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The behaviour of adhesively bonded joints is investigated using a continuum mechanical

description for the adhesive. The gradient of the adhesion variable, which describes the

volumetric proportion of cavities within the adhesive, is introduced in the free energy, so that

the model accounts for the intrinsic cohesion of the adhesive. The adherends are linear elastic

materials and the adhesive is first given an elastic behaviour. Using a thermodynamical

framework, an adhesion potential function is established, the subdifferential of which is

determined in a rigorous way, so that three-dimensional coupled elastic-adhesion evolution

equations are derived. Then we consider a generalization to the coupling of adhesion with

elastoplasticity. A two-dimensional model of adhesive bonding is derived using a perturbation

method. Finally, a finite element discretization of the coupled evolution problem is presented

and a resolution scheme based on Newton’s method is developed, while the integration of the

constitutive law is performed using a three-step operator splitting method.

1 Introduction

In the present paper, we model and simulate the adhesive bonding of two elastic solids

brought into contact, assuming that this contact occurs through a thin adhesive solid

material. The framework under consideration in the present work is that of continuum

mechanics using internal variables in order to describe the effect of local stresses on the

intensity of contact between the two surfaces of the adherends. This refers to the general

problem of adhesion. The micromechanical process that ultimately leads to fracture

through the formation of a macrocrack is usually referred to as material damage. There

exists an extensive literature concerning damage mechanics (a pioneering work was that of

Kachanov [1] in the late fifties), the establishment of coupled elastoplastic-damaged models

in both small and large strain situations (see, for instance, Ju & Simo [2, 3] or Benallal et

al. [4]), or gradient-dependent damage models, which are generally derived from nonlocal

damage theories (see, for example, Bazant & Pijaudier-Cabot [5, 6]. The physical motivation

for introducing the gradient of the damage variable is clearly to account for a cohesion

effect of the material (see, for example, the quite recent model in Fre!mond & Nedjar [7]).

This is motivated by the further argument that interactions between neighbouring points

are effective in polymeric-based adhesives, and the interaction length depends on the length

and degree of cross-linking of the macromolecular chains. A model for gradient-dependent

damage materials has also been formulated in Ganghoffer et al. [8]. The micromechanical
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processes leading to initiation and propagation of a crack of polymeric materials, and their

interaction with the deformation modes of the material (plasticity, viscous deformation)

have been described, for instance, by Kinloch & Young [9] and Perez & Weissman [10].

For a more detailed description of the phenomenology of damage and plasticity in

polymers, we refer to Edlund [11] and Edlund & Klarbring [12, 13]. Material softening and

its influence on the failure behaviour of adhesive joints have been investigated by Ottosen

& Olsson [14] and Gustafson [15]. Much less work has been performed on the adhesion

problem itself. It seems that the only available continuum mechanical approach is that of

Fre!mond [16], in which the author defines an internal variable representating the active

proportion of bonds between two solid surfaces brought into contact. Dissipation of the

elastic energy is here described by a pseudo-potential defined in an appropriate way and the

model allows one to recover constitutive laws which were well-established experimentally

[17]. Apart from this work, there exists an extensive literature dealing with the mechanics

of adherence of solids, using the more classical concept of fracture mechanics (e.g. see

Maugis & Barquins [18]). Since however, the modelling of adhesion is very similar to that

of damage, we notice that two different approaches can be followed to build up a damage

law [19] :

E the direct approach, which takes a phenomenological approach in order to quantify the

influence of the damage parameters on the mechanical behaviour, or

E the indirect approach, in which the macroscopic behaviour is derived from con-

siderations of the microscopic mechanisms and the use of homogenization methods.

In this work, we use the direct approach and aim at modelling both brittle and ductile

failure, so that we will consider successively elastic and elastoplastic adhesives undergoing

continuous damage, under a small strain assumption.

Throughout this work, it is supposed that in the initial state the two surfaces are not in

contact. This is simulated by assuming that the set of microcavities completely fills the

adhesive. A natural choice for a scalar adhesion variable A in the isotropic case is the ratio

of the true volume occupied by the material building the adhesive to the total volume of

the adhesive. Adhesion is then promoted by compressive states of stresses, which leads to

the closure of the cavities. This process interacts with the development of plastic flow within

the adhesive.

2 Elastic adhesives

We first consider the situation of an adhesive undergoing only elastic strains. As a first

cornerstone of the thermodynamical formulation of elasticity coupled to adhesion, we

specify the free energy density (per unit volume) of the adhesive material, which is supposed

to depend on the elastic strain tensor εe, on the adhesion variable A and on the gradient

of A (through its norm), that is ψ(εe,A, r~Ar). The adhesion is quantified by a scalar

variable A, which represents the true – physical – area of contact at the interface between

two solids. The variable A ranges between zero (no contact) and unity (perfect bonding, the

physical area is equal to the geometrical area).

The total strain tensor is additively decomposed into the sum of a reversible (elastic) part

εe and an irreversible one εirr, that is

ε¯ εeεirr. (1)
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We now require that the free energy ψ of the adhesive material should be equal to the

free energy of the pristine material when A is equal to 1 and when r~Ar is equal to 0, so that

the following condition is satisfied:

lim
AU"

r~ArU!

ψ(εe,A, r~Ar)¯ψ(εe,A¯ 1, r~Ar¯ 0)¯ψ!(εe)B "
#
εe :C : εe. (2)

The force variables (σ,Y,G~) naturally derive from ψ according to

σ¯
¥ψ

¥εe
¯AC :εε ; Y¯

¥ψ

¥A
; G~ ¯

¥ψ

¥(r~Ar)
. (3)

Equations (3) define the state laws. The local stress tensor σ is the driving force for the

elastic deformation of the material, Y is the adhesion driving force, and G~ is the driving

force conjugated to the gradient of adhesion.

From the first equation in (3), we deduce that the influence of adhesion on the mechanical

behaviour is specified through the concept of strain equivalence, as in Lemaitre &

Chaboche [20]. This means that the constitutive law for the adhesive material is given by

that of the pristine material replacing the stress tensor σ by the effective stress tensor σ}A.

We then consider a free energy potential quadratic in A and set a priori

ψ(εe,A, r~Ar)¯A "
#
εe :C :εeβ(aA#bAc) r~Arp,

where the Euclidean norm of the gradient of A, r~Ar, accounts for the cohesion of the

material. The constants a, b, c and the exponent p (which prescribes the intensity of the effect

of the gradient of the adhesion variable) must satisfy the following constraints :

E ψ must be convex with respect to each of its argument εe, A and r~Ar, which leads to the

following sufficient conditions :

– the inequality 2aβ& 0 implies that ψ is convex with respect to A ;

– the positivity of the tensor C implies the convexity of ψ with respect to εe ;

– the conditions β(aA#bAc)& 0; p¯ 0 or p& 1 imply the convexity of ψ with

respect to r~Ar.

The adhesion driving force Y defined by equation (4) becomes

Y¯ "
#
εe :C :εeβr~Arp (2aAb)

and the second term on the right-hand side is equal to 0 when A is equal to 1 and r~Ar is

equal to 0. Hence, let us choose

ψ(εe,A, r~Ar)¯A "
#
εeC εeβ

A#

2
r~Arp, (4)

which implies

Y¯ "
#
εe :C :εeβr~ArpA ; G~ ¯pβ

A#

2
r~Arp−". (5)

The adhesion potential f(σ,A, r~Ar) is built from the thermodynamic forces Y and G~ as

f(σ,A, r~Ar)¯®Y®G~®γAηN
σ

m

A
®K,

where K is the initial radius of the adhesion potential surface (when all forces are zero, thus
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it represents an initial force to be overcome), y is a non-negative constant which determines

how the threshold for adhesion (i.e. the actual value of the potential/(o-, A, \VA\)) is affected

by adhesion evolution, y is a positive constant, N(s) is the negative part of the real s, that

is ./V is denned by

N(s) = -s ifs<0; N(s) = 0 ifs^O (6)

and <rm is the contraction of the tensor <T and the tensor 1 (the components of which are

equal to 1 on the diagonal, and 0 otherwise). In this way, a non-negative pressure has no

influence on the propagation of adhesion. Using equation (5), we obtain

Notice that in the initial state, the elastic strain energy term is null. The effect of the

hydrostatic stress on the growth of adhesion is prescribed by adding the term r/N(<rm/A).

The expression of/will be justified - essentially with regard to convexity properties - in the

following section.

3 Construction of the subdifferential of the indicator function

The behaviour law (3j) of the adhesive can be inverted as ee = I/A C~
X
:<T, which implies

that the adhesion driving force Y can be equivalently expressed by

r i r i i
= T T U —=-n;(

since the quantity Y—1/21/A
2
a-.

negative functions of A

^-.a must be non-negative. Defining the two non-

-0
the potential function/for adhesion can be expressed as

S x R ^ R U { + 00}

(<r, Y)-yA + vN^f-K

where S denotes the space of symmetric second order tensors and

- {a Y- bo-: C 1 : o-}(p-1)/p if a Y- b<r: C"1: tr > 0

(8)

G(<r, Y) =

+ oo otherwise.
(9)

For each real K, one defines the set CK as: CK = {(<r, Y) e S x R \J(<T, Y) < 0}. Note that

if (o-, Y) belongs to CK, the quantity aY— bv:C~
x
:<T is non-negative. We then have the

following lemma, the proof of which is a trivial consequence of the concavity and the

monotonicity of the function
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Lemma 1

(1) For each real K, CK is convex.

(2) G defined in equation (9) is convex on the space S x R.

In the following subsection, the subdifferential of the indicator function of the convex set

CK is formally established, using the subdifferentials of G and N.

3.1 Formal construction of the subdifferential of the indicator function

We denote by 3G (respectively, dN) the subdifferential of the convex function G (resp. N),

given in equation (9) (resp. equation (6)).

Lemma 2 The subdifferential QICK of the indicator function IC/[ defined by

0 if (<r,Y)eCK

+ oo otherwise,

is given by

(1) dlc (<r0, Yo) = 0, if(o-0, Yo) does not belong to CK, i.e. if it satisfies the inequality

^N(o-0m)-yA > K.

(2) 9/Cjf(cr0, Yo) = (0,0) if(cr0, Yo) belongs to the interior ofCK, i.e. if it satisfies the strict

inequality

- Yo + G(o-0, Yo) + V/AN(v0J-yA<K.

(3) dICK(<r0, Yo) = { - g(0,1) + g 8(?(<r0, Yo) + V/A ^N(crm0), 0)/g > 0}, if(<r0, Yo) lies on the

boundary ofCK, i.e. if it satisfies the equality — Yo + G(cr0, Yo) + r//A N(<rOm) — yA = K.

Proof Let us recall that an element (a, e) of S x R belongs to the subdifferential dICic(cr0, Yo)

of ICK at (a0, Yo) if and only if it satisfies

V(cr, Y)eS x R : 1CR{<T, Y) > IcJ.<r0 F0) + «:( ( r - ( r 0 ) + e ( F - Yo). (10)

(i) Assume that (o-0, YO) does not belong to CK. Then equation (10) can never be satisfied

for every (a, Y) in CK. One then deduces the first point of the lemma.

(ii) In this case, equation (10) is interesting only if (cr, Y) belongs to CK, and becomes

V(«r, y ) e S x R : 0 > 0 + a:(o— (To) + e(Y-Yo). (11)

Considering the continuity of the functions which appear in the load function / , it is

possible to make <r and Y vary independently and in all ' directions', still satisfying the strict

inequality f(o-, Y) < 0 and assuming that (cr, Y) is close to (cr0, Yo). From equation (11), one

deduces that the only possibility for a and e is both to be equal to 0.
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(iii) In this third part, we suppose/(cr0, 70) = 0. If (<r, 7) satisfies/(>, Y) ^ 0, one obtains

0 2s/(a-, Y)-f(cr0, Yo). This immediately leads to

0 >f(a, Y)~M, Yo) > - ( 7 - 70) + 9G(cr0, ^ ( t r - ^ , 7 - 70) +16JV(<r0J (<rB - <r0 J

and for each real £ ^ 0, one has furthermore

o > - g( y - y0) + £9(7(^0, y0) (o- - <r0J y - y 0 ) + ^ g9tf(°-0 J (<rM - O -

Equation (11) is then verified for the following element: — g(0,1) + £9G(cr0,6>0) +1; /

4̂ E,dN(crOm) (1,0), which then belongs to the subdifferential of JCK . Conversely, assume that

(cr0, yo) belongs to the boundary of CK and consider a and e satisfying equation (11). Let

us assume in'a first step that <r is equal to o-0, equation (11) becomes

0 Ss - ( y - yo) + G(<ro> Y)-G(a0, Yo) < 0,

from which we deduce ( y _ ^ ( _ 1 + ^ ^ (Q> 1 )} ^ Q ( 1 2 )

If the quantity ( - 1 + 9G(cr0, Yo) (0,1)) ^ 0 is negative, equation (12) leads to Y ^ 70, so

that e ^ 0. Suppose now that a- =(= <r0; hence

- ( 7 - yo) + G0r, 7)-G(cro , Yn)+^N(crJ-^N(cr0J = -8(8 ^ 0)

=*(y-yo)(-l+8G(<rOJ 70)(0,l)) + 9G((r0, yo)(o--0-0 ,0)+J(^(<rJ-M^ f lJ) = - e .

This equality implies

Equation (11) then becomes

o-0, yo)(0,1)

- • + 8 C K , r.)(., •)
'• { ^

This last inequality means that

, . - 1

(^,70) (0,1)

belongs to the subdifferential of the convex function

since s can be chosen arbitrarily small. One concludes simply taking £ = — e.
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One proceeds in a similar way if the quantity — l+3G(cr0, Yo)(0,1) is non-negative. In

that case, one chooses g = e. We will admit the result when — 1 + 9G(cr0, Y0)(0,1) is equal

to 0. •

In the next section, we evaluate the subdifferentials of the functions G and N.

3.2 Determination of the subdifferentials of G and N

Set H(a-m) = 7]N((rm/A) in the sequel. We now have the following results, the proofs of

which are trivial.

Lemma 3 The sub differential of H is given by

0 if aom > 0,

-<9^--l, with 0e[0,1] if trOm = 0,

w/iere 1 is the identity tensor.

Lemma 4 The sub differential of G is given by

(i) oG(<r0, 70) = 0 if a ^ - ^ o - o i C
1
: ^ < 0;

(ii) 6G(<r0, K)(o", 7) =

P

if flyo-io-0:C
1:a-0>0;

(iii) 9G((r0, ^,)(o-, Y) = — oo if aY^ — bcr^.C'
1
 :o-0 = 0 and aY—2b(T0:C~

1
:o->0;

(iv) 6G(<r0, 70)(a-, 7) = + oo if a ^ - f o r ^ C -
1
: ^ = 0 and a7-2&fr0 :C^:o-< 0;

(v) 8G(cr0, Y0)(<T, 7)eR
+
 if ayo-fto-0:C^o-0 = 0 and aF-2fto-0:C"

1
:cr = 0.

We are now in a position to derive the evolution laws for the internal variables.

3.3 Evolution laws for the internal variables

The rate of change of the free energy density is

so that the intrinsic dissipation becomes ^ = <r: s
lrr

 —YA^O. The indicator function of the

convex set CK is used as a dissipation potential, so that we write

K(<r,Y), (14)

which is a sufficient condition for the dissipation to be non-negative. The previous
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computations written in Lemmas 2, 3 and 4 show that the first evolution law (14) can be

expressed as

8 i « l +
A 5 p

where the multipliers fi and £ are non-negative and satisfy

/t = 0 ifcrm>0 or/((r, F ) < 0; /* = £ ̂  0 if/fa 7) = 0 and <rm ^ 0. (15)

The second evolution law in (14) is

-A = - ^ U
P

where the second multiplier £ satisfies

£ = 0 if/(Cr,7)<0. (16)

The potential function for adhesion/is further defined by the following two functions,

/21 , /22 , which intersect in a non-smooth way (there is a discontinuity of slopes at the point

, F) = - y + ^ I V ^ P - ^ - t f ; /M(er, Y) = /21(<r,

Clearly, the conditions (15) and (16) on the multipliers (/*,£) are equivalent to the

following statements:

p>0; M i = 0; / 2 1 < 0 ; /* = g if/M = 0; £ ^ 0 ; g/22 = 0; /2 2 ^ 0.

The evolution laws for the internal variables can then be expressed in terms of the

gradient of adhesion, using equations (6) and (7) as follows:

n— 1 2\-1/(P-D

j

£.J \VA\-
1
;

/i^0; /ifal = 0; / 2 1 ^ 0 ; /* = £ if/M = 0; £ ^ 0 ; £/22 = 0; /2 2 ^ 0.

Using the thermodynamical framework now established, we further enlarge the

modelling to the consideration of plastic flow.

4 Elastoplastic adhesives

The coupling of damage with elastoplasticity is classic in the literature (see, for instance, Ju

[2]). In the same spirit, we add to the elastic part of the free energy ^
e
(e

e
, A, \WA\) a plastic
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part ijr
v
(r,A), which depends on the accumulated plastic strain r denned by r = (§s

p
:e

p
)

1/2
,

so that the following additive split holds:

f = f* + f»; f\E\A,\VA\) = A\E
(i
:C:z

e
 + p^--\YA\

v
; f

v
; f

v
(r,A) = \A6r\

where 0 represents a hardening parameter: the physical interpretation is that the resistance

to plastic deformation increases, due to the increase of the density of dislocations.

The volumetric dissipation of the elastoplastic energy is then (j> = o-:e
iri

' — Yd—Rf ^ 0.

The force associated with r is the radius of the flow surface R, defined by R = 3^
p
/3' =

A dr. We then deduce that

Y=^- = \ze:C:z
e
 + p\¥A?A+\dr\ (20)

while Gv keeps the same expression as that given In equation (3). The plasticity criterion is

defined from a plastic potential surface given by

^ A : s (21)

where J2(s) = (^s:s)
112

 is the second stress invariant, k is the yield strength and the

parameter g indicates the influence of the hydrostatic stress on the flow criterion. The

surface/^ = 0 can be interpreted as a flow surface, and if we set A = 1 and £ = 0, we recover

the flow surface for the von Mises yield criterion with an isotropic hardening written in

Lemaitre & Chaboche [20]. Note that, since we consider in the general case a pressure-

dependent plasticity criterion, and at the same time impose the plastic flow to be isochoric

(volume-preserving), this would mean that the plasticity is of a non-associated character

(another potential is then needed, which gives the direction of plastic flow). See Hill [21].

This difficulty is circumvented when expressing the pressure as a function of the elastic

strain, resulting in the term £§Tr(if:e
e
) in equation (20). The gradient of the adhesion

variable is still eliminated from equation (19), so that we get

1/p

The potential function for adhesion then becomes

a
d

f
f(tr, Y,\VA\) = -Y-laY-b<r:C-

1
:o

where a, b are defined in equation (7) and a is a non-negative constant. The adhesion

surface/= 0 is defined by the two surfaces f21 = 0 and/22 = 0 which intersect in a non-

differentiable way, with

a

(<r,Y,\VA\)=f21 +V-

P-D/P
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The evolution laws for the internal variables are defined by the following subdifferential

identity:

(£'"', -f, -A)edICK(<r,R, Y; E
e
,r,A); CK = {(a,R, Y)\f, ^ 0;/21 < 0;/22 ^ 0}.

Because the potential function for plasticity is differentiable with respect to the stress

tensor and the variable R, we deduce as in section 3.5, that the previous statement is

equivalent to

r\f r\y . 1 n—1 f /j2")-l/(p-D

O / O ^ V
 j P l

)
A

[

so that we get the following evolution laws:

4 7 T (rr
D
\
 r

 A

-i; _ , = * < £ » _ * , (23)

where the multipliers A, /i and £ satisfy the following conditions:

A^O; Af1 = 0; fx ^ 0; ^w^O; /ifa = 0; / 2 1 ^ 0 ; /i = £ if/a2 = 0;

£>0; £/32 = 0; /22 ^ 0, (24)

and the plastic strain velocity is identified as

. p _ A 3 cr
D

8
 ~~A2jJj

5
)'

Due to the additive split of strains, the elastic strain is then deduced from the knowledge

of the irreversible strain according to

E
e
 = 6-8

l rr
. (25)

Equations (23)-(25), associated to the equilibrium equations for the three bodies, the

conditions of continuity of displacement and traction at each interfaces adherends/

adhesive, represent the complete constitutive law for the three-dimensional problem.

5 A two-dimensional model of the adhesive

We are now interested in the behaviour of the three-body system when the adhesive is a thin

layer of an isotropic elastoplastic material, and aim at deriving a simplified constitutive

behaviour taking the limit when the thickness vanishes. The constitutive law for a thin

isotropic adhesive film undergoing elastic deformations can be established from the

asymptotic analysis of the behaviour of a thin elastic adhesive sandwiched between two

elastic adherends, using an asymptotic analysis as described by Klarbring [22] and the
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principle of equivalence (3j), so that the effective stress a/A is substituted for the stress. We

now specialize the general constitutive law of the adhesive (3X) to the isotropic case, as

( 2 6 )

involving Young's modulus E and Poisson's ratio v. Introducing the expressions

into equations (22) leads to the following equalities for the first order in-plane stresses:

< = 0; o-l^—al; a\t=^-v<j\t (27)

and a normal traction satisfying

Equation (28) and the expression of the in-plane stress components (27) show that the

effective stress tensor a
0
/A is constant through the adhesive thickness. Assuming that the

adhesion variable A(xvx2,x3) asymptotically converges to A(x1,x2,0), and since only the

thin layer is an adhesive material, there is no continuity condition for A at each

adhesive/adherend interface St, i = 1,2. One can then suppose that A is constant through

the adhesive thickness, so that (27) and (28) imply that the stress tensor cr° itself is constant

through the adhesive thickness.

Moreover, one proves that the displacement w° varies linear through the adhesive

thickness, and we can therefore write

where y^
0
 denotes the trace of u° on Sp i= 1,2.

As shown by Klarbring [22] for an elastic undamaged adhesive, the solution of the first

order problem of the asymptotic expansion does not involve any dependence of the field

variables on the thickness coordinate. Therefore, the adhesive can be treated as a material

surface, letting the mechanical fields within the adhesive depend only on their boundary

values on it. We therefore determine from (26) and (27) the in-plane elastic strains

-v\ \+v\ If v ( 2v \ \ + v v ,
£

n
 =

 ~F—7 A r ( o 7 H — - — - c r n = — < — — f-l \cr33H— a^t = w;
E A E A A\ E\l — v E \—v

£?2 = 0,

so it is shown that the in-plane strain tensor can be neglected: e
e
a/} = 0.

We now make assumptions concerning the irreversible part of the strain tensor

compatible with that obtained for the elastic part, so that a simplified constitutive law will
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be derived. Indeed, we assume that the plastic part of the strain tensor can be neglected:

e^ s 0. We then obtain the following simplified strain measures for both the elastic and

irreversible parts:

8,, = ^ ; e, ,= »i; Wt = \ (u] - u%

'' a. —
 z b 3a' yy

 x ~ ^b3a ' " 3 ~ b33 ' " 3 ~ f c 3 3 ^ f c 3 3 '

where the following partition holds :W=W
e
+ W

iTv
. The integration of the traction vector

through the adhesive thickness defines the following simplified stress measures:

P{=
hli

-ft/2

using similar notations as those in Edlung & Klarbring [1-13]. The two-dimensional

constitutive law of the adhesive is then in matrix form:

Eh

I o
o \

0 0

0
0

\-v

\-2v

From the behaviour law (26) of the adhesive, we deduce

v „ „ P,

- v)
P
*'

We next express the potential functions for adhesion and plasticity in terms of the

simplified stress and strain measures previously introduced. The functions/,/! now become

new functions/,/, of the variables Y = hY, R = hR, W
e
, r, A according to

so that we explicitly obtain the following expressions:

Y— W
e
 —

= ^ P : C"1: P, Ct] = ^ Ci

https://doi.org/10.1017/S0956792598003362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003362


Mechanical modelling of adhesion 317

The subdifferential equality (e
irr

, — A, — f)edICK{a, Y, R) is thus equivalent to the

following variational inequality:

A = O, Y,R)eCK: f ({a-*-o-):w
ir
-{Y*- Y)A-{R*-R)f)da < 0,

0; /21 < 0; / „ < 0},

which is equivalent to

A = (P, Y,R): I ((P*-P):w
tr
~(Y*~Y)A-(R*~R)f)d(T^O,

V i* = (P*, ?*, R*) e Co = {(P, f, ̂ ) 1/^0; /„ < 1; /„ ^ 0},

with R = hR; Y = hY. This last statement implies the following subdifferential equality:

(w
lr
,-f,-A) e dI6K{P,R,Y).

The derivation of the evolution laws for the internal variables in a two-dimensional

description then follows the same steps as those needed for the establishment of the

evolution laws in the three-dimensional case. The expression for the function / can be

recast in a form similar to that given by equation (8):/(a, A) = — Y/h + G + 7/N(Pm/

A)+ar—yA-K, with

:P-a\h6r}^
)l
»; d = y; h = \.

2 h h

The subdifferential equality (w
ir
, — r, — A)edls (P,R,Y) then leads to the following

evolution laws for the internal variables in the two-dimensional description of the adhesive:

*
 /t

3hAhA\\-v) f , D 2 l , D 2 l ( l - 2 ^ D 2 ) 1 / 2
 '"ShAl-p

Moreover, one has

r = -A^4 = A ^ ; / < 0; A^0; 7 ^ = 0;

^ ^ 0 ; ^/8 1<0; / s l < 0 ; £>0; ^/22 = 0; / „ < 0.

We next describe the numerical procedure associated with this problem.
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6 Numerical implementation

Let X:={Ae CK on w} be the set of thermodynamic forces defined on the interface wx{0},

where the set CK := {A\f^ ^ 0,/21 ^ 0,/22 ^ 0} determines the domain of the forces through

the potential functions for plasticity/! and adhesion/21,/22.

The problem (P), which involves a surface description of the adhesive layer, including the

equilibrium of the three-body system and the complementary laws expressed in weak form,

can be stated as

Find u{t) e V, w
ivr

(t), r(t) and A{t) e X such that for every t e [0, T]

a{u,v) + \ \ P-(v
1
-v

2
)dS-g(v) = 0, VveV, (P)

[w
iTr

 •(P*-P)-r(R*-R)-A(Y*-Y)]dS^0, V A* e X,

where v
1 (resp. t>2) denotes the restriction of v to Q1 (resp. Q2). Here, a and g are given by

f f
a(u, v) = Eim uu vKl dx; g(v) = \ givi dS,

Ja1ua2 •)s]us
2

l

and are the standard bilinear and linear functions representing the internal and external

virtual work, respectively, associated with the traction forces, here denoted by g, a being

defined on the space VxV, where V = {v e (H
1
(Q1 U £22))

31 v = 0 on SJ, Su being a non-

void part of the smooth boundary dQ. The equations of (P) respectively, hold together with

the 'change of variables' R = hR; Y = hY&nd the state law starts with the initial conditions

M(0) = 0, r(0) = 0 and i(0) = 0.

The numerical solution procedure is very similar to the scheme proposed in Edlung &

Klarbring [13,16] for the modelling of damage in adhesive joints, and we essentially use the

same notation. We consider the following approximate resolution procedure for (P).

Let 0 = t0 < t1 < • • • < tM = Tbe a subdivision of the time interval [0, T\. The integration

in time is performed by a backward Euler (implicit) scheme, which means that the rate of

change of a variable / at time tN is approximated as f{tN) =fN~ (fN —Ar-i)/A?, where

A; = tN — tN_1. For the spatial discretization we replace V and X by finite-dimensional

approximations

yh = v
hW

{x) = 2 ^ O) v
nir

\ v
hir

\xn) = 0 for xn e S%\ r = 1,2 ,

J
where ¥^

r)
 are the global finite element basis (polynomial) functions, N

m
 is the total

number of nodes in the rth body and v
n(r) := v

h<
-

r)
(xn), xn being the coordinate of the «th

node,

X
h
 = {A\xl)eCK,e= l,...,E,g=l,..., G},

where it is required that A
h
 belongs to CK at the integration points.
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The integrals over w appearing in (P) are evaluated using a gaussian integration method,

that is

•• 2 IJLfl = S 2 WlAx% (29)
e-1 e-lff-1

where E is the number of integration cells, G is the number of integration points x
e
g in each

cell, and W
e
a are the integration weights. After discretization in time and space of (P), we

obtain the following problem (assuming from now on that the coefficients C(j are constant

on w):

For N = 1,2, ...,M; find u%e V
h
, wf

r
,r% and A\eX

h such that

= 0, V v
h e V'\ (30)

J w# L J

/79 < 0 V J*
h
e= Y

h

and at each integration point xe and for every component /

(

hA%dr%, (31)

tf < MJV + ̂ ^ ) , (32)

with the initial conditions u\ = 0, r\ = 0 and ^ = 0.

With the integration rule (29), the virtual work equation (30) can be written as follows:

r - l M - 1 m - 1 e - 1 sr-1 " r - 1 n - 1

r r
._ p UT) Ur) Jy. rin(r) . _ „ artr)
•"" ^ijklrnjrm,l

uy
 > ^iN • SiN ~n

where

For each time-step we have to solve the following problem: Given the state at tN_x, find

uN, P*lN, R
h

N, Y
h

N, wtl7, r
h
N and A

h
N at each integration point, such that

B(uN,v) = 0, VveR", q = 3N
(1)

 + 3N
(2), (PJ)

and the constitutive law (M£) are satisfied.

To update the discretized constitutive law (Ml), the constitutive response is required

when the residual force vector is computed and when the tangent stiffness matrix is

computed from the consistent tangent modulus. The constitutive response is also needed in

each integration point and in each iteration for a current state of deformation defined by

Newton's procedure. Since the output from Newton's procedure is a displacement

increment, it is natural to consider the problem of updating the material state as a

strain-driven problem which has to be solved locally at each integration point. Thus, we
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eliminate the thermodynamic forces pt, R, Y in order to deal with a law only depending on

the internal variables and rewrite (Ml) using equations (31)—(32). We then obtain the

following form of the law which will be referred to as (Ml):

r
1
; (Ml)

<, = <,-!-% vEP^M+^V-Dwt^VA^; (34)

rN = ^ - i + ^ A A ; AK

= 0; fn ^ 0.

Here

\21l/2

and the potential functions are now expressed in the generalized strain variables, according

to the constitutive law (29), as

The problem (U) of updating the material state can be stated as follows:

Find AA, Afix and A/J,2 such that (Ml) is satisfied for

(U)

where Aw is a given strain increment. As a consequence of the solution of (U), the new state

(w%\ w
e
N, rN and AN) is obtained. As previously described, (P") is solved iteratively using

Newton's method. From the result of an increment (say K), the increment given in the

generalised strain in (U) is obtained as

Aw = w(
K
uN-uN_1),

that is computed with respect to the displacement uN_r corresponding to the last

equilibrium (convergent) state.
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FIGURE 1. Adhesion between a rubber layer and a rigid support.

Table 1. The material coefficients and parameters for the adhesive

E (MPa)

1

V

0.48

eh

10-"

lc(m)

4.1Q-"

P

2

7]

0.2

r(MPa) ,

1

81 (MPa)

2

K (MPa)

0.01

- No gradient

-With gradient

600200 300 400 500

Force (N)

FIGURE 2. Evolution of the true contact area vs. the compressive effort.

700

For the resolution of (U) the operator splitting methodology is used. It has been used in

plasticity problems [23] and in coupled plasticity-damage problems - [24-26]. The three-

steps procedure proposed in Ju [2] has been used in the present computations.

7 Numerical examples

Two numerical examples involving two elastic adherends brought into contact through a

thin adhesive material will be considered. In the first situation, it is assumed that adhesion

is instantaneous and promoted by a gradual increase of the global compression effort. In

the second case, the adhesion process is considered as time-dependent, and therefore

the regularised form of the evolution equations will be used. In both examples, the adhesive

itself is considered as a linear elastic material, so that only the adhesion process itself might

be time-dependent.
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FIGURE 3. Profiles of adhesion along the interface (a) without gradient, (b) with gradient.

https://doi.org/10.1017/S0956792598003362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003362


Mechanical modelling of adhesion 323

The experimental system is the following (Fig. 1). A cylindrical elastomer block of

thickness 2 mm, radius 5 mm and modulus 1 mpa is brought into contact with a plane rigid

support. A rigid flat cylindrical punch (radius 5 mm) is supposed to be strongly bonded on

the rubber layer. Note that the punch is chosen to be a rigid material in order to distribute

the applied traction uniformly on the upper interface of the rubber layer. Considering the

terminology described in the previous sections, the rubber layer and the rigid support are

the two adherends.

The elastic modulus of the adhesive is taken as equal to that of the elastomeric layer

(1 MPa), and its thickness 2eh& 10"
1
 m. Poisson's coefficient of both adhesive and rubber

are equal to 0.48, thus representing a quasi-incompressible behaviour. The punch is then

pressed at a constant low speed (1 mm/min) on the rubber layer (so that the process can

be considered as quasi-static), leading to an increase of adhesion at the interface rubber

layer/support.

The parameter /? is written as the product /? = flx If, where lc is an internal length scale

which accounts for interactions between neighbouring points.

In Ganghoffer & Gent [27], the fracture of an elastomeric layer adhered to an aluminium

plane baseplate has been measured by peeling a rubber strip at a speed equal to the true

velocity of the crack front (about 100 mm/min), and found equal to 200 J/m2, which

corresponds to the parameter 2e/?/z, implying that /? = 106 J/m3.

We first assume that the adhesive has a non-dissipative behaviour (over the range of time

length of the experiments), and the adhesive is given an elastic behaviour. Both the rubber

layer and the adhesive are discretized using plane linear elements, according to the axial

symmetry of the model. This implies that stresses are constant in each element, but they can

vary between neighbouring elements. Since the rubber layer is initially in contact with its

support, the displacements of the corresponding interface nodes are equal to 0 and the

corresponding degrees of freedom are eliminated. The state of adhesion is assumed to be

identical at the interfaces rubber/glue or glue/support, so that the model has been further

simplified, assuming that the adhesive between rubber and the support can be described by

only one line of nodes. A typical mesh of five layers of elements and 20 nodes on a radius

has been used. In the initial state, the two adherends are brought into contact, and it is

assumed that the adhesion variable A is equal to 0. Furthermore, the adhesion is supposed

to be perfect at a material point at the interface when A reaches a critical value Acr = 0.99.

The material data of the adhesive (the plastic properties are not considered here, since

the adhesive is supposed to be given an elastic behaviour) are presented in Table 1.

From the computed contact area at each integration point, an average true contact area

over the whole interfacial zone is further defined, according to the expression

Figure 2 presents the effect of the gradient of the adhesion variable. Clearly, there is a

drastic evolution of adhesion when the gradient is not considered (the evolution laws are

derived from the potential functions in which \c is taken equal to 0), but this is mollified

by the regularizing effect of the gradient.

We further represent the propagation of adhesion for different force levels (Fig. 3) first

when the gradient of adhesion is not considered. In that case, it appears that the profile of
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F 4. Time evolution of the contact area for a constant load.

adhesion is very chaotic (when the load is 20N, there is an alternance of nodes completely

adhered followed by nodes which partially adhere). When the load increases (80N), the

adhesion front is clearly observed (about half of the nodes from the centre are fully

adhered), but the same chaotic behaviour is observed for the remaining nodes. Notice that

all nodes are partially adhered for a low load level (1N), which physically corresponds to

an avalanche effect (adhesion occurs on the whole geometrical contact surface).

Again, the effect of the gradient of the adhesion variable is clearly a regularizing effect

(see Fig. 3(b)).

In the second example, a compressive effort of 50N is applied to the punch, and the

adhesion process is assumed to be governed by the diffusion of polymeric chains (from the

elastomer to the support), which is a long time process. The parameter β is supposed to be

given by the following function of time [4, 13] : β¯β
max

ot}τ, with β
max

¯ 6.10' MPa and

the relaxation time τ¯ 200 s. The values of the other parameters are kept unchanged

(Table 1). However, in that case, the gradient of the adhesion variable is not considered.

The resulting contact area is seen to increase with time in a sigmoı$dal way (Fig. 4).

8. Conclusion

A mechanical model of the adhesion between two elastic solids has been established,

considering that the contact occurs through a thin third elastoplastic body. The strength of

adhesion between both solids has been quantified via an internal variable, representing the

proportion of microvoids at the interface between the solids, the evolution of which is

coupled to the local state of stress within the framework of continuum thermodynamics.

Numerical simulations performed on elastic layers being adhered to a rigid baseplate have

shown a quasi-linear variation of the true contact area versus the compressive effort. When

a time-dependent adhesion process is considered, the evolution vs. time of the true contact

area has been obtained. The mechanical model proposed in this work has been further

validated by experiments. Very few papers in the literature in fact deal with the

measurements of the contact area in plane conditions. The work [28] on the wringing of

gauge blocks on glass indicates an area of contact that linearly increases with the wringing

torque. These results are in good agreement with the predictions of the present simulation.
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