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We investigate the influence of capillary effects on wave breaking through direct
numerical simulations of the Navier–Stokes equations for a two-phase air–water
flow. A parametric study in terms of the Bond number, Bo, and the initial wave
steepness, ε, is performed at a relatively high Reynolds number. The onset of wave
breaking as a function of these two parameters is determined and a phase diagram
in terms of (ε, Bo) is presented that distinguishes between non-breaking gravity
waves, parasitic capillaries on a gravity wave, spilling breakers and plunging breakers.
At high Bond number, a critical steepness εc defines the onset of wave breaking.
At low Bond number, the influence of surface tension is quantified through two
boundaries separating, first gravity–capillary waves and breakers, and second spilling
and plunging breakers; both boundaries scaling as ε ∼ (1+ Bo)−1/3. Finally the wave
energy dissipation is estimated for each wave regime and the influence of steepness
and surface tension effects on the total wave dissipation is discussed. The breaking
parameter b is estimated and is found to be in good agreement with experimental
results for breaking waves. Moreover, the enhanced dissipation by parasitic capillaries
is consistent with the dissipation due to breaking waves.
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1. Introduction
Understanding small-scale wave structures in the ocean is of fundamental

importance in order to quantify wave dissipation and air–sea interactions, including
gas and momentum exchange, and to improve parametrization for ocean–atmosphere
exchange in weather and climate models. The understanding of dissipation induced
by breaking waves at various scales has been the topic of intensive research in
recent decades, combining field work in the open ocean (Melville 1996; Melville
& Matusov 2002; Veron, Melville & Lenain 2008; Sutherland & Melville 2013),
laboratory experiments on wave breaking (Melville & Rapp 1985; Rapp & Melville
1990; Tulin & Waseda 1999; Melville, Veron & White 2002; Banner & Peirson
2007; Drazen, Melville & Lenain 2008) and the dissipation induced by smaller scales
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involving surface tension, such as micro-breaking, spilling breaking (Duncan, Qiao
& Philomin 1999; Duncan 2001; Liu & Duncan 2003, 2006) and parasitic capillary
waves (Su 1982; Perlin, Lin & Ting 1993; Caulliez, Ricci & Dupont 1998; Fedorov,
Melville & Rozenberg 1998; Jiang et al. 1999; Caulliez 2013). The importance of
small scales, O(1–10) cm in the global ocean wave energy fluxes is still an open
question and needs further investigation.

Theoretical approaches to describe these wave phenomena have been based mainly
on potential theory, and provide insights into wave stability and the onset of wave
breaking (McLean 1982; Peregrine, Cokelet & McIver 1993; Longuet-Higgins &
Tanaka 1997; Dias & Kharif 1999). Geometrical, kinematic and dynamical criteria
for the onset of wave breaking have been the subject of constant debate (e.g. the
review of Peregrine et al. 1993; Perlin, Choi & Tian 2013). Regarding surface tension
effects, boundary layer theory has provided a general description of the appearance of
capillary ripples on the front of carrier gravity waves (Longuet-Higgins 1963; Fedorov
& Melville 1998; Melville & Fedorov 2015) and were first observed numerically by
Mui & Dommermuth (1995). Numerical simulations of gravity–capillary waves
are based on potential theory with a boundary layer near the interface (Yang &
Tryggvason 1998; Furhman, Madsen & Bingham 2004; Fructus et al. 2005), or on
the Navier–Stokes equations (Mui & Dommermuth 1995; Tsai & Hung 2007, 2010),
not taking into account the air flow, or the air being modelled by a pressure forcing
(Fedorov & Melville 1998; Melville & Fedorov 2015). They provide qualitative
and quantitative comparisons with the various wave patterns and phenomenology
observed experimentally. The enhancement of dissipation by parasitic capillaries
has also been described, both experimentally (Zhang 1995; Fedorov et al. 1998;
Caulliez 2013) and numerically (Fedorov & Melville 1998; Tsai & Hung 2007, 2010;
Melville & Fedorov 2015). Numerical simulations of the complete two-phase flow
remain relatively rare and have focused on the resolution of the wave breaking and
post-impact dynamics, which are numerically challenging (Chen et al. 1999; Song &
Sirviente 2004; Iafrati 2009, 2011; Iafrati, Babanin & Onorato 2013). Most of these
numerical studies (Chen et al. 1999; Song & Sirviente 2004; Iafrati 2009, 2011) use
arbitrarily steep Stokes waves to study breaking, without considering the processes that
lead to breaking, such as modulation instability, wave focusing or three-dimensional
instabilities. The use of steep Stokes waves as initial data permits detailed studies
of wave breaking processes such as dissipation, vorticity generation, air entrainment
and aspects of the post-breaking flow. The numerical investigation of capillary effects
has been limited to wave breaking at high steepness (Song & Sirviente 2004). The
influence of capillary effects on the wave breaking dynamics is discussed extensively
experimentally (e.g. the review of Duncan 2001) while the significance of surface
tension effects can be experimentally studied by adding surfactants that are able to
modify the breaking kinematic and dissipation effects (Liu & Duncan 2003, 2006).

Most recently Melville & Fedorov (2015) using the theory of Fedorov & Melville
(1998) have shown that the dissipative effects of parasitic capillaries on short,
O(1–10) cm, gravity–capillary waves may be enough to balance the wind input and
also be consistent with the inertial scaling of the breaking parameter, b, presented
first for plunging waves by Drazen et al. (2008), and extended by Romero, Melville
& Kleiss (2012) to encompass the full range of breaking strengths, including spilling
breakers (Pizzo & Melville 2013).

In this paper, we present two-dimensional direct numerical simulations (DNS) of
the Navier–Stokes equations in the two phases, air and water. The wave dynamics
is described as a function of the initial wave steepness and the Bond number
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(the ratio between gravity and surface tension forces). Various small-scale wave
patterns are observed: non-breaking gravity waves, parasitic capillary ripples on
gravity waves, spilling breakers and plunging breakers. We investigate the influence
of surface tension and the initial steepness on the various wave regimes. All of
these regimes are obtained by changing the initial steepness of the wave and the
Bond number while the Reynolds number, the density ratio and the viscosity ratio
are kept constant. A wave-state diagram is presented and the asymptotic critical
steepness at high Bond number is compared with theoretical and experimental results.
At low Bond number, the influence of surface tension is quantified through two
boundaries separating first gravity–capillary waves and breakers, and second spilling
and plunging breakers. Both boundaries are found to scale as ε∼ (1+Bo)−1/3, which
can be explained by balancing the vorticity generated by gravity–capillary waves
(Longuet-Higgins 1992) and the pressure due to surface tension effects. Finally, a
description of the wave dissipation for the various wave states is presented and
capillary effects on wave dissipation are discussed. The dissipation rate during the
breaking stages is estimated and the breaking parameter b defined by Duncan (1981)
and Phillips (1985) is compared with experimental results (Drazen et al. 2008;
Romero et al. 2012; Grare et al. 2013). Very good agreement between the numerical
results presented here and the available experimental data is found for plunging
and spilling breakers and the dissipation due to parasitic capillaries is found to be
comparable with the dissipation by breaking waves.

This paper is organized as follows. First we present the configuration of the
numerical experiment in § 2: the flow solver Gerris is briefly introduced, the physical
parameters of gravity–capillary waves are described and the classical potential theory
of water waves which is used to define the initial conditions is reviewed. In § 3 we
first describe the various wave regimes obtained for different values of the Bond
number and the initial wave steepness. Then the parametric study is presented and
the wave state is systematically investigated as a function of the initial steepness
and Bond number. The wave state diagram is then presented and discussed. Finally
in § 4 the energy dissipation for the various wave states is discussed. Comparisons
between the wave regime diagram and existing experiments are discussed in § 5 and
conclusions are presented in § 6.

2. Configuration of the numerical experiment
2.1. Gerris flow solver

The open-source flow solver Gerris described in Popinet (2003, 2009) is used is
this study. Gerris is based on a quad/octree adaptive spatial discretization, multilevel
Poisson solver. The full Navier–Stokes equations in a two-phase flow are solved in
two dimensions, including surface tension. The interface between the high-density
liquid (water) and the low-density gas (air) is reconstructed by a volume of fluid
(VOF) method. The multifluid interface is traced by a function T (x, t), defined
as the volume fraction of a given fluid in each cell of the computational mesh.
The density and viscosity can thus be written as ρ(T ) = T ρw + (1 − T )ρa,
µ(T ) = T µw + (1 − T )µa, with ρw, ρa and µw, µa the density and viscosity
of the two fluids (water and air), respectively. A detailed description of the numerical
methods can be found in Popinet (2003, 2009). This solver has been used recently to
study complex phenomena involving multiphase flow, such as atomization processes
(Fuster et al. 2009; Agbaglah et al. 2011). It has been validated extensively,
in particular through comparisons with wave-like solutions for capillary waves
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(Popinet 2009) as well as shear-layer instabilities (Bague et al. 2010; Fuster et al.
2013). The incompressible, variable density, Navier–Stokes equations with surface
tension can be written

ρ(∂tu+ (u · ∇)u)=−∇p+∇ · (2µD)+ γ κδSn
∂tρ +∇ · (ρu)= 0
∇ · u= 0

 (2.1)

with u = (u, v, w) the fluid velocity, ρ ≡ ρ(x, t) the fluid density, µ ≡ µ(x, t) the
dynamic viscosity and D the deformation tensor defined as Dij ≡ (∂iuj + ∂jui)/2. The
Dirac delta, δS, expresses the fact that the surface tension term is concentrated on the
interface, where γ is the surface tension coefficient, κ and n the curvature and normal
to the interface. Surface tension effects in (2.1) are represented explicitly using the
method described in Popinet (2009). The computations are performed with a uniform
surface tension.

Current problems about computational time in fluid flow modelling are linked
to the wide range of spatial scales often encountered. Consequently, adaptive mesh
refinement, where the spatial discretization is adjusted to follow the scale and temporal
evolution of flow structures presents evident benefits. The spatial discretization uses
a quad (2D) or octree (3D) scheme. Each cell may be the parent of either four (2D)
or eight (3D) children. The root cell is the base of the tree and a leaf cell is a cell
without child. The level of a cell is defined by starting from zero for the root cell
and by adding one every time a group of four descendant children is added. We
will call the maximum grid level LMAX . It gives the finest refinement used in the
simulation. In surface wave simulations we need to have a high resolution of the
interface and the boundary layer where energy will be dissipated. Thus, the chosen
refinement criteria focus on the flow vorticity and the interface between the liquid
and the gas phases. Further away from the interface, the resolution decreases since
the quasi-irrotational motion can be appropriately described with a coarser mesh. The
parameter LMAX allows comparison of our results to simulations with a fixed grid.
For example, our LMAX = 9 (29 = 512) is equivalent to the 512 × 512 grid used in
previous studies for DNS of breaking waves (Song & Sirviente 2004; Iafrati 2011).
We have checked that no significant changes are observed when the maximum grid
level is increased to LMAX = 10, thus all results presented here on the wave energy
evolution and the interface dynamics have converged regarding the grid resolution.

2.2. Physical parameters of gravity–capillary waves
Two-dimensional simulations of surface waves are computed, in a two-phase flow: the
liquid on the bottom and the gas on the top. Therefore, within the 2D constraint, we
capture naturally all of the physical phenomena taking place at the interface without
resorting to any simplification of the model. We are solving the complete Navier–
Stokes equations, including surface tension and viscosity (see (2.1)) to investigate the
capillary effects on breaking waves.

A wave is initialized and propagates in the x direction with periodic boundary
conditions. The top and bottom walls are free-slip. The wavelength of the initial
wave is the length of the box. The study is conducted in terms of dimensionless
parameters, with the wavelength and gravity set to unity, λ = 1, g = 1. The
parameters of the problem with a finite depth are then defined as follows. (i) The
air–water density ratio α = ρa/ρw = 1/850. (ii) The air–water dynamic viscosity ratio

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

10
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.103


Capillary effects on wave breaking 545

β = µa/µw = 17.4 × 10−6/8.9 × 10−4 = 1.96 × 10−2. (iii) The Reynolds number in
the water Re = cL/νw, with L = λ the length scale, c the linear gravity wave phase
speed c = √g/k, with k = 2π/λ the wavenumber. Consequently Re =√gλ3/ν and
we keep the Reynolds number constant in all of the simulations presented here,
with Re = 40 000. This choice is a compromise between our desire to work at high
Reynolds number in order to focus on the effects of the wave amplitude and surface
tension rather than that of viscosity, and the grid resolution necessary to capture the
viscous processes. (iv) The depth ratio h/λ= 1/2 with h the depth of the water and L
the horizontal box size. The depth effects on the wave evolution are negligible, which
was checked with simulations for larger h. (v) The initial steepness ε = ak, with a
the initial amplitude of the wave and k the wavenumber. (vi) The Bond number
Bo = 1ρg/(γ k2), with 1ρ the density difference between the two fluids and γ the
surface tension.

As discussed by Chen et al. (1999), there are two dimensionless numbers which
are related to the length scale (i.e. the wavelength): the Reynolds number Re and
the Bond number Bo. Based on these two numbers and for a given liquid, one then
obtains two different length scales, say lRe and lBo, respectively. Thus, our working
hypothesis is that the wavelength is given by lBo and the processes we are studying are
asymptotically independent of the Reynolds number, a commonly proven assumption
in wave and turbulence dynamics. The Reynolds number is set to 40 000 which allows
us to solve the viscous scales properly with the mesh size we use. We have to keep
in mind that when the Reynolds number becomes too large, one expects the boundary
layers to be smaller than the mesh size and a loss of accuracy in the simulations.

The results are presented in non-dimensional units. The evolution in time is
normalized by the period of the principal wave T = 1/f = 2π/

√
gk, given by the

linear dispersion relation of the main gravity wave. The two-dimensional vorticity
field Γ = ∂v/∂x− ∂u/∂y is normalized by Γ0=√gλ/λ (u= (u, v) denotes the velocity
field).

We will now describe the initial conditions of the wave simulations.

2.3. Initialization with a third-order Stokes solution
The simulation is initialized with a modified potential solution for gravity waves,
a third-order Stokes wave. Note that this solution does not include surface tension
effects. Considering a free surface over a liquid of depth h, x the horizontal direction
and y the vertical direction, the initial fluid flow is assumed to be irrotational. Hence,
we have (Lamb 1932)

∂2φ

∂x2
+ ∂

2φ

∂y2
= 0, −h< y<η

∂φ

∂y
= 0 as y=−h

∂φ

∂t
+ gη+ 1

2

((
∂φ

∂x

)2

+
(
∂φ

∂y

)2
)
= 1

2
c2

∂η

∂t
+ ∂φ
∂x
∂η

∂x
+ ∂φ
∂y
= 0


(2.2)

where φ(x, y, t) is the velocity potential, y= η(x, y, t) is the free surface, c the phase
speed of the unperturbed wave of wavelength λ and g the acceleration of gravity.
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These equations admit, in the frame of reference moving with the wave, a steady
solution of the form of a sum over all Fourier components (McLean 1982). Equation
(2.2) can be solved numerically (Fenton 1988), and the complete Stokes wave can
be used in potential simulations (Furhman et al. 2004; Fructus et al. 2005; Tsai &
Hung 2007). Following previous work on breaking waves (Chen et al. 1999; Song
& Sirviente 2004; Iafrati 2011), we use the third-order solution of (2.2) that can be
solved explicitly through a perturbation approach (Lamb 1932). At the third order in
ε, with a fixed bottom −h, the interface elevation is given by Lamb (1932):

η = a0 cos(kx)+ εa0

4
χ(3χ 2 − 1) cos(2kx)

+ ε2a0

(
−3

8
(χ 4 − 3χ 2 + 3) cos(kx)+ 3

64
(8χ 6 + (χ 2 − 1)2) cos(3kx)

)
(2.3)

where χ = 1/ tanh(kh). The velocity potential is given by

φ = a0g
ω

cosh(k(y+ h))
cosh(kh)

sin(kx)

+ ε3a0g
ω

(χ 2 − 1)2

8χ
cosh(2k(y+ h))

cosh(2kh)
sin(2kx)

+ ε2 a0g
64ω

(χ 2 − 1)(χ 2 + 3)(9χ 2 − 13)
cosh(3k(y+ h))

cosh(3kh)
sin(3kx) (2.4)

where ω=√gk tanh(kh)(1+ ε2((9/8)(χ 2 − 1)2 + χ 2)) is the dispersion relation at the
third order, and ε=a0k the steepness of the linear wave and the small parameter of the
nonlinear expansion. Previous studies have discussed the use of third-order solutions
as initial conditions being relevant for the simulation of breaking waves (Chen et al.
1999; Iafrati 2011).

The velocity potential in the liquid is obtained assuming a free surface, i.e. the
variation in the gas pressure is negligible. In our two-phase simulations the gas phase
also has to be initialized. Fixing the initial velocity in the air to zero creates too
much shear and the interface becomes unstable due to Kelvin–Helmoltz instabilities.
To obtain a smoother, more physical initial condition, we follow Yang & Tryggvason
(1998) and add a vortex sheet compatible with the potential solution described above.

A thin vorticity field Ω at the interface is initialized and the Poisson equation
∇2Ψ = Ω , with Ψ the stream function, is solved to obtain the initial velocity field
in both phases. The initial vortex sheet is of the form Ω = ΓIδS, with δS a Dirac
distribution on the interface and ΓI the initial vorticity. Following Schwartz (1966),
the initial vorticity field, compatible with the velocity potential in the liquid given by
(2.4) and a steady state in the gas with no velocity can be expressed as

ΓI =−2
∂Ψ

∂y
δS(η(x)− y)= 2

∂φ

∂x
δS(η(x)− y). (2.5)

The Dirac distribution of the previous equation has to be modelled with a finite
boundary layer. Considering the steady Navier–Stokes equations with viscosity and
the condition of incompressibility, and assuming the boundary layer thickness δ to
be much smaller than the wavelength λ, we get (Batchelor 1967) δ ≈ λ/√Re. So
an asymmetric Gaussian distribution is used to describe the Dirac distribution with
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a thickness given by the boundary layer δ: in the water δw = √2νl/ck and in the
air δa = √2νg/ck. Thus, the boundary-layer thickness in the air is

√
νw/νa ≈ 4

times larger than that in the water. Note that this hypothesis is in agreement with
Lamb (1932) which shows that for wave oscillations under the influence of viscosity,
vorticity remains in a thin layer δ =√2ν/ck and this thickness was previously used
to study gravity–capillary waves and develop a boundary-layer theory where boundary
conditions outside the layer are given by the potential theory (Longuet-Higgins 1992;
Fedorov & Melville 1998). Finally the Dirac distribution is approximated by

δS(y− η)≈D(y− η)
= 2√

2πδ2
a +
√

2πδ2
w

(
T exp−(y− η(x))

2

2δw
+ (1−T ) exp−(y− η(x))

2

2δa

)
(2.6)

where T is equal to 1 in the liquid and 0 in the gas. Here D(y− η) is numerically
evaluated with the finest grid resolution, both in x and y directions, i.e. dx= dy=λ/29.

This initialization allows the simulation of surface waves with various Bond
numbers, Reynolds numbers and slopes. Note again that surface tension is not taken
into account in the initial conditions and will act once the wave starts to propagate.

3. Gravity–capillary waves: parametric study as a function of the Bond number
and initial steepness

3.1. Wave patterns
We will now describe the waves obtained for different Bond numbers Bo and initial
steepnesses ε, at Re = 40 000. This permits us to investigate the effects of surface
tension while the viscosity remains constant.

3.1.1. Non-breaking gravity wave
Figure 1 shows two examples of gravity waves with negligible surface tension

(Bo= 1000) and initial steepness, ε= 0.2 and ε= 0.25. The black line corresponds to
the interface between the liquid (bottom) and the gas (top). The color scale represents
the two-dimensional normalized vorticity field Γ ∗ = Γ/Γ0. In both cases, the wave
propagates with a decreasing amplitude due to viscous damping, with the wave profile
becoming steeper during the propagation. The wave becomes more asymmetric when
the initial steepness is higher and a stronger vorticity field is also observed both in
the air and water. Both effects are the signatures of nonlinearity and can be seen as
the beginning of the process that will eventually lead to wave breaking for higher
steepnesses. The vorticity field in the water remains located in the thin boundary
layer. Moreover, a steeper wave propagates faster due to nonlinear effects (Lamb
1932). However, for these relatively low initial steepnesses, the wave remains stable
(non-breaking) and propagates smoothly without dramatic changes of the wave shape.
The vorticity remains localized at the interface, within a thin boundary layer and
deeper into the liquid the fluid motion remains irrotational. Dissipation processes are
consequently localized near the interface as expected for waves of small amplitude
(Lamb 1932). These waves are obtained for small slopes and high Bond numbers.

3.1.2. Plunging breaker
Figure 2 shows a typical plunging wave, obtained for ε = 0.55 and with almost no

surface tension, Bo= 1000. The formation and the evolution of the plunging breaker
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(a) (b)

(c) (d )

_18 _14 _10 _6 _2 2 6 10 14 18 _4.5 _3.5 _2.5 _1.5 _0.5 0.5 1.5 2.5 3.5 4.5

FIGURE 1. Non-breaking gravity waves propagating to the right and the vorticity field
Γ ∗ =Γ/Γ0 at t/T = 1, for two different steepness: 0.2 (a,b) and 0.25 (c,d). The vorticity
field is displayed both in the air and water (a,c) and only in the water (b,d) with a
different colour scale. Here Re= 4× 104, Bo= 1000. We can see that the wave is more
asymmetric for ε = 0.25, due to stronger nonlinear effects.

is similar to the description of plunging breakers observed in laboratory experiments,
e.g. Rapp & Melville (1990): the wave becomes steeper, the interface becomes vertical
and a jet forms at the crest. Then under the influence of gravity the jet splashes
down into the surface causing air entrainment and vortical motion beneath the surface.
Liquid droplets and gas bubbles are formed when the overturning wave hits the liquid.
Plunging breakers generate significant air entrainment when the jet reconnects to the
liquid surface. During the breaking process the positive (anticlockwise) vorticity
remains located at the crest (the tip of the jet), and is stronger than the negative
vorticity in the trough. We can also observe separation of the vorticity layer in the
air behind the crest. There is a dramatic change in vorticity after the jet reentry to
the water since vorticity is created during the overturning. The vorticity of largest
magnitude is observed during the splash-up phenomenon. Vorticity is created by
viscous shear torque (Chen et al. 1999) and by the generation of vorticity close to
high-curvature regions of the interface (Batchelor 1967; Longuet-Higgins 1992). The
topological changes of the flow, such as the jet plunging and reconnection are also
responsible for vorticity generation (Hornung, Willert & Turner 1995). The splashing
process and air entrainment generated bubbles and droplets with associated vortical
structure, also related to topological changes (Zhang, Duncan & Chahine 1993; Iafrati
2009).

DNS of plunging breakers have been previously performed for high initial steepness
(Chen et al. 1999; Song & Sirviente 2004; Iafrati 2009, 2011) and show similar
dynamics to that described here. When surface tension is increased (i.e. Bo decreases),
plunging waves are still observed for moderate Bond numbers (not shown) but the
jet becomes smoother, leading to a significant reduction of the jet velocity and
air entrapment. For these Bond numbers, the surface tension tends to inhibit the
wave overturning but this effect is not sufficient to prevent wave breaking. Surface
tension effects on plunging waves have been investigated numerically by Song &
Sirviente (2004) for high steepness (ε > 0.5) and show similar behaviour. Thus,
plunging breakers are observed for high initial steepnesses and moderate to high
Bond numbers.

3.1.3. Parasitic capillary waves
Figure 3 shows the evolution of a wave with strong surface tension effects, Bo= 25,

and an initial steepness, ε = 0.3. The wave behaviour is quite different from the pure
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

(i) ( j)

(k) (l)

(m) (n)

_36 _28 _20 _12 _4 4 12 20 28 36 _9 _7 _5 _3 _1 1 3 5 7 9

FIGURE 2. Evolution of a breaking wave and the vorticity field Γ ∗, displayed both in
the air and water (a,c,e,g,i,k,m) and only in the water (b,d,f,h,j,l,n) with a different colour
scale. Initial parameters: Re= 4× 104, Bo= 1000, ε= 0.55. The wave is moving from left
to right. The wave becomes asymmetric (a,b), leading to a jet (c–f ), which overturns (e–h)
and reconnects (g,h) to finally splash up (i,n), where bubbles and spray are generated as
well as large vortical structures both in the air and water.

gravity wave case described above. Starting with a profile corresponding to a pure
gravity wave, parasitic capillaries develop on the forward face of the wave, positive
vorticity is located on the main wave crest as well as on the capillary crests while
negative vorticity is at the corresponding troughs (both in the air and in the water).
Negative vorticity in the trough is higher than positive vorticity on the crest. This
mirrors the characteristic asymmetry in curvature of capillary waves (troughs are more
curved than crests). We can see the progressive formation of the capillary ripples. The
first one appears between t/T = 0.64 and t/T = 0.76, vorticity both in the water and
in the air being focused on the front of the wave. Then we observe the formation of
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

(i) ( j)
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FIGURE 3. Parasitic capillary waves on a gravity wave and the vorticity field Γ ∗,
displayed both in the air and water (a,c,e,g,i,k) and only in the water (b,d,f,h,j,l) with
a different colour scale. Initial parameters: Re = 4 × 104, Bo = 25, ε = 0.3. Parasitic
capillaries are generated on the front of the carrier gravity wave when the wave becomes
steep enough (a–d). A train of parasitic capillaries is then formed (c–h) and propagates
with the main wave. The amplitude of the carrier decays through viscous effects (i–l).
Positive vorticity is located in the crest of the capillaries and negative vorticity in the
trough.

a train of ripples, with high positive vorticity on the crest and negative vorticity in the
through. The capillary train remains stationary in the frame of the main wave and is
then simply damped by viscosity. We observe that vorticity remains localized in thin
boundary layers in both the air and the water.

These gravity–capillary waves are nonlinear surface waves for which both gravity
and surface tension are important, where two typical length scales can be defined,
the longer scale corresponds to the main wavelength (λ) and the shorter scale to the
capillary ripples we observe in the front of the wave (λc = 2π

√
γ /(g1ρ)). Parasitic

capillary waves on steep gravity waves have been described theoretically (Longuet-
Higgins 1963; Fedorov & Melville 1998): assuming an underlying pure Stokes wave,
high curvature and surface tension effects are localized at the crest of the gravity wave
and act as a forcing term. Parasitic capillaries appear initially as a linear response
to the local forcing on the Stokes wave and finally are damped by viscosity. In this
description, vorticity remains located in a thin boundary layer and parasitic capillaries
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are responsible for significant dissipation enhancement (Mui & Dommermuth 1995;
Fedorov & Melville 1998; Melville & Fedorov 2015).

These waves are observed for initial steepnesses below a breaking threshold and for
small Bond number (Bo . 70). Note also that the steepness must be high enough to
observe the formation of parasitic capillaries and that the intensity of the vorticity field
under the capillaries is related to the wave steepness (Longuet-Higgins 1992). The
present behaviour is in agreement with the theoretical description given by Longuet-
Higgins (1963) and Fedorov & Melville (1998).

3.1.4. Spilling breakers
Spilling breakers are usually defined as breaking waves without an overturning

entrainment of air. The overturning entrainment is avoided either because the slope
of the wave is too low, resulting in a gentle spilling wave (Rapp & Melville 1990),
or due to stabilization by surface tension effects (Duncan et al. 1999; Duncan 2001).
These waves have been observed and described in laboratory experiments (Rapp &
Melville 1990; Lin & Rockwell 1995; Duncan et al. 1999; Qiao & Duncan 2001;
Liu & Duncan 2003, 2006) and numerically by Iafrati & Campana (2005). This
regime is also obtained in our simulations as illustrated in figure 4, for a relative
high initial steepness and low Bond number (Bo= 25, ε = 0.45). The spilling breaker
dynamics can be described as follows: due to surface tension effects, the free surface
does not overturn and the beginning of the breaking process is marked by the
formation of a bulge in the profile at the crest on the forward face of the wave
(figure 4a–d). The leading edge is sometimes called the ‘toe of the wave’, and as
the breaking process continues, the bulge becomes more pronounced while the toe
remains in nearly a fixed position relative to the crest (figure 4c–f ). Concurrent with
the growth of the bulge, capillary waves appear and grow in amplitude upstream
of the toe (figure 4e–j). After a short time, the toe begins a rapid motion down
the wave face and during this motion a train of large amplitude well organized
ripples is formed between the toe and the crest. These ripples grow rapidly and then
break down into a random pattern indicating that the underlying flow has become
turbulent (figure 4k–n). The wave evolution from (a) to (b) and (c) may support
the theoretical considerations from Longuet-Higgins (1994) and Longuet-Higgins &
Cleaver (1994) that the bulge formation is due to both the negative curvature at the
crest and the positive curvature at the toe. Both in the air and water, the vorticity
field is positive on the crest and negative in the trough. The negative vorticity field
in the water appears much stronger, and the initial boundary layer becomes thicker
together with an increase of the magnitude of the vorticity, which induces a flow
separation from the main wave. The turbulent structures then break up and give birth
to counter-rotating vortices. Banner & Melville (1976) considered separation of the
airflow over a quasi-steady spilling breaker but in that case the flow in the water
must separate also. In the quasi-steady case, in the frame of reference of the wave,
breaking requires a stagnation point at the surface. If the wave is moving to the
right, then in the reference frame of the wave the flow at the surface in the water
is to the left coming to zero at the stagnation point. From the no-slip condition at
the interface the flow in the air at the surface is the same. Therefore, both the air
and the water flows separate at the stagnation point. Note that to leading order the
vorticity follows the flow, so separation should also show vorticity being advected,
rather than diffused, away from the surface in both fluids. In fact, another definition
of separation is the advection of vorticity away from the boundary.
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(a) (b)
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(e) ( f )

(g) (h)
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FIGURE 4. Evolution of a spilling breaker and its vorticity field Γ ∗ at different times,
displayed both in the air and water (a,c,e,g,i,k,m,o) and only in the water (b,d,f,h,j,l,n,p)
with a different colour scale. Initial conditions Re= 4× 104, Bo= 25, ε= 0.45. The wave
becomes steeper and begins to break (a–d) but the overturning motion is avoided due to
capillary effects and capillaries propagate on the front of the toe (c–i). A separation of
the boundary layers in water is observed, without air entrainment but with the formation
of vortex dipoles in the water after breaking (m–p).

Another example of a spilling breaker, for higher Bond number, is shown in
figure 5 (Bo = 70, ε = 0.45). The previous description of a spilling breaker is still
valid but the wave is closer to overturning and thus more mixing and aeration is
observed. In this case more bubbles are created and the vorticity field in the fluid
underneath is more turbulent, and interface reconnection is also observed, these
topological changes increasing the vorticity generation. Several vortex dipoles are
also generated in the water and start to move deeper. Thus, it appears that for this
intermediate steepness, a small change in the surface tension can cause qualitative
changes in the wave dynamics. These types of wave structure changes have been
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)
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(o) ( p)
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FIGURE 5. Evolution of a spilling–overturning breaker and its vorticity field Γ ∗ at
different times, displayed both in the air and water (a,c,e,g,i,k,m,o) and only in the water
(b,d,f,h,j,l,n,p) with a different colour scale. Initial conditions: Re = 4 × 104, Bo = 70,
ε= 0.45. The wave begins to break (a–d) similar to figure 4 but with the interface almost
overturning (c,d) and formation of bubbles after the breaking stage (i,j). The turbulent
breakdown appears stronger and several vortices are generated in the water (k,l).

explored experimentally by adding surfactants to water (Liu & Duncan 2003, 2006).
Air entrainment by breaking waves has been investigated experimentally (Lamarre &
Melville 1991, 1994; Loewen, O’Dor & Skafel 1996; Blenkinsopp & Chaplin 2007;
Rojas & Loewen 2010) but detailed comparisons require the extension of the present
simulation to three dimensions.

3.2. Wave regime diagram
The different wave regimes observed and described previously are summarized in the
state diagram in figure 7. We first present the criteria chosen to distinguish each of
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(a) (b)

FIGURE 6. Topological wave state criteria: (a) breaking criterion with the interface
presenting a vertical segment (−90◦ angle); (b) overturning wave with the interface
presenting both vertical and horizontal segments (−180◦ angle).

them and then discuss the diagram. The different wave regimes are (i) non-breaking
gravity waves (phase NB), (ii) parasitic capillary waves on gravity wave (phase PCW),
(iii) plunging breakers (phase PB), (iv) spilling breakers (phase SB).

Using the criteria defined below, numerical simulations can be used to automatically
estimate the critical values of the steepness and Bond numbers for which transitions
occur. To do this efficiently, we used an automatic iteration in the (ε,Bo) phase space.
Simulations are repeated on either side of the transition boundary until convergence.
The symbols in figure 7 are the results of this iterative process. Each symbol on
the diagram thus represents the result of typically 5–10 simulations. This systematic
phase-space exploration was greatly facilitated by the overall speed of the adaptive
grid method.

3.2.1. Wave regime criteria
Breaking criteria. Vertical interface. Wave breaking criteria have been the subject

of strong debates over the years and we choose to characterize the onset of wave
breaking by the appearance of a local vertical interface (Peregrine et al. 1993; Perlin
et al. 2013). A wave is classified as breaking when it exhibits a vertical interface, as
shown on the sketch figure 6(a). The boundary between non-breaking and breaking
waves using this criterion is indicated by (p) on figure 7 and will be called the
breaking boundary in the following. The breaking boundary exhibits two transitions:
at high Bond number (Bo�100), a critical steepness εc=0.32 determines whether the
two-dimensional wave will break, while at low Bond number, the breaking boundary
depends on the Bond number. The wave breaking boundary can be described at high
steepness and low Bond number by the following relation: εB = KB(1 + Bo)−1/3, for
which we present a physical interpretation in § 3.3. Here KB= 1.12 is a dimensionless
constant fitted to the data. The constant KB can be interpreted as a critical Bond
number BoB =K3

B = 1.4, below which no breaking wave can exist.
Overturning wave. Horizontal interface. Plunging and spilling waves (figures 2

and 4) display different interface profiles at and after breaking. Spilling and plunging
breakers both exhibit a vertical interface but a plunging wave also exhibits a horizontal
interface, as shown in figure 6, and described by Duncan (2001). We choose the
presence of an horizontal interface to distinguish plunging and spilling breakers. The
plunging breaker in figure 2 satisfies both the breaking (vertical interface) and the
overturning wave (horizontal interface) criteria, since a horizontal interface is seen
once the jet is formed. On the other hand, the spilling breaker in figure 4 only
satisfies the breaking (vertical interface) criterion, since the jet formation is prevented
by surface tension effects.

The boundary between spilling and plunging breakers is shown in figure 7 bys. At
high Bond numbers, the same critical steepness εc as before is obtained and there is no
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FIGURE 7. (Colour online) Wave regime diagram (Bo, ε). Symbols indicate the boundaries
between the wave regimes obtained numerically (see the text).p: wave breaking boundary,
presence of a vertical interface.s: spilling-plunging boundary, presence of an horizontal
interface. Zone (PB): plunging breakers (as in figure 2); (SB): spilling breakers (as in
figure 4); (PCW): parasitic capillary waves (as in figure 3); (NB): non-breaking gravity
waves (as in figure 1). Horizontal solid line (black) indicates the critical steepness εc =
0.32. Black dashed line indicates the boundary between breaking and non-breaking waves:
εB = KB(1 + Bo)−1/3, with KB = 1.12 a fitted parameter. Solid grey line (red online)
indicates the overturning boundary (between spilling and plunging breakers): εSP=KSP(1+
Bo)−1/3, with KSP=1.75 a fitted parameter. Dot-dashed line: Boc=67, the observed critical
Bond number for the appearance of parasitic capillaries.

difference between the breaking boundary and the overturning boundary. At low Bond
number and high steepness, the overturning boundary can be described by a similar
function as the breaking boundary, εSP=KSP(1+ Bo)−1/3, having the same power law
but with a different constant, KSP= 1.75. Again, the constant KSP can be interpreted as
a critical Bond number BoSP =K3

SP = 4.8 below which no plunging breaker can exist.

3.2.2. Existence of a critical steepness at high Bond number εc

At high Bond numbers (Bo � 100) the breaking boundary corresponds to the
existence of a critical steepness, here εc = 0.32. For ε < εc the wave does not break
(phase S in figure 7), while for ε > εc the wave breaks. This critical steepness defines
the breaking of a gravity wave and we remark that the breaking and the overturning
boundary exhibit the same critical steepness at high Bond number. Thus, the spilling
breaker regime at high Bond number (low surface tension) can be seen as a transition
regime between non-breaking and breaking waves. Note that the existence of a critical
steepness for wave breaking is a meaningful physical result, but the particular value
of the critical steepness in idealized numerical simulations strongly depends on the
initial conditions.

The finding of an accurate critical steepness for wave breaking remains an open
challenge theoretically and has been the scope of many experimental studies (e.g.
Perlin et al. 2013). When breaking is triggered by modulational instabilities, plunging
waves can be observed for initial slopes ε ≈ 0.11 (Melville 1982; Tulin & Waseda
1999; Song & Banner 2002; Banner & Peirson 2007; Iafrati et al. 2013). In focusing
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experiments a critical slope of the same order is described when considering the
dissipation by breaking, and ε≈ 0.08 (Drazen et al. 2008; Romero et al. 2012). Note
also, that when only considering the shape of the interface as a breaking criterion,
higher values of the slope can be considered and ε≈ 0.25 (Rapp & Melville 1990). In
these focusing cases, the slope is often evaluated by the sum of all linear components
of the initial wavepacket. Thus, the particular value of εc depends on the initial
conditions, on the physical processes that lead to breaking and on the breaking
criterion. Note also that in focusing experiments, a dependency on the bandwidth of
the wave packet is evident (Rapp & Melville 1990; Banner & Peirson 2007; Drazen
et al. 2008).

3.2.3. Parasitic capillaries and spilling breakers at low Bond number, critical
steepness breaking curve εB(Bo)

Let us now discuss the breaking wave regimes. At high Bond number and high
steepness plunging waves are observed above the critical steepness. Plunging waves
are also observed at higher surface tension with a smoother jet. Increasing the
surface tension eventually leads to the inhibition of the jet formation and while
spilling breakers are observed at high steepness (as in figure 4), parasitic capillaries
are observed at relatively low steepness as in figure 3. While spilling breakers satisfy
the breaking criterion, parasitic capillaries are not considered breaking waves.

At high steepness and low Bond number, the breaking boundary is described by
a steepness depending on the Bond number, εB = KB(1 + Bo)−1/3, the corresponding
function being shown on the state diagram of figure 7.

Thus, the breaking wave boundary permits us to define the parameter space where
parasitic capillaries are present. For Bo> Boc = 67, a critical steepness alone defines
the transition from non-breaking to breaking waves. For Bo < Boc, surface tension
stabilizes the wave and a higher initial steepness is needed to observe wave breaking,
the breaking to non-breaking wave boundary is described by the εB(Bo) curve. This
critical Bond number Boc describes the appearance of parasitic capillary waves: for
Bo < Boc and ε < εB, we observe the appearance of parasitic capillary waves (as in
figure 3), where capillaries can be treated as a perturbation of the main gravity wave
(Longuet-Higgins 1963; Fedorov & Melville 1998). Note that according to the Bond
number, the corresponding wavelength in the air–water case is λc= 2π

√
γBoc/(ρg)≈

14 cm, which is consistent with the experimental scale where parasitic capillaries are
observed for λ∼O(10 cm) or less (Longuet-Higgins 1963; Fedorov & Melville 1998).

3.2.4. Spilling and plunging breakers, critical steepness curve at low Bond number
εSP(Bo)

As already noted, at high Bond number the spilling–plunging boundary is described
by εc. At low Bond numbers the spilling–plunging boundary is described by the curve
εB =KSP(1+ Bo)−1/3. Above the stability boundary and below the plunging boundary,
i.e. εB < ε < εSP, spilling breakers (as in figure 4) are observed (zone BS). The wave
still breaks but no overturning is observed. This dynamics is similar to gentle (weak)
spilling breakers, observed experimentally (Rapp & Melville 1990; Duncan 2001).

The fact that for Bond number around 100, the boundary between plunging
breakers and spilling breakers is a smooth transition corresponds to the existence
of spilling breakers as shown in figure 5, where significant bubble formation and
air entrainment appear and, thus, horizontal interfaces may exist. These highly
aerated spilling breakers satisfy both the breaking and the overturning criteria, but
without jet formation. Note finally that at high steepness (ε > 0.6) and high surface
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tension, we observe highly nonlinear waves similar to pure nonlinear capillary waves,
with interface reconnection and air entrapment (not shown). These features appear
comparable with limiting Crapper waves (Crapper 1957).

3.3. A scaling for capillary effects on wave breaking
We have shown that the separation between breaking and non-breaking waves when
surface tension effects are important scales as εB∼ (1+ Bo)−1/3. It is very interesting
to note that this scaling is also valid for separating the spilling and plunging breakers
in the (ε, Bo) space. We discuss here a possible explanation for this boundary, using
the balance between the generation of vorticity by gravity–capillary waves, given by
Longuet-Higgins (1992) and the Laplace pressure due to the capillary effects p= γ κ ,
with κ the wave curvature.

We want to connect the vorticity generated by the wave to the pressure. Following
Douady, Couder & Brachet (1991) and taking the divergence of the Navier–Stokes
equations in the water (2.1):

Γ 2 − D2
ij =
∇2p
ρw

, (3.1)

with Γ the vorticity and Dij the deformation tensor, linked to the dissipation. Thus, the
vorticity concentrations will act as source of pressure. At high Reynolds number we
have D2

ij�Γ 2, which was checked by the DNS results to be valid in our simulations.
Thus, one obtains the following relation between vorticity and pressure:

Γ 2 ∝ ∇
2p
ρw

. (3.2)

We consider the pressure due to capillary effects,

∇2p∝ γ k4a, (3.3)

with a the wave amplitude. The vorticity is given by Longuet-Higgins (1992) for a
nonlinear gravity–capillary wave:

Γ =−2(ak)2ω, (3.4)

with ω=√gk+ γ /ρk3 the dispersion relation. Thus, we obtain

(ak)4gk
(

1+ γ k2

gρw

)
∝ γ k4a

ρw
, (3.5)

and since the Bond number is given by Bo = ρwg/(γ k2), we finally obtain the
following scaling:

(ak)∝ (1+ Bo)−1/3, (3.6)

which corresponds to the boundary between breaking and non-breaking waves when
surface tension effects are strong. Thus, this simple scaling argument appears to
describe the transition from a non-breaking gravity–capillary wave to breakers with
strong surface tension and the same scaling holds for describing the transition from
spilling breakers to plunging breakers.
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4. Energy dissipation
4.1. Evolution of the various energy components

We will now discuss the capillary effects on wave dissipation for the various wave
patterns described previously. We calculate the various energy components of the
propagating wave, the kinetic energy

Ek = 1
2

∫
ρu2dxdy, (4.1)

the gravitational potential energy

Eg =
∫
ρgydxdy+ 1/8, (4.2)

the surface tension potential energy

Es = γ

ρwgλ2
(L − 1), (4.3)

where L is the arclength of the interface, and the total energy

E= Ek + Eg + Es. (4.4)

The constant 1/8 in the gravitational potential energy equation is introduced to
define a zero potential energy for an unperturbed surface.

Figure 8 shows the different wave energy components for various parameters ε and
Bo. In all cases, the total wave energy decreases in time due to dissipative processes.

First, we focus on the low surface tension case (Bo = 1000). When the steepness
is below the breaking threshold (ε < 0.32), E decreases exponentially at a constant
decay rate, as shown by figure 8(a), and is close to the theoretical linear viscous
decay rate E/E0 = exp(−4νk2t). The kinetic and potential energies oscillate at half
the wave frequency but with opposite phase, showing exchanges between the kinetic
and potential energy components, and decay at similar rates. The surface tension
potential energy remains negligible throughout the propagation. This case corresponds
to a non-breaking gravity wave. For a higher steepness, when wave breaking occurs
(ε = 0.45, figure 8b), an abrupt decrease of the total energy is observed during
the breaking event (starting at t/T ≈ 1), and around 70 % of the wave energy is
dissipated in a few wave periods. During the breaking, the gravitational potential
energy is almost completely dissipated, and only kinetic energy remains after a
few wave periods. Surface tension potential energy remains small during the whole
process, even if an increase is observed during the breaking stage, due to high
surface curvature, and the generation of droplets and bubbles. The peak value of
surface tension energy represents ≈8 % of the total energy dissipated, which is
similar to the finding of Iafrati (2011). The abrupt decrease of energy during the
breaking process can be fitted by an exponential curve between t/T = 1 and t/T = 2:
E= E(t/T = 1) exp (−ζ t), where ζ is the decay rate during the breaking process and
E(t/T = 1) is the energy at t/T = 1. This case corresponds to a plunging breaker.

Chen et al. (1999) studied a plunging breaker at high Bond number and found a
decay rate E∼ e−2γ2(t−t1), where t1 is a breaking time and γ2 = 0.16, which using our
notation gives ζChen= 2γ2= 0.32. The value of ζ in our simulation for Bo= 1000 and
ε=0.45 is ζ =0.18, and for ε=0.55, ζ =0.22, so our values of decay rate are slightly
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FIGURE 8. (Colour online) Normalized wave energy components as functions of time t/T ,
the total energy E/E0 (@), kinetic energy Ek/E0 (∗), gravitational potential energy Eg/E0
(E) and surface tension potential energy Es/E0 (C), for various Bo and initial ak: (a) Bo=
1000 and ε = 0.3; (b) Bo = 1000 and ε = 0.45; (c) Bo = 50 and ε = 0.3; (d) Bo = 50
and ε = 0.45; (e) Bo= 10 and ε = 0.3; (f ) Bo= 10 and ε = 0.45. Here E0 is the initial
total energy. The (red online) dot-dashed line is the theoretical linear viscous dissipation
E/E0= exp (−4νk2t). The black dashed line is an exponential fit E=E(t/T = 1) exp (−ζ t)
to the energy decay in the time interval t/T ∈ [1:2].

smaller than that from Chen et al. (1999) for a plunging breaker. This is coherent with
the fact that Chen et al. (1999) reports a loss of 80 % of the initial wave energy for
a plunging breaker after four wave periods while we observe a loss of ≈65 %. For
a similar plunging wave, Iafrati (2011) reports a loss of around 60 % of the energy
after four wave periods. Note also that for Bo= 1000, the energy after breaking for
ε = 0.35 and ε = 0.45 is close to the initial energy of the steepest non-breaking wave

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

10
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.103


560 L. Deike, S. Popinet and W. K. Melville

(ε= 0.31), in qualitative agreement with the result discussed by Iafrati (2011) that the
energy of the residual wave after a spilling breaking process at high Bond number is
close to that of the steepest non-breaking wave.

We now consider the case where surface tension effects become important
(Bo < 100). Figure 8(c) shows the evolution of the energy components during wave
propagation at relatively low steepness (ε = 0.3) for Bo = 50. During the first wave
period, the total energy decays exponentially with the classical decay rate, while
at t/T ≈ 1, the decay of energy is enhanced, due to the appearance of parasitic
capillaries. An increase of the surface tension energy is observed at this moment. The
kinetic and potential energies oscillate with opposite phase at half the wave frequency,
as observed previously. For the same value of ε = 0.3, when the surface tension is
further increased (Bo = 10, see figure 8e), the previous observations hold but with
increased capillary effects. The surface tension energy during the appearance of the
capillaries is higher and the dissipation rate is increased. The peak value of surface
tension energy represents between 5 % and 10 % of the total dissipated energy of
the wave. These two cases correspond to gravity–capillary waves. For higher initial
steepness (ε = 0.45), a dramatic decrease of the energy is observed, corresponding
to a spilling breaker (see figure 8d,f ) and surface tension energy is up to 10 % of
the dissipated energy. Again, after the breaking, mostly kinetic energy remains in the
system, while potential energy has been dissipated. For non-breaking waves, more
energy is dissipated when the Bond number is lower, while for breaking waves, the
total energy dissipated depends less on the Bond number.

4.2. Influence of Bo and ε
Figure 9 shows the decay of the total energy, E/E0. Figure 9(a,b) show the influence
of the initial steepness at a given Bond number (Bo= 10 and Bo= 1000, respectively),
with ε increasing from top to bottom. In the high-Bond-number case (almost no
surface tension, Bo = 1000), energy dissipation is increased for steepness higher
than the breaking threshold (εc = 0.32). For ε < εc, at high Bond number, the wave
dissipation is close to the classical viscous dissipation. For ε > εc, a dramatic loss of
energy is observed between t/T = 1 and t/T = 2 corresponding to the breaking event.
The total energy dissipated after four wave periods increases with the initial steepness,
for ε = 0.35 around 40 % of the wave energy is lost while up to 70 % is lost for
ε = 0.55. In the case of strong surface tension effects (Bo = 10), only the lowest
steepness (ε = 0.15) presents a decay close to the classical viscous decay. When the
steepness is increased to ε = 0.25, energy dissipation is enhanced by the appearance
of parasitic capillaries. The total dissipation is then further increased when the initial
steepness is increased.

Breaking waves are thus characterized by a strong loss of energy during the
breaking stage and the influence of the steepness is similar for low and high values
of surface tension, the main difference being that in the presence of surface tension the
critical steepness for which dissipation is enhanced is smaller, due to the appearance
of parasitic capillaries.

Figure 9(c,d) show the decay of the total energy E/E0 and the influence of the
surface tension at a given initial steepness (ε = 0.3 and ε = 0.45, respectively).

At low steepness (ε < 0.3) and without surface tension effects (Bo = 1000), the
wave dissipation is close to the classical theoretical dissipation (see figure 9) of a
linear sinusoidal wave at small amplitude. When the Bond number decreases (surface
tension increases), an abrupt decrease of the energy is observed around t/T ≈ 1
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FIGURE 9. (Colour online) Normalized wave energy E/E0 as a function of time t/T . (a,b)
Effect of increasing steepness for (a) Bo = 10 and (b) Bo = 1000. From top to bottom
ε = 0.15, 0.25, 0.35, 0.45 and 0.55. (c,d) Effect of increasing surface tension at a given
steepness, (c) ε = 0.3 and (d) ε = 0.45. From bottom to top Bo = 2, 5, 10, 20 and 100.
Black dashed line is the theoretical linear viscous dissipation E/E0 = exp(−4νk2t).

(figure 9c, Bo = 10, 25, 50, 100), which corresponds to the time when capillaries
appear on the main gravity wave (see figure 3), while when surface tension is too
low to induce the appearance of capillaries, the energy decay remains smooth (two
top curves in figure 9c, Bo= 500, 1000).

The appearance of parasitic capillaries induces a global enhancement of the wave
energy dissipation. Moreover, the final state of gravity–capillary waves depends on the
intensity of the capillary effects: at t/T = 4, 60 % of the energy has been dissipated
for Bo= 10, while 30 % has been dissipated for Bo= 25, ≈20 % for Bo= 50, 10 % for
Bo= 100 and only less than 5 % can be attributed to the classical viscous dissipation.
Thus, at steepness below the breaking threshold, capillary effects strongly increase the
wave energy dissipation.

At higher steepnesses, ε = 0.45 (see figure 4d), wave breaking occurs and the total
amounts of dissipated energy are similar for the various Bond numbers. Thus, even
if the breaking process is qualitatively different (plunging or spilling wave), the total
amount of energy dissipated is similar at high wave steepness.

Surface wave dissipation is thus first determined by the stability of the wave, given
by the initial steepness. Breaking waves exhibit strong dissipation in agreement with
previous results, both experimental and numerical. However, at smaller steepnesses,
dissipation processes are strongly affected by the appearance of capillaries on the
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main propagating wave. Spilling breakers with high surface tension exhibit global
dissipation of the same order as plunging breakers, while gravity–capillary waves
show a global dissipation much higher than that due to linear viscous dissipation, in
agreement with Mui & Dommermuth (1995) and Fedorov & Melville (1998).

4.3. Estimation of the breaking parameter b
We observe a dramatic decay of the wave energy during breaking events and the
formation of parasitic capillaries, and showed that during these events, the decay
has an exponential form E ∼ exp[−ζ (ε, Bo)t]. We will now compare the decay
rate obtained in the present simulations to experimental and theoretical results. The
variation of the Bond number corresponds for air–water surface waves to various
wavelengths, however, we have to keep in mind that the Reynolds number is constant
in our study.

The dissipation induced by a breaking wave is usually described by the dissipation
rate per unit length of breaking crest εl. Following Duncan (1981) and Phillips (1985),

εl = bρwc5/g, (4.5)
where c is the phase velocity at breaking and b is a non-dimensional parameter,
called the breaking parameter. This formulation is the starting point for statistical
modelling of wave breaking in the ocean (Phillips 1985; Romero et al. 2012). While
the breaking parameter was first assumed to be constant (Phillips 1985), a large
variation of the measured values of b has been observed in various experiments. A
scaling law, based on inertial arguments was derived for plunging waves (Drazen et al.
2008) and leads to the following result b∼ S−5/2, where S is the slope of the breaking
wave. This result was then extended to spilling breakers by Pizzo & Melville (2013).
By assuming a threshold for breaking, the following general parametrization was
supported by laboratory measurements and used for ocean wave modelling (Romero
et al. 2012; Grare et al. 2013):

b= 0.4(S− 0.08)5/2. (4.6)

The dissipation rate per unit length εl is simply given by E0ζ , where E0 is the initial
wave energy (with the dimension of an energy per unit length) and ζ the observed
decay rate during breaking. The velocity c is estimated by the linear phase velocity of
the gravity–capillary wave c=√g/k+ (γ /ρw)k. Thus, b= εlg/(ρwc5)= E0ζg/(ρwc5),
is shown in figure 10 as a function of the wave slope ε for all the breaking waves,
the gravity–capillary waves and non-breaking waves. At steepness higher than the
breaking threshold observed in these simulations ε > 0.32, a very good agreement
is observed between the numerical results and the semi-empirical ∼ε5/2 scaling.
Moreover, the value of b at high steepness appears independent of the Bond number,
which is consistent with experimental results where b is independent of the wavelength
(Drazen et al. 2008; Romero et al. 2012; Grare et al. 2013). For non-breaking waves
(ε < 0.32) the definition and estimation of b is not meaningful which explains the
observed discrepancy in figure 10. However, it is remarkable to note that for the
strong capillary effects cases, Bo= 10, and Bo= 25, the values of b at low steepness
are in good agreement with the semi-empirical curve for breaking. Thus, for these
numerical solutions, the increase of dissipation induced by capillarity at low Bond
number is consistent with the experimental scaling for breaking.

5. Discussion on the wave regime diagram
We will now discuss in more detail the application of the state diagram shown in

figure 7 to waves observed in published experiments. Table 1 summarizes experimental
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FIGURE 10. (Colour online) Breaking parameter b as a function of steepness for various
Bond numbers. The (red online) dashed line is the semi-empirical dissipation function:
b=0.4(ε−0.08)5/2 (4.6) from Romero et al. (2012). The vertical dot-dashed line indicates
the breaking threshold in the present work, εc = 0.32.

observations of breaking and parasitic capillary waves, for which both the slope and
the Bond number could easily be extracted. The Bond number is estimated from
the wavelength and the liquid properties (Bo = ρg/(γ k2)), and we also indicate
the Reynolds numbers of the experiments (Re = √gλ3/ν), which are often larger
(especially for wave breaking) than that used in the present simulations.

In these experiments, the waves are either generated by wind or by a wave maker.
Breaking waves are either obtained through a focusing wavepacket or are triggered
by a modulational instability. In the first case, a wavepacket is generated by the wave
maker, defining the central wavelength and the linear slope (through the sum of all
frequency components of the initial packet). This slope is close (slightly smaller in
general) to the slope at breaking that can be directly measured. This protocol has
been used to study both spilling and plunging breakers. On the other hand, breaking
triggered by the modulational instability corresponds to the instability of an initial
wave (of a given wavelength) and the slope indicated in table 1 corresponds to the
initial linear slope. In this case, the distinction between spilling and breaking wave
is not necessarily done in the original papers and we will simply call these waves
breakers. In the case of mechanically generated parasitic capillary waves, both the
wavelength and amplitude of the carrier wave are initial parameters of the experiment.
Finally, for the wind-generated waves, both the wavelength and the amplitude can be
extracted from the figures of Zhang (1995) and Caulliez (2013).

Figure 11 shows the boundaries of the wave regime diagram of figure 7, together
with the experimental data summarized in table 1. For simplicity, we do not
distinguish the various studies in the diagram but only the observed wave state,
breaking triggered by modulation instability, plunging breakers, spilling breakers and
parasitic capillary waves.

The first obvious observation is that, at high Bond number (i.e. large wavelength)
breaking is observed in numerous experiments for much smaller initial values of the
wave slope than what is described in the present numerical work. Breaking through
modulational instabilities is observed from ε∼ 0.11 and spilling breakers are observed
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FIGURE 11. (Colour online) Wave state diagram, compares the regimes obtained through
the simulation and described in figure 7 with the experimental studies summarized
in table 1. Experimental studies: (∗) breakers triggered by modulation instability, (s)
plunging breakers, (u) spilling breakers, (f) parasitic capillary waves.

in focusing experiments for ε ∼ 0.25. Our breaking threshold at εc = 0.32 is thus
related to our initial conditions. However, this allows observation of a critical value of
the Bond number necessary for the influence of surface tension in the wave dynamics.
The plunging breakers generated in focusing experiments have very high steepness
(ε > 0.35) and high Bond numbers (Bo> 1000) and are indeed located in the plunging
regime of our diagram (PB).

Note that most of the spilling breakers described experimentally (Rapp & Melville
1990; Duncan 2001; Liu & Duncan 2003, 2006) correspond to relatively high Bond
number (Bo > 1000) and have typical slopes ε ∈ [0.25:0.35] close to our critical
steepness. This tends to confirm the idea that spilling breakers at large Bond number
(large scale) is a transition regime between non-breaking and plunging wave. On the
other hand, the wind-generated small-scale spilling breakers described by Caulliez
(2013) correspond to smaller Bond number (Bo < 100) and larger slope and are
located inside the spilling zone (SB).

Finally, at low Bond number, the experimentally observed parasitic capillary waves
have Bond numbers smaller than Boc and a slope smaller than the breaking steepness,
ε < εB=KB(1+Bo)−1/3. However, only a few data points exist at high steepness close
to the boundary εB.

To conclude this comparison, when surface tension effects are important (Bo< 100),
the phase diagram described by the numerical simulation appears compatible with
numerous experimental observations of parasitic capillary waves and small-scale
spilling breakers. However, further studies are needed to validate experimentally
the scaling of the breaking and the spilling–plunging boundaries at high steepness,
ε ∼ (1+ Bo)−1/3.

The present DNS have been performed assuming a uniform surface tension. The
presence of surfactants on the air–water interface can modify the wave dynamics. Liu
& Duncan (2003, 2006) have found that adding surfactants significantly changes the
breaking process. For high surfactant concentrations, they observe a small plunging
jet issued from the front face of the wave at a point below the wave crest. Note
that their data are included in figure 11 and their spilling breakers for various
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surfactant concentrations are inside the spilling phase. They also observed that the
capillary ripples found upstream of the spilling breaker toe in the clean-water case
are dramatically reduced for all concentrations of surfactants. Similar results were
found by Ceniceros (2003) who investigated numerically the effect of surfactant on
parasitic capillaries.

6. Conclusion

A parametric study of the influence of the wave steepness and Bond number on
surface wave evolution is presented, using DNS of the two-phase flow, in air and
water, including surface tension and viscosity. The study is conducted at a given
high Reynolds number in order to study the effects of surface tension on wave
breaking. A regime diagram is presented in which we report the observation of pure
gravity waves, gravity–capillary waves, plunging breakers and spilling breakers. We
are able to go continuously from one wave pattern to another by changing the Bond
number and the initial steepness of the wave. For our initial conditions, we observe
that when surface tension effects are small, a critical steepness εc can be defined to
distinguish breaking from non-breaking waves, as already discussed theoretically as
well as through experiments and numerical studies (Rapp & Melville 1990; Peregrine
et al. 1993; Song & Banner 2002; Banner & Peirson 2007; Perlin et al. 2013).
When surface tension becomes important, its influence is quantified through two
boundaries separating first gravity–capillary waves and breakers, and second spilling
and plunging breakers. Both boundaries scale as ε ∼ (1 + Bo)−1/3. This scaling is
consistent with a balance between the generation of vorticity by gravity–capillary
waves (Longuet-Higgins 1992) and the pressure due to capillary effects. When
surface tension effects are important, our regime diagram appears compatible with
the available experimental data.

The wave energy is computed for each wave state and confirms the importance
of breaking processes in surface wave dissipation. Plunging and spilling breakers
both exhibit dramatic loss of energy during the breaking stage, with little potential
energy remaining in the system. This is a result of the periodic boundary conditions,
in an open system we would expect equipartition in the surviving wavefield. At low
steepness, the wave dissipation is strongly enhanced when surface tension effects
are important, while decay rates are comparable in the case of breaking waves for
various Bond numbers. Moreover, from the wave energy decay rate during breaking,
we are able to estimate the breaking parameter b and our simulations appear fully
consistent with the inertial scaling for breaking waves b∼ ε5/2 obtained using scaling
arguments and observed experimentally (Drazen et al. 2008; Romero et al. 2012;
Grare et al. 2013). The fact that non-breaking parasitic capillaries exhibit dissipation
rates compatible with the breaking dissipation scaling is a very promising result that
deserves further investigations. Note that these results are in qualitative agreement
with the recent study of dissipation due to parasitic capillaries by Melville & Fedorov
(2015) based on the theory of Fedorov & Melville (1998).

In this study, we have focused on the influence of surface tension, by changing
the Bond number and keeping the Reynolds number constant. A natural development
would be to now to study waves of various wavelengths, which would allow a closer
comparison with experimental results. Furthermore, this has been a 2D study and 3D
simulations are required to confirm the evolution of the resulting turbulent flows.
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