nt, resulting in an underdetermined regression problem and overfitting. This is
a well-understood issue in data analysis and requires cross-validation techniques to ensure
the statistical reliability of the result (Friedman et al. 2008). In this work, we employed
K-fold cross-validation, using typically K = 10. Briefly, the database is first divided into
K folds. The model is trained using K − 1 blocks and the reconstruction error ε of (2.13) is
obtained from the fold that was left out. This procedure is iterated over all folds, obtaining
the mean and the standard deviation of ε.

Figures 8(a)–8(c) show the sparsification curves on the ρ–ε plane for the three POD
models considered. The mean of ε across the folds is displayed as a thick black line, while
the grey dashed line indicates plus or minus one standard deviation. These curves have
been obtained by solving problem (2.12) using strategy S1 and progressively increasing
the regularisation weight. When low weights are used, dense systems with good prediction
accuracy are obtained. The opposite is true for large weights, identifying points in the left

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.707


905 A15-16 R. Rubini, D. Lasagna and A. Da Ronch

n 1 5 10 15 20 26 50 75 80 95 100 300

POD 0.26 0.74 0.85 0.89 0.9 0.95 0.98 0.99 0.995 0.998 0.999 —
DFTe 0.17 0.49 0.62 0.74 0.8 0.88 — 0.92 0.95 0.97 0.98 1
DFTf 0.02 0.07 0.15 0.39 0.43 0.47 0.91 — 0.96 0.97 0.98 1

TABLE 1. Normalised cumulative energy distribution e(n) for POD and DFT modes, where the
latter are sorted by energy content (DFTe) or by frequency (DFTf ).
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FIGURE 8. The ρ–ε curves for three POD models resolving 90 %, 95 % and 99 % of the kinetic
energy in panels (a), (b) and (c), respectively. The black line represents the cross-validated
error averaged over K = 10 folds. The dashed grey lines represent plus/minus one standard
deviation of the cross-validated error calculated over the folds. The red dashed line shows
the reconstruction error obtained with the greedy approach. The squares indicate the global
reconstruction error of the Galerkin model obtained directly from projection.

part of the graph characterised by low density and poor prediction accuracy. As postulated
in § 2, the curves show a sweet spot at around ρ ≈ 0.2, displaying a plateau for ρ � 0.2,
while the error ε grows quickly when ρ � 0.2. These results indicate that it is possible to
prune ∼80 % of the quadratic interactions in model (2.3) without influencing the average
prediction accuracy. The red dashed line represents the reconstruction error obtained with
a naive sparsification approach. The approach consists in pruning coefficients of Qijk in
the area denoted as HH in figure 4(a). The approach exploits the structure of N ijk and is
therefore referred to as ‘greedy’. By varying n ∈ (1, N), models with different sparsity are
obtained, with n = N corresponding to the original projection model projection (indicated
as a red square in figure 8). The shapes of the sparsification curves for the greedy approach
are similar to those obtained with the l1 regression. This is a direct consequence of the
existence of a subset of most relevant energy interactions. However, the reconstruction
error obtained from the greedy method is generally higher than that obtained by the
l1 regression, since the optimisation procedure involved in the l1 approach modulates
the strength of the remaining interactions by tuning the active quadratic coefficients,
minimising the prediction error. As we show later in § 3.5 dedicated to analysing the model
performance in time integration, this difference will have a marked effect on the long-term
temporal stability of the models.

Regardless of the approach, the mean reconstruction error decreases as the resolved
energy increases, moving from panel (a) to panel (c), as more modes participate in
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capturing the dynamics of velocity fluctuations. In addition, larger models can be more
effectively sparsified, as the sparsification curve drops more rapidly. This results from
the non-local structure of energy interactions shown in figure 4. When one additional
low-energy mode is included, the number of relevant interactions to be retained in the
model only grows as O(N) and not as O(N2), i.e. all non-local interactions with the rest of
the hierarchy denoted as LL, LH and HL in figure 4(a). Since the total number of possible
interactions grows as O(N3), larger models can be more effectively sparsified. This is
conceptually in agreement with the observations of Taira et al. (2016) on the sparsification
properties of discrete vortex models. We also observe that the mean prediction error does
not necessarily decrease monotonically when the density increases. This phenomenon
is particularly visible for the model in panel (b) but all models reproduce the same
behaviour. This is a symptom that the number of available snapshots (1500) is potentially
not large enough for the number of coefficients (q = N × (N + 1)/2 + N + 1 = 2926 for
the model in panel (c)) and overfitting would have occurred if no cross-validation had been
performed.

3.4. Energy interactions identified by the regression and conservation properties
To visualise the sparsity pattern identified by the regression as the regularisation weight in
(2.12) is increased (constant for all modes in strategy S1), we introduce the tensor γ with
entries γijk defined as the value of the regularisation weight at which the corresponding
coefficient Qijk is shrunk to zero by the LASSO. Figures 9(a)–9(c) show three slices of γ
for modes i = 1, 10 and 75, respectively, for the largest POD model considered, capturing
99 % of the total fluctuation kinetic energy. The first interactions to disappear are the
small-scale/small-scale interactions. Increasing the penalisation, interactions that are local
in modal space are progressively pruned, leaving only non-local interactions involving
triadic exchanges with the low-index modes for large penalisations. Interestingly, this
pattern does not change qualitatively nor quantitatively as the modal index i increases.
In fact, a comparable number of interactions is retained across the hierarchy and the
governing equations of all modes are sparsified by an equal amount. Hence, sparsification
has not produced mode truncation, which would have occurred if all coefficients of some
low-energy modes had been shrunk to zero by the LASSO. This behaviour can be justified
by noting that the mean square acceleration ‖Ȧi‖2

2 of the POD amplitude coefficients varies
weakly with i. In fact, the sparsification pattern does not change significantly when strategy
S2 is used. In figure 10(a–c) the base ten logarithm of the mean energy interaction tensor
Ns

ijk computed as in (2.9) with the sparse coefficient tensor Qs is shown for the same three
modal indices as in figure 9. The data refer to sparse models with ρ = 0.3, located nearby
the sweet spot of the curves in figure 8(c). It can be observed that the sparsified model has
a pattern of interactions resembling that of the dense model in figure 4. However, weak
interactions and the associated flow physics have been pruned. It is also clear that the
asymmetry of the interaction pattern observed in figure 4 and the physical mechanism that
originates it are invisible to the regression and the interaction pattern in figure 10 is now
symmetric with respect to a swap of the indices j, k.

Despite the aggressive pruning, the sparse models reproduce fairly accurately the
overall structure of the intermodal energy budgets. In the present flow configuration, the
convective nonlinearity is energy conserving and Galerkin models should obey the relation∑N

i=1 Ti = 0 as N → ∞, with Ti = ∑N
j=1

∑N
k=1 N ijk the time-averaged energy transfer

rate to/from mode i. For finite-dimensional approximations, this property is not satisfied
exactly and the residual of the summation can be taken as a measure of the overall energy
balance. Figure 11(a) shows such residual for the l1 sparsified models (empty circles) and
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FIGURE 9. Distribution of the base ten logarithm of γijk for i = 1, 10 and 75, in panels (a), (b)
and (c), respectively, for the POD model resolving 99 % of the fluctuation kinetic energy.

for the models obtained with the greedy approach (empty squares), as a function of the
density. The residual is normalised by the root mean square value of the rate of change of
the integral fluctuation energy. Note that the greedy model at ρ = 1 is the model obtained
directly from projection. It can be observed that the energy conservation error is relatively
small, of the order of 10−3 ÷ 10−4. For large densities, it is larger than that of the projection
model, because the regression tunes model coefficients to minimise the mean square
error on the modal accelerations and does not enforce this physical constraint directly.
The energy conservation residual decreases for sparser models and is ten times smaller
than the projection model, owing to the lower number of active coefficients that participate
in the regression. Figure 11(b) shows the distribution of the time-averaged energy transfer
rate associated with mode i for the l1 sparsified model at ρ = 0.3 (red crosses) and the
dense model obtained from projection (empty circles). Data are reported every second
mode. For the projection model, the net energy transfer is negative for the first few
modes and changes sign at i ∼ 10. Physically, this trend suggests that the first few
modes extract energy from the mean flow and feed the dissipative high-index modes via
triadic interactions. The l1 sparsified model correctly reproduces this global trend,even
though no constraints have been introduced (Loiseau & Brunton 2018). As discussed
in § 2, it is argued that this is a general properties of data-driven techniques relying
on optimisation ideas, such as the LASSO, which naturally reproduce invariants and
conservation properties embedded in the data to a level defined by noise levels. For
instance, Taira et al. (2016) used network-theoretic ideas to sparsify connections in a
discrete vortex model and observed that sparsification conserves the invariants of discrete
vortex dynamics.

3.5. Long-term temporal behaviour of the l1 sparse systems
We now turn our attention to the long-time behaviour of the sparsified models under
temporal integration. We consider results for models resolving 95 % of the turbulent
kinetic energy as an illustrative example, and use the projections of the POD modes onto
one of the DNS snapshots to obtain initial conditions. Results are shown in figure 12.
Panel (a) shows the temporal evolution of the integral fluctuation kinetic energy E(t),
as defined in (2.7), for the dense projection model and the sparse models obtained
with the l1 and greedy approach, with same density ρ = 0.3. The temporal evolution
obtained with these models is compared against the fluctuation kinetic energy from
DNS. For the projection model, the integral kinetic energy grows substantially in the
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FIGURE 10. Base ten logarithm of the sparsified interaction tensor Ns
ijk for i = 1, 10 and 75 in

panels (a), (b) and (c), respectively, for a POD model resolving 99 % of the fluctuation kinetic
energy and ρ = 0.3.
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FIGURE 11. (a) The normalised energy conservation error as a function of the density ρ, for
the greedy sparsification approach (empty squares) and the l1 based approach (empty circles).
(b) The total net energy transfer rate Ti as a function of the modal index i for two POD models
resolving 99 % of the kinetic energy, with coefficients identified from projection and for a l1
sparse model. One every two data points are reported.

first 40 time units and then saturates on a value that is approximately two orders of
magnitude larger than what observed in DNS. The over-prediction occurs because the
truncation of the small scales in the ansatz (2.2) leads to a significant imbalance of
the production–dissipation budget within the model (Noack, Papas & Monkewitz 2005;
Noack et al. 2008, 2011; Balajewicz et al. 2013). A qualitatively similar behaviour, if not
worse, is then necessarily observed for the model sparsified with the greedy approach,
since neglecting weak interactions alone does not cure the original dissipation problems.
Conversely, the l1 model is able to predict the correct average fluctuation kinetic energy
and has excellent long-term stability properties, despite this being not enforced in the
regression procedure (see Fick et al. 2018). We argue that this is due to the fact that the
l1 procedure performs a ‘prune-then-calibrate’ approach, where weak interactions are first
pruned and the remaining active coefficients are then tuned in the optimisation involved
in (2.12) to match the reference dynamics. It is evident from these results that this second
step is key to obtain accurate long-term behaviour. Figures 12(b)–12(d) show a shorter
segment of state space trajectory from these models projected onto three different pairs
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FIGURE 12. (a) Temporal evolution of the turbulent kinetic energy E(t) from DNS compared to
that obtained from temporal integration of the l1, greedy and Galerkin projection models. Sparse
models have ρ = 0.3. (b)–(d) State space projections onto three different mode pairs. Data for
the greedy model are omitted as the trajectory quickly leaves the visible range. (e) Average modal
energy (λi = aiai) from DNS and long-time integration of the models considered in panel (a).

of modes. We omit the data for greedy approach since orbits quickly drift out of the visible
range and this case is thus qualitatively similar to that from the dense model. It is clear
that the trajectory of the l1 model remains in the same volume of state space occupied
by the DNS projections, while the projection model drifts away to a different region of
state space, over-predicting the integral kinetic energy. This is more effectively visualised
in panel (e), displaying the average modal energy λi = aiai as a function of the modal
index. Data are obtained from averaging long trajectories after the initial transient in panel
(a) has completed. The projection and greedy models predict much larger energies across
the entire spectrum, while the l1 correctly predicts the correct decay of modal energies.
It is, of course, not possible to guarantee that l1 sparsified models of generic turbulent
flows will have good long-term stability (Schlegel & Noack 2015), but the present results
constitute evidence that this is realistically possible on a non-trivial problem. Finally,
we have observed in animations of the reconstructed flow fields using the spatial modes
and the temporal coefficients from numerical integration (see supplementary movie) that
characteristic flow features, such as the erratic burst of corner vortices and the evolution of
coherent structures in the shear layer bounding the main vortex, are also well reproduced
by the l1 model, providing a realistic flow reconstruction over long time horizons.

3.6. Sparsification set-up for DFT-based models
Before moving to the sparsification of DFT-based models, we briefly discuss three
technicalities arising from the oscillatory nature of the temporal coefficients.As an
illustrative example, we consider a small-sized model constructed with N = 26 modes and
perform sparsification as discussed in § 2, with a relatively small regularisation weight
(γ = 10−14, strategy S1). The first key result is that all the entries of the constant and
quadratic coefficient tensors C and Q are set to zero, while the linear tensor L has a
characteristic bidiagonal structure, shown in figure 13(a). The system identified by the
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FIGURE 13. (a) Entries of the linear tensor L identified by the unconstrained regression.
(b) Singular values σi of the full database matrix Θ(A) of (2.10) (red circles), and of the reduced
matrix (black crosses) obtained by keeping only the subset of columns corresponding to active
interactions on the three branches of figure 5. One every five singular values are shown for clarity.

regression is equivalent to a set of N/2 decoupled linear oscillators in the form[
ȧ2l−1

ȧ2l

]
= ωl

[
0 1

−1 0

] [
a2l−1

a2l

]
l = 1, . . . , N/2, (3.10)

coupling pairs of temporal coefficients oscillating at the same angular frequency ωl =
2πl/T , with T being the observation time. The eigendecomposition of the tensor L is
trivial. Eigenvalues are all imaginary and come in pairs that are integer multiples of the
fundamental frequency ω1 = 2π/T . While this result is consistent with recent ideas on
Koopman operator theory (Mezić 2013), where nonlinear dynamics is modelled with
a linear system of larger dimension, all information on nonlinear energetic interactions
has been lost in the process since the nonlinear part of the system has been completely
eliminated by the regression. This result is due to the fact that, when temporal coefficients
are sine/cosine pairs, there is a column of Θ(A) that is exactly parallel to the target Ȧi,
since time differentiation is equivalent to a permutation of sine/cosine pairs. As pointed
out in Brunton et al. (2019) incorporating and enforcing known flow physics is a challenge
and opportunity for machine learning algorithms. In order to address this first aspect, we
introduce a physically motivated approach based on considerations of the time averaged
energy budget of system (2.7). Since the temporal coefficients have zero mean and are
uncorrelated in time, we should obtain

Liiaiai +
N∑

j=1

N∑
k=1

Qijkaiajak = 0, i = 1, . . . , N (3.11)

i.e. only the diagonal element of the linear term participates in the mean power budget.
Hence, for the sparsification of DFT-based models we use a modified database matrix that
only contains the column associated with the diagonal part of the linear term.

The second aspect is that for DFT models the database matrix Θ(A) is not full rank
and some of the columns of this matrix are linearly dependent. In this case, the LASSO
is known to select one column at random (according to the particular ordering of the
columns) and sets to zero regression coefficients of the other linearly dependent columns
(Tibshirani 2013; Hastie, Tibshirani & Wainwright 2015). Machine learning techniques
often come without guarantees for robustness (Brunton et al. 2019), implying that physical
insight obtained with these tools might be questionable. To avoid this problem, we
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constructed a reduced database matrix Θ(A) containing only columns corresponding to
the interactions on the three branches of figure 5. The reduced database matrix is full
rank, as can be seen in figure 13(b), showing the singular values of the full database matrix
defined by (2.10) and of the reduced matrix. The important consequence is that the solution
of the LASSO problem (2.12) is unique (Tibshirani 1996), and can be thus compared with
the available physical knowledge of scale interactions in turbulent flows. This reduction is
not strictly necessary, since the l1 regression identifies this pattern anyway for fairly small
regularisation weights. However, this has the advantage that the computational complexity
of sparsifying the entire Galerkin model only grows as O(N2) instead of O(N3), as for POD
models, because the reduced database matrix contains a number of interactions equal to
q = 2(N + 1) at most. More importantly, because of the greatly reduced number of free
coefficients cross-validation techniques to avoid over-fitting become unnecessary.

The third aspect of DFT-based models is that, as anticipated, the number of modes
is not uniquely defined by the energy resolution but depends on the overall observation
time. Long observation times would be beneficial to reach statistical significance but
would result in low-energy/low-frequency modes that do not contribute significantly to
the overall dynamics. In practice, we have divided the original dataset into M partitions
and performed DFT for each of them separately. Then, we stacked vertically the modal
acceleration matrices and the reduced database matrices from the partitions and solved
(2.12) for a common coefficients vector.

3.7. Sparsification of DFT-based models
We now move to the sparsification of DFT-based models. We focus primarily on the
structure of energy interactions identified by the regression and leave long-term temporal
stability considerations aside. In fact, the DFT produces modal structures by assuming a
priori their temporal behaviour, i.e. harmonic motion, and the meaning of a time-domain
analysis is thus conceptually unclear.

We introduce the modified density ρDFT spanning the range [0, 1] and representing the
number of active coefficients with respect to the total number of active interactions on
the three branches of figure 5. For large models, the approximation ρDFT ≈ 2/3ρN can
be used. In figure 14(a), sparsification curves for three models obtained with observation
times T = 10, 30 and 50 (with M = 15, 5 and 3 partitions of the full dataset, respectively),
at full energy resolution, are reported. Strategy S1, where the regularisation weight
is maintained constant for all modes is used. We observe that the error decreases
monotonically with the observation time. This is a consequence of the larger number of
frequencies that interact quadratically to reconstruct the original DNS acceleration data.
For the larger model obtained at T = 50, 70 % of the triadic interactions can be pruned
with no major effects on the overall prediction error. If the full coefficient tensor Q is
considered, this correspond to a remarkably low density of 0.0015. Figure 14(b) shows the
sparsification curves for models obtained with observation time T = 30, for three different
energy resolutions, e(n) = 0.9, 0.95 and 0.99. Interestingly, we notice that the curves do
not present a plateau for high densities as opposed to the full resolution mode shown in
panel (a) and the POD sparsification curves of figure 8. This is the combined effect of the
dramatic decrease in the number of modes at lower energy resolutions (see table 1) and
the inherent efficient description of energy interactions in DFT-based models compared to
POD.

We now compare strategies S1 and S2 on the full resolution model obtained with
observation time T = 30. Results of this analysis are reported in figure 15. Panels (a–c) and
(d–f ) are obtained with the strategy S1 and S2, respectively. Panel (a) shows the tensor γ̂ ,
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FIGURE 14. (a) Sparsification curves for models obtained by three different observation times
and resolving 100 % of the kinetic energy. (b) Sparsification performed with T = 30 with three
different energy resolutions e(n).
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FIGURE 15. (a)–(c) Strategy S1; (d)–( f ) strategy S2. Panels (a,d) show the distribution of γ̂ .
Panels (b,e) show the trend of the modal density ρl against the global density ρDFT for four
different modes in different parts of the spectrum. Panels (c, f ) show the energy interaction tensor
Ns of the sparsified system.

obtained by processing and visualising the full tensor γ using the same technique utilised
for the interaction tensor N̂ in figure 5. Panel (b) shows the density of individual ordinary
differential equations for a selected number of modal structures as a function of the overall
model density ρDFT , while the sparsified interaction tensor N̂

s
for ρDFT = 0.7 is shown

in panel (c). When the regularisation weight is maintained constant, the sparsification
pattern emerging from the tensor γ̂ follows the distribution of the mean energy transfer
rate of figure 7(a). In particular, despite the signature of non-locality is still visible in the
pattern, the sparsification is highly skewed across the spectrum because the equations for
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high-frequency modes are excessively sparsified for moderate penalisations as opposed to
those of low-frequency, high-energy modes.

This behaviour is better seen in the individual density curves in panel (b). Specifically,
the density ρl of the last mode pair (l = 150) drops quite pronouncedly to much lower
density than average at ρDFT ≈ 0.5. Panel (d) shows the sparsification pattern obtained
with the second strategy. We observe that, in this case, the interactions are retained
according to their relative strength producing a sparsification pattern that follows the
relative energy transfer rate reported in figure 7(b). This results in a more balanced
sparsification across the spectrum, where the modal density ρl decreases more uniformly
for all modes as the global density is decreased, as shown in panel (e). The mean energy
transfer rate of the models sparsified using the two strategies, with ρDFT = 0.7, is reported
in panels (c, f ). Globally, the structure and intensity of energy interactions is preserved by
the LASSO, although strategy S1 has more aggressively sparsified the high-index modes
and truncated the equations of the last five pairs of modes. Although not shown here, all
DFT models, regardless the strategy, have similar energy conservation properties as for
POD modes, as illustrated in figure 11.

As a final remark, we have observed in sparsification of larger DFT models that,
although the LASSO is able to successfully identify the dominant subset of energy
interactions, the complexity of the optimisation problem makes an accurate reconstruction
of the numerical values of the system coefficients challenging. This is due to the spectral
properties of the database matrix Θ which deteriorate as the number of modes considered
grows (Cordier et al. 2010). A potential solution to this issue would be to use elastic-net
regression (Friedman et al. 2008) which combines an l1 term with an l2 (Tikhonov)
penalisation. This would provide a better trade-off between sparsification and stability
of the reconstructed coefficients.

4. Concluding remarks

In this paper, we applied recent data-driven methods for the identification of
sparse dynamical systems to sparsify nonlinear triadic interactions in projection-based
reduced-order models of two-dimensional unsteady flows. Our work is motivated by
established knowledge of scale interactions in turbulence, whereby the dynamics at
a certain length scale depends most prominently on a subset of other length scales.
Computationally, our methodology is based on l1-based regression methods and is scalable
to large models defined by hundreds of modal structures. These methods are used to
recast the problem of identifying relevant triadic interactions into a convex optimisation
problem for which scalable, efficient solvers can be used. The overarching aim is to
develop large reduced-order models covering a wide range of length scales, but where
computational efficiency and physical interpretability have been preserved by pruning
weak triadic interactions.

In this analysis we considered two-dimensional lid-driven cavity flow at Reynolds
number Re = 2 × 104. We generated two families of reduced-order models by Galerkin
projection of the Navier–Stokes equations onto the subspace spanned by proper orthogonal
decomposition and discrete Fourier transform modes. The goal was to understand the role
of the subspace utilised for projection on the structure and sparsity of energy interactions
between modes. As discussed in Brunton et al. (2019) an open problem in applying
machine learning algorithms to fluids problems is to successfully incorporate known flow
physics. In our case, we have observed that for DFT-based models, it has become necessary
to manually modify the database matrix in order to ensure the uniqueness of the solution
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and preserve the full nonlinear character of modal interactions. The analysis of the average
energy transfer rates between modal structures has shown that, for both the POD- and
DFT-based models, a subset of most relevant interactions exists, in agreement with the
established picture of scale interactions in two-dimensional flows. This is an a posteriori
feature of solutions of the equations and not an a priori property of the evolution equations.
In fact, the model coefficients identified by the Galerkin projection do not have a particular
structure and are typically different from zero. Our results show that, in both cases, there
exists a sweet spot on the ρ–ε curve where the sparsification approach recovers correctly
this subset, with little effect on the prediction accuracy. The models also preserve to a
good degree of accuracy the non-local nature of triadic interactions and the conservation
properties of the convective term of the Navier–Stokes equations. In principle, energy
conservation could be enforced exactly (Loiseau & Brunton 2018), although we have not
found this to be necessary to obtain satisfactory temporal stability characteristics. In fact,
unlike dense models obtained directly from the projection, the l1 sparsified POD-based
models have excellent long-term stability properties. Numerical integration shows that
trajectories generated by these models remain in the same area of state space occupied by
the DNS projections. The average integral fluctuation kinetic energy and the distribution of
energy across modes are also reproduced fairly well. Sparse models constructed by a naive
procedure where weak interactions are pruned, referred to as greedy approach in the paper,
do not enjoy the same robustness and have worse performance than the dense models. This
indicates that, once coefficients corresponding to weak interactions have been shrunk to
zero by the l1 penalisation, re-balancing the remaining coefficients with the least-squares
term in the LASSO problem (2.12) is key to preserve accuracy.

We have also observed that the effectiveness of the sparsification grows with the
number of modes utilised in the projection (energy resolution). This is a result of the
non-local nature of scale interactions in two-dimensional flows, where the dynamics of
small-scale features is dominated by the advection of the large modes, rather than by the
small-scale/small-scale nonlinearity. The interesting consequence is that, while the total
number of quadratic interactions grows cubically with the number of modes, the number of
relevant interactions does not grow as quickly. Hence, our expectation is that sparsification
becomes more effective as the Reynolds number increases, as a result of the increased scale
separation. This would also reduce, in relative terms, the computational costs required for
propagating the model forward in time. In this paper, we have not, admittedly, explored in
enough detail the role of sparsification on the reduction of computational costs, as these
are highly influenced by implementation details and code optimisations. For instance,
the sparsified quadratic tensor Qs could be efficiently stored and evaluated using sparse
matrix techniques. Characterising physical and computational properties of l1 models as a
function of the Reynolds number in two- and three-dimensional turbulent flows is therefore
an interesting avenue for future work.

A major difference between the two decompositions considered in this work is that
energy interactions between triads of DFT modes are highly localised in modal space,
as a result of the oscillatory nature of the temporal coefficients. On the other hand, for
energy-optimal POD modes, temporal coefficients contain a wider range of frequencies
and energy transfers are thus inevitably scattered in modal space. Consequently, the
number of active interactions only grows as O(N2) for DFT models, rather than as O(N3)

for POD models. Therefore, we conclude that the sparsity of energy interactions is not
necessarily invariant when analysed on different subspaces. In practice, the favourable
O(N2) scaling observed for DFT modes is appealing for the construction of large yet
interpretable models, covering a wide range of spatio-temporal scales. However, the
meaning and practical utility of temporal integration of DFT-based models (but also
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models constructed from other decompositions producing purely oscillatory modes),
where the solution structure has been assumed a priori, remains conceptually unclear.
In summary, the stark difference between DFT- and POD-based models suggests that it
might be possible to develop a modal decomposition that identifies a set of maximally
independent structures, e.g. where the resulting quadratic coefficient tensor Q or the
average interaction tensor N are maximally sparse. However, this appears to be a nonlinear
optimisation problem, with the associated convergence and uniqueness issues. Work in
this direction has been recently initiated by Schmidt (2020).
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