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We deal with an initial boundary value problem of nonhomogeneous Boussinesq
equations for magnetohydrodynamics convection in two-dimensional domains. We
prove that there is a unique global strong solution. Moreover, we show that the
temperature converges exponentially to zero in H1 as time goes to infinity. In
particular, the initial data can be arbitrarily large and vacuum is allowed. Our
analysis relies on energy method and a lemma of Desjardins (Arch. Rational Mech.
Anal. 137:135–158, 1997).
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1. Introduction

Let Ω ⊂ R
2 be a bounded smooth domain, we study the following nonhomogeneous

Boussinesq system for magnetohydrodynamic convection (Boussinesq-MHD) in Ω:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − μΔu + ∇P = b · ∇b + ρθe2,

(ρθ)t + div(ρθu) − κΔθ = 0,

bt − νΔb + u · ∇b − b · ∇u = 0,

div u = div b = 0,

(1.1)

with the initial condition

(ρ, ρu, ρθ,b)(x, 0) = (ρ0, ρ0u0, ρ0θ0,b0)(x), x ∈ Ω, (1.2)
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and the boundary condition

u = 0, θ = 0, b = 0, x ∈ ∂Ω, t � 0. (1.3)

Here ρ = ρ(x, t), u = (u1, u2)(x, t), θ = θ(x, t), b = (b1, b2)(x, t), and P = P (x, t)
denote the density, velocity, absolute temperature, magnetic field, and pressure of
the fluid, respectively. μ > 0 stands for the viscosity constant and κ > 0 is the heat
conductivity coefficient. ν > 0 is the magnetic diffusion coefficient. e2 := (0, 1)�.
The forcing term ρθe2 in the momentum equation describes the action of the
buoyancy force on fluid motion.

The Boussinesq-MHD system is a combination of the Boussinesq equations of
fluid dynamics and Maxwell’s equations of electromagnetism, where the displace-
ment current can be neglected. It models the convection of an incompressible flow
driven by the buoyant effect of a thermal or density field, and the Lorenz force,
generated by the magnetic field of the fluid. Specifically, it closely relates to a nat-
ural type of the Rayleigh-Bénard convection, which occurs in a horizontal layer of
conductive fluid heated from below, with the presence of a magnetic field. For more
physics background, one may refer to [19,20] and references therein.

When ρ is constant, the system (1.1) is so-called the homogeneous Boussinesq-
MHD system. Recently, the well-posedness issues of such model and its variants
have attracted much attention. Bian [2] studied the initial boundary value problem
(IBVP) of two-dimensional (2D) viscous Boussinesq-MHD system without thermal
conductivity and obtained a unique classical solution for H3 initial data. With-
out smallness assumption on the initial data, Bian and Gui [3] proved the global
unique solvability of 2D Boussinesq-MHD system with the temperature-dependent
viscosity, thermal diffusivity and electrical conductivity. Later, the authors [4]
established the global existence of weak solutions with H1 initial data. By impos-
ing a higher regularity assumption on the initial data, they also obtained a unique
global strong solution. In [14], Larios and Pei proved the local well-posedness of
solutions to the fully dissipative 3D Boussinesq-MHD system, and also the fully
inviscid, irresistive, non-diffusive Boussinesq-MHD system. Moreover, they also pro-
vided a Prodi-Serrin-type global regularity condition for the 3D Boussinesq-MHD
system without thermal diffusion, in terms of only two velocity and two magnetic
components. By Fourier localization techniques, Zhai and Chen [24] investigated
well-posedness to the Cauchy problem of the Boussinesq-MHD system with the
temperature-dependent viscosity in Besov spaces. Very recently, Liu et al. [18]
showed the global existence and uniqueness of strong and smooth large solutions
to the 3D Boussinesq-MHD system with a damping term. Meanwhile, Bian and
Pu [5] proved global axisymmetric smooth solutions for the 3D Boussinesq-MHD
equations without magnetic diffusion and heat convection.

If the fluid is not affected by the Lorentz force (i.e., b = 0), then the system (1.1)
becomes the nonhomogeneous Boussinesq system. The authors [10,25] studied reg-
ularity criteria for 3D case, while Qiu and Yao [21] showed the local existence and
uniqueness of strong solutions of multi-dimensional nonhomogeneous incompress-
ible Boussinesq equations in Besov spaces. A blow-up criterion was also obtained
in [21]. We should point out here that the results in [10,21,25] always require the
initial density is bounded away from zero. For the initial density allowing vacuum
states, Zhong [26] recently showed global existence of strong solutions of the Cauchy
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problem in R
2 by making use of weighted energy estimate techniques. Meanwhile, he

[27] also proved local well-posedness to the nonhomogeneous Boussinesq equations
with zero heat diffusion and large initial data. It should be noted that if it is not
assumed that the density is bounded away from zero, then the analysis gets wilder,
since the system degenerates (in vacuum regions, the term ρut in the momentum
equation vanishes). There are also very interesting investigations about the global
regularity and stability problems for the 2D homogeneous Boussinesq equations,
especially those with partial dissipation, please refer to [6,7,13,16] and references
therein.

In this paper, we aim at establishing the global existence and decay estimates
of strong solutions to the problem (1.1)–(1.3) with general large initial date. In
particular, the initial density is allowed to vanish.

Before stating our main result, we first explain the notations and conventions
used throughout this paper. We denote by∫

·dx =
∫

Ω

·dx.

For 1 � p � ∞ and integer k > 0, we use Lp = Lp(Ω) and W k,p = W k,p(Ω) to
denote the standard Lebesgue and Sobolev spaces, respectively. When p = 2, we
use Hk = W k,2(Ω). The space H1

0,σ stands for the closure in H1 of the space
C∞

0,σ := {φφφ ∈ C∞
0 (Ω)|divφφφ = 0}.

Our main result reads as follows:

Theorem 1.1. For constant q ∈ (2,∞), assume that the initial data (ρ0 �
0,u0, θ0,b0) satisfies

ρ0 ∈ W 1,q(Ω), (u0,b0) ∈ H1
0,σ(Ω), θ0 ∈ H1

0 (Ω). (1.4)

Then the system (1.1)–(1.3) has a unique global strong solution (ρ � 0,u, P, θ,b)
such that for τ > 0 and 2 � r < q,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt ∈ L∞(0,∞;Lr), ρ ∈ C([0,∞);W 1,q),

∇u ∈ L∞(0,∞;L2) ∩ C([τ,∞);H1) ∩ L2(τ,∞;H2),

∇P ∈ L∞(τ,∞;L2) ∩ L2(τ,∞;H1),

∇θ ∈ L∞(0,∞;L2) ∩ C([τ,∞);H1) ∩ L2(τ,∞;H2),

b ∈ L∞(0,∞;H1) ∩ C([τ,∞);H2) ∩ L2(τ,∞;H3),

ρu, ρθ,b ∈ C([0,∞);L2),
√

ρu,
√

t
√

ρut,
√

tbt,
√

t
√

ρθt ∈ L∞(0,∞;L2),

Δb,∇ut,∇bt,∇θt ∈ L2(0,∞;L2),

e
σ
2 t∇θ, e

σ
2 t√ρθt ∈ L2(0,∞;L2),

(1.5)

where σ = κ/(d2‖ρ0‖L∞) with d the diameter of Ω. Moreover, for any positive inte-
ger m, there exists a positive constant C depending only on Ω, μ, ν, κ, ‖ρ0‖L∞ ,
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‖∇u0‖L2 , ‖∇b0‖L2 , ‖∇θ0‖L2 , q, and m such that for t � 1,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖√ρθ(·, t)‖2

L2 � Ce−2σt, ‖∇θ(·, t)‖2
L2 � Ce−σt,

‖u(·, t)‖2
H2 + ‖b(·, t)‖2

H2 + ‖∇2θ(·, t)‖2
L2 + ‖∇P (·, t)‖2

L2 � Ct−m,

‖√ρut(·, t)‖2
L2 + ‖bt(·, t)‖2

L2 + ‖√ρθt(·, t)‖2
L2 � Ct−m.

(1.6)

Remark 1.2. It should be noted that our theorem 1.1 holds for arbitrarily large
initial data.

Remark 1.3. After the completion of this work, it came to our attention that Fan
et al. [11] studied the similar problem. However, these two works are independent
of each other. On one hand, compared with [11], although the equations (1.1)
degenerate near vacuum, there is no need to impose compatibility conditions for
the initial data by using time weighted estimates. On the other hand, our proof is
different from that of in [11]. Precisely, we will apply a lemma due to Desjardins
(see lemma 2.4) to handle the right-hand side of (3.24), while Fan et al. [11] used
the following critical Sobolev inequality of logarithmic type

‖f‖L∞(Ω) � C
(
1 + ‖f‖H1(Ω) log1/2(e + ‖f‖W 1,p(Ω))

)
for any 2 < p < ∞. (1.7)

Finally, we emphasize that the decay rate (1.6) is a new result. Consequently, we
improve the main result of [11].

Remark 1.4. We should point out that the methods used in the present paper
depend heavily on the boundedness of the domains and it seems difficult to show
decay-in-time and time-independent estimates for solutions to the Cauchy problem
of (1.1) in the whole space R

2. Nevertheless, we can establish the global existence
of strong solutions for the system (1.1) in R

2 even in the case of κ = 0 (see [29]).

Remark 1.5. Very recently, we [28] established the global existence and uniqueness
of strong solutions to the IBVP of nonhomogeneous MHD equations (i.e., (1.1)–
(1.3) with θ = 0) with vacuum and large initial data in two-dimensional bounded
domains. Meanwhile, the corresponding strong solution admits the exponential
decay-in-time property which is quite different from theorem 1.1 for the related
MHD equations. Hence the temperature acts as some significant roles on the large
time behaviours of the velocity and the magnetic field.

We now make some comments on the key ingredients of the analysis in this
paper. The local existence and uniqueness of strong solutions to the problem (1.1)–
(1.3) follows from the works in literature such as [15,22] (see lemma 2.1). Thus
our efforts are devoted to establishing global a priori estimates on strong solutions
to the system (1.1) in suitable higher-order norms. It should be pointed out that
compared with the related works in literature, the proof of theorem 1.1 is much more
involved due to the absence of the positive lower bound for the initial density as
well as the absence of the smallness and the compatibility conditions for the initial
data. Consequently, some new ideas are needed to overcome these difficulties.
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First, applying the upper bounds on the density (see (3.2)) and the Poincaré
inequality, we have the following key observation:

‖√ρθ‖2
L2 � ‖ρ‖L∞‖θ‖2

L2 � C‖∇θ‖2
L2 ,

which implies that ‖√ρθ(t)‖2
L2 decays with the rate of e−2σt for some σ > 0 depend-

ing only on κ, ‖ρ0‖L∞ , and the diameter of the Ω (see (3.9)). With the help of this
key exponential decay-in-time rate, we can show that ‖√ρu‖2

L2 + ‖b‖2
L2 decays with

the rate of (1 + t)−m for any positive integer m (see lemma 3.2 for details). Next,
we need to derive the bound of ‖∇u‖2

L2 + ‖∇b‖2
L2 + ‖∇θ‖2

L2 . However, it prevents
us to achieve this goal due to the presence of vacuum. To overcome this difficulty,
we make use of an inequality for u with degenerate weight

√
ρ (see lemma 2.4)

to obtain time-weighted estimate on the L∞(0, T ;L2)-norm of the gradients of the
velocity and the magnetic field (see (3.21)). Indeed, the time-weighted estimate is
crucial in dropping the compatibility condition on the initial data (see [15,22] for
example). On the other hand, (3.3) allows us to derive exponential decay-in-time
rate of ‖∇θ‖2

L2 (see (3.22)). With these time-weighted estimates at hand, we can
then obtain that ‖√ρut‖2

L2 + ‖bt‖2
L2 + ‖√ρθt‖2

L2 decays as t−m for large time (see
(3.48)). In fact, all these exponential decay-in-time rates and the time-weighted
estimate play a crucial role in obtaining the desired uniform bound (with respect
to time) on the L1(0, T ;L∞)-norm of ∇u (see (3.71)). Finally, using these a priori
estimates, we establish the time-independent higher order estimates on the solu-
tion (ρ,u, θ,b) (see lemmas 3.5 and 3.6 for details), and thus claims the proof of
theorem 1.1.

The rest of this paper is organized as follows. In § 2, we collect some elementary
facts and inequalities that will be used later. § 3 is devoted to the a priori estimates.
Finally, we will give the proof of theorem 1.1 in § 4.

2. Preliminaries

In this section, we will recall some known facts that will be used later.
We begin with the local existence and uniqueness of strong solutions whose proof

can be performed by using standard procedures (see e.g., [15,22]).

Lemma 2.1. Assume that (ρ0,u0, θ0,b0) satisfies (1.4), then there exist a small
time T > 0 and a unique strong solution (ρ,u, P, θ,b) to the problem (1.1)–(1.3) in
Ω × (0, T ).

Next, the following Gagliardo–Nirenberg inequality (see [12, theorem 10.1,
p. 27]) will be useful in the next section.

Lemma 2.2 Gagliardo-Nirenberg. Let Ω ⊂ R
2 be a bounded smooth domain. Assume

that 1 � q, r � ∞, and j,m are arbitrary integers satisfying 0 � j < m. If v ∈
Wm,r(Ω) ∩ Lq(Ω), then we have

‖Djv‖Lp � C‖v‖1−a
Lq ‖v‖a

W m,r ,
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where

−j +
2
p

= (1 − a)
2
q

+ a

(
− m +

2
r

)
,

and

a ∈

⎧⎪⎨
⎪⎩

[
j

m
, 1), if m − j − 2

r
is a nonnegative integer,

[
j

m
, 1], otherwise.

The constant C depends only on m, j, q, r, a, and Ω. In particular, we have

‖v‖4
L4 � C‖v‖2

L2‖v‖2
H1 , (2.1)

which will be used frequently in the next section.

Next, we give some regularity properties for the following Stokes system:⎧⎪⎪⎨
⎪⎪⎩
−μΔu + ∇P = F, x ∈ Ω,

div u = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(2.2)

Lemma 2.3. Suppose that F ∈ Lr(Ω) with 1 < r < ∞. Let (u, P ) ∈ H1
0 × L2 be the

unique weak solution to the problem (2.2), then (u, P ) ∈ W 2,r × W 1,r and there
exists a constant C depending only on Ω and r such that

‖u‖W 2,r + ‖P‖W 1,r/R � C‖F‖Lr .

Proof. See [1, proposition 4.3]. �

Finally, by zero extension of u outside Ω, we can derive the following lemma due
to Desjardins (see [8, lemma 1]), which plays a key role in the proof of lemma 3.3
in the next section.

Lemma 2.4. Let (ρ,u, P, θ,b) be a strong solution to the system (1.1)–(1.3) on
(0, T ). Suppose that 0 � ρ � ρ̄, then we have

‖√ρu‖2
L4 � C(ρ̄,Ω)(1 + ‖√ρu‖L2)‖∇u‖L2

√
log(2 + ‖∇u‖2

L2). (2.3)

3. A priori estimates

In this section, we will establish some necessary a priori bounds for strong solutions
(ρ,u, P, θ,b) to the problem (1.1)–(1.3) to extend the local strong solution guaran-
teed by lemma 2.1. In what follows, we will use C(f) to emphasize the dependence
on f .
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Before proceeding, we rewrite another equivalent form of the system (1.1) as the
following ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + u · ∇ρ = 0,

ρut + ρu · ∇u − μΔu + ∇P = b · ∇b + ρθe2,

ρθt + ρu · ∇θ − κΔθ = 0,

bt − νΔb + u · ∇b − b · ∇u = 0,

div u = div b = 0.

(3.1)

First, due to (3.1)1, we have the following well-known estimate on the
L∞(0, T ;L∞)-norm of the density (see [17, theorem 2.1]).

Lemma 3.1. It holds that

sup
0�t�T

‖ρ‖L∞ � ‖ρ0‖L∞ . (3.2)

Next, the following exponential decay estimate of ‖√ρθ‖2
L2 is crucial to obtain

the time-independent estimates on the gradients of the velocity and the magnetic
field.

Lemma 3.2. For any positive integer m, there exists a positive constant C depending
only on Ω, μ, ν, κ, ‖ρ0‖L∞ , ‖√ρ0u0‖L2 , ‖b0‖L2 , ‖√ρ0θ0‖L2 , and m such that

sup
0�t�T

(
e2σt‖√ρθ‖2

L2

)
+ κ

∫ T

0

eσt‖∇θ‖2
L2 dt � 3

2
‖√ρ0θ0‖2

L2 , (3.3)

sup
0�t�T

(‖√ρu‖2
L2 + ‖b‖2

L2

)
+
∫ T

0

(
μ‖∇u‖2

L2 + ν‖∇b‖2
L2

)
dt

�
(1

2
+

1
2σ

e
1
σ + e

1
σ

)(‖√ρ0u0‖2
L2 + ‖b0‖2

L2

)
+
( 1

2σ2
e

1
σ +

1
σ

e
1
σ +

1
2σ

)
‖√ρ0θ0‖2

L2 ,

(3.4)

and

sup
0�t�T

tm
(‖√ρu‖2

L2 + ‖b‖2
L2

)
+
∫ T

0

tm
(‖∇u‖2

L2 + ‖∇b‖2
L2

)
dt � C, (3.5)

where σ = κ/(d2‖ρ0‖L∞) with d the diameter of Ω.

Proof. 1. Multiplying (3.1)3 by 2θ, and then integration by parts over Ω, we
obtain that

d
dt

‖√ρθ‖2
L2 + 2κ‖∇θ‖2

L2 = 0. (3.6)

Since θ|Ω = 0, it follows from the Poincaré inequality (see [23, (A.3), p. 266])
that

‖θ‖2
L2 � d2‖∇θ‖2

L2 , (3.7)
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where d is the diameter of Ω. As a consequence, we infer from (3.2) and (3.7)
that

‖√ρθ‖2
L2 � d2‖ρ‖L∞‖∇θ‖2

L2 � d2‖ρ0‖L∞‖∇θ‖2
L2 . (3.8)

Inserting (3.8) into (3.6) gives

d
dt

‖√ρθ‖2
L2 +

2κ

d2‖ρ0‖L∞
‖√ρθ‖2

L2 � 0,

which yields immediately that

sup
0�t�T

(
e2σt‖√ρθ‖2

L2

)
� ‖√ρ0θ0‖2

L2 , for σ =
κ

d2‖ρ0‖L∞
. (3.9)

Multiplying (3.6) by eσt and using (3.9), we have

d
dt

(
eσt‖√ρθ‖2

L2

)
+ 2κeσt‖∇θ‖2

L2 = σeσt‖√ρθ‖2
L2 � σe−σt‖√ρ0θ0‖2

L2 ,

which integrated in time over [0, T ] implies

2κ

∫ T

0

eσt‖∇θ‖2
L2 dt � ‖√ρ0θ0‖2

L2 . (3.10)

Hence, the desired (3.3) follows from (3.9) and (3.10).

2. Multiplying (3.1)2 by u, (3.1)4 by b, and integrating by parts, we get from
(3.9) that

d
dt

(‖√ρu‖2
L2 + ‖b‖2

L2

)
+ 2μ‖∇u‖2

L2 + 2ν‖∇b‖2
L2

= 2
∫

ρθu · e2 dx

� 2‖√ρu‖L2‖√ρθ‖L2

� e−σt‖√ρu‖2
L2 + eσt‖√ρθ‖2

L2

� e−σt‖√ρu‖2
L2 + e−σt‖√ρ0θ0‖2

L2 . (3.11)

Thus, Gronwall’s inequality leads to

sup
0�t�T

(‖√ρu‖2
L2 + ‖b‖2

L2

)

� exp

(∫ T

0

e−σt dt

)(
‖√ρ0u0‖2

L2 + ‖b0‖2
L2 +

∫ T

0

e−σt‖√ρ0θ0‖2
L2 dt

)

� e
1
σ

(
‖√ρ0u0‖2

L2 + ‖b0‖2
L2 + σ−1‖√ρ0θ0‖2

L2

)
. (3.12)
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Consequently, integrating (3.11) over [0, T ] together with (3.12) yields∫ T

0

(
2μ‖∇u‖2

L2 + 2ν‖∇b‖2
L2

)
dt

� ‖√ρ0u0‖2
L2 +‖b0‖2

L2 + sup
0�t�T

‖√ρu‖2
L2

∫ T

0

e−σt dt+‖√ρ0θ0‖2
L2

∫ T

0

e−σt dt

�
(
1 +

1
σ

e
1
σ

)(‖√ρ0u0‖2
L2 + ‖b0‖2

L2

)
+
( 1

σ2
e

1
σ +

1
σ

)
‖√ρ0θ0‖2

L2 . (3.13)

This along with (3.12) implies the desired (3.4).

3. We prove (3.5) by induction. Multiplying (3.11) by t, we obtain from (3.2)
and the Poincaré inequality that

d
dt

(
t‖√ρu‖2

L2 + t‖b‖2
L2

)
+ 2μt‖∇u‖2

L2 + 2νt‖∇b‖2
L2

� e−σt(t‖√ρu‖2
L2) + te−σt‖√ρ0θ0‖2

L2 + ‖√ρu‖2
L2 + ‖b‖2

L2

� e−σt(t‖√ρu‖2
L2) + te−σt‖√ρ0θ0‖2

L2 + ‖ρ0‖L∞d2‖∇u‖2
L2 + d2‖∇b‖2

L2 .
(3.14)

Thus, Gronwall’s inequality implies

sup
0�t�T

(
t‖√ρu‖2

L2 + t‖b‖2
L2

)
+
∫ T

0

t
(‖∇u‖2

L2 + ‖∇b‖2
L2

)
dt � C, (3.15)

due to (3.13) and the following fact∫ T

0

te−σt dt =
1
σ2

− 1
σ2eσT

− T

σeσT
� C(σ).

Assume (3.5) holds for m. That is,

sup
0�t�T

(
tm‖√ρu‖2

L2 + tm‖b‖2
L2

)
+
∫ T

0

tm
(‖∇u‖2

L2 + ‖∇b‖2
L2

)
dt � C.

(3.16)

Consider m + 1. Multiplying (3.11) by tm+1, we obtain from (3.2) and the
Poincaré inequality that

d
dt

(
tm+1‖√ρu‖2

L2 + tm+1‖b‖2
L2

)
+ 2μtm+1‖∇u‖2

L2 + 2νtm+1‖∇b‖2
L2

� e−σt(tm+1‖√ρu‖2
L2) + tm+1e−σt‖√ρ0θ0‖2

L2

+ (m + 1)tm‖√ρu‖2
L2 + (m + 1)tm‖b‖2

L2

� e−σt(tm+1‖√ρu‖2
L2) + Ctm+1e−σt + Ctm‖∇u‖2

L2 + Ctm‖∇b‖2
L2 , (3.17)

which combined with Gronwall’s inequality, (3.16), and the following

Im+1 :=
∫ T

0

tm+1e−σt dt = −Tm+1

σeσT
+

m + 1
σ

Im � C(m,σ) (3.18)
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yields

sup
0�t�T

tm+1
(‖√ρu‖2

L2 + ‖b‖2
L2

)
+
∫ T

0

tm+1
(‖∇u‖2

L2 + ‖∇b‖2
L2

)
dt � C.

(3.19)

This finishes the proof of lemma 3.2.
�

The following lemma concerns the time-weighted estimates on the L∞(0;T ;L2)-
norm of the gradients of the velocity, the magnetic field and the temperature.

Lemma 3.3. Let m and σ be as in lemma 3.2, then there exists a positive constant
C depending only on Ω, μ, ν, κ, ‖ρ0‖L∞ , ‖∇u0‖L2 , ‖∇b0‖L2 , ‖∇θ0‖L2 , and m such
that

sup
0�t�T

(‖∇u‖2
L2 + ‖∇b‖2

L2

)
+
∫ T

0

(‖√ρut‖2
L2 + ‖Δb‖2

L2 + ‖|b||∇b|‖2
L2

)
dt � C,

(3.20)

sup
0�t�T

tm
(‖∇u‖2

L2 +‖∇b‖2
L2

)
+
∫ T

0

tm
(‖√ρut‖2

L2 +‖Δb‖2
L2 +‖|b||∇b|‖2

L2

)
dt � C,

(3.21)

and

sup
0�t�T

(
eσt‖∇θ‖2

L2

)
+
∫ T

0

eσt‖√ρθt‖2
L2 dt � C. (3.22)

Proof. 1. Multiplying (3.1)2 by ut and integrating the resulting equation over
Ω, we get

μ

2
d
dt

∫
|∇u|2 dx +

∫
ρ|ut|2 dx = −

∫
ρu · ∇u · ut dx

+
∫

θρe2 · ut dx +
∫

b · ∇b · ut dx. (3.23)

By Hölder’s inequality and (2.1), we have∣∣∣∣−
∫

ρu · ∇u · ut dx

∣∣∣∣ � 1
4
‖√ρut‖2

L2 + ‖√ρu‖2
L4‖∇u‖2

L4

� 1
4
‖√ρut‖2

L2 + C‖√ρu‖2
L4‖∇u‖L2‖∇u‖H1 . (3.24)

By Cauchy–Schwarz inequality and (3.9), we find that∣∣∣∣
∫

θρe2 · ut dx

∣∣∣∣ � ‖√ρut‖L2‖√ρθ‖L2 � 1
4
‖√ρut‖2

L2 + ‖√ρ0θ0‖2
L2e−2σt.

(3.25)
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Integration by parts together with the conditions divb = 0 in Ω and b = 0
on ∂Ω, we arrive at∫

b · ∇b · ut dx = − d
dt

∫
b · ∇u · bdx +

∫
bt · ∇u · bdx +

∫
b · ∇u · bt dx

= − d
dt

∫
b · ∇u · bdx +

∫
(Δb−u · ∇b+b · ∇u) · ∇u · bdx

+
∫

b · ∇u · (Δb − u · ∇b + b · ∇u) dx

� − d
dt

∫
b · ∇u · bdx +

ν

4
‖Δb‖2

L2 + C‖b‖6
L6 + C‖∇u‖3

L3

� − d
dt

∫
b · ∇u · bdx +

ν

4
‖Δb‖2

L2 + C‖b‖2
L2‖∇b‖4

L2

+ C‖∇u‖2
L2‖u‖H2 . (3.26)

Hence, substituting (3.24)–(3.26) into (3.23), we derive from (3.4) that

d
dt

(
μ

2

∫
|∇u|2 dx +

∫
b · ∇u · bdx

)
+

1
2
‖√ρut‖2

L2

� C‖√ρu‖2
L4‖∇u‖L2‖∇u‖H1 + Ce−2σt +

ν

4
‖Δb‖2

L2

+ C‖∇b‖4
L2 + C‖∇u‖2

L2‖u‖H2 . (3.27)

2. Multiplying (3.1)4 by Δb and integrating the resulting equality over Ω, it
follows from Hölder’s and Gagliardo–Nirenberg inequalities that

d
dt

∫
|∇b|2 dx + ν

∫
|Δb|2 dx � C

∫
|∇u||∇b|2 dx + C

∫
|∇u||b||Δb|dx

� C‖∇u‖L3‖∇b‖ 4
3
L2‖Δb‖2/3

L2 + C‖∇u‖L3‖b‖L6‖Δb‖L2

� C‖∇u‖2
L2‖∇2u‖L2 + C(1 + ‖b‖2

L2)‖∇b‖4
L2 +

ν

4
‖Δb‖2

L2 , (3.28)

which together with (3.27) and (3.4) gives rise to

d
dt

(μ

2
‖∇u‖2

L2 + ‖∇b‖2
L2 +

∫
b · ∇u · bdx

)
+

1
2
‖√ρut‖2

L2 +
ν

2
‖Δb‖2

L2

� C
(‖√ρu‖2

L4 + ‖∇u‖L2

) ‖∇u‖L2‖u‖H2 + C‖∇b‖4
L2 + Ce−2σt. (3.29)

3. Recall that (u, P ) satisfies the following Stokes system
⎧⎪⎪⎨
⎪⎪⎩
−μΔu + ∇P = −ρut − ρu · ∇u + b · ∇b + ρθe2, x ∈ Ω,

div u = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(3.30)
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Applying lemma 2.3 with F = −ρut − ρu · ∇u + b · ∇b + ρθe2, we obtain
from (3.2) and (3.9) that

‖u‖H2 � C (‖ρut‖L2 + ‖ρu · ∇u‖L2 + ‖b · ∇b‖L2 + ‖ρθ‖L2)

� C‖√ρut‖L2 + C‖√ρu‖L4‖∇u‖L4 + C‖|b||∇b|‖L2

+ ‖ρ0‖1/2
L∞‖√ρ0θ0‖L2e−σt

� C‖√ρut‖L2 + C‖√ρu‖L4‖∇u‖1/2
L2 ‖∇u‖1/2

H1 +C‖|b||∇b|‖L2 +Ce−σt

� C‖√ρut‖L2 +C‖√ρu‖2
L4‖∇u‖L2 +

1
2
‖u‖H2 +C‖|b||∇b|‖L2 +Ce−σt,

and thus

‖u‖H2 � C‖√ρut‖L2 + C‖√ρu‖2
L4‖∇u‖L2 + C‖|b||∇b|‖L2 + Ce−σt.

(3.31)
Inserting (3.31) into (3.29) and applying Cauchy–Schwarz inequality, we
deduce that

d
dt

B(t) +
1
4
‖√ρut‖2

L2 +
ν

2
‖Δb‖2

L2

� C‖√ρu‖4
L4‖∇u‖2

L2 + C‖∇u‖4
L2 + C‖∇b‖4

L2 + ε‖|b||∇b|‖2
L2 + Ce−2σt,

(3.32)

where

B(t) :=
μ

2
‖∇u‖2

L2 + ‖∇b‖2
L2 +

∫
b · ∇u · bdx (3.33)

satisfies

μ

4
‖∇u‖2

L2 + ‖∇b‖2
L2 − C1‖b‖4

L4 � B(t) � C‖∇u‖2
L2 + C‖∇b‖2

L2 , (3.34)

owing to Gagliardo–Nirenberg inequality, (3.4), and the following estimate

∫
|b · ∇u · b|dx � μ

4
‖∇u‖2

L2 + C1‖b‖4
L4 . (3.35)

4. Multiplying (3.1)4 by |b|2b and integrating the resulting equality by parts
over Ω, we infer from Gagliardo–Nirenberg inequality and (3.4) that

1
4

d
dt

‖b‖4
L4 + ‖|∇b||b|‖2

L2 +
1
2
‖∇|b|2‖2

L2 � C‖∇u‖L2‖|b|2‖2
L4

� C‖∇u‖L2‖|b|2‖L2‖∇|b|2‖L2

� 1
4
‖∇|b|2‖2

L2 + C‖∇u‖4
L2 + C‖∇b‖4

L2 . (3.36)
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Now, adding (3.36) multiplied by 4(C1 + 1) to (3.32) and choosing ε suitably
small, we obtain after using (2.3) and (3.4) that

d
dt

(
B(t) + (C1 + 1)‖b‖4

L4

)
+ ‖√ρut‖2

L2 + ν‖Δb‖2
L2 + ‖|b||∇b|‖2

L2

� C‖∇b‖4
L2 + C‖∇u‖4

L2 + C‖√ρu‖4
L4‖∇u‖2

L2

� C‖∇b‖2
L2‖∇b‖2

L2 + C‖∇u‖2
L2‖∇u‖2

L2

+ C‖∇u‖2
L2‖∇u‖2

L2 log(2 + ‖∇u‖2
L2) + Ce−2σt. (3.37)

Set

f(t) := 2 + B(t) + (C1 + 1)‖b‖4
L4 , g(t) � ‖∇u‖2

L2 + ‖∇b‖2
L2 + e−2σt,

then we deduce from (3.37) and (3.34) that

f ′(t) � Cg(t)f(t) + Cg(t)f(t) log f(t),

which yields

(log f(t))′ � Cg(t) + Cg(t) log(f(t)). (3.38)

We thus infer from (3.38), (3.4), Gronwall’s inequality and (3.34) that

sup
0�t�T

(‖∇u‖2
L2 + ‖∇b‖2

L2 + ‖b‖4
L4

)
� C. (3.39)

Integrating (3.37) with respect to t together with (3.39) and (3.4) leads to

∫ T

0

(‖√ρut‖2
L2 + ‖Δb‖2

L2 + ‖|b||∇b|‖2
L2

)
dt � C. (3.40)

This along with (3.39) gives the desired (3.20).

5. Multiplying (3.37) by tm, we then infer from (3.39), (3.34) and Sobolev’s
inequality that

d
dt

(
tmB(t) + (C1 + 1)tm‖b‖4

L4

)
+ tm

(‖√ρut‖2
L2 + ν‖Δb‖2

L2 + ‖|b||∇b|‖2
L2

)
� Ctm‖∇b‖4

L2 + Ctm‖∇u‖4
L2 + Ctme−2σt + mtm−1B(t)

+ m(C1 + 1)tm−1‖b‖4
L4

� Ctm‖∇b‖4
L2 + Ctm‖∇u‖4

L2 + Ctme−2σt + Ctm−1‖∇u‖2
L2

+ Ctm−1‖∇b‖2
L2 + Ctm−1‖∇b‖4

L2

� C
(‖∇u‖2

L2 + ‖∇b‖2
L2

)(
tm‖∇u‖2

L2 + tm‖∇b‖2
L2

)
+ Ctme−2σt

+ Ctm−1‖∇u‖2
L2 + Ctm−1‖∇b‖2

L2 , (3.41)

which combined with Gronwall’s inequality, (3.34), (3.5) and (3.18) leads to
the desired (3.21).
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6. Multiplying (3.1)3 by θt and integrating the resulting equation over Ω, we get

κ

2
d
dt

∫
|∇θ|2 dx +

∫
ρθ2

t dx = −
∫

θtρu · ∇θ dx. (3.42)

By Hölder’s inequality and (2.1), we obtain from Sobolev’s inequality,
Gagliardo–Nirenberg inequality and (3.20) that for any δ > 0,∣∣∣∣−

∫
θtρu · ∇θ dx

∣∣∣∣ � 1
2
‖√ρθt‖2

L2 +
1
2
‖√ρu‖2

L4‖∇θ‖2
L4

� 1
2
‖√ρθt‖2

L2 + C‖∇u‖2
L2‖∇θ‖L2‖∇θ‖H1

� 1
2
‖√ρθt‖2

L2 + C(δ)‖∇θ‖2
L2 + δ‖∇2θ‖2

L2 . (3.43)

Hence, substituting (3.43) into (3.42) yields

κ
d
dt

‖∇θ‖2
L2 + ‖√ρθt‖2

L2 � C‖∇θ‖2
L2 + 2δ‖∇2θ‖2

L2 . (3.44)

It follows from (3.1)3, Hölder’s inequality, (2.1), and (3.20) that

‖∇2θ‖2
L2 � C‖√ρθt‖2

L2 + C‖|u||∇θ|‖2
L2

� C‖√ρθt‖2
L2 + C‖u‖2

L4‖∇θ‖2
L4

� C‖√ρθt‖2
L2 +

1
2
‖∇2θ‖2

L2 + C‖∇θ‖2
L2 , (3.45)

which combined with (3.44) and choosing δ suitably small imply that

κ
d
dt

‖∇θ‖2
L2 + ‖√ρθt‖2

L2 � C‖∇θ‖2
L2 . (3.46)

Multiplying (3.46) by eσt leads to

κ
d
dt

(eσt‖∇θ‖2
L2) + eσt‖√ρθt‖2

L2 � Ceσt‖∇θ‖2
L2 . (3.47)

Integrating (3.47) in time over [0, T ] together with (3.10) leads to the desired
(3.22).

�

As an application of lemmas 3.2 and 3.3, we have the following time-weighted
estimates on ‖√ρut‖2

L2 , ‖bt‖2
L2 , and ‖√ρθt‖2

L2 , which play an important role in
deriving the uniform-in-time bound of

∫ T

0
‖∇u‖L∞ dt.

Lemma 3.4. Let m be as in lemma 3.2, then there exists a positive constant C
depending only on Ω, μ, ν, κ, ‖ρ0‖L∞ , ‖∇u0‖L2 , ‖∇b0‖L2 , ‖∇θ0‖L2 , and m such
that

sup
0�t�T

tm
(‖√ρut‖2

L2 + ‖bt‖2
L2 + ‖√ρθt‖2

L2

)

+
∫ T

0

tm
(‖∇ut‖2

L2 + ‖∇bt‖2
L2 + ‖∇θt‖2

L2

)
dt � C. (3.48)
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Proof. 1. Differentiating (3.1)2 with respect to t, we arrive at

ρutt + ρu · ∇ut − μΔut = −∇Pt − ρt (ut + u · ∇u) − ρut · ∇u + bt · ∇b

+ b · ∇bt + (ρθ)te2. (3.49)

Multiplying (3.49) by ut and integrating (by parts) over Ω and using (1.1)1
yield

1
2

d
dt

∫
ρ|ut|2 dx + μ

∫
|∇ut|2 dx

=
∫

div(ρu)|ut|2 dx +
∫

div(ρu)u · ∇u · ut dx −
∫

ρut · ∇u · ut dx

+
∫

bt · ∇b · ut dx +
∫

b · ∇bt · ut dx +
∫

(ρθ)te2 · ut dx =:
6∑

k=1

Jk.

(3.50)

By virtue of Hölder’s inequality, Gagliardo–Nirenberg inequality, Sobolev’s
inequality, (3.2), and (3.20), we find that

|J1| =
∣∣∣∣−
∫

ρu · ∇|ut|2 dx

∣∣∣∣
� 2‖ρ‖1/2

L∞‖u‖L∞‖√ρut‖L2‖∇ut‖L2

� μ

12
‖∇ut‖2

L2 + C‖u‖2
L∞‖√ρut‖2

L2

� μ

12
‖∇ut‖2

L2 + C‖u‖2
H2‖√ρut‖2

L2 ;

|J2| =
∣∣∣∣−
∫

ρu · ∇(u · ∇u · ut) dx

∣∣∣∣
�
∫ (

ρ|u||∇u|2|ut| + ρ|u|2|∇2u||ut| + ρ|u|2|∇u||∇ut|
)

dx

� C‖u‖L∞‖∇u‖2
L4‖√ρut‖L2 + C‖u‖2

L∞‖∇2u‖L2‖√ρut‖L2

+ C‖u‖2
L∞‖∇u‖L2‖∇ut‖L2

� C‖u‖L∞‖∇u‖L2‖∇u‖H1‖√ρut‖L2 + C‖u‖L2‖u‖H2‖∇2u‖L2‖√ρut‖L2

+ C‖u‖H2‖∇ut‖L2

� μ

12
‖∇ut‖2

L2 + C‖u‖2
H2‖√ρut‖2

L2 + C‖u‖2
H2 ;

|J3| � C‖∇u‖L4‖√ρut‖L2‖ut‖L4

� C‖u‖H2‖√ρut‖L2‖∇ut‖L2

� μ

12
‖∇ut‖2

L2 + C‖u‖2
H2‖√ρut‖2

L2 ;

|J4| =
∣∣∣∣−
∫

bt · ∇ut · bdx

∣∣∣∣
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� ‖bt‖L3‖∇ut‖L2‖b‖L6 � C‖bt‖1/2
L2 ‖bt‖1/2

L6 ‖∇ut‖L2‖∇b‖L2

� μ

12
‖∇ut‖2

L2 + C(δ)‖bt‖2
L2 +

δ

4
‖∇bt‖2

L2 ;

|J5| =
∣∣∣∣−
∫

b · ∇ut · bt dx

∣∣∣∣
� ‖b‖L6‖∇ut‖L2‖bt‖L3 � C‖∇b‖L2‖∇ut‖L2‖bt‖1/2

L2 ‖bt‖1/2
L6

� μ

12
‖∇ut‖2

L2 + C(δ)‖bt‖2
L2 +

δ

4
‖∇bt‖2

L2 ;

|J6| =
∣∣∣∣
∫

(−div(ρθu) + κΔθ)e2 · ut dx

∣∣∣∣
�
∫

ρθ|u||∇ut|dx + κ

∫
|∇θ|∇ut|dx

� C (‖u‖L4‖ρ‖L∞‖θ‖L4 + ‖∇θ‖L2) ‖∇ut‖L2

� C‖∇θ‖L2‖∇ut‖L2

� μ

12
‖∇ut‖2

L2 + C‖∇θ‖2
L2 .

Substituting the above estimates into (3.50) and applying (3.1)4, we derive
that

d
dt

‖√ρut‖2
L2 + μ‖∇ut‖2

L2

� C‖u‖2
H2‖√ρut‖2

L2 + C‖u‖2
H2 + C‖∇θ‖2

L2 + δ‖∇bt‖2
L2 + C‖bt‖2

L2

� C‖u‖2
H2‖√ρut‖2

L2 + C‖u‖2
H2 + C‖∇θ‖2

L2 + δ‖∇bt‖2
L2

+ C‖Δb‖2
L2 + C‖u‖2

L∞‖∇b‖2
L2 + C‖b‖2

L4‖∇u‖2
L4

� C‖u‖2
H2‖√ρut‖2

L2 + C‖u‖2
H2 + C‖∇θ‖2

L2 + δ‖∇bt‖2
L2 + C‖Δb‖2

L2 .
(3.51)

Here we have used the following

‖bt‖2
L2 � C‖Δb‖2

L2 + C‖u‖2
L∞‖∇b‖2

L2

+ C‖b‖2
L4‖∇u‖2

L4 � C‖Δb‖2
L2 + C‖∇u‖2

H1 , (3.52)

due to (3.1)4, (3.20), and Sobolev’s inequality.

2. Differentiating (3.1)4 with respect to t and multiplying the resulting equations
by bt, we obtain from integration by parts and (3.20) that

1
2

d
dt

∫
|bt|2 dx + ν

∫
|∇bt|2 dx � C (‖|ut||b|‖L2 + ‖|u||bt|‖L2) ‖∇bt‖L2

� C
(
‖ut‖L6‖b‖L3 + ‖u‖L6‖bt‖1/2

L2 ‖bt‖1/2
L6

)
‖∇bt‖L2
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� C
(
‖∇ut‖L2 + ‖∇u‖L2‖bt‖1/2

L2 ‖∇bt‖1/2
L2

)
‖∇bt‖L2

� ν

2
‖∇bt‖2

L2 + C‖∇ut‖2
L2 + C‖∇u‖2

L2‖bt‖2
L2 ,

which implies that

d
dt

‖bt‖2
L2 + ν‖∇bt‖2

L2 � C2‖∇ut‖2
L2 + C‖∇u‖2

L2‖bt‖2
L2 . (3.53)

Adding (3.51) multiplied by 2C2 to (3.53) and then choosing δ = ν/4C2, we
deduce that

d
dt

(
2C2‖√ρut‖2

L2 + ‖bt‖2
L2

)
+ C2‖∇ut‖2

L2 +
ν

2
‖∇bt‖2

L2

� C‖u‖2
H2

(‖√ρut‖2
L2 + ‖bt‖2

L2

)
+ C‖u‖2

H2 + C‖∇θ‖2
L2 + C‖Δb‖2

L2 .
(3.54)

From (3.31), (2.3), (3.4), and (3.20), we have

‖u‖2
H2 � C‖√ρut‖2

L2 + C‖|b||∇b|‖2
L2 + C‖∇u‖2

L2 + Ce−2σt, (3.55)

which combined with (3.20) and (3.4) implies that

∫ T

0

‖u‖2
H2 dt � C. (3.56)

Multiplying (3.54) by tm, we get from (3.52) that

d
dt

(
2C2t

m‖√ρut‖2
L2 + tm‖bt‖2

L2

)
+ C2t

m‖∇ut‖2
L2 +

ν

2
tm‖∇bt‖2

L2

� C‖u‖2
H2

(
tm‖√ρut‖2

L2 + tm‖bt‖2
L2

)
+ Ctm‖u‖2

H2 + Ctm‖∇θ‖2
L2

+ Ctm‖Δb‖2
L2 + Ctm−1‖√ρut‖2

L2 + Ctm−1‖bt‖2
L2

� C‖u‖2
H2

(
tm‖√ρut‖2

L2 + tm‖bt‖2
L2

)
+ Ctm‖u‖2

H2 + Ctm‖∇θ‖2
L2

+ Ctm‖Δb‖2
L2 + Ctm−1‖√ρut‖2

L2 + Ctm−1‖Δb‖2
L2 + Ctm−1‖u‖2

H2 ,
(3.57)

which together with Gronwall’s inequality, (3.56), (3.55), (3.5), (3.21), and
(3.18) gives

sup
0�t�T

tm
(‖√ρut‖2

L2 + ‖bt‖2
L2

)
+
∫ T

0

tm
(‖∇ut‖2

L2 + ‖∇bt‖2
L2

)
dt � C.

(3.58)
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3. Differentiating (3.1)3 with respect to t shows

ρθtt + ρu · ∇θt − κΔθt = −ρt(θt + u · ∇θ) − ρut · ∇θ. (3.59)

Multiplying (3.59) by θt and integrating the resulting equality over Ω yield
that

1
2

d
dt

∫
ρθ2

t dx + κ

∫
|∇θt|2 dx = −

∫
ρt(θt + u · ∇θ)θt dx

−
∫

ρθtut · ∇θ dx =: I1 + I2. (3.60)

It follows from (1.1)1, integration by parts, Hölder’s inequality, Sobolev’s
inequality, (3.2), (3.20), (3.22), Gagliardo–Nirenberg inequality, and (3.1)3
that

|I1| � C

∫
ρ|u| (|θt||∇θt| + |θt||∇u||∇θ| + |θt||u||∇2θ| + |∇θt||u||∇θ|) dx

� C‖ρ‖3/4
L∞‖u‖L6‖√ρθt‖1/2

L2 ‖θt‖1/2
L6 (‖∇θt‖L2 + ‖∇u‖L4‖∇θ‖L4)

+ C‖ρ‖3/4
L∞‖u‖2

L12‖√ρθt‖1/2
L2 ‖θt‖1/2

L6 ‖∇2θ‖L2

+ C‖ρ‖L∞‖u‖2
L∞‖∇θ‖L2‖∇θt‖L2

� C‖√ρθt‖1/2
L2 ‖∇θt‖3/2

L2 + C‖√ρθt‖1/2
L2 ‖∇θt‖1/2

L2 ‖∇u‖1/2
H1 ‖∇θ‖1/2

H1

+ C‖√ρθt‖1/2
L2 ‖∇θt‖1/2

L2 ‖∇2θ‖L2 + C‖u‖L2‖u‖H2‖∇θt‖L2

� κ

4
‖∇θt‖2

L2 + C‖√ρθt‖2
L2 + C‖u‖2

H2 + C‖∇θ‖2
H1

� κ

4
‖∇θt‖2

L2 + C‖√ρθt‖2
L2 + C‖u‖2

H2 + C‖∇θ‖2
L2 + C‖ρθt + ρu · ∇θ‖2

L2

� κ

4
‖∇θt‖2

L2 +C‖√ρθt‖2
L2 +C‖u‖2

H2 + C‖∇θ‖2
L2 +C‖ρ‖2

L∞‖u‖2
L∞‖∇θ‖2

L2

� κ

4
‖∇θt‖2

L2 + C‖√ρθt‖2
L2 + C‖u‖2

H2 + C‖∇θ‖2
L2 . (3.61)

By Hölder’s inequality, (3.2), Sobolev’s inequality, and (3.22), we have

|I2| � C‖ρ‖L∞‖∇θ‖L2‖θt‖L4‖ut‖L4 � C‖∇θt‖L2‖∇ut‖L2

� κ

4
‖∇θt‖2

L2 + C‖∇ut‖2
L2 . (3.62)

Hence, substituting (3.61) and (3.62) into (3.60), we obtain from (3.31) and
(3.76) that

d
dt

‖√ρθt‖2
L2 + κ‖∇θt‖2

L2 � C‖√ρθt‖2
L2 + C‖u‖2

H2 + C‖∇θ‖2
L2 + C‖∇ut‖2

L2 .

(3.63)
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Multiplying (3.63) by tm, we arrive at

d
dt

(
tm‖√ρθt‖2

L2

)
+ κtm‖∇θt‖2

L2 � Ctm‖√ρθt‖2
L2 + Ctm‖u‖2

H2 + Ctm‖∇θ‖2
L2

+ Ctm‖∇ut‖2
L2 + Ctm−1‖√ρθt‖2

L2 .
(3.64)

This along with Gronwall’s inequality, (3.22), (3.56), (3.10), and (3.58) yields

sup
0�t�T

(
tm‖√ρθt‖2

L2

)
+
∫ T

0

tm‖∇θt‖2
L2 dt � C. (3.65)

Hence, the desired (3.48) follows from (3.58) and (3.65).
�

Lemma 3.5. Let q be as in theorem 1.1 and m be as in lemma 3.2, then there exists
a positive constant C depending only on Ω, μ, ν, κ, ‖ρ0‖L∞ , ‖∇u0‖L2 , ‖∇b0‖L2 ,
‖∇θ0‖L2 , m, and q such that for r ∈ [2, q),

sup
0�t�T

(‖ρ‖W 1,q + ‖ρt‖Lr

)
� C. (3.66)

Proof. 1. We infer from Sobolev’s embedding theorem, lemma 2.3, (3.2), (3.22),
(2.1), and Young’s inequality that

‖∇u‖L∞ � C‖u‖W 2,3

� C (‖ρut‖L3 + ‖ρu · ∇u‖L3 + ‖b · ∇b‖L3 + ‖ρθ‖L3)

� C‖ρut‖L3 + C‖u‖L∞‖∇u‖L3 + C‖b‖L12‖∇b‖L4 + C‖∇θ‖L2

� C‖ρut‖L3 + C‖u‖2
H2 + C‖∇b‖L2‖∇b‖1/2

L2 ‖∇b‖1/2
H1 + Ce−(σ/2)t

� C‖ρut‖L3 + C‖u‖2
H2 +C‖∇b‖2

L2 +C‖∇b‖3/2
L2 ‖Δb‖1/2

L2 +Ce−(σ/2)t

� C‖ρut‖L3 + C‖u‖2
H2 + C‖∇b‖2

L2 + C‖Δb‖2
L2 + Ce−(σ/2)t

(3.67)

By Hölder’s inequality, Sobolev’s inequality, and (3.2), we have

‖ρut‖L3 � ‖ρ‖1/2
L∞‖√ρut‖1/2

L2 ‖√ρut‖1/2
L6 � C‖√ρut‖1/2

L2 ‖∇ut‖1/2
L2 ,

which together with Hölder’s inequality implies for any 0 � a < b < ∞,

∫ b

a

‖ρut‖L3 dt � C

∫ b

a

t−(3/8)‖√ρut‖1/2
L2 · t3/8‖∇ut‖1/2

L2 dt

� C
[ ∫ b

a

t−(1/2)‖√ρut‖2/3
L2 dt

]3/4

×
[ ∫ b

a

t3/2‖∇ut‖2
L2 dt

]1/4

.

(3.68)
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As a consequence, if T � 1, we obtain from (3.68) and (3.48) that∫ T

0

‖ρut‖L3 dt

� C

[∫ T

0

t−
1
2 · t− 1

3 t
1
3 ‖√ρut‖

2
3
L2 dt

] 3
4

×
[∫ T

0

t1/2‖∇ut‖L2 · t‖∇ut‖L2 dt

] 1
4

� C

(
sup

0�t�T
t‖√ρut‖2

L2

) 1
4
(∫ T

0

t−
5
6 dt

) 3
4

×
(∫ T

0

t‖∇ut‖2
L2dt

) 1
8
(∫ T

0

t2‖∇ut‖2
L2 dt

) 1
8

� CT
1
8 � C. (3.69)

If T > 1, one deduces from (3.69), (3.68), and (3.48) that∫ T

0

‖ρut‖L3 dt

=
∫ 1

0

‖ρut‖L3 dt +
∫ T

1

‖ρut‖L3 dt

� C + C

[∫ T

1

t−
1
2 ‖√ρut‖

2
3
L2 dt

] 3
4

×
[∫ T

1

t1/2‖∇ut‖L2 · t‖∇ut‖L2 dt

] 1
4

� C + C

(
sup

1�t�T
t2‖√ρut‖2

L2

) 1
4
(∫ T

1

t−
1
2 · t− 2

3 dt

)3/4

×
(∫ T

1

t‖∇ut‖2
L2 dt

) 1
8
(∫ T

1

t2‖∇ut‖2
L2 dt

) 1
8

� C + C
(
1 − T− 1

6

) 3
4 � C. (3.70)

Hence, we derive from (3.67), (3.69), (3.70), (3.56), (3.13), and (3.20) that∫ T

0

‖∇u‖L∞ dt � C. (3.71)

2. Taking spatial derivative ∇ on the transport equation (3.1)1 leads to

∂t∇ρ + u · ∇2ρ + ∇u · ∇ρ = 0.

Thus standard energy methods yield for any q ∈ (2,∞),

d
dt

‖∇ρ‖Lq � C(q)‖∇u‖L∞‖∇ρ‖Lq ,
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which combined with Gronwall’s inequality and (3.71) gives

sup
0�t�T

‖∇ρ‖Lq � C. (3.72)

Noticing the following fact

‖ρt‖Lr = ‖u · ∇ρ‖Lr � ‖∇ρ‖Lq‖u‖
L

qr
q−r

� ‖∇ρ‖Lq‖∇u‖L2 ,

which together with (3.72) and (3.20) yields

sup
0�t�T

‖ρt‖Lr � C. (3.73)

Thus, the desired (3.66) follows from (3.2), (3.72), and (3.73).
�

Lemma 3.6. Let m be as in lemma 3.2 and q be as in theorem 1.1, then there exists
a positive constant C depending only on Ω, μ, ν, κ, ‖ρ0‖L∞ , ‖∇u0‖L2 , ‖∇b0‖L2 ,
‖∇θ0‖L2 , m, and q such that

sup
0�t�T

tm
(‖u‖2

H2 + ‖∇P‖2
L2 + ‖∇2θ‖2

L2 + ‖b‖2
H2

)
(3.74)

+
∫ T

0

tm
(‖u‖2

H3 + ‖∇P‖2
H1 + ‖θ‖2

H3 + ‖b‖2
H3

)
dt

� C. (3.75)

Proof. 1. It follows from (3.1)3, (3.2), Sobolev’s inequality, (2.1), and (3.20) that

‖∇2θ‖2
L2 � C‖ρθt‖2

L2 + C‖ρ|u||∇θ|‖2
L2

� C‖√ρθt‖2
L2 + C‖u‖2

L4‖∇θ‖2
L4

� C‖√ρθt‖2
L2 + C‖∇u‖2

L2‖∇θ‖L2‖∇θ‖H1

� C‖√ρθt‖2
L2 +

1
2
‖∇2θ‖2

L2 + C‖∇θ‖2
L2 ,

which combined with (3.22) and (3.65) leads to

sup
0�t�T

(
tm‖∇2θ‖2

L2

)
� C. (3.76)

We derive from the regularity theory of elliptic system, (3.1)4, and (3.20) that

‖b‖2
H2 � C

(‖bt‖2
L2 + ‖u · ∇b‖2

L2 + ‖b · ∇u‖2
L2 + ‖b‖2

H1

)
� C‖bt‖2

L2 + C‖u‖2
L6‖∇b‖2

L3 + C‖b‖2
L∞‖∇u‖2

L2

� C‖bt‖2
L2 + C‖∇u‖2

L2‖∇b‖L2‖∇b‖L6 + C‖∇b‖L2‖∇b‖H1‖∇u‖2
L2

� C‖bt‖2
L2 +

1
2
‖b‖2

H2 ,
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which together with (3.58) yields

sup
0�t�T

(
tm‖b‖2

H2

)
� C. (3.77)

From lemma 2.3, (3.55), (3.77), and Sobolev’s inequality, we have

‖u‖2
H2 + ‖∇P‖2

L2 � C
(‖√ρut‖2

L2 + ‖|b||∇b|‖2
L2 + ‖∇u‖2

L2 + e−2σt
)

� C
(‖√ρut‖2

L2 + ‖b‖2
L∞‖∇b‖2

L2 + ‖∇u‖2
L2 + e−2σt

)
� C‖√ρut‖2

L2 + C‖∇b‖2
L2 + C‖∇u‖2

L2 + e−2σt.

This along with (3.21) and (3.58) yields

sup
0�t�T

tm
(‖u‖2

H2 + ‖∇P‖2
L2

)
� C. (3.78)

2. We obtain from (3.30), (3.2), (3.9), (3.77), (3.72), and Sobolev’s inequality,
we have

‖u‖2
H3 + ‖∇P‖2

H1

� C
(‖ρut‖2

H1 + ‖ρu · ∇u‖2
H1 + ‖b · ∇b‖2

H1 + ‖ρθ‖2
H1

)
� C‖√ρut‖2

L2 + C‖∇u‖2
L2 + C‖∇b‖2

L2 + Ce−2σt + C‖∇(ρut)‖2
L2

+ C‖∇(ρu · ∇u)‖2
L2 + C‖∇(b · ∇b)‖2

L2 + C‖∇(ρθ)‖2
L2

� C‖√ρut‖2
L2 + C‖∇u‖2

L2 + C‖∇b‖2
L2 + Ce−2σt

+ C‖∇ut‖2
L2 + C‖∇ρ‖2

Lq‖ut‖2

L
2q

q−2

+ C‖u‖2
H2 + C‖∇ρ‖2

Lq‖u‖2
L∞‖∇u‖2

L
2q

q−2
+ C‖b‖2

H2

+ C‖∇θ‖2
L2 + C‖∇ρ‖2

Lq‖θ‖2

L
2q

q−2

� C‖√ρut‖2
L2 + C‖∇u‖2

L2 + Ce−2σt + C‖∇ut‖2
L2 + C‖u‖2

H2

+ C‖∇b‖2
L2 + C‖Δb‖2

L2 + C‖∇θ‖2
L2

� C
(‖√ρut‖2

L2 + ‖Δb‖2
L2

)
+ C

(‖∇u‖2
L2 + ‖∇b‖2

L2

)
+ Ce−2σt

+ C‖∇ut‖2
L2 + C‖∇θ‖2

L2 ,

which together with (3.21), (3.5), (3.18), (3.58), and (3.3) yields∫ T

0

tm
(‖u‖2

H3 + ‖∇P‖2
H1

)
dt � C. (3.79)

Similarly, one gets∫ T

0

tm‖θ‖2
H3 dt � C,

∫ T

0

tm‖b‖2
H3 dt � C. (3.80)

Hence, the desired (3.74) follows from (3.76)–(3.80).
�
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4. Proof of theorem 1.1

With the a priori estimates in § 3 at hand, we are now in a position to prove
theorem 1.1.

By lemma 2.1, there exists a T∗ > 0 such that the problem (1.1)–(1.3) has a
unique local strong solution (ρ,u, P, θ,b) on Ω × (0, T∗]. We plan to extend the
local solution to all time.

Set

T ∗ = sup{T | (ρ,u, θ,b) is a strong solution on Ω × (0, T ]}. (4.1)

First, for any 0 < τ < T∗ < T � T ∗ with T finite, we deduce from (3.48), (3.74),
and [9, theorem 4, p. 304] that

∇u, ∇θ, ∇b ∈ C([τ, T ];H1). (4.2)

Moreover, it follows from (3.66) and [17, lemma 2.3] that

ρ ∈ C([0, T ];W 1,q). (4.3)

Owing to (3.2) and (3.20), we get

ρut =
√

ρ · √ρut ∈ L2(0, T ;L2).

From (3.73), (3.4), and Sobolev’s inequality, one has

ρtu ∈ L2(0, T ;L2).

Thus, we arrive at

(ρu)t = ρut + ρtu ∈ L2(0, T ;L2). (4.4)

From (3.2) and (3.12), we have

ρu) =
√

ρ · √ρu ∈ L∞(0, T ;L2),

which combined with (4.4) yields

ρu ∈ C([0, T ];L2). (4.5)

Similarly, we can derive

ρθ ∈ C([0, T ];L2) and b ∈ C([0, T ];L2). (4.6)

Finally, if T ∗ < ∞, it follows from (4.2), (4.3), (3.20), and (3.22) that

(ρ,u, θ,b)(x, T ∗) = lim
t→T∗

(ρ,u, θ,b)(x, t)

satisfies the initial condition (1.4) at t = T ∗. Thus, taking (ρ,u, θ,b)(x, T ∗) as the
initial data, lemma 2.1 implies that one can extend the strong solutions beyond T ∗.
This contradicts the assumption of T ∗ in (4.1). Furthermore, the other estimates
as those in (1.5) and (1.6) follow from lemmas 3.2–3.6. The proof of theorem 1.1 is
complete. �
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