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Optimal linear growth in spiral Poiseuille flow
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(Received 16 October 2007 and in revised form 24 March 2008)

Computations are presented of the optimal linear growth in spiral Poiseuille flow(SPF).
The aim is to complement a recent presentation of the complete neutral curves for
this flow (Cotrell & Pearlstein, J. Fluid Mech. vol. 509, 2004, p. 331) with a study
of the transient growth possible in the stable parameter regions. Maximum growth is
computed over the full range of axial and azimuthal wavenumbers for the same three
test cases as considered by Cotrell & Pearlstein: radius ratio η = 0.5 and rotation
rate ratio μ = − 0.5, 0 and 0.5. A connection is established between two regimes
of optimal transients in spiral Poiseuille flow. The first occurs for axial Reynolds
number Re � 1 and Taylor number Ta = O(1), with transient growth of streamwise
disturbances analogous to that in non-swirling shear flows. In the second regime
Ta � 1, and we find centrifugal transients of a different type. In this latter regime we
obtain the first numerical verification of a recently conjectured scaling for centrifugal
transient growth. Our results imply different transition scenarios, triggered by either
transient growth or asymptotic instabilities, in the small-Re and large-Re regimes,
consistent with previous experimental data. We also study a model for the secondary
instability of the optimal transients, as a proposed explanation for the subcritical and
delayed transition seen in experiments at moderately large Re. The model is found
to favour delayed onset for smaller μ and subcritical onset for larger μ, in good
qualitative agreement with the experimental data.

1. Introduction
Spiral Poiseuille flow (SPF) is the steady flow occurring between two concentric

cylinders when driven by both differential rotation of the cylinders and an imposed
axial pressure gradient. SPF is important in several applications, e.g. in the cooling of
rotating machinery and in journal bearing lubrication. It is also a flow of significant
theoretical interest because it exhibits both centrifugal and shear instabilities.
Following Taylor’s (1923) work on rotating flow without an axial component,
early work on SPF stability concentrated on axisymmetric disturbances (Goldstein
1937; DiPrima 1960; Chandrasekhar 1962). Theoretical results for non-axisymmetric
disturbances were given by Takeuchi & Jankowski (1981), Ng & Turner (1982), and
Meseguer & Marques (2002). Recently Cotrell & Pearlstein (2004) and Meseguer &
Marques (2005) have given complete linear stability boundaries up to Reynolds
number Re = O(104). A full review of the history of SPF stability is given by Cotrell &
Pearlstein (2004).

1.1. Motivation

The present work is motivated by the work of Cotrell & Pearlstein (2004), who present
the complete neutral curves for linear stability of SPF, and the companion paper by
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Cotrell, Rani & Pearlstein (2004), in which the theoretical results are compared to
the available experimental data. Cotrell & Pearlstein’s neutral curves are described as
complete because they include both Tollmien–Schlichting (shear) instabilities, which
determine the neutral curve at large Re, and the centrifugal instabilities which are
prevalent at smaller Re. The existence of Tollmien–Schlichting instabilities at high Re
in SPF was conjectured by Reid (1961), and their confirmation by Cotrell & Pearlstein
(2004) and Meseguer & Marques (2005) is a significant step forward in the context
of SPF stability theory. However, the neutral curve of any large-Re shear flow, and
particularly one with Tollmien–Schlichting instabilities, immediately raises a further
question: what direct significance do the instabilities have? There has been strong
interest in recent years in the so-called bypass transition to turbulence of parallel shear
flows (Schmid & Henningson 2001), and it is now widely accepted that Tollmien–
Schlichting waves do not play a direct role in some transition scenarios. Instead, the
starting point for bypass transition mechanisms is generally linear transient growth.
With this in mind, it is naturally desirable to map the levels of optimal transient
growth in order to gain further insight into the stability of SPF. If transient growth
levels are low then this supports the idea that transition should occur at the neutral
curve, whereas if transient growth is particularly strong bypass transition may become
a possibility, in which case the neutral curve may not then dictate transition. A lesson
from the transition studies of parallel flows is that computations of transient growth
can contribute information on the meaning of the neutral curve for transition;
therefore this gives strong theoretical motivation for the present investigation.

Various experiments on SPF stability have been performed, and are compre-
hensively reviewed by Cotrell et al. (2004). They compared the values of Taexpt

crit ,
the critical value of the Taylor number Ta at which transition was observed
experimentally, with Tatheo

crit , the critical Ta on the theoretical neutral curve. A brief
summary of the comparison is that excellent agreement is generally obtained for
small Re. However for large Re the agreement is poor, with Taexpt

crit decreasing to
zero at Re = O(103) while Tatheo

crit is non-zero and approximately independent of Re
in this range. In an intermediate range 200 � Re � 400, a relatively small systematic
difference between Taexpt

crit and Tatheo
crit is found. These broad trends tend to support

a hypothesis that for small Re transition occurs at the neutral curve, whereas for
large Re a bypass transition occurs which does not involve the instability modes. For
Re � Ta the flow is approximately annular Poiseuille flow, with only a very small
rotation, so experimental transition to turbulence at Re = O(103) is unsurprising.
Assuming that the transition of (annular) Poiseuille flow follows a bypass mechanism
reliant on transient growth, then one is lead to speculate that at large Re transient
growth effects are the dominant linear growth mechanism in SPF, but that at small Re
they are a small and unimportant effect. Hence the experimental evidence motivates
an investigation of the transient growth in SPF in order to test this hypothesis.

1.2. Transient growth

The phenomenon of transient growth results from the fact that, for any non-trivial
mean flow, the linearized Navier–Stokes equations correspond to a non-normal
operator. In a non-normal linear system transient growth can occur at short times,
even if the system is stable and all signals decay at large times. For this reason
transient growth has frequently been studied as a means of growth in parallel shear
flows (Gustavsson 1991; Butler & Farrell 1992; Trefethen et al. 1993; Schmid &
Henningson 1994) and more recently has also been applied to vortex-type shear flows
(Antkowiak & Brancher 2004; Pradeep & Hussain 2006; Antkowiak & Brancher
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2007; Heaton & Peake 2007; Heaton 2007). Transient growth is quantified by taking
the initial-value problem of the linearized Navier–Stokes equations and finding the
maximum possible growth, as measured by kinetic energy, with the maximum being
taken over all possible initial conditions. The initial condition corresponding to
maximal growth is known as the optimal perturbation. The numerical calculation of
optimal transients can be performed by a variety of methods; in this paper we will
follow the method of Schmid & Henningson (2001), as will be fully described below.

The transient growth possible in SPF will be computed for the same three
representative test cases used by Cotrell & Pearlstein (2004) in their calculations
of the neutral curve. These cases have radius ratio η = 0.5 and rotation rate ratio (of
the outer and inner cylinders) μ = 0, ±0.5. It is possible to extrapolate from these
test cases, at least in a qualitative manner, to other cases such as small radius ratio
(Cotrell & Pearlstein 2006), narrow gap, etc. Transient growth has been computed
in Taylor–Couette flow by Hristova et al. (2002) and Meseguer (2002), but we are
not aware of any previous studies of transient growth in SPF. For the three test
cases we compute the maximum transient growth, maximized over time and over
all wavenumbers, throughout the stable portion of the (Re,Ta)-plane. For large Re
and fixed Ta we find transients characteristic of a nearly parallel shear flow with a
streamwise-independent structure. In the alternative limit of large Re and large Ta
(which is stable only when μ > η2) we recover a different type of transient, which we
refer to as centrifugal, characteristic in flow with comparable swirl and axial velocity.
The centrifugal transients have recently been investigated by Heaton & Peake (2007),
who present scalings and a mathematical treatment which differ from those for parallel
shear flows (Schmid & Henningson 2001). An interesting aspect of our results is the
ability to connect two regimes consisting of these two different types of transient
growth in different parts of the (Re,Ta)-plane for SPF – this result is in the same
spirit as the connection recently found between centrifugal and Tollmien–Schlichting
asymptotic instabilities in SPF. For the centrifugal transients one particular result is
that we are able to directly confirm the scalings given by Heaton & Peake (2007)
for the magnitude of the transient growth. The scaling G ∼ Re(2+2σ )/3 (where G is
the growth and σ an exponent defined below) was not possible to observe with the
numerical method employed by Heaton & Peake (2007). Here we are able to observe
and confirm this scaling law for the first time.

On comparison to the experimental data reviewed by Cotrell et al. (2004) and the
neutral curves of Cotrell & Pearlstein (2004), our transient growth results will support
the scenario suggested in § 1.1: for the small-Re experimental data transient growth is
weak, consistent with transition occurring via classical centrifugal instability modes.
Contrastingly, at large Re transient growth is large and consistent with the bypass
transition of Poiseuille pipe flow. Over the intermediate range 200 � Re � 400 there
are experimental data showing small systematic differences from Tatheo

crit , the critical
value of Ta predicted by the neutral curve. In this regime, which is intermediate
between modal- and transient-dominated regimes, we will propose an explanation for
the data in which both effects are present. Using Floquet theory the secondary effect
of the transients on the primary mode is studied, and this model is found to recover
the correct qualitative trend for subcritical and delayed onset.

The remainder of this paper is organized as follows. In § 2 we formulate the stability
problem and describe our numerical method. In § 3 we give our results for the transient
growth in SPF, and discuss the relationship to both experimental data and previous
studies of asymptotic instability in SPF. In § 4 we propose a model for the subcritical
and delayed transition seen in some experiments. Final conclusions are given in § 5.
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2. Problem formulation
Incompressible fluid is considered, confined between two coaxial rotating cylinders

and driven by a constant axial pressure gradient. We work in cylindrical polar
coordinates (x, r, θ) aligned with the axis of the cylinders. We follow the formulation
adopted by Takeuchi & Jankowski (1981), Ng & Turner (1982) and Cotrell &
Pearlstein (2004). The problem is non-dimensionalized by scaling lengths with the
difference between the cylinder radii, scaling velocities with the averaged axial velocity,
and scaling densities with the constant fluid density.

The flow is thus confined between r = η/(1 − η) and r = 1/(1 − η), where η < 1 is
the radius ratio of the cylinders. The steady mean flow is SPF and is given by

U (r) = 2
(1 − r2(1 − η)2) log η − (1 − η2) log (r(1 − η))

1 − η2 + (1 + η2) log η
, (2.1)

V (r) = 0, (2.2)

W (r) =
Ta

Re

(
r(μ − η2)

1 − η2
+

η2(1 − μ)

r(1 − η)3(1 + η)

)
, (2.3)

where μ is the ratio of the angular velocities of the outer and inner cylinders, Re is
the Reynolds number based on the average axial flow and Ta is the Taylor number
based on the rotation rate of the inner cylinder. In terms of dimensional quantities,

η = Ri/Ro, μ = Ωo/Ωi, Re = U (Ro − Ri)/ν, Ta = Ωi(Ro − Ri)
2/ν, (2.4)

where Ri, Ro, U, Ωi, Ωo and ν are respectively the dimensional values of: the inner
and outer cylinder radii, the mean axial speed, the inner and outer cylinder angular
velocities and the kinematic viscosity.

The stability problem for SPF is characterized by the four quantities η, μ, Re,
and Ta . SPF exhibits both shear and centrifugal behaviour: annular Poiseuille flow is
recovered in the limit Ta/Re � 1, circular Couette flow is recovered when Ta/Re � 1.
For Ta/Re = O(1) SPF combines both in a swirling jet-type flow. The narrow-gap
limit, considered by Hristova et al. (2002) for example, corresponds to η → 1.

2.1. Stability equations

The mean flow (2.1)–(2.3) is perturbed by a velocity disturbance (u, v, w)eimθ+ikx and
pressure disturbance peimθ+ikx . We take m and k to be real wavenumbers, with m an
integer, and the complex amplitudes u, v, w and p are functions of time t and radius
r . The linearized Navier–Stokes equations become

∂u

∂t
+ χ iu + vU ′ = −ikp + Re−1

[
(ru′)′

r
−

(
m2

r2
+ k2

)
u

]
, (2.5)

∂v

∂t
+ χ iv − 2Ww

r
= −p′ + Re−1

[
(rv′)′

r
−

(
1 + m2

r2
+ k2

)
v − 2imw

r2

]
, (2.6)

∂w

∂t
+ χ iw +

(Wr)′v

r
= − imp

r
+ Re−1

[
(rw′)′

r
−

(
1 + m2

r2
+ k2

)
w +

2imv

r2

]
, (2.7)

0 = iku +
(rv)′

r
+

imw

r
, (2.8)

where χ = Uk + Wm/r and a prime denotes differentiation with respect to r . The
boundary conditions on the disturbance velocity are no slip on the cylinders, i.e.
u = v = w = 0 at r = η/(1 − η), 1/(1 − η).
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Equations (2.5)–(2.8) are solved numerically as described below to find the
maximum transient growth. This requires the definition of a norm to measure the
growth of the disturbance, for which we use the kinetic energy

E(t) =

∫ 1/(1−η)

η/(1−η)

1
2
(|u|2 + |v|2 + |w|2)r dr. (2.9)

Using the energy norm (2.9), we define the energy amplification at a given time and
for a given initial condition as E(t)/E(0). We wish to maximize this quantity over
all initial conditions, u(t = 0). The maximum energy amplification at a given time is
called the gain G(t). The gain curve G(t) provides an envelope for all possible curves
of energy amplification. For cases of SPF which are stable all disturbances decay at
long times, so it is conventional to define the maximum gain

Gmax = max
t

G(t), (2.10)

with tmax denoting the time at which the maximum is attained. The quantity Gmax

still depends on the wavenumbers, so we further define

� = max
m,k

Gmax , (2.11)

where � = �(η, μ, Ta, Re) depends only on the properties of the mean flow. The
disturbance whose energy amplification is maximal and attains the gain � is known
as the optimal disturbance.

The quantities given by (2.10)–(2.11) are the most commonly used measure of
transient growth levels. We shall use (2.10)–(2.11) in the rest of this paper, but note that
by using them we are restricted to considering asymptotically stable configurations
only. We note that transient growth over a finite time interval could be important
even in an asymptotically unstable flow, but this would require a different analysis
and is not considered here.

2.2. Numerical method

In order to compute the gain G(t) we first discretize the spatial radial coordinate in
(2.5)–(2.8) using a pseudospectral collocation technique. Using N collocation points
for this discretization, equations (2.5)–(2.8) are transformed into a (4N × 4N) matrix
equation. The gain is then calculated using the method described in Chapter 4
of Schmid & Henningson (2001). First the frequency eigenvalues and eigenvectors
of (2.5)–(2.8) are found by assuming time dependence of the form exp(−iωt), and
then solving the eigenvalue problem in the discretized matrix form of the equations.
The eigenvalue ω with the greatest imaginary part (i.e. growth rate) is the primary
eigenvalue and its associated eigenvector is the primary mode. The stability of the
primary mode was the subject of the study by Cotrell & Pearlstein (2004) and previous
authors, and determines the long-time asymptotic linear stability of SPF. To determine
the transient behaviour over finite times, however, requires knowledge of all the modes
in the spectrum (Trefethen et al. 1993). The matrix equation is diagonalized using
the basis of eigenvectors, so that the temporal evolution of disturbances according
to (2.5)–(2.8) is given by a simple matrix exponential. The maximum gain is then
computed as the norm of the matrix exponential, where the appropriate norm is
dictated by (2.9); see Schmid & Henningson (2001) for full details. We use Matlab

TM

to perform the linear algebra on a standard desktop computer. The limiting step in
the calculation of the gain is the eigenvalue-eigenvector calculation which has O(N3)
complexity. In most cases we find that N = 20 is sufficient to eliminate truncation
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146 C. J. Heaton

error and obtain satisfactory convergence. The Tollmien–Schlichting modes however
require more collocation points, N = 35 being found to be sufficient.

The gain G(t) can be maximized over t without having to repeat the eigenvalue-
eigenvector calculation, and hence each value of Gmax is a relatively fast and
straightforward calculation. However, maximizing over the two remaining variables m

and k to obtain � increases the length of the computation significantly. A small saving
is possible because the gain is invariant under the transformation (m, k) → (−m, −k),
so we may restrict to m � 0 without loss of generality. The maximization over m and
k was performed by taking each value of m in turn and maximizing over k with a
simple bisection procedure, terminating when the relative error in the gain was less
than 1%. It is important to ensure that a sufficiently wide range of m and k is included
in order to obtain the correct maximum gain �. This had to be checked manually
in a representative subset of cases for each computation. Note that a consequence of
the method used is that the maximum gain � is found to 1% relative error, but the
axial wavenumber at the maximum, kmax , is not. Our results include many cases in
which kmax is close to zero, for which the relative error in the calculated value of kmax

is therefore large. We do not therefore give detailed plots of kmax , as this would have
necessitated more stringent tolerances and slower computations than are required to
find �.

Our code is validated by comparing results for the primary mode with Cotrell &
Pearlstein (2004), who in turn have validated their results against several previous
authors’ calculations. We obtain excellent agreement with the results in figures 1,2
and 4 of Cotrell & Pearlstein (2004) describing the neutral curve for η = 0.5 and
μ = 0, ±0.5. The neutral curves we calculate are included in the figures below as thick
black lines. When superimposed on the figures of Cotrell & Pearlstein (2004) there is
no visible difference, so we conclude that our code is obtaining the correct eigenvalues
and eigenvectors. The remainder of the code, which takes the spectrum information
and finds the maximum gain, is a standard routine. This was tested by comparing to
the test case Meseguer (2002) used for Taylor–Couette flow, which in our definitions
is η = 0.881, μ = − 1, Re = 0, Ta = 32.42, m = 0, k = π. We calculate Gmax = 16.62 for
this test case, in agreement with Meseguer (2002) and Hristova et al. (2002).

3. Transient growth in SPF
We report the results of our transient growth calculations in this section. The same

three test cases for which Cotrell & Pearlstein (2004) gave the full neutral curves are
chosen, so that the relationship between transient growth and asymptotic stability
can be studied. In each case the maximum gain � is presented throughout the stable
region of the (Re,Ta)-plane. The radius ratio is η = 0.5 throughout this section.

3.1. Stationary outer cylinder (μ = 0)

We consider first the case of a stationary outer cylinder, μ = 0. The stable region for
this case is the finite region of the (Re,Ta)-plane in figure 1 below the neutral curve,
shown by a thick black line. As mentioned in § 2.2, the neutral curve we find has been
checked against that of Cotrell & Pearlstein (2004) as part of the validation of our
numerical code. The scalloped nature of the neutral curve is due to integer jumps in
mcrit, the azimuthal wavenumber of the primary mode on the neutral curve. Figure 1
shows the contours of maximum transient growth � and figure 2 shows the azimuthal
wavenumber mmax at which the growth is attained. Note that since mmax only takes
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Figure 1. Contours of maximum transient growth � for η = 0.5, μ = 0. Contour labels show
the value of log10 �, in steps of 0.25 unless otherwise indicated. The thick line is the neutral
curve for asymptotic linear stability. � ≡ 1 throughout the hatched region.
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Figure 2. Values of m which attain the maximum transient growth for η = 0.5, μ = 0.

discrete values, the shaded plot in figure 2 inevitably appears more coarsely resolved
than the plot of � in figure 1, but the same grid was used to produce both plots.

For low Re there is a large area in which � ≡ 1, meaning that no growth whatsoever
is possible for disturbances governed by the linearized equations. In this region all
disturbances decay monotonically, so the time of the maximum growth is trivially
tmax = 0 and the azimuthaly wavenumber mmax is undefined. Where transient growth
is possible, it is found that mmax generally increases with Re, starting from mmax = 0
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at Re = 0. A similar trend was observed in mcrit along the neutral curve (see Cotrell
& Pearlstein 2004, figure 1b), although note that the two quantities are different
and take different values in places. The boundary of the no-growth region extends
from Ta= 0, Re= 66.0 at one end up to Ta = 68.2, Re = 0, where it meets the end
point of the linear stability boundary (first calculated by DiPrima & Swinney 1985,
for Taylor–Couette flow). At Re = 0, there is therefore a sharp changeover, as Ta
increases, from monotonic decay of all disturbances to instability and unbounded
exponential growth. For non-zero values of Re � 100 a rapid changeover from very
small maximum growth (� 	 1) to linear instability and unbounded exponential
growth is still evident. Since there is no linear growth mechanism other than the
primary unstable mode which is strong enough to have a significant effect, these
results suggest Tatheo

crit , the value of Ta on the neutral curve, should give the correct
prediction for transition. In their evaluation of several sets of experimental data for
the μ = 0 case, Cotrell et al. (2004) find that there is generally very good agreement
of Tatheo

crit with Taexpt
crit at small Re, consistent with this conclusion.

For Re increasing beyond 100 the maximum transient growth rapidly increases, up
to a maximum of � 	 104 at the near-vertical portion of the neutral curve, which
corresponds to instability of the Tollmien–Schlichting shear mode. The transient
growth has mmax = 6 for all large Re, whereas the Tollmien–Schlichting wave which
destabilizes first as Re increases has mcrit = 2, and hence the two cannot share the
same mechanism. In fact the optimal transients in this region have small axial
wavenumbers kmax and are utilizing the growth mechanism described by Schmid
& Henningson (1994) for Hagen–Poiseuille flow. Examination of the data for kmax

(not plotted) reveals that for Re � 400 there is a very clear and distinct scaling
kmax ∝ Ta/Re. When Ta= 0 and the SPF becomes annular Poiseuille flow this
corresponds to the growth of streamwise rolls into streamwise streaks as found
by Schmid & Henningson (1994) and others. For Ta > 0 the mean swirl of order
O(Ta/Re) causes a small modification in the alignment of streamwise disturbances,
and hence this is the scaling for kmax . It can be seen in figure 1 that for large Re the
maximum transient growth scales as � ∝ Re2, the same as for non-swirling parallel
shear flows. For large Re the growth � is also almost independent of Ta , in contrast
to the situation at small Re described above when it is almost independent of Re.

Figure 3 shows the visualization of an example optimal disturbance in the large-Re
regime described. For the case shown the energy gain is � = 11184, with mmax = 6
and kmax = 0.061. Initially the disturbance is dominated by the radial and azimuthal
velocity components v and w, and the axial component u is negligible. This can be
quantified by noting the partitioning of the kinetic energy: at t= 0 we find that 44%
of the kinetic energy is due to v, 56% is due to w and only 0.03% is due to u.
Therefore the initial disturbance is predominantly the field in figure 3(a), and since
the axial wavenumber is small this indeed consists of streamwise rolls. When the
disturbance reaches its maximum amplitude at t= tmax the kinetic energy is larger by
a factor of �= 1184, and of this we find that 99.96% is due to the axial velocity
u. Thus the final disturbance is predominantly the field shown in figure 3(d), and
consists of streamwise streaks.

To summarize, at large Re the main result is that disturbances to SPF experience
strong transient growth analogous to that in Hagen–Poiseuille flow, and therefore the
linear problem should favour bypass transition to turbulence instead of transition due
to linear instability modes. This interpretation is in agreement with the experimental
data, which consistently find that Taexpt

crit decreases to zero at a value of Re of order
103 (Kaye & Elgar 1958; Yamada 1962; Cotrell et al. 2004). The transient growth �
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Figure 3. Visualizations of the optimal disturbance for η= 0.5, μ= 0, Re= 103.5, Ta = 40.
(a, b) t= 0, (c, d) t= tmax . Arrows, (a, c) indicate the cross-section velocity. Contours, (b, d),
indicate levels of the axial velocity, with dotted contour lines representing negative values.

therefore explains why the location of the neutral curve, and especially the Tollmien–
Schlichting waves, does not play a direct role in experimental realizations of SPF at
large Re.

3.2. Co-rotating outer cylinder (μ= 0.5)

The maximum transient growth for the case of co-rotating cylinders with μ= 0.5 is
given in figure 4, with the corresponding values of mmax given in figure 5. Because
μ > η2 in this case, the entire Re= 0 axis is asymptotically stable (Synge 1938). As
a result, the topology of the neutral curve is different to before, with Cotrell &
Pearlstein (2004) finding that the neutral curve has two branches for Re > 70.2.
The lower branch is analogous to the plateau-like neutral curve for μ<η2 (such as
μ = 0 discussed above), and extends up to the Re at which the Tollmien–Schlichting
wave destabilizes. The upper branch follows a different pattern, with mcrit becoming
increasingly negative as Re and Ta increase. Calculations are increasingly difficult
to perform at large Re and Ta because more basis functions are needed to resolve
the eigenmodes, and as a result Cotrell & Pearlstein (2004, p. 345), state that “it is
unclear whether the upper branch exists for all Re or has a vertical asymptote”. Our
computations, like theirs, are not able to determine this matter conclusively; however
we note in passing that a plausible explanation for the upper neutral curve is offered by
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Figure 4. Contours of maximum transient growth � for η= 0.5, μ= 0.5. Contour labels show
the value of log10 �, in steps of 0.25. The thick line is the neutral curve for asymptotic linear
stability. � ≡ 1 throughout the hatched region.
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Figure 5. Values of m which attain the maximum transient growth for η= 0.5, μ= 0.5.

the theory of Leibovich & Stewartson (1983), who described inviscid instability modes
in swirling flow with |m| asymptotically large and k= O(|m|). Leibovich & Stewartson’s
theory is applicable here because mcrit and kcrit both increase with Re along the upper
branch (see Cotrell & Pearlstein 2004, figure 2b,c). The stability criterion of Leibovich
& Stewartson (1983), when applied to SPF, implies an asymptotic neutral curve as
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Re → ∞ of

Ta

Re
=

(1 − η)2(1 + η)(1 − η2 + 2 log η)

η
√

(μ − η2)(1 − μ)(1 − η2 + (1 + η2) log η)
. (3.1)

For η = μ= 0.5 this gives Ta/Re= 11.59. The upper branch of the neutral curve
in figure 2(a) of Cotrell & Pearlstein (2004) and figure 4 here has Ta/Re= 12.3 at
Re= 103, which is in reasonably good agreement. At Re= 104 in figure 4, Ta/Re= 14.3
and the agreement is slightly worse. The shape of the neutral curve suggests that
this value will decrease slightly as Re continues to increase but this is beyond the
limitations of our computations: we conclude that the curve is consistent with (3.1),
but that there is not conclusive proof. We also note that the singularity of (3.1) when
μ= 1 is consistent with the numerical discovery (Meseguer & Marques 2002; Cotrell
& Pearlstein 2004) of a vertical asymptote in the special case μ = 1.

Turning to the results for the transient growth in figure 4, let us first discuss the
trends at smaller Ta . As before, we find a region in which � ≡ 1 and no growth
whatsoever is possible in the lower left corner of the plane. For larger Re beneath
the lower branch of the neutral curve there is strong transient growth which has the
same qualitative features as for the μ = 0 case. The maximum growth visibly scales
as � ∝ Re2 and we again have confirmed that the axial wavelength of the optimal
disturbances scales as kmax ∝ Ta/Re. The optimal transient has kmax < 0 in the region
of figure 5 below the stripe of mmax = 7, but this does not affect the transient growth
scaling or mechanism. As before we infer that SPF will favour a bypass transition
to turbulence in this parameter regime analogous to Hagen–Poiseuille flow, and
that the Tollmien–Schlichting waves will not participate. We are not aware of any
experimental data at Re= O(103) for μ �= 0, but the strong similarity between the
theoretical picture (i.e. the nature of both the neutral curve and the transient growth)
and that for μ= 0 suggests that a similar bypass transition will occur.

Strong transient growth is also seen for larger Ta , above both the no-growth region
and the upper branch of the neutral curve. In this region the SPF has significant
swirl, and the growth evidently has a different character to the streamwise streaks
found below the lower branch where the swirl is weak. At larger Ta it is appropriate
to apply the results of Heaton & Peake (2007), who described the transient growth
in swirling flows in terms of the underlying inviscid algebraic instability (Heaton &
Peake 2006). The two distinct limits to consider are Re → ∞ with Ta/Re held fixed,
and Ta → ∞ with Re held fixed. In the former limit the mean flow (2.1)–(2.3) is a
fixed combination of swirl and axial flow, so the results of Heaton & Peake (2007)
should apply directly. In the latter limit the mean flow is instead purely rotational,
but the results of Heaton & Peake (2007) can still be applied.

In the limit Re → ∞ with Ta/Re held fixed, Heaton & Peake (2007) derive the
following scaling for the transient growth for given wavenumbers m, k:

Gmax ∼ Re(2+2σ )/3, tmax ∼ Re1/3. (3.2)

The exponent σ is the exponent of an underlying algebraic instability to which inviscid
swirling flows are susceptible (Heaton & Peake 2006), and is given by

σ = max
r

Re

(
−1

2
+

√
1

4
− 2Wk(k(Wr)′ − mU ′)

r2(m(W/r)′ + kU ′)2

)
. (3.3)

In (3.3) Re(−) denotes the real part, r takes the values η/(1 − η) � r � 1/(1 − η)
corresponding to the radii in the annulus, while U and W are given by (2.1) and (2.3).
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Figure 6. (a) Optimal gain Gmax and (b) optimal time tmax for η= 0.5, μ= 0.5, Ta/Re= 18
and m= 1. Circles represent k= 0.3, for which σ= 0.07, and squares represent k= 1, for which
σ= − 0.5. The straight lines indicate the predicted gradients (see text).

Heaton & Peake (2007) were unable to directly verify the scaling for Gmax in (3.2)
because of limitations in their numerical method; however the scaling was observed
in our present computations of SPF. Figure 6 shows Gmax for two representative cases
having Ta/Re= 18, one for which σ= 0.07 and one for which σ = − 0.5. It is clear
that the two cases, which differ only by the value of the axial wavenumber, obey
different scalings for Gmax but both share the same scaling for tmax . The gradients of
the lines in the figure indicate the scalings (3.2), and from the good level of agreement
we conclude that the scalings derived by Heaton & Peake (2007) are verified. The
maximum value for σ over all combinations of k, m should determine the asymptotic
scaling of �: we find that σmax= 0.38 for Ta/Re= 18, and that σmax decreases to zero
as Ta/Re increases.

Although it is of some interest to give a confirmation of the scaling (3.2) conjectured
by Heaton & Peake (2007), the alternative limit of Ta → ∞ with Re held fixed is
perhaps more important in figure 4. In this limit the mean flow approaches pure
Taylor–Couette flow, but the results of Heaton & Peake (2007) can still be adapted.
In this limit the quotient inside the square root in (3.3) is positive (because the
numerator reduces to the Rayleigh discriminant when U ≡ 0), and so the maximum
exponent is σmax= 0, obtained by taking kmax= 0. Equations (2.1), (2.3) and (3.3)
together imply that for large but finite Ta we should expect kmax = O(Re/Ta). The
final change to make is that Ta , in this limit of SPF, plays the part of the Reynolds
number used by Heaton & Peake (2007). Taken together this implies the scaling:

� ∼ Ta2/3 (3.4)

as Ta → ∞ with Re fixed. The maximum growth in figure 4 can be seen to conform
to this scaling. Further investigation of the axial wavelength in our computations also
confirms that the scaling kmax ∝ Re/Ta is indeed obtained.

Figure 7 shows the visualization of an example optimal disturbance in the large-Ta
regime described. For the case shown the energy gain is �= 16.5, with mmax= 3 and
kmax= 4.0 × 10−4. Throughout the evolution of the disturbance we find that the axial
velocity component u is negligible. At t = 0 we find that 1% of the kinetic energy
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Figure 7. Visualizations of the optimal disturbance for η= 0.5, μ= 0.5, Re= 10, Ta= 104. (a)
t= 0, (b) t = tmax . Arrows indicate the cross-section velocity. The axial velocity (not shown) is
negligible.

is due to v and 99% is due to w. Therefore the initial disturbance predominantly
consists of azimuthal velocity perturbations, as in figure 7(a). The disturbance must
however have non-zero radial velocity to satisfy continuity (2.8), and in fact v is
approximately one tenth the magnitude of w. During the evolution of the disturbance
the radial velocity grows in importance, so that when t= tmax 29% of the kinetic
energy is due to v, with 71% now due to w. The final state is shown in figure 7(b).
The mean flow (2.1)–(2.3) is predominantly vortical, and since the axial wavenumber
is small the final state of the disturbance might be termed as ‘spanwise rolls’.

We have seen in this subsection how the transient growth for asymptotically stable
SPF with μ>η2 can make a connection between two distinct regimes: the first being
� ∼ Re2 growth of streamwise disturbances when the swirl is weak, and the second
being � ∼ Ta2/3 growth when the axial flow is weak. We note that at large Ta in
figure 4 there is no trace of the ‘anti-lift-up’ effect recently found by Antkowiak &
Brancher (2007). This raises an interesting question of the relationship between our
present SPF results and Antkowiak & Brancher’s results. Antkowiak & Brancher
found strong transient growth of m = 0 axisymmetric disturbances to a pure vortex
without axial flow. The physical mechanism given by Antkowiak & Brancher (2007)
for their effect requires the existence of a ‘quasi-potential region’ in the mean flow
(i.e. U = 0, W ∝ 1/r); no such region is present in the SPF in figure 4, hence
the effect is not possible. The same conclusion can also be reached by adapting
the mathematical arguments of § 4 of Heaton & Peake (2007): a pure vortex with
m= 0 has no continuous spectrum so any transient growth must result from a special
algebraic instability analogous to Landahl’s (1980) instability. On reworking Landahl’s
arguments for the case of a pure vortex with m = 0, it is soon found that W ∝ 1/r is
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Figure 8. Contours of maximum transient growth � for η = 0.5, μ = − 0.5. Contour labels
show the value of log10 �, in steps of 0.25 unless otherwise indicated. The thick line is the
neutral curve for asymptotic linear stability. � ≡ 1 throughout the hatched region.
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Figure 9. Values of m which attain the maximum transient growth for η = 0.5, μ = − 0.5.

required. Although this holds in the far field of a Lamb–Oseen vortex (Antkowiak &
Brancher 2007), it is not true in SPF except in the special case μ= η2. For this special
case of SPF, our calculations do show Antkowiak & Brancher’s anti-lift-up effect: the
m= 0 disturbances have � ∼ Ta2 as Ta → ∞, Re fixed.

3.3. Counter-rotating outer cylinder (μ = − 0.5)

The maximum transient growth for the case of counter-rotating cylinders with = −0.5
is given in figure 8, with the corresponding values of mmax given in figure 9. In this case
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μ < η2 and the neutral curve reverts to the simpler form, extending from the Tollmien–
Schlichting wave at Re = 10 359 down to Re = 0. For Re � 100 the optimal growth is
similar to that seen in previous cases with � ∼ Re2, kmax ∼ Ta/Re (streamwise optimal
disturbances) and using the same mechanism as in Hagen–Poiseuille flow (Schmid &
Henningson 1994). Like other cases, we anticipate that bypass transition will occur
at large Re due to these optimal transients, and that the neutral curve will not be
important.

Like the other cases a no-growth region in which � ≡ 1 is found for small
Re,Ta . The no-growth region is confined to Ta < 44.90, and in contrast to the
μ = 0 case of figure 1 there is now a substantial area above the no-growth region
and beneath the neutral curve. There appears to be a general trend that for μ

increasingly negative the distance between the neutral curve and the no-growth
region grows, although this has not been exhaustively checked. In figure 8 the
growth � is only modest above the no-growth region, but the flat contours suggest
that the early stages of a Ta → ∞ limit similar to that discussed in the previous
subsection are being observed here. For μ � − 1 the larger gap between the
neutral curve and no-growth region should allow significant levels of growth by
the centrifugal mechanism discussed above. For such μ this raises the possibility
of a centrifugal form of bypass transition at small Re. There are no experimental
data available to test this possibility for SPF, but there is some related evidence
from the Taylor–Couette limit (Re= 0). Coles (1965) reported a number of cases of
transition of Taylor–Couette flow in his experiments at values of Ta significantly
less than Tatheo

crit (Coles termed this ‘catastrophic transition’). These data were all for
μ � − 3.85 and were recently investigated by Meseguer (2002), who found a strong
correlation between Coles’ results and the level of transient growth, and therefore
conjectured a bypass transition initiated by transients as an explanation for the
transition.

For an example of centrifugal transient growth when μ � − 1 we take parameters
from one of Coles’ experiments that was studied by Meseguer (2002), and add an
additional axial mean flow (i.e. Re �= 0). We take η= 0.881, μ= − 3.85 and Ta= 79.8,
corresponding to the first row in table I of Meseguer (2002), and set Re= 20. A
maximum energy gain of �= 71.8 is found, with mmax= 11 and kmax= 2.133. As
might be expected from the flat contour lines in figure 8, � is close to the value
of 71.4 reported by Meseguer (2002) for Re = 0. The optimal disturbance is fully
three-dimensional so a simple visualization is not possible; instead figure 10 shows
the radial profiles of the three components of disturbance velocity. In the initial
disturbance most of the energy is contributed by u (69%), and in the final state
most of the energy (66%) is found in w. Similar energy budgets were also seen
in other μ � − 1 cases we investigated. The optimal disturbance in this case has
σ = 0.094, so the Ta2/3 scaling found for μ > η2 in § 3.2 does not hold exactly.
This is because μ<η2 implies a negative Rayleigh discriminant inside the square
root in (3.3), and so σ > 0 for |k| > 0. Larger |k| means stronger viscous damping
however, so the optimal disturbance finds a compromise at a finite wavenumber,
kmax= 2.133.

In summary, centrifugal transient growth is found at small Re and large Ta ,
particularly for strong counter-rotation μ �−1. For μ � −1 it is suggested that bypass
transition might be initiated by such transients for Ta less than the critical value, in a
similar manner to Taylor–Couette flow (Meseguer 2002). The same possibility, bypass
transition due to centrifugal transients, also exists for μ>η2 because then there is no
critical Ta at small Re, as in figure 4.
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Figure 10. Plots of the optimal disturbance for η= 0.881, μ= − 3.85, Re= 20, Ta= 79.8.
(a) t = 0, (b) t= tmax . Solid lines show u, dashed lines show v and dash-dot lines show w.

4. Transition at moderate Re

4.1. Motivation

In this section we study a model for the secondary interaction between the primary
mode in SPF and the transiently growing disturbances. To motivate this, we recap
the experimental data for SPF stability reviewed by Cotrell et al. (2004). They collate
data from several experiments in which μ = 0, and the experiments of Snyder (1965)
and Mavec (1973) in which μ was varied. Critical values of Ta from experiments and
from computation of the neutral curve were compared, the agreement in many cases
being very good.

At low Re Cotrell et al. (2004) find that the agreement between Taexpt
crit and Tatheo

crit

is excellent. An explanation for this is that none of the experimental data at low
Re are for μ � − 1 or μ > η2, so there is no possibility of bypass transition via
centrifugal transients of the type discussed at the end of § 3.3. Instead the maximum
transient growth � is small in the low-Re cases so transients cannot play a role in
the transition, hence transition occurs directly at the neutral curve.

At high Re it is found that Taexpt
crit decreases to zero at Re= O(103) (Kaye & Elgar

1958 and Yamada 1962 find this for μ= 0; there are no data for μ �= 0 but we expect
that the same behaviour would result). The proposed explanation for this is that the
strong transient growth of streamwise disturbances triggers bypass transition, in much
the same way as is believed for other shear flows (Schmid & Henningson 2001).

At moderate Re, in particular in the data of Mavec (1973) at Re = 330 and 403.5,
small but systematic discrepancies between Taexpt

crit and Tatheo
crit appear. For negative and

small μ the transition in Mavec’s data is delayed (Taexpt
crit > Tatheo

crit ), whereas for larger

μ the transition is subcritical (Taexpt
crit < Tatheo

crit ). The systematic nature of this trend is

noted by Cotrell et al., who comment that “the difference 
 (= Tatheo
crit − Taexpt

crit ) at each
Re varies nearly monotonically with μ” (Cotrell et al. 2004, p. 367).

The motivation for the study presented in this section is the observation that at
small Re transition is evidently dictated purely by the primary mode and neutral curve
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in Mavec’s data. At larger Re transient growth levels increase, such that eventually
transients are more important than the primary mode and bypass transition occurs.
At moderate Re it is therefore natural to suppose that both primary mode and
transient growth are simultaneously important, and hence that an explanation of the
delayed/subcritical transition can be found in the optimal transients.

4.2. Secondary instability model

The transition mechanism at small Re is of the simplest possible type, being triggered
by the linear instability of the primary mode. The model we outline here is a
perturbation about this mechanism, an attempt to find the leading-order effect of
small, but non-zero, amplitude transient growth. As such, our model is formally valid
at values of Re which are

(a) small enough that instability of the primary mode is the dominant cause of
transition

(b) large enough that a relatively small deviation of Taexpt
crit from Tatheo

crit is evident.
The model will be applied to the data of Mavec (1973) which are for Re = 330 and
403.5, which we believe satisfy these criteria.

We consider the secondary instability of a transiently growing disturbance of
amplitude A, where A is real and 0 < A � 1. We therefore investigate the stability of a
mean flow U0 which is an approximate (but not exact) solution of the Navier–Stokes
equations having the form

U0(r) = U (r) + A(Ut (r, t)e
ikt x+imtθ + U ∗

t (r, t)e−ikt x−imtθ ),

V0(r) = 0 + A(Vt (r, t)e
ikt x+imtθ + V ∗

t (r, t)e−ikt x−imtθ ),

W0(r) = W (r) + A(Wt (r, t)e
ikt x+imtθ + W ∗

t (r, t)e−ikt x−imtθ ),

⎫
⎪⎬
⎪⎭

(4.1)

where U (r), W (r) are given by (2.1) and (2.3). Asterisk denotes complex conjugate,
and the subscript ‘t ’ denotes quantities corresponding to the transient; thus kt and
mt are the transient’s wavenumbers and Ut , Vt and Wt are its complex amplitude. We
make a key approximation that the transient has saturated at amplitude A, so that
it oscillates in time but does not grow or decay, and maintains a fixed shape. Thus
Ut (r, t)= Ut (r)e−iλt with λ real, and similarly for Vt and Wt .

This ‘shape assumption’ is standard in secondary instability theories, for example see
the review in Chapter 8 of Schmid & Henningson (2001). Tollmien–Schlichting waves
of course evolve with a fixed mode shape (radial profile), and for their secondary
instability it is common to take λ to be the real part of the complex Tollmien–
Schlichting eigenfrequency. For secondary instability of streaks in a boundary layer
the radial profile is not fixed throughout the streak’s evolution, but it is nevertheless
found to be a suitable approximation to take the radial profile at time tmax together
with λ= 0 (Reddy et al. 1998; Cossu & Brandt 2004; Cossu, Chevalier & Henningson
2007). Here too the radial profile is not fixed throughout the evolution of a transient,
but similarly it is observed in calculations that the shape remains fixed to a good
approximation for t � tmax/2. We therefore take the profiles at t= tmax , when the
transient achieves its maximum growth, to be the shape of the saturated disturbance
in (4.1). The value for λ is taken to be the real part of the least-stable eigenfrequency
in the transient. Some theoretical justification for these choices can be found in
Appendix B of Heaton & Peake (2007), where a mathematical account is given
of the transient growth process in swirling flow. Essentially, the optimal disturbance
minimizes the amount of cancellation between eigenmodes at t= tmax and maximizes it
at t = 0, thereby maximizing the energy growth. The cancellations between the various
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non-orthogonal eigenmodes are responsible for the non-trivial, non-modal, evolution
of the disturbance, but once they are gone it is possible to approximate the transient
in the manner described. We will check the validity of our assumptions a posteriori
and find that the value for λ, in some cases, is a poor approximation. However, the
results of our model are in fact remarkably robust to the exact value given to λ, so
we believe that the model gives the correct qualitative trend nonetheless.

The mean flow (4.1) is inserted into the linearized Navier–Stokes equation in the
form

∂u
∂t

+ u · ∇U0 + U0 · ∇u = −∇p +
1

Re
∇2u . (4.2)

The resulting set of equations have coefficients periodic in x, θ and t . By a standard
Floquet theory argument we may write

u(x, r, θ, t) = eαx+βθ+γ t û(x, r, θ, t) (4.3)

where û is 2π/kt periodic in x, 2π/mt periodic in θ and 2π/λ periodic in t . The
Floquet multipliers α, β and γ are free to choose. The appropriate choice to make
here is to de-tune the disturbance (Schmid & Henningson 2001, p. 376) from the
fundamental, i.e. the transient. In order to find the secondary effect of the transient
on the primary mode, it is appropriate to set

α = ikm, (4.4)

β = imm, (4.5)

where quantities with subscript m pertain to the primary mode at the neutral curve.
Using a Fourier series representation for the triply periodic function û(x, r, θ, t), we
may write

u(x, r, θ, t) = ei(kmx+mmθ)+γ t

∞∑

a,b,c=−∞
ûa,b,c(r)ei(akt x+bmt θ−cλt) . (4.6)

A simplification is available due to the nature of the coupling between Fourier modes
which occurs on substitution into (4.2): coupling only occurs between modes having
a = b = c, hence we may take

u(x, r, θ, t) = ei(kmx+mmθ)+γ t

∞∑

a=−∞
ûa(r)eia(kt x+mtθ−λt) , (4.7)

and similarly for the other components of the disturbance, v, w and p. Substituting
(4.7) into (4.2) yields an infinite set of coupled equations (A1)–(A4) which are given
in the Appendix. Equations (A1)–(A4) constitute an eigenvalue problem for γ , which
is now the only remaining unknown quantity. In view of (4.7), the real part of γ

corresponds to a temporal growth rate, so let us define the maximum growth rate
over all eigenvalues as

Γ = max Re(γ ) . (4.8)

The coupling between equations with different values of a only occurs at O(A),
which is assumed to be small. When A= 0 it is seen that the equations are uncoupled.
Indeed, when A = 0 equations (A1)–(A4) are precisely, for each a ∈ �, the eigenvalue
problem for the frequency spectrum of SPF for axial wavenumber km + akt and
azimuthal wavenumber mm + amt . By construction, since we perturb about the
primary mode at the neutral curve, the most unstable mode over all k, m has zero
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growth rate and occurs for (k, m) = (km, mm). Therefore it follows that Γ = 0 when
A = 0.

For small but non-zero A the full eigenvalue problem for the infinite system of
equations given by (A1)–(A4) must be solved. This computation is made possible
by truncating the system to include only −M � a � M . The computation is then an
eigenvalue problem of size 4N(2M + 1), where N is the number of radial collocation
points. Because the coupling between the equations for different values of a is weak,
occurring at O(A), the truncation number M need not be very large. We empirically
found that M= 1 or 2 is satisfactory to ensure numerical convergence of Γ .

Having outlined how to compute Γ by solving our secondary instability model,
it is necessary to interpret this quantity in terms of SPF stability. If, for small
A, it is found that Γ < 0 then we interpret this to mean that the leading-order
effect of the transient on the primary mode is a stabilizing one. Therefore this
should correspond to slightly delayed transition of SPF at the moderate Re we are
considering in this section. Alternatively if Γ > 0 for small A, then this is to be
interpreted as a destabilizing effect of the transient on the primary mode, implying
slightly subcritical transition. Note that making A → −A leaves the eigenvalues γ

of (A1)–(A4) unchanged (the eigenvector is multiplied by (−1)a in each component).
Therefore Γ depends quadratically on the amplitude,

Γ = bA2 + O(A4) (4.9)

for some real b. In summary, the proposed model for secondary instability of a
transient reduces to a mathematically well-posed problem whereby we determine
whether b > 0 or b < 0.

4.3. Application of the secondary instability model

We apply the model proposed in § 4.2 to the data of Mavec (1973) having Re= 330
and 403.5, as reproduced in table 3 of Cotrell et al. (2004). First, we need to explain
a few details of how the secondary instability model was applied. For each case we
start with the values of η, μ and Re from Mavec’s experiment. Given these values we
determine Tatheo

crit , the value of Ta on the neutral curve where the most unstable mode
is neutrally stable. This, and the corresponding wavenumbers of the neutral mode are
denoted as mm, km and Tam to avoid confusion with the quantities pertaining to the
transient. The neutral modes were also calculated by Cotrell et al. (2004), and we find
that our values are in agreement with theirs, except for cases 13-14 in table 1 below
and cases 10-11 in table 2 below. For these four cases it appears that Cotrell et al.
(2004) did not include wavenumbers with mk < 0 in their computation. The critical
value of Ta that we find is slightly lower than the value given by Cotrell et al. (2004)
in these four cases, but in none of them does it affect the qualitative assessment of
Mavec’s results (subcritical transition in each of these four cases). The value of Tam

is required for W (r) in (4.1) and mm, km appear in (A1)–(A4). The other quantities
which are required are mt , kt , Ut (r), Vt (r), Wt (r) and λ, all of which are derived from
the optimal transient. At the neutral curve the definition of the optimally growing
transient is complicated by the asymptotic growth of the neutral mode, so we must
instead use the optimally growing transient at a slightly smaller Ta below the neutral
curve. Here the definition of the optimal transient is unambiguous, and we recall
from § 3 that its properties vary smoothly as Ta increases towards the neutral curve.
We therefore choose Ta t = 0.9 × Tam for the cases in which Mavec observed delayed
transition (cases 1–9 in table 1 and cases 1–7 in table 2). For the other cases, in which
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Neutral mode Transient
Model Mavec’s

Case μ mm km Tam mt kt Ta t prediction experiment

1 −0.82 21 3.544 74.486 18 2.80 67.04 Delayed Delayed
2 −0.67 21 3.189 71.047 12 0.303 63.94 Delayed Delayed
3 −0.35 20 2.438 64.454 13 0.317 58.01 Delayed Delayed
4 −0.18 20 2.125 61.355 13 0.309 55.22 Delayed Delayed
5 −0.071 20 1.925 59.585 13 0.311 53.63 Delayed Delayed
6 0 20 1.816 58.536 14 0.397 52.68 Delayed Delayed
7 0.079 19 1.613 57.427 14 0.427 51.68 Delayed Delayed
8 0.15 19 1.509 56.531 14 0.476 50.88 Delayed Delayed
9 0.27 19 1.344 55.325 16 1.01 49.79 Delayed Delayed

10 0.45 18 1.050 54.274 17 1.08 52.96 Marginal Subcritical
11 0.67 17 0.7584 55.477 16 0.876 50.17 Marginal Subcritical
12 0.80 16 0.6094 58.996 16 0.8354 51.79 Marginal Subcritical
13 0.96 15 −0.5188 67.565 17 −0.748 56.35 Subcritical Subcritical
14 1.11 14 −0.4906 74.504 16 −0.705 61.94 Subcritical Subcritical

Table 1. Secondary instability results for the model and the data of Mavec (1973)
with η = 0.77, Re = 330.

Mavec observed subcritical transition, we have used Ta t = Taexpt
crit corresponding to the

value of Ta at which transition occurred in the experiment.
In all cases we find that the precise choice of Ta t does not change the final outcome.

Similarly, the effect of varying the value of λ was tested and the results were robust
to this also. The definition of λ is the weakest link in the model proposed in § 4.2
because the transiently growing disturbances necessarily do not oscillate with a single
frequency. Nevertheless, the validity of the approximation we make can be tested by
taking a fast Fourier transform of the temporally evolving transient. For the cases
with μ > 0 we find that the approximation satisfactorily describes the evolution of the
transient for t 	 tmax . For the cases with μ � 0 the fit is poor, and empirically it was
seen that λ= 0 would be a more appropriate modelling assumption. To this end we
have repeated the secondary instability calculations for all cases using λ= 0, and also
for other values of λ in a selection of the cases: we found that the qualitative result
was unchanged in all cases. This robustness of the results to the exact value of λ is
reassuring, and suggests that the qualitative trend in the results is genuine, despite
the weakness of this modelling assumption.

4.4. Results for delayed/subcritical transition

The results are given in tables 1 and 2, in which the final two columns respectively give
the transition scenario predicted by the model described in § 4.2, and the transition
observed in Mavec’s experiment. A prediction of delayed transition is made when we
find that b < 0 in (4.9), meaning that the optimally growing transient has a secondary
stabilizing effect on the primary mode. Conversely if b > 0 then a prediction of
subcritical transition is made. Tables 1 and 2 show that the correct qualitative trend
exists in the results, namely that transition is delayed for the smaller-μ data and
subcritical for the larger-μ data. The nature of the changeover between the two is
not clear cut, however, in the context of our simple model. For this reason some of
the data are labelled as ‘marginal’, as we now explain.

In the case of the smaller-μ data for which the prediction is delayed transition,
both the neutral mode and the transient have mk > 0, which we term co-rotating
(because the phase velocity follows the path of a right-handed helix). In the case of
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Neutral mode Transient
Model Mavec’s

Case μ mm km Tam mt kt Ta t prediction experiment

1 −0.63 22 2.681 71.053 12 0.236 63.95 Delayed Delayed
2 −0.39 21 2.137 65.704 13 0.264 59.13 Delayed Delayed
3 −0.29 21 1.975 63.669 13 0.256 57.30 Delayed Delayed
4 −0.13 20 1.662 60.717 13 0.249 54.65 Delayed Delayed
5 0 20 1.481 58.555 14 0.313 52.70 Delayed Delayed
6 0.097 20 1.359 57.179 14 0.337 51.46 Delayed Delayed
7 0.2 19 1.172 55.869 15 0.553 50.28 Delayed Delayed
8 0.72 16 0.5500 56.044 16 0.7168 47.82 Marginal Subcritical
9 0.84 16 0.500 60.296 17 −0.6416 48.85 Subcritical Subcritical

10 1.01 15 −0.425 68.947 16 −0.609 55.32 Subcritical Subcritical
11 1.24 12 −0.4100 71.919 15 −0.5835 61.64 Subcritical Subcritical

Table 2. Secondary instability results for the model and the data of Mavec (1973)
with η = 0.77, Re = 403.5.

0–2–4 2 4
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Figure 11. Plots as functions of k of (a) Im(ω), the primary mode growth rate, and (b) Gmax ,
the maximum transient growth. Parameter values are taken from table 1 for case 1 (solid line),
case 11 (dashed line) and case 14 (dash-dot line).

the larger-μ data for which the prediction is subcritical transition, counter-rotating
disturbances (mk < 0) are prevalent. The underlying trend we observe is that the
co-rotating optimal transients have a stabilizing action on the primary mode, whereas
counter-rotating transients destabilize the primary mode. The changeover between
these two scenarios is amplitude dependent, and hence is not precisely defined in our
simple model. The cases labelled as ‘marginal’ in tables 1 and 2 do show a stabilizing
effect of the optimal transient on the most unstable (i.e. neutral) primary mode,
both of which are co-rotating. However, they also have combinations of slightly sub-
optimal disturbances which are counter-rotating and which show a destabilizing effect.
Whether or not destabilization involving sub-optimal modes or transients overcomes
stabilization of the neutral mode by the optimal transient depends on the amplitude,
and hence could vary between experiments. For this reason the prediction of the
model is termed ‘marginal’. Figure 11 demonstrates the nature of the changeover
by displaying the primary mode growth rate (Im(ω)) and the maximum transient
growth as functions of k for three cases taken from table 1. In case 1 there is a single
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maximum of Gmax whose effect is to stabilize the neutral mode, so the prediction is
unambiguously delayed transition. In case 14 the optimal transient destabilizes the
neutral mode, so the prediction is unambiguously subcritical transition. In case 11
the optimal transient stabilizes the neutral mode, but the optimal corresponding to
the k < 0 local maximum of Gmax destabilizes the weakly damped primary mode
corresponding to the k < 0 local maximum of Im(ω). This case is therefore termed
marginal in table 1.

Overall our results do recover the correct trend for the delayed and subcritical
transition observed experimentally by Mavec (1973). The changeover between the
two scenarios is not well resolved by our simple model, but does occur at about the
right values of μ. The results show a reassuring level of robustness to changes in the
modelling assumptions, specifically the values of λ and Ta t . Of course, it is possible
to envisage more sophisticated models for the effect of finite-amplitude transients on
the stability of SPF. In order to remove the approximation that the transient oscillates
at a single frequency one could fully solve the linearized Navier–Stokes equations
for the time evolution of the transient. This however has the drawback that simple
Floquet analysis can no longer be used, forcing a full numerical solution of the
secondary stability equations instead of the simple eigenvalue problem needed here.
Such a procedure would be scarcely simpler than a full DNS computation, which
would remove all the modelling assumptions. However, one attraction of the model
proposed in this section is its simplicity, since an aim of the modelling process is to
simplify the problem as far as validly possible.

5. Conclusions
The central results of the present paper are the computations of maximum transient

growth in SPF given in § 3. We have found the maximum growth over all time t and
all wavenumbers m, k throughout the stable regions of the (Re,Ta)-plane for three test
cases. The test cases were chosen to coincide with those used by Cotrell & Pearlstein
(2004), who computed the complete neutral curves for asymptotic linear stability of
SPF. The transient growth results are complementary to knowledge of the neutral
curve, and the two taken together allow an improved understanding of the linear
stability of SPF.

We found that transient growth is small when Re and Ta are both small, and
we infer from this that transition should occur by a classical linear instability route.
This is consistent with experimental data (Cotrell et al. 2004), which show transition
occurring at the neutral curve location. For large Re, of the order of 1000, the transient
growth is large in all cases. Streamwise optimal disturbances (with k ∝ Ta/Re) follow
the usual ‘roll→streak’ mechanism for transient growth in parallel shear flow (Schmid
& Henningson 2001) and have � ∼ Re2. We infer that a bypass transition is probably
initiated by these transients, which is consistent with experimental data (although
these are only available for μ = 0). Large transient growth is also seen for large
Ta , which can be asymptotically stable in flows with μ � − 1 or μ > η2. In this
regime the transient growth is centrifugal and follows the different scalings (3.2)–(3.3).
Our results include the first direct numerical verification (figure 6) of the centrifugal
regime scalings, and we noted that for SPF with μ > η2 they simplify to � ∼ Ta2/3,
as Ta → ∞ with Re held fixed. It is suggested that these centrifugal transients might
trigger a different sort of bypass transition at large Ta , small Re, in cases with μ � −1
or μ > η2. This suggestion is in agreement with a recent analysis by Meseguer (2002)
of some experiments by Coles (1965) at Re = 0, i.e. the Taylor–Couette limit, but
there are no SPF data with which to compare.
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For moderate Re, of the order of a few hundred, we have attempted to explain
the delayed and subcritical transition seen in experiments (Mavec 1973; Cotrell et al.
2004) by proposing a simple secondary instability model. These Re are sufficiently
small that the primary mode is the main cause of transition, but just large enough
that transient growth might begin to have an effect. The model attempts to find the
leading-order effect of a saturated transient on the primary mode by using Floquet
theory. The results show good qualitative agreement with the experimental data, with
delayed transition being favoured for negative and small μ and subcritical transition
favoured for larger μ. While the results are very suggestive, they do not prove that
interaction with transients is indeed the mechanism at play in the experiments and
other explanations, such as the aspect ratio of the experimental annuli, have been
suggested in the past (Takeuchi & Jankowski 1981; Cotrell et al. 2004). Nevertheless,
the model in § 4 gives one possible systematic explanation for the trend in Mavec’s
experimental data.

Overall, the transient growth is seen to exhibit two very different regimes in SPF:
one dominated by the ‘lift-up’ mechanism seen in parallel shear flows and a second
dominated by swirling flow continuous-spectrum theory (Heaton & Peake 2007).
This is unsurprising since SPF is known to exhibit both shear- and centrifugal-type
instabilities, which is one reason why SPF is of scientific interest as a canonical flow.
The existence of the shear and centrifugal regimes, and the connection between them,
has a direct analogue in the stability of the primary mode (Meseguer & Marques
2002; Cotrell & Pearlstein 2004) and is a key feature of SPF.

The author thanks Trinity College, Cambridge, for its financial support.

Appendix. Secondary instability equations
The secondary instability equations arise from substituting (4.1) and (4.7) into (4.2).

The following infinite set of equations, for all a ∈ �, results:

(γ − iaλ)ûa + U ′v̂a +

(
U i(km + akt ) + W

i(mm + amt )

r

)
ûa + i(km + akt )p̂a

− 1

Re

(
û′′

a +
û′

a

r
− (mm + amt )

2

r2
ûa − (km + akt )

2ûa

)

= − A

{
iktUt ûa−1 + U ′

t v̂a−1 + Ut

imt

r
ŵa−1 − iktU

∗
t ûa+1 + U ′∗

t v̂a+1 − U ∗
t

imt

r
ŵa+1

+ Ut i(km + (a − 1)kt )ûa−1 + Vt û
′
a−1 + Wt

i(mm + (a − 1)mt )

r
ûa−1

+ U ∗
t i(km + (a + 1)kt )ûa+1 + V ∗

t û′
a+1 + W ∗

t

i(mm + (a + 1)mt )

r
ûa+1

}
, (A1)

(γ − iaλ)v̂a +

(
U i(km + akt ) + W

i(mm + amt )

r

)
v̂a + p̂′

a

− 1

Re

(
v̂′′

a +
v̂′

a

r
− v̂a

r2
− (mm + amt )

2

r2
v̂a − (km + akt )

2v̂a − 2i(mm + amt )

r2
ŵa

)

= − A

{
iktVt ûa−1 + V ′

t v̂a−1 + Vt

imt

r
ŵa−1
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− iktV
∗
t ûa+1 + V ′∗

t v̂a+1 − V ∗
t

imt

r
ŵa+1 − 2

Vt

r
v̂a−1 − 2

V ∗
t

r
v̂a+1

+ Ut i(km + (a − 1)kt )v̂a−1 + Vt v̂
′
a−1 + Wt

i(mm + (a − 1)mt )

r
v̂a−1

+ U ∗
t i(km + (a + 1)kt )v̂a+1 + V ∗

t v̂′
a+1 + W ∗

t

i(mm + (a + 1)mt )

r
v̂a+1

}
, (A2)

(γ − iaλ)ŵa + W ′v̂a +
Wv̂a

r
+

(
U i(km + akt ) + W

i(mm + amt )

r

)
ŵa

+
i(mm + amt )

r
p̂a − 1
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(
ŵ′′

a +
ŵ′

a

r
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− (mm + amt )

2

r2
ŵa

− (km + akt )
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)

= − A

{
iktWt ûa−1 + W ′
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ŵa−1

− iktW
∗
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ŵa−1 +

V ∗
t

r
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r
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+
Wt
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W ∗
t

r
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}
(A3)

v̂′
a +

v̂a

r
+

i(mm + amt )

r
ŵa + i(km + akt )ûa = 0 (A4)
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