
Electron–ion collision-induced harmonics generation
in a plasma with an isotropic bi-Maxwellian distribution

G. FERRANTE,1 S.A. URYUPIN,2 and M. ZARCONE1

1Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica e Tecnologie Relative, Viale delle Scienze,
90128 Palermo, Italy

2P.N. Lebedev Physical Institute, Leninsky pr. 53, 117924, Moscow, Russia

(Received 16 November 2001;Accepted 16 December 2001!

Abstract

A treatment is given of harmonics generation resulting from nonlinear inverse bremsstrahlung in a plasma with an
anisotropic bi-Maxwellian electron velocity distribution function. A complete characterization of the process is re-
ported. In particular, analytically and numerically we established how the efficiency of the odd harmonics generation
and their polarization depend on such process parameters as:~1! the degree of effective temperature anisotropy,~2! the
frequency and the intensity of the fundamental wave, and~3! the angle between the fundamental wave field direction and
the symmetry axis of the electron distribution function.
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1. INTRODUCTION

Collisions of electrons with ions in the presence of a strong
electromagnetic field are one of the basic mechanisms for
harmonics generation in fully ionized plasmas~Silin, 1965,
1999a!. The harmonics generation characteristics typical of
this mechanism depend both on the properties of the pump
field ~Silin, 1998; Ferranteet al., 2000!, and on the shape of
the electron distribution function~EDF! of the plasma~Si-
lin, 1999b; Ferranteet al., 2001a!. In particular, in investi-
gating the influence of the EDF shape on the process of
harmonics generation, one can consider the case when the
pump field itself forms the nonequilibrium EDF either as
result of atom ionization~Silin, 1999b, 1999c!, or as a result
of electron anisotropic heating due to inverse bremsstrah-
lung ~Ferranteet al., 1997, 2001b!. In such a case, the
orientation of the anisotropic EDF axes depends obviously
in a definite way on the external radiation field parameters.
In the present article, we consider a different case, in which
there is no link between the initial shape of the EDF and the
acting radiation parameters. In other words, we assume that
an anisotropic bi-Maxwellian EDF is preliminarily created
by a strong ultrashort laser pulse, either through atom tunnel

ionization ~Delone & Krainov, 1991!, or due to electron
heating during inverse bremsstrahlung absorption of the pulse
~Chichkovet al., 1992!. After the laser pulse–plasma inter-
action, the newly formed anisotropic bi-Maxwellian EDF
lasts for a time interval of the order of the inverse of the
effective electron collision frequency.

Below we investigate the basic properties of harmonics
generation due to nonlinear inverse bremsstrahlung in such
a prepared anisotropic plasma, when the latter interacts with
a linearly polarized pump laser field. In the following sec-
tion, we give the derivation of the general expression for the
harmonics generation efficiency during electron–ion colli-
sions in the presence of a linearly polarized high-frequency
radiation field, interacting with a plasma exhibiting an an-
isotropic bi-Maxwellian EDF. The distribution is taken such
thatTz . T4, whereTz andT4 are, respectively, the electron
effective temperatures along and perpendicular to the EDF
symmetry axis. We give also the general expression for the
deviation angle of the harmonic field with respect to the
pump field direction. The reason for the deviation of
the harmonic field is traced back to the plasma conductivity
anisotropy at different harmonic frequencies. The general
expression for the harmonic generation efficiency is ana-
lyzed in Section 3. Taking as an instance the harmonic 3v,
we obtain simple asymptotic expressions of its generation
efficiency and perform the corresponding numerical calcu-
lations. For odd harmonics of higher orders, we report nu-
merical calculations of generation efficiency versus~1! the
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electron temperature degree of anisotropy,~2! the frequency
and the intensity of the pump field, and~3! the angle be-
tween the pump field and the EDF symmetry axis. For a
highly anisotropic plasma, whenTz .. T4, we evidence a
strong anisotropy in the harmonic generation efficiency,
which manifests itself in both relatively weak and strong
pump fields. In Section 4 we investigate the possible depen-
dences of the deviation angle of the harmonic field with
respect to the pump field direction. For the deviation angle
of the third harmonic, we derive clear asymptotic expres-
sions, taking particularly simple forms when the tempera-
ture anisotropy is not large. For the case whenTz .. T4, we
show that the 3v harmonic field exhibits a large deviation
angle. For the third, as well as for higher order odd harmon-
ics, numerical calculations are carried out to illustrate how
the deviation angle depends on the angle between the pump
field and the symmetry axis of the initial EDF. Calculations
are carried out for different values of the ratioTz0T4 and of
the pump field parameters.

2. BASIC EQUATIONS

As it is now established~see, e.g., Delone & Krainov, 1991!,
in atom tunnel ionization by a linearly polarized radiation, a
velocity photoelectron distribution is formed which is close
to an anisotropic bi-Maxwellian EDF with the effective elec-
tron temperature along the fieldTz larger than the tempera-
ture perpendicular to itT4. That is, the velocity photoelectron
distribution to a good approximation is given by

F~ ?v! 5
Nm

2pT4!
m

2pTz

expF2
mv42

2T4
2

mvz2

2Tz
G, ~1!

wherem is the electron mass,N is the electron density, and
T4 andTz are the effective temperatures in energy units. A
distribution close to the anisotropic bi-Maxwellian EDF is
also formed in the case of anisotropic electron heating as a
result of inverse bremsstrahlung absorption of intense elec-
tromagnetic radiation when the amplitude of the electron
quiver velocityvE exceeds the initial thermal velocityvT,
but is smaller thanZvT, whereZ is the multiplicity of ion-
ization of plasma ions~for details, see Chichkovet al., 1992;
Ferranteet al., 2001b!. Let us assume that a plasma with an
anisotropic bi-Maxwellian EDF is preliminarily formed as a
result of one of the two processes quoted above. Below, we
investigate how such a prepared plasma will interact with a
high frequency electromagnetic wave, created by some other
source of coherent electromagnetic radiation. Let us take the
wave field in the form

;E cos~vt 2 :k ?r !, ~2!

where the frequency and the wave vector are linked by the
dispersion relation

v2 5 vL
2 1 k2c2, ~3!

wherec is the speed of light,vL
25 4pe2N0m is the square of

the electron plasma frequency, ande is the electron charge.
Without loss of generality, we assume that the electric field
vector has only two components, along and perpendicular to
the EDF symmetry axis;E 5 ~Ex,0,Ez!.

As result of electron scattering by ions, the field~2! gen-
erates in the plasma harmonics of the current at the odd
frequencies~2n 1 1!v, wheren 5 0,1,2, . . . .Assuming, as
usual in the theory of inverse bremsstrahlung~Silin, 1965,
1998, 1999a, 1999b, 1999c; Ferranteet al., 1997, 2000,
2001a! that the influence of the relatively rare collisions on
the electron motion in the high-frequency field~2! may be
treated as perturbation, for the time derivative of the current
density proportional to the collision frequency, from the
kinetic equation we find

]

]t
d :j 5 2

1

p2 eNvE3n~vE !Ed ?q
?q

q2 (
n50

`

J2n11~ ?q ?vE !

3 expF2qz
2

Tz

2m
2 q4

2
T4
2m

Gsin@~2n 1 1!~vt 2 :k ?r !# , ~4!

whereJ2n11 is the Bessel function of order 2n11,vE 5 6 ?vE 6,
?vE 5e ;E0mv is the amplitude of electron quiver velocity, and

n~vE! is the effective electron–ion collision frequency,

n~vE ! 5
4pZe4N

m2vE3
L, ~5!

andL is the field-dependent Coulomb logarithm~see Silin
& Uryupin, 1981, for more details!. In accordance with~4!,
the current densityd :j has the form

d :j 5 (
n50

`

d :jn~ ?r, t !. ~6!

The harmonics of the current densityd :jn~ ?r, t ! with n Þ 0
yield the generation of the corresponding harmonics of the
field at the frequencies~2n11!v. To determine the electric
fields of the harmonics ;En~ ?r, t ! with n Þ 0, we use the
Maxwell equations, where the currentd :jn~ ?r, t ! is the source
of the harmonics. Taking into account the condition

¹{ ;En~ ?r, t ! 5 0, ~7!

from the Maxwell equations we have

c2D ;En~ ?r, t ! 2
]2 ;En~ ?r, t !

]t 2 2 vL
2 ;En~ ?r, t ! 5 4p

]

]t
d :jn~ ?r, t !. ~8!

We look for a solution of the linear equation~8! in the form

;En~ ?r, t ! 5 2 ;En sin@~2n 1 1!~vt 2 :k ?r !# . ~9!

Then, taking into account the expressions~4! and ~6! and
the dispersion relation~3!, from ~8! we obtain the electric
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field of thenth harmonics resulting from nonlinear inverse
bremsstrahlung

;En 5
1

pn~n 1 1!

eN

vL
2 vE

3n~vE !Ed ?q
?q

q2 J2n11~ ?q ?vE !

3 expF2qz
2

Tz

2m
2 q4

2
T4
2m

G, ~10!

wherenÞ0.According to~10!, the field of the harmonic;En,
similar to that of the fundamental field;E, has only two
componentsEnx andEnz. The efficiency of generation of the
~2n 1 1!v harmonic is characterized by the ratio

hn 5 * En

E *
2

. ~11!

Using~10!, the generation efficiency is written as

hn 5 F n~vT !

v
G2

a2~n,g,d,a!. ~12!

In ~12! the following notations are used:

vT 5 MT0m, T 5 ~Tz 1 2T4 !03, d 5 D0T,

D 5 Tz 2 T4 . 0, g 5 mvE204T; ~13!

furthera is the angle between the field;E and the oZ axis,
while the functiona~n!5a~n,g,d,a! is given by the relations

a2~n! 5 ax
2 1 az

2, ~14!

Hax~n!

az~n!J 5
1

2pM2pn~n 1 1!
E

0

1 dy

M12 y2

3 E
21

1

dxHyM12 x2

x
J

3
~x cosa 1 yM12 x2sina!

F11 dSx2 2
1

3DG302

3 exp@2W#$In @W# 2 In11 @W#% ~15!

W 5
g

11 dSx2 2
1

3D
@x cosa 1 yM12 x2sina# 2, ~16!

whereIn is the modified Bessel function ofn-order. As the
harmonics generation efficiency depends on the angle be-
tween the fundamental field;E and the EDF symmetry axis,
the direction of the harmonics polarization, in general, will
not coincide with the direction of the fundamental field
polarization. To determine the angleC~n! 5 C~n,g,d,a! of

the vector ;En with respect to the vector;E, it is natural to
exploit the relation

C~n,g,d,a! 5 arc cosS ;E ;En

6 ;E66 ;En6
D[ arc cos@G~n,g,d,a!# ,

~17!

where the functionG~n,g,d,a! has the form

G~n,g,d,a! 5
1

2pM2pan~n 1 1!
E

0

1 dy

M12 y2

3 E
21

1

dx
~x cosa 1 yM12 x2sina!2

F11 dSx2 2
1

3DG302

3 exp@2W#$In @W# 2 In11 @W#%. ~18!

The functionsa2~n,g,d,a! andC~n,g,d,a! define both the
efficiency and the polarization direction of higher harmon-
ics versus~1! g, characterizing the intensity of the funda-
mental wave;~2! d, defining the degree of anisotropy of the
initial EDF; and~3! the anglea, defining the direction of the
polarization vector of the fundamental field with respect to
the initial anisotropic bi-Maxwellian EDF symmetry axis.
All these dependencies will analyzed below in the next two
sections.

3. HARMONICS GENERATION EFFICIENCY

In this section, we consider the harmonics generation effi-
ciency in a plasma with the anisotropic bi-Maxwellian EDF
~1!. In particular, as an instance, we consider the third har-
monic ~n 5 1 and frequency 3v!, for which we derive as-
ymptotic expressions. The basic features of generation of
higher order harmonics and of the 3v harmonic as well are
reported below in graphical form. Let us start with the case
when the pump field is weak enough that

Tz . T4 .. mvE2. ~19!

Then, keeping in~15! only the terms linear ing ~or in W!,
from ~14! approximately we have

a2~1! 5
2

p S mvE2

16T4
D2STz 1 2T4

12Tz
D3

3 HF Tz

2T4
sin2 a 1 ~12 3g!Scos2 a 2

1

4
sin2 aDG2

3 sin2 a 1 @2g cos2 a 1 ~12 3g!sin2 a# 2 cos2 aJ ,

~20!
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where

g 5
TzT4

~Tz 2 T4 !2S MTz

2MTz 2 T4
ln
MTz 1MTz 2 T4

MTz 2MTz 2 T4
2

4Tz 2 T4

3Tz
D.

~21!

Expression~20! takes a very simple form in a plasma with
isotropic EDF, that is, whenTz 5 T45 T. In fact, from~20!
we have

a2~1! 5
1

2p
S mvE2

160T
D2

, ~22!

which does not depend on the anglea. If insteadTz . T4,
then the efficiency of the third harmonic generation depends
ona. The generation efficiency is largest ata 5 p02, when
the pump field lies in the plane of the smaller temperateT4.
In fact, it is just in this plane that the electron–ion collision
frequency has its largest value, and, accordingly, the har-
monics generation as well is in this plane the most effective,
thanks to the nonlinear inverse bremsstrahlung. On the con-
trary, ata 5 0 ~or a 5 p! the functiona2~1! has a minimum,
physically arising from the small values of the collision
frequency characteristic of electrons with temperatureTz.
The larger the ratioTz0T4, the stronger the anisotropy in
harmonics generation. Let us consider now the 3v harmonic
generation in a strong field, when

mvE2 .. Tz . T4 . ~23!

When these inequalities are obeyed, one can neglect the
corrections due to the electron thermal motion along the
pump field direction. Exploiting this circumstance from~12!–
~16! approximately we find

h1 5 S 3

4p
D2F n~vE !

v
G2

3 HSlnF mvE2

~MT4 1MTz sin2 a 1 T4 cos2 a!2G2 C3D2

1
4 sin2 a cos2 a

Tz sin2 a 1 T4 cos2 a

3
~Tz 2 T4 !2

~MT4 1MTz sin2 a 1 T4 cos2 a!2J , ~24!

whereC3 is a constant of unity order

C3 5
M2p

3
E

0

`

dyMye2y

3 ln y$ y@Io~ y! 2 I3~ y!# 1 3~12 y!@I1~ y! 2 I2~ y!#%

. 0.62. ~25!

We note that expressions~24! and~25! have been obtained
in the approximation when lnj 2 C3 . 0, wherej indicate
the argument of the logarithm entering in~24!. From~24! it
follows, that fora values nearp02, the functionh1 has a
local minimum. This behavior is specific to the strong field
limit. In a weak field, as can be seen from~20!, ata 5 p02,
the 3v harmonic generation efficiency has its maximum
value. For values ofa approaching zero~or p! the behavior
of the functionh1 depends on the relation between the quan-
tities Tz0T42 1 . 0 and ln~mvE204T4 ! 2 C3 . 0. When the
degree of the temperature anisotropy is relatively not large,
such that

Tz

T4
2 1 , lnSmvE2

4T4
D2 C3, ~26!

the functionh1 has a local maximum. On the contrary,
when the degree of anisotropy is so large that the inequal-
ity reverse to~26! takes place,h1 has another local mini-
mum. In such conditions, the third harmonic generation is
the most effective, if the pump field is directed at an angle
am Þ p02 with respect to the EDF symmetry axis. In
particular, forTz .. T4, the maximum of the functionh1 is
reached atam ; !T4 0Tz ,, 1 ~or at p 2 am!. For a
strongly anisotropoic plasma, another interesting limiting
case may be envisaged when

Tz .. mvE2 .. T4 . ~27!

Together with the r.h.s inequality~27!, we assume that the
following stronger inequality too is fulfilled:

mvE2 sin2 a .. T4 . ~28!

For smalla ~or close top!, inequality~28! does not hold,
and for the third harmonic generation, we may use expres-
sion ~20!, adequate for weak fields. For conditions corre-
sponding to inequalities~27! and~28!, from ~12!–~16! we
have

h1 5 F n~vE !

v G2F mvE2

8pTz
G 1

sin2 a
. ~29!

Expression~29! has a minimum ata 5 p02. As a departs
from p02, the 3v harmonic generation efficiency grows up
to its maximum atam;!T4 0mvE2 ,, 1 ~or for p 2 am!. The
further departure ofa from p02 gives a decreasing of gen-
eration efficiency according to~20!, which corresponds to
the weak field limit.

In Figure 1, the functiona2~1! ~12! is plotted. The func-
tion a2~1! describes the efficiency of the third harmonic
generation in a plasma withTz510T4 ~or d 5 904! versusa,
the angle between the field of the pump wave and the oZ-
axis. Different curves correspond to different values of the
parameterg ~13!: 0.1, 0.4, 1, 3, 10. The curve withg 5 0.1
corresponds to the weak field limit, and like expression~20!,
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shows a strong anisotropy of the functiona2~1! with a large
maximum fora 5 p02. Forg 5 0.4, the efficiency of the
third harmonic generation ata 5 p02 reaches its maximum.
The generation efficiency ata 5 p02 decreases with a fur-
ther increasing ofg. This is shown by the curves withg 5
1,3,10. The maximum of generation efficiency shifts in the
region of angles close toa 5 0 anda 5 p. The last property
is illustrated clearly by the curve withg 5 3. A similar
behavior takes place also atg 510, but for values ofa very
close to zero or top. The curve forg 5 10 as well as the
asymptotic formula~24! show a weak dependence ofa2~1!
versusa in the strong field limit.

In Figure 2, the functiona2~1! versus the anglea is plot-
ted forg 5 0.4 and for three different values of the param-
eterd ~13!: 904 ~Tz510T4!,1207 ~Tz5 5T4,!, 304 ~Tz5 2T4!.
According to Figure 2, the higher the temperature ratio
Tz0T4, the larger the anisotropy of the third harmonic gen-
eration efficiency. For instance, atd 5 904 ~Tz 5 10T4!, the
degree of anisotropy is characterized by a factor of 25.

Similar dependences take place for higher harmonics also.
In Figure 3, the generation efficiency of the fifth 5v ~n5 2!,
the seventh 7v ~n 5 3! and the ninth 9v ~n 5 4! harmonics
are plotted ford 5 904 ~Tz510T4! and for two values of the
parameterg: 3 and 10. From Figure 1 and Figure 3, one sees
a qualitative similarity of the functionsa2~n!, but an essen-
tial difference too is noted. Namely, the degree of anisotropy
of the functionsa2~n! is increasing with the harmonic order.
This effect is more pronounced for relatively weak fields. In
particular, according to the dashed curves in Figure 3, for
g53 the values of the functionsa2~3! anda2~4! vary by two
and three orders, respectively. The degree of anisotropy of

the functionsa2~n! decreases with the increasing ofg. This
property is clearly seen from the comparison of the contin-
uous~g 510! and dashed~g 5 3! curves in Figure 3. For a
strong field, the anisotropy becomes logarithmically weak.
For higher harmonic order, the transition to the strong limit
takes place at larger field values.

Fig. 1. The 3v harmonic generation efficiencya2~1! versusa, the angle
between the field of the pump wave and the oZ-axis. The five curves
correspond tod 5 904 ~Tz510T4! and five values of the parameterg: 0.1,
0.4, 1, 3, 10.

Fig. 2. The same function as in Figure 1, but forg 5 0.4 and three values
of the parameterd: d 5 904 ~Tz 5 10T4!, d 5 1207 ~Tz 5 5T4!, d 5 304
~Tz 5 2T4!.

Fig. 3. Efficiency of harmonics generationa2~n! versusa, the angle be-
tween the field of the pump wave and the oZ-axis, in a plasma withd 5 904
~Tz 5 10T4!. Different curves correspond to harmonics 5v ~n 5 2!, 7v
~n 5 3!, 9v ~n 5 4!. Dashed curves correspond tog 5 3 and continuous
lines tog 5 10.
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Figure 4, where the dependencies of the functionsa2~n!
on the anglea for g 5 3 and ford 5 904 ~Tz 5 10T4! and
d 5 304 ~Tz 5 2T4! are plotted, shows that the harmonics
generation anisotropy increases with increasing of the ra-
tio between the longitudinal and the transverse electron
temperatures. Besides, Figure 4 shows a large increasing
of the anisotropy of the functiona2~n! when the ratio
Tz0T4 increases by a factor of 5. The effect of the anisot-
ropy amplification is more pronounced for high harmonic
orders.

4. HARMONICS POLARIZATION

Due to the anisotropy of plasma conductivity at the har-
monics frequencies, deviation of the harmonics field with
respect to the pump field direction takes place. According
to the treatment given in Section 2, the value of the devi-
ation angleC depends on the harmonic order, the degree
of temperature anisotropy, the intensity of the pump wave,
and is also a function of the angle formed by the pump
field direction and the EDF symmetry axis. Below, we
report some simple asymptotic expressions of the function
C~1! 5 C~1,g,d,a!, defining the deviation angle of the
third harmonic field. In the case of weak fields, when
inequality ~19! holds, from~18! we find

C~1! 5 arc tan~F!, ~30!

where the function g is given by~21!. If the temperature
anisotropy is not large,

12
T4
Tz

,, 1, ~32!

expression~31! significantly simplifies, and~30! takes the
form

C~1! 5
5

7S12
T4
Tz
Dsina cosa. ~33!

According to~30!, ~31!, and ~33! there is no deviation of
the polarization vector of the third harmonic ata 5 p02
anda 5 0 ~or a 5 p!. From~33!, it follows that in the case
of weak anisotropy, the largest deviation of the polarization
vector takes place ata 5 p04. Instead, ifTz .. T4, in accor-
dance with~30! and~31!, for the deviation angle, we have
approximatelyC~1! 5 p02 2 a.

In the case of a strong pump field, when inequalities~23!
take place, from~18!, we have an expression like~30!, but
with the functionF weakly depending~through a loga-
rithm! on the pump field intensity

F 5
2 sina cosa

MT4 1MTz sin2 a 1 T4 cos2 a

Tz 2 T4

MTz sin2 a 1 T4 cos2 a

3 HlnF mvE2

~MT4 1MTz sin2 a 1 T4 cos2 a!2G2 C3J21

,

~34!

Eq. ~34! has been obtained in the approximation, when the
logarithm in the denominator is much larger thanC3 . 0.62.
If the temperature anisotropy is small~see inequality~32!!,
then from~30! and~34!, we have approximately

C~1! 5 S12
T4
Tz
D sina cosa

FlnSmvE2

4Tz
D2 C3G

. ~35!

In ~35! the dependence ofC~1! ona is similar to that found
for the weak field case~33!. For large values of the temper-
ature anisotropy,Tz .. T4, and for not particularly small
angles,a .. !T4 0Tz, from ~34! follows

F .
2 sina cosa

lnS mvE2

Tz sin2 aD2 C3

. ~36!

Fig. 4. The same function as in Figure 3, but forg 5 3 and two values of
the parameterd: d 5 904 ~Tz 5 10T4!—continuous curves;d 5 304 ~Tz 5
2T4!—dashed curves.

F 5

12 5g 1 F Tz

2T4
2

5

4
~12 3g!G tan2 a

2g 1 ~12 3g!tan2 a 1 tan2 aF~12 3g!S12
1

4
tan2 aD1

Tz

2T4
tan2 aG

tana, ~31!
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Expressions~30! and~36! give a dependence ona similar to
that of ~35!, but the numerical values of the angleC may
result significantly larger.

Finally, we consider another limiting case of strong an-
isotropy. When inequalities~27! and~28! hold, from~18! we
have approximately

C~1! .
p

2
2 a. ~37!

This last result is similar to that obtained in the limit of weak
field for a plasma withTz .. T4.

In addition to the relatively simple formulas~30!–~37!
for the deviation angleC~n!, we report numerical results
as well. In Figure 5, the dependences of the deviation
angle are plotted for the third harmonicC~1! in a plasma
with d 5 904 ~Tz 5 10T4! and for few values of the param-
eter g: 0.4, 1, 3, 10. For the selected values ofg and d,
according to Figure 5, the deviation angle of the 3v
harmonics reaches its maximum value ata ; p06 ~or
;5p06!. Forg 5 0.4 the maximum value ofC~1! is ;p04.
With g increasing, the maximum value ofC~1! is decreas-
ing up toC~1! ; p06 for g 5 10. Similar dependencies of
the functionC~1! versus the anglea are plotted in Fig-
ure 6, forg 5 0.4 and for three values of anisotropy pa-
rameterd: 904 ~Tz 5 10T4!, 1207 ~Tz 5 5T4!, 304 ~Tz 5
2T4!. From Figure 6, one can see how the value of the
angleC~1! decreases with the temperature anisotropy de-
creasing. At the same time, the maximum value of the
function C~1! shifts to the region of angles close top04,
which is realized in a plasma with weak anisotropy. We
note that, already for the valued 5 304 ~Tz 5 2T4!, the

function C~1! in Figure 6 is approximated by the asymp-
totic formula~33! rather well. Similar polarization proper-
ties for higher harmonics are illustrated in Figure 7 and
Figure 8. The deviation angles of the fifth~n 5 2!, seventh
~n 5 3!, and ninth~n 5 4! harmonics for a plasma with
d 5 904 ~Tz 5 10T4! are plotted in Figure 7. Dashed curves
correspond to pump wave withg 5 3, while continuous
curve corresponds tog 5 10. As well as for the 3v har-
monic ~see Fig. 5!, small values of the deviation angle

Fig. 5. Deviation angle of the 3v harmonic field versusa, the angle be-
tween the field of the pump wave and the EDF symmetry axis, in a plasma
with d 5 904 ~Tz 5 10T4!. The curves correspond to four values of the
parameterg: 0.4, 1, 3, 10.

Fig. 6. The same function as in Figure 5, but forg 5 0.4 and three values
of the parameterd: d 5 904 ~Tz 5 10T4!, d 5 1207 ~Tz 5 5T4!, d 5 304
~Tz 5 2T4!.

Fig. 7. Deviation angle of the fifth~n 5 2!, seventh~n 5 3! and ninth
~n 5 9! harmonicsC~n! versusa in a plasma withd 5 904 ~Tz 5 10T4!.
Dashed curves correspond tog 5 3 and continuous lines tog 5 10.
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correspond to large values of the parameterg. Further, the
decrease of the electron temperature anisotropy is found to
lead to the decrease of the functionC~n!. This statement
is illustrated in Figure 8, where forg 5 3, the functions
C~n!, with n 5 2, 3, 4 are plotted for a plasma withd 5
904 ~Tz 5 10T4! andd 5 304 ~Tz 5 2T4!. As well as for the
third harmonic 3v ~see Fig. 6!, one can see a sizable de-
creasing of the functionsC~n!, with n 5 2, 3, 4, which is
connected with the decreasing of the temperature anisot-
ropy. The shift of the deviation angle in the region ofa
close top04 also takes place.

5. CONCLUSIONS

We have presented a treatment of the harmonics generation
taking place during nonlinear inverse bremsstrahlung in a
plasma exhibiting an anisotropic bi-Maxwellian electron
distribution function. It has allowed us to establish, analyt-
ically and numerically, a number of basic properties of this
highly nonlinear process of laser–plasma interaction. In par-
ticular, our main concern has been to elucidate how the
harmonics generation efficiency and the harmonics polar-
ization depend on the plasma and pump field parameters.
The reported results are expected to prove useful for opti-
mization of the conditions able to yield generation of high
order harmonics and for diagnosing the anisotropy of the

EDF itself. Though the results have been obtained for a
plasma exhibiting a bi-Maxwellian EDF, they are of general
character and open the avenue of the treatment of anisotropy
effects in plasmas with more complicated initial EDF, which
may result from different physical processes, such as, for
instance, atoms ionization or plasma interaction with quasi-
stationary strong fields.
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