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Abstract. Bramson and Kalikow and Quas showed the phenomenon of non-uniqueness
for g-measures in the absence of a C1 condition on g. We extend this result to show that
for a sequence G = (Gn), the class of G-measures can be badly behaved in the sense of
containing measures of type IIIλ for all λ in a continuous image of an Fσ set.

1. Introduction
Let 0 be an infinite sum of finite abelian groups,

0 =

∞∐
k=1

Gk .

Let 0n =
∐n

k=1 Gk , so that 0n ↗ 0.
Then 0 acts on the direct product X =

∏
∞

k=1 Gk by termwise multiplication. We will
represent x ∈ X as the infinite sequence (x1, x2, . . .), where xi ∈ Gi . Notice that we may
re-group the coordinates, letting G ′k =

∏nk+1−1
j=nk

G j for some increasing sequence (nk).
Then we may equally well represent 0 as

∐
∞

k=1 G ′k and X as
∏
∞

k=1 G ′k .
As each Gk is abelian and finite it is, by Sylow’s theorem, a product of cyclic groups.

Hence we have an essentially unique representation of 0 and X as

0 =

∞∐
i=1

Z`(i), X =
∞∏

i=1

Z`(i)

for a suitable sequence `(i). (This representation is unique up to the ordering of the `(i).)
In [2], a study was made of the 0-non-singular Borel probability measures µ on X . For

each such µ, we can define a 0n average

µ(n) =
1
|0n|

∑
γ∈0n

µ ◦ γ

(where we set µ(0) = µ), and, from these, normalized transition functions

gn(x)=
dµ(n−1)

dµ(n)
(x)=

(1/|0n−1|)
∑
γ∈0n−1

((dµ ◦ γ )/dµ)

(1/|0n|)
∑
γ∈0n

((dµ ◦ γ )/dµ)
.

† (1949–2010).
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Notice that these functions satisfy
1
|Gn|

∑
γ∈Gn

gn(γ x)= 1 (1)

and
gn(x)= gn(0, 0, . . . , xn, xn+1, . . .)= gn(γ, . . . , xn, xn+1, . . .) (2)

for all γ ∈ 0n−1. Furthermore, ((dµ ◦ γ )/dµ)(x) is reconstructible from the gs as
dµ ◦ γ

dµ
= lim

n→∞

g1(γ x)

g1(x)

g2(γ x)

g2(x)
· · ·

gn(γ x)

gn(x)
. (3)

If γ ∈ 0n , (2) ensures that this ratio stops changing at n.
Actually, from the point of view of [2], the sequence Gn(x)= g1(x) · · · gn(x) was

regarded as being of primary interest, and (3) expresses the fact that µ is a G-measure.
Our discussion started from a measure µ and progressed to the construction of a

sequence of functions (gn). In this paper, our interest is to start from a sequence (gn)

and ask how varied the collection of associated µs can be. An alternative statement of this
question is, given {gn}, to describe the set of possible G-measures.

In the above discussion, the various gn are defined only µ-almost everywhere. As we no
longer posit µ, but rather (gn), we will assume that gn : X −→ R+ are continuous on X .

It was proved in [2, Theorem 2] that any non-singular µ is equivalent to a µ′ for which
the associated gns are continuous. Hence, in global generality, as our interest is in choices
of the gn which lead to a wide variety of associated measures, the assumption of continuity
of the gns may be restrictive, in the sense that without it, wilder behaviour may be possible.
We leave this issue open for further study.

Our results are related to results of Bramson and Kalikow [7] and Quas [14] on
g-measures. These authors studied the case when all the gn were identical functions, and,
under various continuity assumptions, constructed examples where there is not a unique
limit. (Keane’s celebrated paper showed uniqueness under the hypothesis that g is C1.)
Recently, there has been some new progress on the issue of exactly which g-functions
admit uniquely ergodic measures [1, 12].

We are examining the more general setting where the gns vary, and proving that the set
of possible G-measures is rather arbitrary (Theorem A below). Our approach to measuring
this arbitrariness is to seek general behaviour in the Krieger types of the measures that can
occur. In the Bramson–Kalikow [7] construction of non-uniqueness, although the exhibited
measures are distinct, the associated non-singular 0 actions are conjugate and hence of the
same Krieger type. What we will show is that for G-measures one can select the set of
allowed Krieger types rather generally. The construction focuses on those λ for which
there is a non-singular G-measure of type IIIλ and show that this set can be made any
prechosen Fσ subset of [0, 1]. It is easy to see that minor modifications of our construction
would lead to more general Borel types for this set. We leave open the two questions of
the exact Borel type of the set of λs that can arise for a particular G and how general a set
is reachable by the method exhibited here.

The situations where there is a unique G-measure has been discussed in some detail
in [2], where it was called unique ergodicity. In [6], it was shown that the ratio set of a
unique G-measure is generated in an appropriate sense, by the set of essential limits of
products of the form

∏n
i=1(gi (x)/gi (y)). We show that the same behaviour is manifest
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in the non-unique case, although the groups generated by these limits can be non-trivially
different for different measures µ.

In [9], it was shown that every ergodic non-singular dynamical system is orbit equivalent
to a Markov odometer on a Bratteli–Vershik system, which is uniquely ergodic in the sense
of G-measures. In fact, the Bratteli–Vershik systems obtained are close to infinite product
systems, in the sense that they are induced transformations on closed subsets of a full
product odometer. The results here throw that observation into a stark light: uniqueness can
fail spectacularly in the general case. A consequence of our construction is that we are able
to make an explicit realization of the ergodic decomposition of the measures constructed
here into uniquely ergodic G-measures on suitable Bratelli–Vershik systems.

2. Notation and statement of the results
Suppose that (gn) is fixed, and let M(G) be the collection of 0-non-singular Borel
probability measures satisfying (3). Following [2], notice that these form a weak*-compact
and convex set whose extreme points are the ergodic measures.

One does not necessarily have any recurrent elements in M(G); a non-recurrent ergodic
element is an atomic measure on a single orbit.

Our focus will be on recurrent and ergodic elements and their ratio sets. Notice that µ
is recurrent and ergodic if and only if

∑
γ∈0((dµ ◦ γ )/dµ) diverges almost surely. In our

case, the functions (dµ ◦ γ )/dµ will all be continuous. Hence this sum diverges on an Fσ
set in X and we are interested only in ergodic measures supported on this Fσ . Notice that
it is a 0-invariant set.

To begin with, we ignore type II measures and consider only measures of type III. We
associate to (gn) the set

3(G)= {λ ∈ [0, 1] : there exists µ ∈M(G) ergodic of type IIIλ}.

We shall prove the following theorem.

THEOREM A. If S ⊆ [0, 1] is an Fσ , then there is a sequence g = (gn) of continuous
functions satisfying conditions (1) and (2) of §1 with S =3(G).

3. Reduction to the Markov case
If g = (gn) is a sequence of continuous functions on X , satisfying conditions (1) and (2),
and if h : X −→ R+ is a continuous function, then we may define

µh(A)=
∫

A
h dµ,

which is an equivalent measure to µ. Let us calculate the associated sequence

gh
n (x) =

d(µh)(n−1)

d(µh)(n)
(x)=

(1/|0n−1|)
∑
γ∈0n−1

((dµh
◦ γ )/dµh)(x)

(1/|0n|)
∑
γ∈0n

((dµh ◦ γ (x))/dµh)

=
(1/|0n−1|)

∑
γ∈0n−1

((dµh
◦ γ )/dµ)(x)(h(γ x)/h(x))

(1/|0n|)
∑
γ∈0n

((dµh ◦ γ (x))/dµ)(h(γ x)/h(x))

=
(1/|0n−1|)

∑
γ∈0n−1

h(γ x)g1(γ x) · · · gn−1(γ x)

(1/|0n|)
∑
γ∈0n

h(γ x)g1(γ x) · · · gn(γ x)
.
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The last ratio is defined and continuous everywhere. Hence replacing gn with gh
n will

replace M(G) with a family of measures all simultaneously equivalent to those in M(G),
with h the common Radon derivative.

LEMMA 3.1. Let µ be a G-measure. There exists a measure ν ∼= µ with ν being
a Gh measure for a sequence (gh

i ), each of which depends on finitely many coordinates.
(Here, h = dµ/dν), that is there exists a sequence mn , with mn ≥ n so that gh

n (x)=
gh

n (xn, xn+1, . . . , xmn ).

Proof. This is a minor modification of the argument of [2, Theorem 2], where it is shown
that every G-measure is equivalent to an H -measure, where the sequence Hn is continuous.
In that proof, Lusin’s theorem is used to approximate each function gn by a continuous
function hn on a set whose complement has small measure (depending on n). Since every
continuous function on X may be uniformly approximated arbitrarily closely by a function
which depends on finitely many coordinates, we may suppose in that proof that hn has this
property. Now the proof proceeds as in [2]. 2

In the Introduction, we pointed out that the space X =
∏
∞

i=1 Gi is isomorphic to the
space X =

∏
∞

i=1 G ′i obtained by ‘re-grouping’ the coordinates, that is where we take some
strictly increasing sequence ni and set

G ′i = Gni × · · · × G.

After this re-grouping, for a measure µ on X , we find (with the obvious notation)

µ′(i) = µ(ni )

and

g′j (x)=
dµ(n j−1)

dµ(n j )
= gn j (x) · · · gn j+1−1(x).

The next lemma asserts that if we have a G-measure as in the conclusion of Lemma 3.1,
after suitable re-grouping of coordinates, it becomes a Markov measure.

LEMMA 3.2. Suppose µ is a G-measure and each gn depends only on a finite number
of coordinates (xn, xn+1, . . . , xmn ), where mn ≥ n. Then, after a suitable re-grouping of
coordinates, µ is a Markov measure, that is we have

g′n(x
′)= g′n(x

′
n, x ′n+1).

Proof. Choose n1 = 1. Now g1(x)= g1(x1, . . . , xm1), and we choose n2 = m1.
Now suppose that nk−1 and nk have been chosen.
Note that gnk−1 depends on (xnk−1 , . . . , xmnk−1

) gnk−1+1 depends on (xnk−1+1, . . . ,

xmnk−1+1) and so forth, finishing with the observation that gnk−1 depends on (xnk−1,

. . . , xmnk−1). Let nk+1 =max{m j : j = nk−1, nk−1 + 1, . . . , nk − 1}. Then

g′k =
nk−1∏

j=nk−1

g j (x)
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depends on the coordinates (xnk−1 , . . . , xnk+1). Thus, if we set x ′k = (xnk−1 , . . . , xnk−1),
then g′k depends on x ′k and x ′k+1. So, re-grouping X =

∏
∞

n=1 G ′k , where

G ′k = Gnk−1 × · · · × Gnk−1,

we see that µ is a Markov measure with respect to these coordinates. 2

This result should be compared with [3, Theorem 2].
The conclusion of this section is that, without loss of generality, we may concentrate on

the case of Markov measures.

4. Construction of the examples
In this section, we will show how to choose a sequence `(i), which determines the space
X =

∏
∞

i=1 Z`(i), and a sequence {gi } of functions on X , with gi (x) depending on the values
(xi , xi+1)xi ∈ Z`(i), xi+1 ∈ Z`(i+1), in such a way that we can describe the subset 3 of
[0, 1] so that λ ∈3 belongs to the ratio set of a G-measure.

In order to do this, we first construct a tree Ŝ in N× N. We then identify the infinite
branches of Ŝ with a Cantor set C , and 3 as a continuous image of Cr{0}.

4.1. Construction of Ŝ. First, choose a sequence {t (i) : i ∈ N} of positive integers
≥2. The nodes of the tree Ŝ are the elements of N× N of the form (i, 0), (i, 1), . . . ,
(i, t (i)− 1) arranged in levels indexed by i .

The nodes at level i are connected to certain nodes at level i + 1; that is we partition
(i + 1, 0), . . . , (i + 1, t (i + 1)) into subsets {F(i, j) : j = 0, . . . , t (i)− 1} and say that
the node (i, j) connects to the node (i + 1, k) if and only if (i + 1, k) ∈ F(i, j).

The sets F(i, j) are chosen so that (i + 1, 0) ∈ F(i, 0). (In this way, the nodes (i, 0)
will play a special role as a reservoir of new material in the construction.)

We let Ŝ be the tree defined by the sequence t (i) and the partitions F(i, j).
Notice that the infinite branches of Ŝ may be identified with a Cantor set (a totally

disconnected compact set without isolated points) C ⊆ [0, 1] as follows.
If B = {(i, j (i))} is such a branch (i.e. (i + 1, j (i + 1)) ∈ F(i, j (i)) for all i), then set

α(B)=
∞∑

i=1

j (i)

t (i) · 2i .

Then α maps branches to distinct points, and these points form the Cantor set C ⊆ [0, 1].
If we delete 0 from this set, we are looking at the image of all branches save the 0 branch.
This set is a countable disjoint union of Cantor sets. To see this, consider the subtrees Ŝt ,
each of which consists of those branches which pass through nodes (i, 0) for i ≤ t − 1, do
not pass through node (t, 0) and proceed in any way for larger i . Notice Ŝr{0} =

⋃
i Ŝi

and the α image of each Ŝi is another Cantor set.

4.2. Construction of 3 from Ŝ. Given the tree Ŝ above, we will construct a set 3⊆
[0, 1] related to a certain function λ(i, j) on the nodes of Ŝ. Specifically, suppose λ is a
real-valued function on the nodes of Ŝ such that:
(1) λ(i, 0)= 0; and
(2) if j 6= 0 |λ(i + 1, k)− λ(i, j)|< 2−(i+1),
whenever (i + 1, k) ∈ F(i, j).
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Given such a function λ and a branch B, it is clear that λ(i, j (i)) converges as i tends
to∞. Denote the limiting value by λ(B).

Since the function α is one-to-one from the set of infinite branches of Ŝ to C , we may
thus use λ to define a mapping from C to R. By abuse of notation, denote this mapping
also as λ : C −→ R. It is clear from the construction that λ is continuous except perhaps at

0= α({(i, 0) : i ∈ N}).

Finally, let 3= λ(Cr{0}).

LEMMA 4.1. For3⊂ [0, 1] an Fσ , there is a choice for tree Ŝ and λ defined on the nodes
of Ŝ satisfying (1) and (2) so that the range of λ : C→ R is precisely 3.

Proof. We have seen that C will always be a countable union of Cantor sets (totally
disconnected compact sets without isolated points). As is well known, all Cantor sets are
homeomorphic. Moreover, it is easy to see that any compact subset of R is the continuous
image of a Cantor set. If we did not want the precise estimates on the rate of convergence
given by (1) and (2), we would be done. Obtain these as follows. For 3=

⋃
Fi , take

each set Fi to be the image of those branches descending from (i, 0) but not through
(i + 1, 0). We describe this subtree of Ŝ as a tree of compact subsets of Fi . The sets
at each level of this tree will cover Fi , and those sets linking upward to a single node of the
tree will be contained in and cover the set associated with that node. The root of the tree
will be node (i, 0) and will be associated with the entire set Fi . The levels thus are labelled
by i, i + 1, . . . and we require that the sets associated with level i + k should all have
diameter <2−(i+k+1). Compactness ensures that such a tree of subsets can be constructed.
We define λ of a node to be some point in the set assigned to it. We paste all these subtrees
together, giving all nodes at a particular level i a distinct index (i, j) to construct Ŝ and the
associated λ, completing the result. 2

4.3. Construction of the space X and the functions (gi ). Given a tree Ŝ and a map λ
satisfying conditions (1) and (2) above, we now show how to build the space X =∏
∞

i=1 Z`(i) and functions gi (xi , xi+1) so that the set of G-measures is exactly of type IIIλ,
λ ∈3.

The sequence `(i) and functions gi will be defined inductively.
Let `(1)= 30(t (1)+ 1) and partition {0, . . . , `(1)− 1} into t (1)+ 1 sets each of

cardinality 30; call these sets S(1, 0), . . . , S(1, t (1)). Now choose `(2) large enough
so the set {0, 1, . . . , `(2)− 1} can be broken into t (2)+ 1 sets S(2, 0), . . . , S(2, t (2))
(one for each node at level 2), each of the same cardinality equal to 30.

Now partition each of the sets S(1, j) into three equal subsets (each of 10 elements),
denoted by S−1(1, j), S0(1, j), S1(1, j). We define g1(i, j) > 0 to satisfy the following
three conditions:

•
g1(x1, x2)

g1(x ′1, x2)
= λ(1, j)t1−t2


if x1 ∈ St1(1, j),

x ′1 ∈ St2(1, j)

and x2 ∈ S(2, k),
where k ∈ F(i, j);
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• g1(x1, x2) < 10−6 if x1 ∈ S(1, j) and x2 ∈ S(2, k) k 6∈ F(1, j)
∑

x1 6∈S(1, j)

g1(x1, x2) < 10−6 for all x2; and
• g1 is normalized, i.e.

1
`(1)

∑
x1∈{0,...,`(1)−1}

g1(x1, x2)= 1.

(Such a choice is clearly possible.)
Now suppose inductively that {0, 1, . . . , `(k)− 1} has been broken into t (k)+ 1 sets

S(k, 0), . . . , S(k, t (k)), one for each node of Ŝ at level k, and that each of these sets has
cardinality (2k + 1) · 5× 2k . (Then we must have `(k)= (2k + 1) · 5× 2k(t (k)+ 1) for
k = 1, 2, 3, . . . .)

Next, we define the functions gk = gk(xk, xk+1). Partition S(k, j) into (2k + 1) sets,
each of cardinality 5 · 2k :

S−k(k, j), S−k+1(k, j), . . . , S0(k, j), . . . , Sk(k, j).

We define gk(xk, xk+1) so that:

•
gk(xk, xk+1)

gk(x ′k, xk+1)
= λ(k, j)t1−t2

if xk ∈ St1(k, j) and x ′k ∈ St2(k, j) and xk+1 ∈ S(k + 1, `) with ` ∈ F(k, j);
• gk(xk, xk+1) is a positive constant on the complement of

E = {(xk, xk+1) : xk ∈ S(k, j)xk+1 ∈ S(k + 1, `) with ` ∈ F(k, j)}

with ∑
{xk :(xk ,xk+1)∈Ec}

gk(xk, xk+1) <
1

2k · 106 ; and

• gk is normalized, i.e.

1
`k

∑
xk∈{0,...,`k−1}

gk(xk, xk+1)= 1.

(To see that this is possible, first define gk(xk, xk+1)= λ(k, j)t j if xk ∈ Sti (k, j) and
xk+1 ∈ S(k + 1, `), ` ∈ F(k, j), and then normalize.)

This completes the description of the functions gk .
The group 0 =

∐
∞

k=1 Z`(k) acts on X by finite coordinate changes, and, as mentioned
above, any G-measure is non-singular for this action.

Our next two steps are to show that:
(1) for each λ ∈3, there is a recurrent and ergodic G-measure µ of type IIIλ; and
(2) if λ 6∈3, there is no such µ.

5. Proof of the theorem

LEMMA 5.1. Let Ek = {x = (xk) : ((k + 1), j (k + 1)) 6∈ F(k, j (k))}.
Then, for any G-measure µ,

µ(Ek) <
1

106 · 2k
.
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Proof. For xk+1 ∈ S(k + 1, t) with (k + 1, t) ∈ F(k, j), we have, by the definition of gk ,∑
xk 6∈S(k, j)

gk(xk, xk+1) < 10−6
· 2−k . (4)

The left-hand side dominates the measure of Ek . 2

Definition 5.1. Let

X0 = {x ∈ X : ∃N0 so that k ≥ N0 H⇒ (k + 1, j (k + 1)) ∈ F(k, j (k))}.

Notice that X0 is 0-invariant, as it is defined by a ‘tail’ property—i.e. is invariant under
perturbations of the initial coordinates.

COROLLARY 5.1. For all G-measures µ,

µ(X0)= 1.

Proof. Notice that

X0 = X

∖ ∞⋂
N=1

( ∞⋃
k=N

Ek

)
and

µ

( ∞⋃
k=N

Ek

)
<

∞∑
k=N

1

106 · 2k
=

1

106 · 2N−1 ,

so

µ

( ∞⋂
N=1

∞⋃
k=N

Ek

)
= 0. 2

Notation. To x ∈ X0, we associate the set B(x) of branches {(i, t (i))} in Ŝ such that

xk ∈ S(k, t (k))

for k sufficiently large.

Conversely, to a branch B in Ŝ we may associate the subset X (B) of X0 given by

X (B)= {x ∈ X0 : B(x)= B}.

Notice that each X (B) is 0-invariant and Borel. Indeed, X0 is measurably partitioned as
X0 =

⋃
B X (B).

From this observation, the following theorem follows.

THEOREM 5.1. Suppose that µ is an ergodic G-measure. Then, for some unique B,

µ(X (B))= 1.

Proof. Recall that µ(X0)= 1 and that the X (B)s give a measurable partition of X0. Now
the theorem follows from ergodicity of µ. 2

THEOREM 5.2. Suppose that B is not the zero branch {(i, 0) : i ∈ N}. Then, if
µ(X (B))= 1, µ is of type IIIλ(B).

Proof. Let B = {( j, t ( j))} and λ= λ(B) ∈ (0, 1). Let A ⊆ X (B) have positive measure
and ε > 0. Choose a rectangle

R = {x0} × {x1} × · · · × {xn1} × Z`(n1+1) × · · ·
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such that
µ(A ∩ R) > (1− ε)µ(R). (5)

Choose n2 >max(log2(1/λ), log2(1/ε), n1) so large that

j > n2 H⇒ |λ− λ( j, t ( j))|<
1
2 j .

Then, if γ is any element of Z`( j) ⊆ 0 which takes St1( j, t ( j)) to St1−1( j, t ( j)), we
have (dµ ◦ γ (x))/dµ= λ( j, t ( j)) for all x such that x j ∈ St1( j, t ( j)). If j > n1, then
such a γ maps R to itself.

Choose j > n2. We may partition S( j, t ( j)) as follows:

S( j, t ( j))=
t ( j)⋃

t=−t ( j)

St ( j, t ( j)).

Thus, if we let Rt = R ∩ {x : x j ∈ St ( j, t ( j))}, we may partition R =
⋃t ( j)

t=−t ( j) Rt , up to

a set of measure less than 1/106
· 2 j .

Now, by the construction of the sets St ( j, t ( j)), each has cardinality 5 · 2 j . Thus we can
choose a finite coordinate change γ in Z`( j) which maps each St ( j, t ( j)) to St−1( j, t ( j))

for all t =−t ( j)+ 1, . . . , t ( j). This maps R′ =
⋃t ( j)

t=−t ( j)+1 Rt to R′′ =
⋃t ( j)−1

t=−t ( j) Rt

with |((dµ ◦ γ )/dµ)(x)− λ|< ε for all x ∈ R′.
Notice that

µ

( t ( j)⋃
t=−t ( j)

Rt

)
=

t ( j)∑
t=−t ( j)

µ(Rt ).

It follows that µ(R−t ( j))/µ(Rt ) lies between
∑

t (λ+ ε)
t and

∑
t (λ− ε)

t . The sums are
equal to cosh(t ( j)+ (1/2) log(λ± ε))/cosh((1/2) log(λ± ε)), which are both bounded
away from 1, provided t ( j) > 1. A similar calculation holds for µ(Rt ( j))/µ(Rt ).

It is now easy to see, using (5), that both R′ ∩ A and R′′ ∩ A have positive measure.
Since R′ ∩ A approximates arbitrarily closely an arbitrary subset of A of positive

measure, it follows that λ belongs to the ratio set r(X, µ, 0).
We now show that µ is of type IIIλ. Suppose that r ∈ r(X, µ, 0). Let ε > 0 and

choose A to be the set (of positive measure) defined by

A = {x : x0 = x1 · · · = xk−1 = 0 and xk ∈ S1(k, t (k))},

where k is so large that for j > k, |λ− λ( j, t ( j))|< ε. By the definition of the ratio set,
we may find a set B ⊆ A of positive measure, and γ ∈ 0 such that γ B ⊆ A and∣∣∣∣dµ ◦ γdµ

(x)− r

∣∣∣∣< ε

2
for all x ∈ B.

Since B has positive measure, there exists a rectangle

R′′ = {x0} × {x1} × · · · × {xk−1} × {xk} × · · · × {x`} × Z`(k+1)

such that µ(B ∩ R′′)≥ (1− ε)µ(R′′). For k ≤ j ≤ `, let `( j) be such that x j ∈

S`( j)( j, t ( j)), so that `(k)= 1, and let `′(k) be such that γ x j ∈ S`′( j)( j, t ( j)). For x ∈ R′′,
we have

dµ ◦ γ

dµ
(x)=

∏̀
j=k

λ( j, t ( j))`( j)−`′( j).
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Now ∣∣∣∣∣∏̀
j=k

λ( j, t ( j))`( j)−`′( j)
− λ

∑
∞

j=k `( j)−`′( j)

∣∣∣∣∣
= λ

∑`
j=k `( j)−`′( j)

∣∣∣∣∣1− ∏̀
j=k

(
λ( j, t ( j))

λ

)`( j)−`′( j)
∣∣∣∣∣

= λ
∑
∞

j=k `( j)−`′( j)
(1− e

∑`
j=k (`( j)−`′( j)){log λ( j,t ( j))−log λ}

).

Now, since λ < 1, we have

|log λ( j, t ( j))− log λ| ≤ 2 |λ( j, t ( j))− λ| ≤
2

2 j+1 =
1
2 j

and
|`( j)− `′( j)| ≤ 2 j + 1.

Thus ∣∣∣∣
∏`

j=k λ( j, t ( j))`( j)−`′( j)

λ
∑`

j=k `( j)−`′( j)
− 1

∣∣∣∣≤ |1− e
∑
∞

j=k ((2 j+1)/2 j)
|.

For ` sufficiently large, this can be made smaller than ε/2.
Thus r may be arbitrarily closely approximated by a power of λ. Hence r belongs to

the closure of the subgroup generated by λ.
We have shown that (X, 0, µ) is of type IIIλ. 2

PROPOSITION 5.1. Let B be the zero branch. If µ(X (B))= 1, then (X, 0, µ) is of
type III0.

Proof. The proof is a simple modification of the preceding proof and is left to the reader. 2

The preceding propositions give that

3(G)⊆3.

To prove equality, it will suffice to show that for each branch B, there is a recurrent ergodic
G-measure µ with µ(X (B))= 1. In fact, we prove more.

PROPOSITION 5.2. Let B be a branch of Ŝ. Then there is a G-measure µ concentrated on
X (B) which is uniquely ergodic in the sense of [3].

Proof. For b ∈ B, consider the sequence of probability measures µb
k given by

µb
k( f )=

1
|0k |

∑
γ∈0k

f (γ b)Gk(γ b)

for f ∈ C(X).
This is a sequence of measures in the unit ball of C(X)∗. By the Banach–Alaoglu

theorem, weak*-limits exist, and an easy calculation given in [4] shows that any weak*-
limit is a G-measure.
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Of course, for a fixed b, we might get a number of different weak*-limits—at least in
principle—and as b varies, the set of weak*-limits might also vary. We would like to show
that there is a unique weak*-limit.

To do this, consider the set P ⊆ X (B) given by

P = {x : xk ∈ S(k, t (k)) for all k}.

The definition of µb
k above yields readily that P has full measure in X (B) for any weak*-

limit of µb
k .

Now notice that from the definition of X , we have that S(k, t (k)) is a set of cardinality
2t (k)− 1, with

gk(St (k, t (k)))=
λ(k, t (k))t

C(k)
for t =−t (k), . . . , t (k).

Thus P is the infinite product space
∏
∞

k=1 Z2t (k)−1. Furthermore, P is equipped with
an infinite product measure µ=

⊗
∞

k=1 µk , where µk(xi )= λ(k, t (k))xi /C(k) for i =
−t (k), . . . , t (k) and, in fact, the definition of gk-functions is such that any weak*-limit
of {µb

k} actually coincides with µ on P . By the (standard) argument that there is a unique
infinite product measure, we see that for each b, there is a unique weak*-limit µb on P and
that this limit is independent of b. Since µb(P)= 1, this completes the proof. 2

The above results shows the following proposition.

PROPOSITION 5.3. The measurable partition of X into branches X (B) implements the
ergodic decomposition of (X, 0, µ) into uniquely ergodic Markov G-measures on the
Bratteli–Vershik systems which are the X (B)s.

See [9] for the definitions of uniquely ergodic Markov G-measures.
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(1995), 1–13.
[7] M. Bramson and S. Kalikow. Nonuniqueness in g-functions. Israel J. Math. 84 (1993), 153–160.

https://doi.org/10.1017/S0143385711000423 Published online by Cambridge University Press

http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
http://www.arxiv.org/PR/0312344
https://doi.org/10.1017/S0143385711000423


586 A. H. Dooley and D. J. Rudolph

[8] A. H. Dooley and T. Hamachi. Markov odometer actions not of product type. Ergod. Th. & Dynam. Sys.
23 (2003), 1–17.

[9] A. H. Dooley and T. Hamachi. Non-singular dynamical systems, Bratteli diagrams and Markov
odometers. Israel J. Math. 138 (2003), 93–123.

[10] A. H. Dooley, I. Klemes̆ and A. N. Quas. Product and Markov measures of type III. J. Aust. Math. Soc.
64 (1988), 1–27.

[11] H. Dye. On groups of measure-preserving transformations I. Amer. J. Math. 81 (1959), 119–159.
[12] A. Johansson and A. Öberg. Square summability of variations and convergence of the transfer operator.

Ergod. Th. & Dynam. Sys. 28 (2008), 1145–1151.
[13] M. Keane. Strongly mixing g-measures. Invent. Math. 16 (1972), 309–324.
[14] A. N. Quas. Non-ergodicity for C1 expanding maps and g-measures. Ergod. Th. & Dynam. Sys. 16 (1966),

531–543.

https://doi.org/10.1017/S0143385711000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000423

