
J. Fluid Mech. (2020), vol. 902, A8. © The Author(s), 2020.
Published by Cambridge University Press

902 A8-1

doi:10.1017/jfm.2020.571

Bubble coalescence in low-viscosity power-law
fluids

Pritish M. Kamat1,‡, Christopher R. Anthony1,§ and Osman A. Basaran1,†

1Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA

(Received 21 August 2019; revised 21 June 2020; accepted 5 July 2020)

As two spherical gas bubbles of radii R̃ are brought together inside a liquid of density
ρ̃, viscosity μ̃ and surface tension σ̃ , the liquid sheet separating them drains, thins
and ultimately ruptures. The instant and location at which the bubbles make contact,
and whereby a circular hole of vanishingly small radius is formed in the thin sheet,
represent the occurrence of a finite-time singularity. The large curvature near the edge
of the sheet where the hole has just formed, and where the two bubbles are now
connected via a microscopic gas bridge, drives liquid to flow radially outward, causing
the sheet to retract and the radius of the hole R̃min to increase with time. Recent
work in this area has uncovered self-similarity and universal scaling regimes when two
bubbles coalesce in a Newtonian fluid. Motivated by applications in which the exterior
is a deformation-rate-thinning, power-law fluid, recent studies on bubble coalescence in
Newtonian fluids are extended to coalescence in power-law fluids. In such fluids, viscosity
decreases with deformation rate ˙̃γ raised to the n − 1 power where 0 < n ≤ 1 (n = 1 for
a Newtonian fluid). Attention is focused here on power-law fluids that are slightly viscous
at zero deformation rate, i.e. when the Ohnesorge number Oh = μ̃0/(ρ̃R̃σ̃ )1/2 is small
(Oh � 1) and where μ̃0 is the zero-deformation-rate viscosity. A combination of thin-film
theory and three-dimensional, axisymmetric computations is used to probe the dynamics
in the aftermath of the singularity. Heretofore unexplored regimes are uncovered, and
criteria are developed for transitions between different regimes. The existence of a truly
inviscid regime, predicted long ago by Keller (Phys. Fluids, vol. 26, 1983, pp. 3451–3453)
and which comes into play as a purely geometrical limit of the free-surface shape, is also
reported. New insights are presented on the much studied Newtonian limit beyond the
initial regime reported by Munro et al. (J. Fluid Mech., vol. 773, 2015, R3). The paper
concludes with a phase diagram in (n, R̃min/R̃)-space, where the index n characterizes
the fluid and R̃min/R̃ the extent of coalescence, that highlights the various regimes and
transitions between them.
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1. Introduction

1.1. Bubble coalescence
Gas–liquid dispersions typically occur as systems that consist of either free bubbles
that are dispersed in and rising in an ambient liquid (Mougin & Magnaudet 2001) or
trapped bubbles that are ensconced in a foam (Hilgenfeldt, Koehler & Stone 2001; Carrier
& Colin 2003). In such dispersions, the bubble size distribution, which is controlled
by the competition between interfacial rupture and coalescence between the dispersed
bubbles, is an important physical characteristic that plays a key role in determining
the chemical and rheological nature of the system. Consequently, dynamical studies of
both processes – breakup (Gordillo & Pérez-Saborid 2006; Bolaños-Jiménez et al. 2009)
and coalescence (Paulsen et al. 2014; Munro et al. 2015) – hold tremendous value for
understanding natural processes such as carbon uptake by the oceans due to bubble
entrainment (Feely et al. 2001), as well as for improving upon existing technologies in
chemical and bio-chemical processing that depend on gas–liquid contact (Joshi 2001) or
separation (Siegel, Merchuk & Schugerl 1986). The goal of this work is to advance our
understanding of the fluid dynamics of the coalescence between two bubbles inside a
liquid phase that is a non-Newtonian fluid.

When two spherical bubbles touch, the thin liquid film or sheet of density ρ̃, viscosity
μ̃ and surface tension σ̃ between them ruptures and a circular hole is formed that now
connects the two bubbles. In the immediate aftermath of the occurrence of this space–time
singularity, the high capillary pressure at the tightly curved rim of the hole – a microscopic
gas bridge – drives liquid outwards and causes the radius R̃min of the hole to increase with
time. This process continues until the radius of the hole becomes comparable to the radius
of the bubble R̃, at which point the bubbles are considered to have fully coalesced. As a
consequence, the process of bubble coalescence belongs to the broad category of problems
concerned with the axisymmetric retraction of liquid sheets.

Early work on this subject has dealt with retraction of (inviscid) soap films/sheets of
uniform thickness. These sheets were found to retract at a constant velocity while forming a
bulge at the rim of the growing hole (Dupré 1867; Rayleigh 1891; Ranz 1950; Taylor 1959;
Culick 1960). Keller (1983) extended this work by studying inviscid films of non-uniform
thickness and, in particular, considered the liquid film between two bubbles. In the case of
coalescence between perfectly spherical bubbles of equal radii R̃, the film between them
has thickness w̃(r̃) ≈ r̃2/R̃, where r̃ is the radial distance measured from the centre of
the hole. By assuming that all the retracted mass accumulates in the growing bulged rim,
Keller (1983) was able to show, via a simple inertio-capillary force balance over the rim,
that

R̃min

R̃
∼ (32/3)1/4

(
t̃

tic

)1/2

, (1.1)

where t̃ is the time elapsed since the instant of rupture, and tic = (ρ̃R̃3/σ̃ )1/2 is the
inertio-capillary time scale. Thus, Keller was the first to predict the existence of a universal
scaling regime in bubble coalescence.

Recent high-speed visualization studies conducted by Paulsen et al. (2014) of the
coalescence of two bubbles that are surrounded by an incompressible Newtonian liquid
over a wide range of viscosities (0.49 mPa s < μ̃ < 29 000 mPa s) attest to the fact that
the normalized hole radius R̃min/R̃ indeed scales as the square root of the normalized time
(t̃/tic)

1/2 in all cases. In situations in which the outer liquid is nearly inviscid, Paulsen et al.
(2014) reported the pre-factor in the scaling law relating the normalized hole radius to
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normalized time to be 1.4, a value which is close to the value of (32/3)1/4 ≈ 1.8072 of the
pre-factor in Keller’s expression (1.1). On the other hand, for bubble coalescence in highly
viscous fluids, Paulsen et al.’s (2014) experimental measurements showed that the value
of the pre-factor in the scaling law depends on the liquid viscosity and equals 1.17/Oh1/2,
where Oh = μ̃/(ρ̃R̃σ̃ )1/2 is the Ohnesorge number. Thus, Paulsen et al. (2014) were the
first to uncover the presence of two distinct limiting regimes in bubble coalescence.

Following the experiments of Paulsen et al. (2014), this problem was analysed
theoretically using the reduced-order radial thin-film equations by Munro et al. (2015).
These authors took that the film terminates in a rounded tip in which inertia remains
negligible. By approximating the rounded tip using a force-balance expression, they were
able to reduce the problem to a system of two simultaneous ordinary differential equations
governing the self-similar shape and radial velocity of the liquid in the film. The theoretical
value of the pre-factor deduced by Munro et al. (2015) in the inviscid limit (Oh � 1) was
the same as that obtained by Keller (1983), whereas that in the viscous limit (Oh � 1)
was shown to equal 0.8908/Oh1/2. A subsequent computational study by the same group
of collaborators (see Anthony et al. 2017) not only lent further credence to the existence of
the two limiting regimes of bubble coalescence uncovered by Paulsen et al. (2014) but was
able to shed light on some of the differences between experiment and theory, and probe
the dynamics when the retracting sheet was no longer slender.

1.2. Power-law fluids
Liquids encountered in real life applications are seldom pure, Newtonian fluids. In most
cases, they contain dissolved salts and organic material that affect their rheological
properties. Larson (2013) notes that even a small amount of dissolved polymeric species
causes a solvent to lose its Newtonian nature, and instead undergo viscosity reduction
under a finite deformation rate. This behaviour is also exhibited by Newtonian liquids
containing suspended solid particles that are both Brownian (Xu, Rice & Dinner
2013; Mari et al. 2015) and non-Brownian (Denn & Morris 2014). As a result, such
deformation-rate-thinning (which is hereafter referred to as simply deformation thinning)
rheology is fairly common in nature (Jenkinson, Wyatt & Malej 1998), chemical
processing (Ryder & Yeomans 2006; Boger 2009), food processing (Dickinson & van Vliet
2003) and pharmaceutical drug manufacture (Lee, Moturi & Lee 2009) where long-chain
organic compounds are frequently present.

Although the consequences of deformation thinning have been investigated in a
number of studies involving free-surface flows including the pinch-off of fluid threads
or filaments (see below) and dewetting of polymer films of small, but uniform, thickness
(Debrégeas, de Gennes & Brochard-Wyart 1998; Saulnier, Raphaël & de Gennes 2002),
the study of bubble coalescence so far has been confined to Newtonian liquids. Apart
from being interesting from a scientific point of view, the study of bubble coalescence
in deformation-thinning liquids is also of commercial significance. An interesting
example is that involving thermal ink-jet nozzles (Basaran, Gao & Bhat 2013). Here, a
deformation-thinning ink contacting a heating element is super-heated to produce bubbles
which then expand to help eject a drop of controlled size from the nozzle. Specifically,
upon application of a heating pulse, small bubble nuclei are formed on the surface
of a heater, which later coalesce to form a macroscopic bubble (O’Horo & Andrews
1995). The efficiency of the drop ejection process is therefore highly contingent upon
the coalescence dynamics of the smaller bubbles inside the ink, and more accurate studies
of this phenomenon are essential in predicting and/or improving the performance of these
devices. Additional commercial examples of bubble coalescence in deformation-thinning
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fluids include separation of natural gas from heavy crude oil (Ghannam et al. 2012), use
of a gas as tamponade in vitrectomy procedures (Suri & Banerjee 2006), manufacture
of milk-based beverages (Janhøj, Bom Frøst & Ipsen 2008) and aeration in oxidative
waste-water treatment (Fabiyi & Larrea 2013).

The non-Newtonian viscosity of a deformation-thinning fluid depends on the local
deformation rate and can be expressed in terms of a constitutive equation. A commonly
used equation to describe the rheology of such fluids is the Carreau model (Bird,
Armstrong & Hassager 1987; Doshi et al. 2003; Larson 2013)

μ̃ = μ̃0(1 − β)[1 + (α̃ ˜̇γ )2](n−1)/2 + μ̃0β, (1.2)

where μ̃ is the apparent local viscosity, ˜̇γ is the local deformation rate, μ̃0 is the viscosity
at zero deformation rate, α̃−1 is the characteristic deformation-rate, μ̃0β (where 0 ≤ β ≤
1) is the viscosity in the limit of infinite deformation rate and 0 < n ≤ 1 is the power-law
index or exponent. In the so-called power-law limit (β → 0, α̃ ˜̇γ � 1), the Carreau model
(1.2) tends to the Ostwald de Wæle relationship

μ̃ = μ̃0|α̃ ˜̇γ |n−1. (1.3)

In the limit n = 1, (1.2) and (1.3) describe a pure Newtonian liquid of viscosity μ̃0.
Therefore, fluids described by these models are also called generalized Newtonian fluids.
In a number of recently studied problems, (1.3) has been found to be highly effective in
describing the behaviour of real deformation-thinning fluids in the vicinity of finite-time
singularities where deformation rates are high. Its success may be clearly seen in the field
of pinch-off of liquid threads, where (1.3) has been used in both theoretical (Renardy
2002; Doshi et al. 2003; Doshi & Basaran 2004) and numerical analyses (Doshi et al.
2003; Suryo & Basaran 2006), and the results of which have been verified experimentally
(Savage et al. 2010; Huisman, Friedman & Taborek 2012). Consequently, we analyse in this
paper bubble coalescence in low-viscosity power-law fluids using the constitutive relation
given in (1.3).

1.3. Overview and road map for remainder of paper
In the remainder of this paper, we draw strongly upon the findings reported in
aforementioned works (Keller 1983; Paulsen et al. 2014; Munro et al. 2015; Anthony
et al. 2017) in the Newtonian limit. Of particular relevance to our work here are their
results in the limit of Oh � 1, where R̃min scales according to (1.1), and the flows remain
concentrated within a thin compressional boundary layer near the tip of the retracting film,
the radial extent of which is given by the length scale L̃ ∝ Oh R̃min . Additionally, Munro
et al.’s assumption that the film remains locally thin loses its validity when R̃min ∼ Oh2 R̃,
leaving the dynamics past this point in time heretofore inadequately explored. In order to
explore the dynamics at all times, we carry out full three-dimensional (3-D) axisymmetric
simulations by means of an algorithm based on that described and used in Anthony et al.
(2017).

The plan for the remainder of the paper is as follows. We discuss the problem set-up,
governing equations and non-dimensionalization in § 2. In § 3, we extend the thin film
equations used by Munro et al. (2015) for Newtonian fluids to power-law fluids, and use
these equations to estimate the strengths of the important forces in play. A discussion of
our numerical simulations is presented in § 4, followed by results and discussion on the
radial scaling in § 5, tip force balance in § 6 and the self-similar thin film in § 7. Section 8
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then describes the geometrical limit where the film solution breaks down and the dynamics
transitions into the inviscid flow regime inherent in the assumption used by Keller in
arriving at his simple but powerful result. The paper ends in § 9 with a phase diagram
of bubble coalescence and some recommendations for future work.

2. Mathematical formulation

2.1. Problem set-up
The system considered is isothermal and consists of two equal-sized spherical gas
bubbles each of radius R̃ that are surrounded by an incompressible power-law liquid of
constant density ρ̃, zero-deformation viscosity μ̃0, characteristic deformation rate α̃−1 and
power-law index 0 < n ≤ 1. The surface tension of the bubble–ambient liquid interface
σ̃ is spatially uniform and temporally constant. The effect of gravity is considered to be
negligible on the dynamics. As realized in the experiments of Paulsen et al. (2014), the two
bubbles are brought together sufficiently slowly so that they remain perfectly spherical and
the thin sheet of liquid between them drains radially outward from the axis of symmetry
connecting their centres. At time t̃ = 0, the bubbles just touch and the film ruptures. In
this paper, the dynamics that is of interest is that which unfolds at times t̃ > 0 as the
circular hole – gas bridge – connecting the two bubbles grows from a microscopic to
macroscopic size. Due to the inherent symmetries in the problem, it proves convenient to
use a cylindrical coordinate system (r̃, θ, z̃) with its origin located at the point where the
two bubbles come into contact at time t̃ = 0 and where r̃ is the radial coordinate measured
from the axis of symmetry (r̃ = 0), z̃ is the axial coordinate measured from the origin
toward the centre of one of the bubbles (z̃ = 0 is the plane of symmetry), and θ is the
angle measured around the axis of symmetry. In what follows, the vectors er and ez stand
for unit vectors in the radial and axial directions.

By identifying the important scales in the problem, we seek to render it in a
dimensionless form. We choose the radius of each bubble R̃ as the length scale, the
inertio-capillary time tic = (ρ̃R̃3/σ̃ )1/2 as the time scale and μ̃0 as the viscosity scale.
Moreover, we use σ̃ /R̃ as the pressure scale and μ̃0/tic as the scale for viscous stress.
The coordinates and variables in the problem are made dimensionless by expressing them
as real multiples of their respective scales. From here on, all quantities represented with
a tilde over them (example, z̃) are dimensional, and those without (example, z, where
z ≡ z̃/R̃) are their dimensionless counterparts.

As the interfaces of the two bubbles touch, the thin fluid sheet between them ruptures,
forming a hole of radius Rmin which increases with time t as the sheet recedes. The high
in-plane curvature at the rim of the hole, or the tip (Rmin ≤ r ≤ RE, see figure 1), produces
a large pressure which pushes the liquid radially outward, thus driving the coalescence
process. The flows generated in this manner encounter viscous resistance and decay as one
moves radially outward from the axis of symmetry. Thus, at sufficiently large distances
from the axis of symmetry, the fluid velocity eventually dies out, which leads to the
far-field condition that

v(r, z, t) → 0, h(r, t > 0) ≈ h(r, t = 0), valid when r � Rmin. (2.1)

From the theoretical work by Munro et al. (2015) and the numerical simulations of
Anthony et al. (2017), we note that the full problem of two bubbles coalescing in an infinite
expanse of an outer liquid may be reduced to simply that of a receding axisymmetric liquid
sheet of large but finite extent between the two bubbles following the instant of rupture
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Gas

Bubble (quiescent gas)

V

Rmin

SFS

SSYM

Oh, α, n

Rtrunc

Power-law
liquid

ST

Oh, α, n
Power-law liquid

R = 1

R = 1

hE

RE

z
rr

z
z = h(r, t)

FIGURE 1. Schematic showing the dimensionless 3-D axisymmetric or 2-D problem of bubbles
coalescing in an infinite pool of a power-law liquid. Inset: magnified detail of the liquid film
between the coalescing bubbles. (Shaded inset: the computational domain used in the 3-D
axisymmetric or 2-D numerical simulations.) The interface representation z = h(r, t) requires
the interface to be single valued, and is only used in the analysis relying on the thin-film
approximation as described in § 3.

at t = 0. The far-field condition (2.1) is directly imposed in the analysis over this so-called
truncated domain at a radius Rtrunc � Rmin that is sufficiently far away from the singularity
so that its actual value has no effect whatsoever on the temporal evolution of the growing
gas bridge connecting the bubbles and the retracting thin sheet separating them.

A schematic showing the complete dimensionless problem of two coalescing bubbles,
and its reduction to the receding sheet problem is presented in figure 1. Anthony et al.
(2017) have performed numerical simulations over the entire problem domain and shown
that the results up to Rmin ≈ 4 × 10−2 obtained by solving the full problem are identical to
those obtained via a truncated film domain as described here. On account of the validation
that has already been presented by Anthony et al. (2017), and also due to the drastic
computational savings afforded by use of the truncated domain approach, we obtain all
the results to be reported in this work by numerical simulations that are carried out over a
truncated domain. Additional details on this procedure are presented in § 4.

2.2. Governing equations
The isothermal, incompressible flow in the liquid film V is governed by the equation of
continuity and the Cauchy momentum equation

∇ · v = 0 in V, (2.2a)

∂v

∂t
+ v · ∇v = ∇ · T in V, (2.2b)

where v = uer + vez is the fluid velocity, with u and v standing for the radial and axial
components of the velocity, and T is the Cauchy stress tensor given by

T = −pI + Ohμ [∇v + (∇v)ᵀ] , (2.3)

where p is the local pressure in the liquid, Oh = μ̃0/(ρ̃R̃σ̃ )1/2 is the Ohnesorge number
and μ is the local value of the viscosity function. Oh is an important dimensionless
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number in free-surface flows as it expresses the preponderance of the viscous forces over
the inertio-capillary forces in the domain. The dimensionless deformation-rate-dependent
viscosity function μ for a power-law fluid is

μ = |αγ̇ |n−1 in V, (2.4)

where α−1 is the dimensionless characteristic deformation rate, and γ̇ is twice the second
invariant of the rate-of-deformation tensor Γ . The magnitude of the deformation rate, as
defined here, is γ̇ = [2(Γ : Γ )]1/2 which, in cylindrical coordinates, is given by (see, e.g.
Deen 2012)

γ̇ =
[

2
(
∂u
∂r

)2

+ 2
(u

r

)2
+
(
∂u
∂z

+ ∂v

∂r

)2

+ 2
(
∂v

∂z

)2
]1/2

. (2.5)

The free surface SFS separating the liquid – the retracting film – from the gas – the
bubbles – is free from tangential stresses as surface tension is constant. Therefore, the
traction boundary condition at the free surface is (see, e.g. Scriven 1960; Aris 1989; Deen
2012)

n · T = 2Hn on SFS, (2.6)

where n is the unit normal vector pointing outward from the liquid phase, and 2H =
−∇s · n is twice the local mean curvature of the free surface SFS. Here, ∇s = ∇ − n(n ·
∇) is the surface gradient operator. In addition to the traction boundary condition, the
kinematic boundary condition also applies at the interface

n · (v − vs) = 0 on SFS, (2.7)

where vs is the velocity of the free surface in the (r, z)-plane.
As the system is symmetric about the z = 0 plane (SSYM), the flow field there should

obey

n · v = 0 on SSYM, (2.8a)

n · T · t = 0 on SSYM, (2.8b)

where n = −ez is the outward-pointing unit normal vector, and t = er is the unit tangent
vector to SSYM.

Far away from the singularity (r � Rmin), we expect to observe the far-field flow
conditions given by (2.1). These conditions are applied at the boundary r = Rtrunc where
the film is truncated.

2.3. Choice of dimensionless parameters
The non-dimensionalization of the problem as described in § 2.1 results in three important
dimensionless parameters that govern the flow: the Ohnesorge number Oh, the power-law
index n ≤ 1 and the reciprocal of the characteristic deformation rate α.

In this work, attention is focused on power-law fluids that are slightly viscous or nearly
inviscid when the deformation rate is vanishingly small, i.e. fluids with small values of μ̃0.
Therefore, the study is confined to small Ohnesorge numbers (Oh � 1). This condition
is well met by focusing on situations where, with the exception of a handful of cases,
Oh = 0.01 and which, as will be demonstrated later on in the paper, allow the observation
of virtually the full range of dynamical effects that is possible in the nearly inviscid limit.
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The choice of predominantly focusing on Oh = 0.01 is also reinforced by the fact that
the pre-factors obtained by Anthony et al. (2017) at this value of Oh differed from those
in the limit of Oh → 0 by about 2.5 %. Consequently, the majority of the results to be
presented have been obtained when Oh = 0.01 unless it is stated otherwise.

In the equations of this paper, it may be observed that Oh and α appear in combination
as Ohαn−1. However, as shown in appendix A, it is important to note that the appearance
of these two parameters together in this form only occurs as an artifact of employing the
power-law limit of the full Carreau model (β → 0, α̃ ˜̇γ � 1) in combination with the use
of the inertio-capillary time tic as the characteristic scale for time (as is appropriate when
Oh � 1). In the remainder of the paper, the value of the reciprocal of the dimensionless
characteristic deformation rate is held fixed at α = 1 in all simulations for ease of
comparison with bubble coalescence in a Newtonian fluid of the same Oh (� 1) as the
power-law fluid and in order to observe more clearly trends and variations in the reduced
phase space comprised of (n,Rmin).

3. Dominant force-balance analysis using the thin-film approximation

The theoretical work of Munro et al. (2015) utilizes the radial thin-film (sheet)
approximation whereby the mathematical problem is reduced to a set of transient evolution
equations for the film thickness and the lateral velocity as a function of a single spatial
variable r and where the pressure variation in the z direction is negligible. Due to the
initial slenderness of the film in the immediate aftermath of coalescence t → 0+, the
results obtained by these authors using the one-dimensional (1-D) evolution equations
agree well with experimental observations (Paulsen et al. 2014). However, based on their
analysis, when Oh � 1, the film loses slenderness when Rmin ∼ Oh2. Beyond this instant
in time, their results and a priori assumptions are no longer valid. Therefore, to capture
all dynamical regimes, including ones that cannot be analysed using thin-film theory, and
transitions between these regimes, it becomes necessary to obtain dynamical information
from full 2-D numerical simulations as to be described in § 4.

Despite the aforementioned limitation, the reduced-order 1-D thin-film approach is a
valuable tool for a posteriori analysis of the simulation results to be presented later on
in the paper while the slenderness assumption is still valid. In this section, an analysis is
presented to extend the thin-film approach of Munro et al. (2015) to the more general case
of power-law fluids.

Although the central issue in analysing bubble coalescence and a number of related
situations such as hole formation in films is that of sheet retraction, a problem that has
received wide attention beginning with the pioneering works of Taylor (1959), Culick
(1960), Keller (1983) and Keller & Miksis (1983) and in more recent ones that have
followed these earlier studies (see Howell, Scheid & Stone 2010), a common complication
that arises in all of these problems is the small region in the vicinity of the point of
retraction (r → R+

min). Here, the slender film always terminates in a non-slender, rounded
tip that requires special treatment. In bubble coalescence, the rounded tip is the tightly
curved rim of the expanding axisymmetric hole centred at (r = 0, z = 0) which drives the
coalescence process. The tip begins at r = Rmin and curves to match the slender film at
the point r = RE where half the film thickness is hE, as shown in figure 1. In the text that
follows, the thin film (r ≥ RE) is discussed first, which is then succeeded by consideration
of the rounded tip (Rmin ≤ r ≤ RE). In the latter case, the analysis follows that of Munro
et al. (2015) but with fewer assumptions in order to cover a greater dynamical range than
as in that earlier work.
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3.1. Film: thin-film approximation
In the thin-film approximation, the free-surface height is a single-valued function of the
radial distance from the axis of symmetry, viz. z = h(r, t), as shown in figure 1, and as
the extent of the film in the r-direction is much larger than that in the z-direction, the
radial velocity u and the pressure p are expanded in Taylor series in even powers of z due
to symmetry across the plane z = 0 (the approach presented here follows that used by
Eggers (1993) in the derivation of slender-jet equations and Savva & Bush (2009) in that
of equations governing the retraction of thin sheets in planar and axisymmetric geometries
for Newtonian fluids)

u(r, z, t) = u0(r, t)+ u2(r, t)z2 + O(z4), (3.1)

p(r, z, t) = p0(r, t)+ p2(r, t)z2 + O(z4). (3.2)

In the radial thin-film approximation used here, the axial velocity v can then be determined
simply by substituting the expansion for the radial velocity u from (3.1) in the equation of
continuity

v(r, z, t) = −1
r
∂

∂r
[ru0(r, t)] z − 1

r
∂

∂r
[ru2(r, t)]

z3

3
− O(z5). (3.3)

It should be noted that, to leading order, the axial velocity is of O(z) and is much smaller
than the radial velocity which is of O(1).

These expansions for u, v and p are then substituted into the system of (2.2a)–(2.7).
Retaining only the O(1) terms yields a set of evolution equations for the leading-order term
in the radial velocity, u0(r, t), and the film thickness h(r, t). Before summarizing those
equations, we note that the pressure no longer appears in them because at leading-order
it can be expressed through the use of the normal-stress boundary condition in terms of
other variables, viz. the radial velocity, velocity gradients and the curvature, as

p0(r, t) = −2 Ohμ
1
r
∂

∂r
[ru0(r, t)] − 2H, (3.4)

where μ is the viscosity function at O(1) (see below).
The kinematic boundary condition, combined with the equation of continuity, yields

a local mass conservation equation that describes the evolution in time of h. Dropping
the subscript ‘0’ in the leading-order terms, the 1-D mass balance or mass conservation
constraint may be written as

∂h
∂t

+ 1
r
∂

∂r
(urh) = 0, (3.5)

where u(r, t) ≡ u0(r, t). The 1-D momentum equation describing the evolution in time of
u(r, t) ≡ u0(r, t) is

h(ut + uur) = h
∂

∂r
(2H)+ 4 Oh

{
∂

∂r

[
μh
(ru)r

r

]
− 1

2
u(μh)r

r

}
, (3.6)

where 2H = (rhr)r/r to the leading order. Here, and in the text that follows, the subscripts
‘r’ and ‘t’ denote partial derivatives ∂/∂r and ∂/∂t, respectively, and these notations will
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henceforward be used interchangeably based on representational convenience. In the 1-D
approximation, the viscosity function μ reduces to

μ =
∣∣∣∣∣∣2α

√(
∂u
∂r

)2

+
(u

r

)2
+ u

r
∂u
∂r

∣∣∣∣∣∣
n−1

. (3.7)

We note that when r � 1, the three previous equations reduce to those governing the
dynamics of planar films of power-law fluids given in Thete et al. (2015).

The thin-film model is applicable only to the slender sheet that occupies the region
r ≥ RE. In this region, the scales of the forces at play, which are of course those that are
due to inertia (I), viscous resistance (V) and surface tension or capillarity (C), can be
estimated from (3.6) as

I ∼ huur, (3.8a)

V ∼ Oh
[
μh(ur + u/r)

]
r ∼ Ohαn−1hun−1

r urr, and (3.8b)

C ∼ hhrrr. (3.8c)

Additionally, for the mass conservation constraint (3.5) to be satisfied at the edge of the
sheet, the velocity scale must be

u = dRE

dt
∼ RE/t at r = RE. (3.9)

To satisfy the matching criterion with the rounded tip at R = RE, the thin-film shape
function h must equal the maximum height of the tip

h = hE at r = RE. (3.10)

3.2. Tip: force balance
Munro et al. (2015) assumed that the film solution terminates at r = RE in a rounded cap
of (in-plane) radius hE. The large in-plane curvature 1/hE of the tip causes a large capillary
pressure there and thereby drives the entire flow field within the thin film adjacent to it.
The flow that is thereby generated thus gives rise to inertial and viscous forces that affect
the overall film shape and other self-similar features of the dynamics in the entire domain.
Although an exact solution describing the dynamics in the tip region can be obtained by
rigorous asymptotic analysis as has been done by Eggers (2014) for a retracting thread
and Howell et al. (2010) for a spinning sheet, and which can then be matched with the
solution in the retracting thin sheet, we follow the heuristic but physically based approach
of Munro et al. (2015) who approximated the leading-order effects using a generalized
force balance Fnet,tip = ∫

STip
n · T dS. Munro & Lister (2018) have rigorously demonstrated

the validity of this approach in the creeping flow limit by solving without approximation
the Stokes equations in the situation in which the edge of a thin sheet (film) is retracting
while the sheet is simultaneously and uniformly being stretched edgewise, i.e. in the
direction perpendicular to that of retraction, a problem that is a close analogue of the
axisymmetrically growing rim in the bubble coalescence problem analysed in this paper.
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The leading-order force balance over a section of the rim is given by

Du
Dt

πh2
E

4
= 1 + hE

[
2H + 2 Ohμ

(
2
∂u
∂r

+ u
r

)]
r=RE

, (3.11)

and encapsulates the interplay between the driving capillary force (the first term on the
right side) and the two retarding forces – one due to inertia (the term on the left side) and
the other to viscosity at r = RE (the term inside the brackets that is multiplied by Oh).
Equation (3.11) allows estimation of the scales of the principal forces in the tip region as

Itip ∼ h2
Euur, (3.12a)

Vtip ∼ Ohαn−1hEun
r and (3.12b)

Ctip ∼ 1. (3.12c)

Note that in the estimation of the viscous force Vtip, we neglect the small capillary
contribution to the net visco-capillary resistance (2Hr=RE � 1).

4. Three-dimensional axisymmetric (or 2-D) numerical simulations

The system of transient, spatially three-dimensional but axisymmetric or
two-dimensional nonlinear equations discussed in § 2.2 is solved numerically by using an
arbitrary Eulerian–Lagrangian method-of-lines algorithm which uses the Galerkin/finite
element method for spatial discretization, and a predictor–corrector technique with
adaptive time stepping for temporal discretization (Wilkes, Phillips & Basaran 1999;
Wilkes & Basaran 2001). The elliptic mesh technique developed by Christodoulou &
Scriven (1992) is used to tessellate the moving and deforming 2-D domain. See Notz
& Basaran (2004) for details of the numerical implementation and mesh generation
techniques.

4.1. Initial condition
Bubble coalescence begins at the exact point in time and space at which the liquid
sheet ruptures (t = 0, Rmin = 0), but this state is not realizable in a numerical simulation
(Anthony, Harris & Basaran 2020) without an a priori knowledge of the full nature of
the singularity. Moreover, since the limit of continuum mechanics is approximately 10 nm,
simulations have to begin from an initial state in which a small but finite hole or a gas
bridge of radius Rmin(t), where 0 < R0 ≡ Rmin(t = 0) � 1, has already formed. In the
same vein, we begin with a 2-D shape profile of a perfect circle for the bubble free
surface h(r, 0) with a circular cap, to close the curve, at RE(t = 0) = R0 + Z0, where
Z0 = R2

0 = h(RE(0), 0). Moreover, the simulations are begun with an initially quiescent
fluid where the velocity v = 0 over the entire domain. Once the simulations start, at
extremely early times, the dynamics, on account of being universal, transitions from
the initially quiescent state into one that bears no dependence on or retains no imprint
of the imposed initial condition. This independence is clearly demonstrated in figure 2
where results from simulations using different values of R0, but while holding fixed the
dimensionless parameters Oh, α and n, can be seen to tend towards a universal profile of
Rmin(t) versus t once sufficient time has elapsed and all initial transients have died out. The
reader is referred to Anthony et al. (2017) for a more detailed discussion on this subject.
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t

Rmin
R0 = 10–4

R0 = 10–5

10–410–510–610–710–810–910–1010–1110–12

10–5

10–4

10–3

10–2

FIGURE 2. The variation of the minimum neck radius Rmin with time t when Oh = 0.01 and
n = 0.85 obtained from two simulations with distinct initial conditions: R0 = 10−5 (green) and
R0 = 10−4 (blue). After the initial transients have died out, both cases are seen to follow universal
scaling. Here, Z0 = R2

0 in both simulations. The effect of varying the initial half-height of the
bridge Z0 is discussed in depth by Anthony et al. (2017).

4.2. Truncation point
The reduction of the full problem to that of the truncated film necessitates the imposition
of a far-field condition at a radial distance Rtrunc sufficiently far away from the singularity.
Munro et al. (2015) and Anthony et al. (2017) show that the flows generated by the
retracting tip typically decay by an order of magnitude over a radial distance	r ∝ Oh Rmin
when Oh � 1, and over Δr ∝ Rmin when Oh � 1. Consequently, stopping our simulations
when Rmin reaches a value of 0.1Rtrunc makes our results independent of the initial value of
Rtrunc as the far-field condition is always satisfied at r = Rtrunc. In this work, all our results
have been obtained using Rtrunc = 1000R0 unless otherwise stated.

4.3. Tracking of scales
To analyse the dynamics of the receding film, we track the dominant scales that have an
impact on the overall force balance in the tip and film regions. To do so, we first need
to determine the location where the tip and film join (r = RE). In the rounded tip, the
magnitude of hr ≡ ∂h/∂r is large except in the vicinity of where the tip merges with the
film and where hr ≡ ∂h/∂r becomes negligible. Moreover, monitoring the value of hr
allows us to pinpoint the location of where the radius of the tip is a maximum as when it
bulges, which has been shown to occur for Oh � 1 by Munro et al. (2015) and Anthony
et al. (2017). In the 2-D simulations, we track the value of the derivative of the axial
coordinate z with respect to arclength along the free surface

∂z/∂s = hr

(1 + h2
r )

1/2
, (4.1)

where s is the arclength measured from the tip (Rmin, 0). At each time step, starting from the
tip, we march along the free surface towards the film, and mark the radial position where
∂z/∂s has dropped from its value of unity at the tip to some small value (5 × 10−2) as the
matching point RE. The height of the film at this radial location is then set equal to hE.
The length or radial extent of the tip is denoted by Δrtip = RE − Rmin . As capillary forces
tend to keep the tip (r < RE) circular, it is expected based on intuition that Δrtip ≈ hE.
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h E
, �

r tip

�rtip

t

R
m

in
, R

E

RE

t
10–810–9

hE

10–1010–1110–12

10–6

10–7

10–8

10–5

10–4

10–810–910–1010–1110–12

(b)(a)
Rmin

FIGURE 3. Comparison when Oh = 0.01 and n = 0.85 of the temporal evolution of (a) hE
(thick green line) and Δrtip = RE − Rmin (thin black line), and (b) Rmin (thick green line) and
RE (thin black line). (a) shows that the tip is indeed circular as its radial and axial extents remain
approximately equal, viz. Δrtip ≈ hE, during coalescence. Also, as hE � Rmin (see § 6), Rmin
and RE = Rmin + Δrtip exhibit the same scaling with respect to time, as shown in (b).

That this is indeed the case is demonstrated in figure 3(a) which shows for the situation
in which Oh = 0.01 and n = 0.85 that the profiles depicting the evolution in time t of hE
and Δrtip lie on top of each other over a time period that spans five orders of magnitude.
Figure 3(b) shows that as a consequence of Δrtip ≈ hE, combined with the fact that hE �
Rmin (discussed in § 6), the scaling of Rmin and that of RE with t are indistinguishable. It
is important to note that the results depicted in figure 3 justify the ansatz of a rounded tip
in the 1-D analysis of Munro et al. (2015), i.e. these authors assume that Rmin ≈ RE while
reporting the scaling of RE with t. Munro & Lister (2018) have demonstrated through their
rigorous analysis the validity of the nearly rounded tip ansatz for the edge of retracting
stretched viscous films (Oh2 � 1) but not for the nearly inviscid (Oh � 1) films that are
under study in this paper.

In the rounded tip, we determine the important forces Itip, Vtip and Ctip from their
first-principle definitions that involve calculation of either a surface or a volume integral
and thereby infer the dominant balance of forces (see § 6). To analyse all the relevant
scales that are involved, we track u and ur in the tip at the location r = (Rmin + RE)/2
on the symmetry plane (z = 0). In what follows, we denote these values by utip and ur,tip
respectively.

In the thin film, we track the maximum absolute values of u and ur, and the minimum
value of μ along with their radial locations on the symmetry plane SSYM. How the film
thickness h scales with time t in the film is determined by monitoring the instantaneous
value of h at the location r = RE + Δrtip to ensure that the evaluation is made outside of
the tip but within the compressional boundary layer in the film. To estimate the scales of
the velocity gradients, it is important to track the two important length scales Lu – the
radial distance over which u drops by an order of magnitude from its maximum value at
the tip, and Lur – the radial distance from the tip over which ur attains its maximum value.
Therefore, we estimate the radial velocity gradients as

ur ∼ u/Lu, and (4.2a)

urr ∼ ur/Lur. (4.2b)
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t

Rmin

Simulation Simulation Simulation

1.807 t1/2

10–710–810–910–1010–11
10–5

10–4

10–3

10–5

10–4

10–3

10–5

10–4

10–3

t
10–710–810–910–1010–11

t
10–710–810–910–1010–11

1.807 t1/2 1.807 t1/2

(b)(a) (c)

FIGURE 4. Simulation results on the scaling of the minimum neck radius Rmin with time t
for situations in which Oh = 0.01 and the value of the power-law index varies as (a) n = 1
(Newtonian), (b) n = 0.9 and (c) n = 0.8. The thick coloured lines (curves) are data from the
simulations while the thin black lines correspond to 1.807 t1/2. Clearly, both the scaling exponent
of 1/2 and the pre-factor of 1.807 remain unchanged when the outer Newtonian fluid is replaced
by a power-law fluid. All simulation results have been obtained with R0 = 10−5.

These scale definitions have been used to obtain all the results presented in the following
sections.

5. Radial scaling

When bubbles coalesce in liquids that are Newtonian fluids, the minimum radius
Rmin of the gas bridge connecting the two bubbles scales universally as t1/2, as shown
experimentally by Paulsen et al. (2014), theoretically by Keller (1983) and Munro et al.
(2015) and computationally by Anthony et al. (2017). As has already been discussed in
the introduction, for the case of an inviscid outer liquid, Keller (1983) performed a simple
force balance at the tip and determined the value of the pre-factor to be (32/3)1/4 ≈ 1.807.
This pre-factor was later shown by Munro et al. (2015) to remain unchanged in situations in
which the outer fluid is a liquid of small viscosity (Oh � 1). As summarized in figure 4,
we have carried out new simulations when Oh = 0.01 and for different values of n ≤ 1
that show that for bubble coalescence in an ambient liquid that is a power-law fluid of
small zero-deformation-rate viscosity, the scaling exponent as well as the pre-factor remain
unaltered.

6. Rounded tip

6.1. Velocity and velocity derivative scaling, and implications for tip forces
Simulations show that in the tip, the radial velocity utip and its radial derivative ur,tip
scale in accordance with the scaling estimates obtained from the mass conservation
constraint (3.9), viz. utip scales as Rmin/t ∼ R−1

min and ur,tip scales as utip/Rmin ∼ R−2
min . This is

demonstrated in figure 5 for the situation in which Oh = 0.01 and n = 0.9. Based on these
scales, we now seek to arrive at a universal scaling law for hE by balancing the dominant
forces in the tip (3.12), i.e.

Itip ∼ h2
ER−3

min (6.1)

Vtip ∼ Oh hE R−2n
min (6.2)

Ctip ∼ 1. (6.3)
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u tip

Rmin Rmin

u r, 
tip

Simulation Simulation

Slope = –1 Slope = –2 

10–3

103

104

105

108

107

106

105

1010

109

10–410–5 10–310–410–5

(b)(a)

FIGURE 5. Simulation results on the scaling of (a) the velocity utip and (b) the derivative of
the velocity ur,tip in the tip with minimum neck radius Rmin when Oh = 0.01 and n = 0.9 (thick
green lines/curves). The computed results obey the theoretical scaling predictions that utip ∼
R−1

min and ur,tip ∼ R−2
min (shown as black lines of slopes −1 and −2 in (a) and (b)).

6.2. Asymptotic tip conditions
The capillary force in the tip Ctip which is responsible for driving the coalescence process
is balanced by (i) the viscous resistance Vtip at r = RE, (ii) the inertia of the tip Itip or (iii) a
combination of viscous resistance and inertia (see (3.11)). It will be shown below that the
latter balance, case (iii) where Ctip ∼ Vtip ∼ Itip, leads to an inconsistency or impossibility
unless n = 3/4. Therefore, in general, the tip must be predominantly either viscous (case
(i) where Ctip ∼ Vtip) or inertial (case (ii) where Ctip ∼ Itip).

Case (i): in the viscous tip limit, balancing viscous and capillary forces from (6.2) and
(6.3), we arrive at the scaling prediction that

hE ∼ 1
Oh

R2n
min ∼ R2n

min (6.4)

In their study of bubble coalescence in Newtonian fluids, Munro et al. (2015) assumed
this balance to always hold, thereby arriving at hE ∼ R2

min (for n = 1). When n = 1, we
find from the new simulations that the dominant balance is indeed between capillary and
viscous forces. This is demonstrated by the results obtained when Oh = 0.01 from the
first-principles force-balance calculation that are shown in figure 6(a). We further find
in this case where n = 1 and Oh = 0.01 that the scaling relation given in (6.4) where
hE varies quadratically with Rmin is indeed correct for small values of Rmin as shown in
figure 7(a). When the liquid surrounding the two bubbles is a power-law fluid of n = 0.9
and Oh = 0.05, figure 6(b) shows that the balance is once again between viscous and
capillary forces. Furthermore, the simulations in this case (figure 7b) predict that hE ∼
R1.8

min , in accord with (6.4).
Case (ii): in the inertial tip limit, balancing inertial and capillary forces from (6.1) and

(6.3), we arrive at the scaling prediction that

hE ∼ R3/2
min. (6.5)

Simulations for a power-law fluid of n = 0.8 when Oh = 0.01 as highlighted by the results
of first-principles force-balance calculations that are shown in figure 6(c) indicate that the
balance is between inertial and capillary forces. Moreover, scaling results depicting the
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FIGURE 6. Variation with the minimum hole radius Rmin of the forces in the tip that have been
determined from first-principle calculations when: (a) Oh = 0.01, n = 1, (b) Oh = 0.05, n = 0.9
and (c) Oh = 0.01, n = 0.8. The different forces are colour coded as: Itip, blue; Vtip, red; and Ctip,
black. The force balance demonstrates the viscous tip condition Vtip ∼ Ctip in cases (a,b), and
the inertial tip condition Itip ∼ Ctip in case (c).

variation of hE with Rmin obtained from simulations for two different power-law fluids of
different values of the power-law exponent of n = 0.9 and n = 0.8 but at the same value
of Oh = 0.01 shown in figures 7(c) and 7(d) indicate that the exponent in the scaling law
relating hE to Rmin equals the inertial exponent of 3/2, in accordance with (6.5).

Therefore, the dominant balance of forces in the tip in the immediate aftermath of the
coalescence singularity is always between viscous and capillary forces when the liquid
surrounding the bubbles is Newtonian but it may be between either viscous and capillary
forces or inertial and capillary forces when the liquid is a power-law fluid. The maximum
height of the tip hE, on the other hand, has been found to scale at early times as the
minimum radius Rmin raised to the 2n power when the tip is viscous but Rmin raised to
the 3/2 power when the tip is inertial. However, the differences that are observed in the
dominant balance of forces and the values of the scaling exponents relating hE to Rmin for
different values of n and Oh at early times tell only a part of the complete story. We return
to these matters below after we have discussed case (iii) and the implications of the scaling
of hE to the scaling of film thickness.

Case (iii): if all three forces are important, it follows from comparing (6.4) and (6.5)
that this can only happen in the special situation when n = 3/4. We refer to this special
case as the inertial–viscous limit.
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FIGURE 7. Computed variation of (half) film thickness h with Rmin determined from
simulations when: (a) Oh = 0.01, n = 1; (b) Oh = 0.05, n = 0.9; (c) Oh = 0.01, n = 0.9; and
(d) Oh = 0.01, n = 0.8. The thick coloured lines are the simulation results and the thin black
lines, as indicated, are lines of slope 2n or 3/2. For the cases with Oh = 0.01 (a,c,d), over the
range of values of Rmin shown, the scaling exponent in the relationship between h and Rmin
changes from 2 in the Newtonian case, (a), to 3/2 in the power-law cases, (c,d), as n is reduced
from its Newtonian value of 1, indicating that the importance of inertia in the tip rises as n falls.

Combining the result on the scaling of hE with the tip film matching condition (3.10)
and using the self-similarity ansatz in the film, we have thus uncovered the universal,
self-similar scaling for (half) the film thickness h. In the simulations, we measure h at
r = RE + Δrtip, where Δrtip = RE − Rmin , to ensure that the measurement always remains
outside of but also adjacent to the tip. Figure 8 shows the computed scaling of h with Rmin
obtained from simulations for the case of a Newtonian fluid (n = 1) of Oh = 0.01. These
results clearly show that h undergoes a scaling transition from the viscous tip scaling where
h ∼ R2

min to the inertial tip scaling where h ∼ R3/2
min when the minimum neck radius reaches

a critical value of Rmin ≈ 4 × 10−4. We will next discuss the cause of this transition,
and similar ones that occur for power-law fluids, and theoretically predict the transition
point(s).

6.3. Magnitudes of forces, regimes and transition points
First, it is instructive to calculate the scaling of the inertial force in the viscous tip limit
that is by assumption negligible in this limit. From (6.1), it follows that

Itip ∼ 1
Oh2

R4n−3
min . (6.6)
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Rmin ≈ 4 × 10–4
h
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Viscous tip Inertial tip

Slope = 2 Slope = 3/2

FIGURE 8. Simulation results showing the computed variation of (half) film thickness h with
hole radius Rmin when Oh = 0.01 and n = 1. The results show that a transition takes place in
the dynamics as Rmin increases from where the tip is viscous (with a scaling exponent of 2) to
one where the tip is inertial (with a scaling exponent of 3/2). In the figure, results from three
different simulations (indicated by the coloured data points) starting with different initial hole
radii of R0 = 10−6, 10−5 and 10−4 have been superimposed to cover a wide range of Rmin as
discussed in Anthony et al. (2017). Straight lines of slope 2 and 3/2 are shown to highlight where
the tip dynamics is viscous and where it is inertial, and to emphasize that the transition between
them occurs when Rmin ≈ 4 × 10−4.

Therefore, as Rmin → 0 or in the immediate aftermath of the singularity, we see that inertia
is negligible and the tip is viscous provided that 3/4 < n ≤ 1.

Next, we determine the scaling of the viscous force in the inertial limit that is now by
assumption negligible in this limit. From (6.2), it follows that

Vtip ∼ Oh R(3−4n)/2
min . (6.7)

Therefore, as Rmin → 0 or in the immediate aftermath of the singularity, we see that
viscous force is negligible provided that n < 3/4.

However, we also note from (6.6) that inertia can become important as Rmin or time
increases when 3/4 < n ≤ 1 and that according to (6.6), Itip → ∞ as Rmin → 0 when
n < 3/4. We further note from (6.7) that viscous force can become important as Rmin or
time increases when 3/4 < n and that according to (6.7), Vtip → ∞ as Rmin → 0 when
3/4 < n ≤ 1. Therefore, not only the assumption that the inertial or viscous force always
be small for all times or all values of n is incorrect, but the possibility exists for a change
of scaling or regime as coalescence proceeds.

To determine any transitions, we note that since Vtip ∼ hE Oh R−2n
min and Itip ∼ h2

ER−3
min ,

when these forces become comparable and transition from a viscous (inertial) tip to an
inertial (viscous) tip regime is possible

hE ∼ Oh R3−2n
min . (6.8)

Thus, when 3/4 < n ≤ 1, coalescence begins in the viscous tip regime. However,
as time advances and hole radius grows, inertia can eventually become significant and
comparable to viscous force. The point of transition from the viscous tip regime to the
inertial tip regime can then be determined by substituting the viscous tip scaling law
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hE ∼ R2n
min/Oh into (6.8)

Rmin ∼ Oh2/(4n−3) (viscous to inertial transition). (6.9)

Such a transition is clearly possible as the value of the critical minimum radius predicted
by (6.9) is smaller than one since Oh < 1 and n > 3/4.

If, however, 0 < n < 3/4, coalescence begins in the inertial tip regime. As time
advances and hole radius grows, viscous force can grow and eventually may become
comparable to inertial force. The point of transition from the inertial tip to the viscous
tip regime can be determined by substituting the inertial tip scaling law hE ∼ R3/2

min into
(6.8)

Rmin ∼ Oh2/(4n−3) (inertial to viscous transition). (6.10)

Although (6.10) is identical to (6.9), a transition from the inertial tip to the viscous tip
regime is impossible because the minimum radius (whose value is always much smaller
than one) at the transition predicted by (6.10) would be larger than one since Oh < 1 and
n < 3/4.

A more detailed analysis and calculation can be carried out to estimate the prefactor in
the expressions for the critical value of the minimum radius for transition and yields

Rtip
min ≈ 1.807

[
3(n−1)/2 4 Ohαn−1

√
1.807π

]2/(4n−3)

. (6.11)

Therefore, when 3/4 < n ≤ 1, coalescence begins in the viscous tip regime. However,
as the hole radius grows, a transition can take place from the viscous tip to the inertial tip
regime.

For n = 1, (6.9) shows that the value of the minimum radius at the transition scales as
Oh2 and (6.11) predicts the point of transition to be Rmin ≈ 5.09 Oh2. When Oh = 0.01,
figure 8 shows that the minimum radius for the transition to occur determined from
simulations is Rmin ≈ 4 × 10−4, a value that is close to that given by the theoretical
prediction from (6.11). However, as we reduce n, the value of Rtip

min drops precipitously
below numerically accessible values. For example, when n = 0.8 and Oh = 0.01, the
tip transition is estimated or predicted to take place at Rmin ≈ 10−18 which, in a real
system, would lie well below the continuum limit. However, if the power-law index and
the Ohnesorge number are both increased so that n = 0.9 and Oh = 0.05, the value of the
minimum radius Rtip

min for transition increases to 3.9 × 10−4 which is sufficiently large so
that viscous tip scaling (6.4) can be observed in the simulations as shown in figure 7(b).

This analysis also helps to completely rationalize many of the main results reported
in figures 6 and 7 when Oh = 0.01. For the Newtonian case (n = 1), the values of the
minimum radius are sufficiently small in these figures so that the tip is viscous such that
Vtip ∼ Ctip � Itip and hE ∼ R2

min . Moreover, as expected, we see that Vtip is falling and
that Itip is rising as Rmin is increasing in figure 6(a). When n = 0.8 and 0.9, the values
of the transition radii are approximately 10−18 and 10−6, respectively. Thus, the dynamics
has already transitioned into the inertial regime where Itip ∼ Ctip � Vtip and hE ∼ R3/2

min ,
as shown in figure 6(c) and figures 7(c) and 7(d) where results are plotted for values of
Rmin ≥ 10−5.

Additionally, (6.11) suggests that, as we move towards n = 3/4, the transition point
will asymptotically tend to Rmin → 0 where h scales as R3/2

min . Such a criticality has also
been observed for power-law fluids with Oh � 1 in the context of other singularities that
arise during thread breakup (Doshi et al. 2003; Suryo & Basaran 2006) and film rupture
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(Thete et al. 2015) where, as in the present problem, the flow behaviour transitions from
that of a slightly viscous state to one representing a purely inviscid state.

Furthermore, when 0 < n < 3/4, coalescence begins in the inertial tip regime.
However, as the hole radius grows, the tip continues to remain inertial as a transition
from an inertial tip to a viscous tip regime is not possible. Once again, a similar outcome
has also been observed in the previously cited studies on thread breakup and film rupture.
It would be appropriate to summarize in a phase diagram (figure 17) the physics that has
been uncovered in this section on the dynamics that occurs in the immediate aftermath of
the coalescence singularity and any transitions that may arise between dynamical regimes
as time increases. As it will be shown in the next couple of sections, however, it proves
advantageous to postpone the presentation of such a phase diagram until after an analysis
has been carried out of the dynamics in the thin film (sheet).

7. Self-similar solution in the film

The high capillary pressure in the tip drives flow outward into the relatively quiescent
film adjacent to it. In a liquid of small Oh, the compressional stress generated at the tip
does not effectively diffuse into the film and remains high only within a thin boundary
layer adjacent to the retracting tip. The width of this boundary layer is characterized by a
dominant length scale L which depends on both the viscosity (or Oh) of the system as well
as the distance that the tip has retracted from the point of singularity (i.e. Rmin). Munro
et al. (2015) have shown that in the Newtonian limit, L ∼ Oh Rmin .

To analyse the general case of n ≤ 1, we identify two relevant lateral length scales in
the system that characterize the flow behaviour: Lu and Lur (defined in § 4.3). Simulations
performed for cases in which Oh = 0.01 and, by way of example, for n = 0.8 and 0.9,
show that these length scales remain approximately equal to one another throughout the
duration of coalescence, as revealed by figure 9 where Lur is plotted against Lu. Therefore,
the dominant length scale in this problem is

L ≡ Lu ≈ Lur. (7.1)

Based on the results that have just been obtained, we expect that the first and second
derivatives of the radial velocity u should scale as ur ∼ u/L and urr ∼ ur/L ∼ u/L2, where
u ∼ umax ∼ R−1

min from mass conservation (3.9). These scales then allow for a similarity
solution where inertia (I) and viscous forces (V) balance in the film. Indeed, balancing
the scales of the two forces from (3.8a) and (3.8b) yields the scaling relationship for the
lateral length

L ∝ α(n−1)/n Oh1/n R2/n−1
min ∼ R2/n−1

min . (7.2)

This scaling estimate is in excellent agreement with the simulations, as shown in
figure 9(b) for situations in which Oh = 0.01 and n = 0.8, 0.9 and 1. Figure 9(c) provides
an a posteriori confirmation of the scaling estimate that ur ∼ u/L ∼ R−2/n

min . Furthermore,
in the Newtonian limit (n = 1), the scaling for L predicted by (7.2) reduces to that derived
by Munro et al. (2015) that L ∝ Oh Rmin .

Figure 10 shows the variation of the normalized axial coordinate z/R3/2
min of the interface

of the retracting film and the normalized radial velocity u/umax within the film as a function
of the radial distance, normalized using the length scale L ≡ R2/n−1

min , from the tip at several
instants in time (or, equivalently, at several values of Rmin) for the situation in which
Oh = 0.01 and n = 0.9. (The profiles are shown for regular multiples of the minimum
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FIGURE 9. (a) Simulation results obtained when Oh = 0.01 showing the variation of Lur with
Lu for n = 0.8 (thick orange curve) and n = 0.9 (thick blue curve) demonstrating that Lur ≈ Lu.
Here, a thin black line of slope 1 is also shown to help the reader appreciate the near equality
of the two length scales. (b) Simulation results showing the variation of Lu with Rmin when
Oh = 0.01 for n = 0.8 (thick orange curve), n = 0.9 (thick blue curve), and n = 1 (thick green
curve) that demonstrate that the data do indeed scale as Lu ∼ R2/n−1

min as indicated by the three
thin black lines each of slope 2/n − 1. (c) Simulation results obtained when Oh = 0.01 showing
the variation of |ur|max with Rmin for n = 0.8 (thick orange curve) and n = 0.9 (thick blue curve)
exhibit excellent agreement with the scaling estimate that ur ∼ u/L ∼ R−2/n

min as indicated by the
two thin black lines of slope −2/n and help confirm the choice of Lu ≈ Lur as the dominant
length scale L in the problem.

neck radius such that the value of Rmin is successively increased by 50 % starting with
the smallest value of Rmin .) The results shown make plain that the shape and velocity
profiles each tend toward or collapse onto a similarity solution as Rmin is lowered. The
boundary layer flow leads to a bulge near the tip as the fluid accumulates in this region.
Figure 11 shows the instantaneous two-dimensional streamlines and velocity contours
within the retracting tip and film when Oh = 0.01 and n = 0.9. Especially noteworthy
in this figure are the high velocities in the tip as compared to those in the film, and the
virtually unidirectional nature of the streamlines. It is also noteworthy that the lateral
length L, which is identified in the figure based on the distance between the region in
the domain where the radial velocity is a maximum (u ≈ umax ) and the contours are red
and that where the radial velocity has decreased by an order of magnitude (u ≈ 0.1 umax )
and the contours are blue, is markedly larger than twice the tip height (2 hE). The latter
result of course accords with the scaling estimates that have already been reported that
when n = 0.9, L ∼ R2/n−1

min � hE ∼ R3/2
min (note that 2/n − 1 = 11/9 ≈ 1.2 when n = 0.9).

8. Breakdown of unidirectionality – transition to the truly inviscid
regime of bubble coalescence

8.1. Relation between L and 2hE

Figure 11 makes plain that the self-similar flow in the film is nearly unidirectional in
nature and has a characteristic length scale which is larger than twice the tip height
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FIGURE 10. Normalized shape (a) and normalized radial velocity (b) as a function of the radial
distance measured from the instantaneous radius Rmin of the growing hole, viz. r − Rmin , which
has been rescaled using the dominant length scale R2/n−1

min . In (a), the blow-up shows the interface
profiles in the vicinity of the location where the tip and the film merge. The axial coordinate in
(a) has been normalized by Rmin raised to the 3/2 power rather than 2n because the tip is inertial
for the values of Rmin shown. Here, Oh = 0.01 and n = 0.9.
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FIGURE 11. Profiles of and flow fields within the tip and a portion of the film near the tip at the
instant when Rmin = 1.042 × 10−3 for the situation in which Oh = 0.01 and n = 0.9. Here, the
horizontal coordinate or the abscissa represents the radial distance from the tip r − Rmin . The
instantaneous streamlines have been marked with black arrows to indicate the direction of flow
and overlaid on top of the contours of the radial velocity u (values of the coloured contours of u
are shown in the legend). Inset: a zoomed-in view of the film and the flow field within it in the
self-similar zone where the flow is nearly unidirectional.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

57
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.571


Bubble coalescence in low-viscosity power-law fluids 902 A8-23

10–3

10–4

10–5

10–6

10–7

10–7 10–6 10–5 10–4

L

hE

200 000
180 000
160 000
140 000
120 000
100 000
80 000
60 000
40 000
20 000

–2000
0

200 000
180 000
160 000
140 000
120 000
100 000
80 000
60 000
40 000
20 000

–2000
0

0.05

–0.05

0

0.05

–0.05

0

0.2 0.3 0.4

0.2 0.3 0.4

R2/n–1
min

(r – Rmin) / 

Rmin = 6.97 × 10–4

Rmin = 2.55 × 10–3

R
3/

2
m

in
z 

/
R

3/
2

m
in

z 
/

Rmin ≈ 1.02 × 10–3

L ~ R2/n–1
min

L = 2hE

p

p

(b)

(c)

(a)

FIGURE 12. Simulation results showing the transition from the self-similar regime to Keller’s
regime when Oh = 0.01 and n = 0.85. (a) Variation of L with hE. L (green hollow squares)
initially scales as R2/n−1

min (red dashed line) and is larger than 2hE. Once L = 2hE, L undergoes a
transition such that thereafter L ≡ 2hE where 2hE ∼ R3/2

min (solid blue line). Flows near the tip (b)
before and (c) after the transition to Keller’s regime. Both the radial and the axial coordinates
have been normalized as discussed in the text.

(L > 2hE). This flow regime within the film is realized regardless of which of the tip
conditions discussed in § 6 applies. Therefore, the scaling L ∼ R2/n−1

min holds true with
either a viscous tip, for which hE ∼ R2n

min , or an inertial tip, for which hE ∼ R3/2
min . However,

as n is lowered, the argument that has just been presented may be violated and this is a
point that we return to below.

Figure 12(a) shows the computed variation of L (hollow green squares) and 2hE (solid
blue line) with Rmin for the situation in which Oh = 0.01 and n = 0.85. The simulation
results show that at small times, L scales as R2/n−1

min (dashed red line). However, the
simulations also show that near a critical value of the minimum hole radius, and at which
point L ≈ 2hE, a transition takes place and thereafter the dynamical evolution of L clearly
deviates from the dashed line marked as R2/n−1

min and instead follows the solid line marked
as L = 2hE. Therefore, the instant where L ≈ 2hE signals the departure of the dynamics
from the self-similar description given in § 7 and its transition to a new regime where
L = 2hE ∼ R3/2

min .
From the profiles shown in figure 11, it is clear that the tip and the part of the film within

a radial distance L from it bulge out from continual accumulation of fluid. As the bulging
gets more pronounced, fluid is preferentially driven toward this region due to the negative
in-plane curvature of the free surface near the tail end (hereafter referred to as the ‘tail’) of
the tip as it connects to the thin film downstream. This low-pressure zone is clearly visible
near the tail in figure 12(b) which presents a snapshot of the dynamics before the L = 2hE
condition is met.

Indeed, the tail region connects the highest point of the tip (where h = hE) to
the thin-film region (where h ∼ r2) over the radial distance L − Δrtip (≈ L − hE; see
figure 3a). The magnitude of the negative in-plane curvature in this region therefore grows
as hE continues to rise faster than L for times leading up to the transition point.
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FIGURE 13. Instantaneous profiles of flow fields within the tip and a portion of the film near
the tip for the situation in which Oh = 0.01 and n = 0.8 at the instant when Rmin = 1.021 ×
10−3. Here, the horizontal coordinate or the abscissa represents the radial distance from the
tip r − Rmin . The instantaneous streamlines have been marked with black arrows to indicate
the direction of flow and overlaid on top of the contours of the radial velocity u (values of the
coloured contours of u are shown in the legend). Inset: a zoomed in view of the region where
the tip and the film join and the interface has a corner-like appearance. Clearly visible are the
stagnation zone underneath the corner and the weak recirculations in the film.

Once L ≈ 2hE, the profile of the bulge, i.e. the tip plus the tail, becomes nearly a
perfect circle, and this region is hereafter referred to as the blob. The corner-like profile of
the interface at the location where the blob joins the thin film guarantees the continued
existence of a large negative in-plane curvature in that locale. The negative Laplace
(capillary) pressures generated there are sufficiently large in magnitude that they cause
fluid to flow from the film toward the corner. Thus, as shown in figure 12(c), where L
has already undergone the critical transition to thereafter equal 2hE, the flow in the bulge
toward increasing r and the flow in the film in the direction of decreasing r collide, leading
to the formation of a stagnation zone and completely arresting the flow of liquid from
exiting the bulge.

We show in figure 13 the flow field within the tip and a portion of the film at an instant in
time in a situation where this transition has taken place to further highlight the difference
in the flow fields before (cf. figure 11) and after this transition. Moreover, we note that we
return below again to this important issue once we have had the chance to discuss certain
physical ramifications of this transition. It is noteworthy that once the transition occurs,
the stagnation zone flows ensure that the L = 2hE condition is never overshot, i.e. L never
falls below 2hE, and prevent overturning of the free surface and/or rupturing of the film
beyond this point.

8.2. Keller’s limit
Reassuringly, the formation of the stagnation zone as has just been demonstrated provides
strong justification for and is reminiscent of the assumption that Keller (1983) made in his
now famous analysis of retraction of edges or filaments of inviscid fluids. Keller assumed
that at any time t′, all the liquid that is initially contained in the film over 0 < r < Rmin(t′)
at the onset of the space–time singularity (t = 0) accumulates in a growing toroidal ring of
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instantaneous radius Rmin(t′). For this to occur, the fluid exiting the blob must be arrested,
viz. this physical effect may only be produced by a stagnation zone that is created by the
formation of the low-pressure corner region where the blob joins the thin film. Based on
this assumption, Keller conducted a simple force balance by equating the driving capillary
force on the blob to its inertia (in a way that is similar to the inertial tip condition discussed
in § 6) to obtain the radial scaling

Rmin = (32/3)1/4 t1/2, (8.1)

where (32/3)1/4 ≈ 1.807, the same prefactor as that obtained for bubble coalescence in
nearly inviscid liquids (Oh � 1) of Newtonian fluids (Munro et al. 2015; Anthony et al.
2017) and power-law fluids (this work).

Although not done by Keller, it is possible to obtain the scaling for hE by equating the
mass gathered by the blob with the volume of a toroidal ring with a circular cross-section
of radius hE (assuming that the cross-section of the blob in the (r, z)-plane is perfectly
circular)

Rmin(t)∫
0

2πr[2h0(r)] dr = 2π Rmin(t)[πh2
E(t)], (8.2)

where h0(r) ≈ r2 is the profile of half the film height at t = 0. Evaluation of the integral
in the previous equation yields the required expression for hE(t)

hE = 1
2

√
π

R3/2
min. (8.3)

This finding leads to an expected conclusion: once the tip has transitioned to Keller’s
regime – from a state where either the viscous tip condition or the inertial tip condition
held – the tip thereafter either assumes or retains its inertial character, respectively.

We call the condition where L = 2hE Keller’s limit as it is directly linked to the
breakdown of the nearly unidirectional flow that occurs after the formation of a perfectly
circular blob which joins the outer film, giving rise to a corner at the matching
location which results in the creation of a stagnation zone (figure 12c). We show in
figure 14 simulation results that clearly differentiate the dynamics before and after Keller’s
insightful assumption is met.

Given how L varies with Rmin from (7.2) and equating L with twice hE obtained from
(8.3) yields that the transition value of the minimum radius should scale as Oh2/(5n−4). To
be able to predict this limit more quantitatively, we let ψ(n) be the prefactor associated
with the scaling for L (7.2) and repeat the procedure that has just been described to deduce
that the critical value of Rmin is given by

RKI
min ≈ (

ψ(n)
√

π
)2n/(5n−4)

α2(n−1)/(5n−4) Oh2/(5n−4), (8.4)

where the transition to Keller’s regime will take place with an inertial tip. The values of
ψ(n) and RKI

min obtained directly from numerical simulations when Oh = 0.01 are listed in
table 1. The value of RKI

min given in the table for n = 0.85, 1.02 × 10−2, is in excellent
agreement with our simulation results shown in figure 12(a) where the value of the
minimum radius for transition from the initial self-similar regime to Keller’s regime is
shown to be 1.02 × 10−2.

Table 1 also lists RKV
min which is the value of the minimum hole radius where a system

will undergo the same type of transition as that just discussed albeit from a viscous tip
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FIGURE 14. Contrast between the dynamics of bubble coalescence before (a) and after (b)
Keller’s limit. The contours represent the normalized radial velocity of the fluid in the reference
frame of the tip, u′ = u/Utip − 1. In both cases, the dashed lines represent the film shape at
t = 0 and the dash-dot lines correspond to the plane of symmetry z = 0. During the period of
the dynamics prior to Keller’s limit (a), it can be seen that not all of the film swept up by the tip
(contained in r < Rmin(t)) accumulates in the tip (shown as a dashed circle); a portion of that
volume instead accumulates in the compressional boundary layer whose height in the z-direction
is larger than the downstream film thickness. In the aftermath of the Keller limit (b), the fluid
swept up by the tip has now fully accumulated in the tip, thereby exactly satisfying Keller’s
original assumption. In the latter case (b), the incorporation of the film into the tip also occurs at
a speed equal to that of the tip, i.e. u′ = −1 where the film meets the tip. This is made possible
by the stagnation zone that is set up at the corner connecting the tip to the film where the radial
velocity now equals zero (u = 0), a condition that is not satisfied prior to Keller’s limit as can
clearly be seen in (a). As the stagnation zone persists after it forms, its persistence ensures that
beyond Keller’s limit, Keller’s assumption will continue to remain satisfied for any arbitrary time
period t1 to t2 > t1 during the remainder of the coalescence process.

for which hE ∼ R2n
min/Oh. Carrying out the same sort of balance as that in the previous

paragraph yields

RKV
min ≈

(
ψ(n) 1.8072n α(n

2−1)/n

2 · 3(1−n)/2

)n/(2n2+n−2)

Oh(n+1)/(2n2+n−2). (8.5)

Transition into Keller’s regime directly from the viscous tip condition is possible only
when RKV

min < Rtip
min . From the values of the minimum hole radii for transitions that are listed

in table 1, it is clear that the tip transitions from viscous to inertial before Keller’s limit
is reached for all of the cases listed except for the one when Oh = 0.01 and n = 0.8.
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n ψ(n) Rtip
min RKI

min RKV
min

0.80 174.20 1.07 × 10−18 0 1.08 × 10−22

0.85 46.20 1.60 × 10−9 1.02 × 10−3 3.48 × 10−8

0.90 22.23 1.82 × 10−6 5.54 × 10−3 1.83 × 10−5

1.00 10.45 5.09 × 10−4 3.43 × 10−2 1.71 × 10−3

TABLE 1. Values of the prefactor for L scaling (ψ(n)) and transition points – hole radius at
which a transition occurs from a viscous tip to an inertial tip (Rtip

min), an inertial tip to Keller’s
limit (RKI

min) and a viscous tip to Keller’s limit (RKV
min) – when Oh = 0.01 for different values of

the power-law index n obtained from 2-D simulations.

However, as shown in the table, this transition from a viscous tip to Keller’s regime can
only occur in this case when the minimum radius Rmin(= RKV

min) = 1.08 × 10−22, a value
that is orders of magnitude below the continuum limit. The values of RKV

min and Rtip
min given in

table 1 for the situation in which Oh = 0.01 and n = 0.8 can be extrapolated to situations
when n = 0.85 and 0.9 to determine the values of Oh that are needed to observe a direct
transition from a viscous tip to Keller’s limit. By way of example, for the particular case
of n = 0.9, comparison of the relative values of Rtip

min and RKV
min reveals that entrance into

Keller’s regime directly from the viscous tip condition, i.e. RKV
min < Rtip

min , is only possible at
extremely small values of both Rmin (�O(10−15)) and Oh (�O(10−5)). Consequently, such
direct transitions from a viscous tip to Keller’s regime are both rare over the parameter
space and difficult to observe numerically.

In the Newtonian limit (n = 1), it can be shown that ψ(n) has a weak dependence on
Oh: its value rises from 10.45 (see table 1) when Oh = 0.01 to approximately 13.45 when
Oh is reduced to 0.003. Considering this range of ψ , the critical values of the minimum
hole radius for transitions are

Rtip
min ≈ 5.09 Oh2, (8.6a)

RKV
min ≈ (19.51 ± 2.45)Oh2, and (8.6b)

RKI
min ≈ 300(1.52 ± 0.38)Oh2. (8.6c)

Comparison of the values of the prefactors make plain that when 0 < Oh � 1, bubble
coalescence in a Newtonian liquid will exhibit only two transitions: the tip transition
from viscous to inertial (8.6a) which would then be followed by the breakdown of
unidirectionality as the system transitions into Keller’s limit (8.6c).

8.3. Lowering the power-law index n

When the power-law index n is lowered from its Newtonian value of 1 to 0.8, the
simulations clearly show that L scales as R2/n−1

min (7.2) in all cases (see figure 9). When
n = 0.8, the exponent 2/n − 1 = 3/2 is identical to the inertial tip scaling exponent for hE
(8.3). Moreover, from the value ofψ(0.8) given in table 1, one can show that the pre-factor
for L (ψ(0.8)Oh1/0.8 = 0.55) is approximately twice that of hE (1/(2

√
π) = 0.28), thereby

indicating that the dynamics when n = 0.8 always lies in Keller’s regime where L = 2hE.
Figure 15 shows the L scaling obtained from simulations for the situations in which

n = 0.7, 0.75 and 0.8 when Oh = 0.01. Also shown in the figure is the solid black line
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Slope = 3/2

n = 0.7
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0.8

FIGURE 15. Simulation results showing the variation of Lu ≡ L with Rmin when Oh = 0.01 for
n = 0.7 (orange squares), 0.75 (purple squares) and 0.8 (red squares). The data make plain that
the scaling in each case follows Keller’s scaling of R3/2

min (black line).

representing the relationship L = 2hE as derived from Keller’s assumption (8.3). Figure 15
makes it clear that cases for which n ≤ 0.8 lie in Keller’s regime where L ∼ R3/2

min , thereby
making n = 0.8 the critical value of the power-law index above which self-similar film
solutions (as detailed in § 7) exist. Therefore, for n ≤ 0.8 when Oh = 0.01, self-similar
film solutions do not exist and the hole grows following Keller’s solution during the entire
period of its evolution.

Although figure 15 shows the exponent in the scaling law for L to equal Keller’s value of
3/2 (L ∼ hE), it is worth noting that for the situations in which n = 0.7 and 0.75, L > 2hE.
The reason for this inequality is made clear by figure 16 which shows the shape of the tip
and that of the film near the tip along with the streamlines and contours of the viscosity
function μ within them for the situation in which n = 0.7 and Oh = 0.01. Here, we see
that the blob is no longer a perfect circle: it is instead elongated radially and both the tip
and the film display signs of capillary waves along their interfaces. Based on the viscosity
contours, we may conclude that due to a drastically reduced viscous character, the blob
is unable to sustain its inertia while maintaining a circular cross-section. The stagnation
flows near the corner formed at the intersection between the blob and the film indicate that
despite the inequality between L and 2hE, this case nevertheless does indeed satisfy the
key assumption on which Keller’s model is based.

9. Concluding remarks

In summary, we have determined, by means of full 2-D numerical simulations coupled
with the use of a version of the Newtonian thin-film theory of Munro et al. (2015) that was
extended to power-law fluids, the complete set of regimes as well as points of transition
between them that arise during the coalescence of two identical bubbles surrounded by
a liquid that is a power-law fluid (n ≤ 1) in situations where the outer liquid is of low
viscosity or nearly inviscid (Oh � 1). Although the interface shape and the flow field
are determined over the entire domain simultaneously in the simulations, analyses that
focus separately on the tip, referred to as the tip condition, and the thin film have made it
possible to predict the scaling (and geometrical) transitions occurring in each individual
domain with and without the influence of conditions in the other domain. The results
of all the simulations and scaling arguments that have been carried out in the paper are
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FIGURE 16. Instantaneous profiles of and flow fields within the tip and a portion of the film near
the tip when Rmin ≈ 1.35 × 10−4 for the situation in which Oh = 0.01 and n = 0.7. Viscosity
contours are shown in the upper half of the receding tip/filament while the instantaneous
streamlines, which have been marked with black arrows to indicate the direction of flow, are
shown in the bottom half. Inset: a zoomed-in view of the region where the tip and the film join
shows the noticeable corner region characteristic of the Keller regime. Clearly visible here are
the stagnation flows in the film and the capillary waves along the free surface the amplitudes of
which decrease with radial distance r.

n = 10.80.1

Tip: I

Tip: IFilm: K

Film: IVP

Tip: V
Film: IVP

Munro et al.
(2015) JFM 

Rmin ~ 300Oh2

Rmin ~ 5Oh2hE =
1

2
L ~

Rmin

Rmin ~ Oh2/(4n–3) 

Rmin ~ Oh2/(5n–4) 

L ≈ 2hE

Rmin ≈ 1
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min

R3/2
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min

hE ~R2n
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min

hE ~R3/2
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π

FIGURE 17. Phase diagram showing the different regimes of bubble coalescence in power-law
fluids when Oh � 1: the horizontal axis is the power-law index n which falls from its Newtonian
value of one on the right and tends toward zero as one moves to the left, and the vertical axis is the
minimum radius of the hole or the gas bridge Rmin which rises from its value of zero (space–time
singularity) at the bottom to a value comparable to the bubble radius as one moves upward. The
regimes are marked with distinct colours and a split notation indicating the tip condition (on top)
and the film condition (on the bottom) separately. For the tip, Tip: V denotes the viscous tip and
Tip: I refers to the inertial tip condition. For the film, Film: IVP is the inertial–viscous power-law
solution characterized by nearly unidirectional flow within the film, described in § 7, whereas
Film: K refers to the truly inviscid Keller regime described in § 8. In each regime, the scaling
for (half) the tip height hE and that for the lateral/radial length scale L are also highlighted.
The scaling of the critical value of the hole radius Rmin with Oh for transition between regimes
(marked by arrows pointing to where the transition occurs) is also shown. The portion of the
phase space that has been studied by Munro et al. (2015) is also identified in the figure.
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summarized in figure 17 which is a phase plot, or diagram, showing the different regimes
and the transition points between them when Oh � 1.

9.1. Scaling of the hole radius Rmin with time
A significant outcome of the 2-D simulations is that they have shown unequivocally
that when Oh � 1, the scaling with time of the instantaneous value of the minimum
hole radius Rmin = 1.807 t1/2 holds regardless of the value of the power-law index n ≤ 1.
Despite its significance, this result is not surprising as this scaling law had already been
shown to be true for both inviscid (Keller 1983) and nearly inviscid (Munro et al. 2015;
Anthony et al. 2017) fluids in the Newtonian limit (n = 1). As the systematic reduction of
n results in further lowering of the viscosity of the receding film, imparting a power-law
character on the outer liquid tends to enhance its inviscid-like character and makes the
cardinal feature of the dynamics, i.e. the scaling of Rmin with time t, but not all of its other
features, indistinguishable from that of an inviscid fluid.

9.2. The rounded tip
The tip condition has been shown to be of critical importance in determining the scaling
for (half) the film thickness h. By contrast, Munro et al. (2015) carried out their scaling
analysis with the a priori assumption of a viscous tip, thereby neglecting the tip inertia.
In this paper, it has been shown that the viscous tip condition is not sustained indefinitely
throughout coalescence but that the dynamics undergoes a transition to an inertial tip
condition when the value of the hole radius Rmin ≈ Rtip

min . Results of numerical simulations
performed for n > 3/4 have been shown to be in excellent agreement with this prediction.
It has further been shown in this paper that the tip exhibits a reversal in character for
n < 3/4 where it is inertial at the singularity. It is theoretically possible that an inertial tip
should undergo a transition to a viscous tip when Rmin ≈ Rtip

min (6.11). However, it has been
shown that in the limit of Oh � 1 and for n < 3/4, the transition point Rtip

min > 1 and hence
such a transition cannot occur during the course of coalescence. Therefore, the viscous tip
condition is never encountered when Oh < 1 for n < 3/4.

9.3. Transition to the truly inviscid regime of bubble coalescence
The dominant length scale L in the thin film, identified from simulations, was used to
estimate radial velocity gradients in the domain. As in the Newtonian case, a balance
between inertial and viscous forces, i.e. an inertio-viscous balance, is also possible in a
power-law film which, in turn, yielded the scaling L ∼ R2/n−1

min . This scaling, as well as the
dominant balance of forces, was confirmed by our simulations a posteriori for 0.8 ≤ n ≤ 1
when Oh = 0.01. Simulations further showed a transition from the latter scaling to one
where L ≈ 2hE.

Careful scrutiny of the 2-D flows near the time of the previously discussed transition
point led us to conclude that this is a geometrical limit caused by the interface adopting
a corner-like profile at the junction of the tip and the circular tip or blob, and where the
pressure is severely lowered on account of the large negative planar curvature that exists
in that locale. The low-pressure zone underneath the corner gives rise to a stagnation
zone thereby preventing fluid from exiting the growing blob – a condition necessary for
satisfying Keller’s assumption – as well as disrupting the purely unidirectional nature of
the self-similar flow in the film – a fact that is readily appreciated by the recirculations that
are visible in the film.
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In this paper, this transition is termed Keller’s limit. Its point of occurrence was
theoretically predicted based on the inertial tip condition (RKI

min) as well as the viscous
tip condition (RKV

min). The former limit was shown to be significantly more common across
the parameter space as well as lying within numerically observable ranges of parameter
values. The latter limit, on the other hand, could be observed before the dynamics could
undergo a transition at Rtip

min only if Oh and Rmin could take on unrealistically small values.
For example, for a fluid of n = 0.9, the Ohnesorge number Oh would have to be O(10−5)
and the value of the minimum radius Rmin would have to be of O(10−15) for this limit
to arise. It was also shown here that a direct transition from a viscous tip to Keller’s
regime (as hinted by Munro et al. (2015)) cannot theoretically occur in the Newtonian
limit (n = 1) as the tip would instead transition to being inertial before such a transition
could take place, viz. Rtip

min � RKV
min .

Upon further lowering of the power-law index, it was shown that Keller’s assumption
remains satisfied throughout the coalescence process when n lies below 0.8. Such
dynamics entails that the scaling relations Rmin = 1.807 t1/2, hE ∼ R3/2

min and L ∼ hE hold
for all times when n < 0.8. Theoretically, however, it is known that when 0.75 < n ≤ 0.8,
the tip is viscous in the immediate aftermath of the singularity or as Rmin → 0. From the
functional form of RKV

min , it is readily seen that this quantity tends to zero when n ≈ 0.78.
Therefore, when n <̃ 0.78, a direct transition from a viscous tip to Keller’s limit cannot
occur. Thus, for 0.75 < n <̃ 0.78, the tip first transitions from viscous to inertial at a
value of the minimum hole radius given by Rmin = Rtip

min . However, as soon as the tip
is inertial, Keller’s assumption is satisfied (for n = 0.8, RKI

min → 0). Thus, transition to
Keller’s limit effectively occurs when Rmin = Rtip

min . On the other hand, for 0.78 <̃ n ≤ 0.8,
because RKV

min > 0, one of the following two transitions can occur. First, there can be a
transition from a viscous tip to Keller’s limit when Rmin = RKV

min . Alternatively, there can
be a transition from a viscous tip to an inertial tip when Rmin = Rtip

min . In the latter case,
Keller’s assumption is satisfied as soon as the tip becomes inertial. Therefore, when
0.78 <̃ n ≤ 0.8, transition into Keller’s regime must occur at the smaller of the two values
of the hole radius corresponding to RKV

min and Rtip
min . These transitions are not numerically

accessible, but occur as a natural extension of the theoretical framework supported strongly
by numerical simulations.

9.4. Ranges of values of the power-law index for real fluids
Given the drastically different dynamical responses that arise for different values of the
power-law index n as shown in the phase diagram figure 17, it is important to address the
question as to what values of n are commonly encountered in applications. Ariffin, Yahya
& Husin (2016) have determined from experiments the values of the power-law index for
mixtures of water and light crude oil. These authors have reported that n = 0.93 when
the mixture is 30 % water by volume but that the value drops down to n = 0.21 when the
water fraction is increased to 40 %. In their studies of pinch-off of filaments of diverse
fluids, Huisman et al. (2012), Savage et al. (2010) and Dinic, Jimenez & Sharma (2017)
have reported values of the power-law index for nearly two dozen common household
products as well as less common fluids. For example, the index n = 0.66 for a conductive
ink used in inkjet printing. Bird, Stewart & Lightfoot (1960) have reported values of the
power-law index that range between 0.2 and nearly 1 for a variety of industrially important
fluids. Based on these works and others not cited here, it is clear that values of n spanning
the entire possible range of values between one and zero commonly arise in applications,
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thereby rendering the entire phase diagram shown in figure 17 of interest rather than just
certain portions of it.

9.5. Future directions

9.5.1. Extension to the full range of Oh
In this work, attention has been focused entirely on elucidating the dynamics of bubble

coalescence in the limit in which Oh � 1 but where the power-law index 0 < n ≤ 1 is
arbitrary. The limit in which Oh � 1 has also been studied albeit for situations in which
the liquid exterior to the bubbles is Newtonian (n = 1) (Munro et al. 2015; Anthony et al.
2017). Both papers have reported that in such highly viscous Newtonian fluids, the radial
scaling differs from that for slightly viscous Newtonian fluids and is given by

Rmin = 0.8908 (t/Oh)1/2. (9.1)

In their theoretical study, Munro et al. (2015) have taken the tip to be viscous and that the
same inertio-viscous balance holds in the adjoining film as when Oh � 1. The validity of
the former assumption is readily confirmed by examination of the expression for Rtip

min (6.11)
as Rtip

min ∝ Oh2 � 1 in this limit when the exterior liquid is Newtonian (n = 1). However,
the same ansatz of a viscous tip may fail when the exterior liquid is a power-law fluid
(n < 1). Furthermore, Munro et al. (2015) have shown that for a highly viscous Newtonian
liquid (Oh � 1), the length scale in the radial or lateral direction L ∝ Rmin , indicating that
the compressional stresses penetrate much deeper into the film when Oh � 1 as compared
to when Oh � 1. It is reasonable to expect the limit of Oh � 1 to show increasing inertial
character as n is reduced from its Newtonian value of one. Clearly, the resulting dynamics
can thus exhibit more complexity than that reported in this paper which has limited its
scope to situations in which Oh � 1. We leave the study of coalescence in a power-law
fluid of Oh � 1 as an open problem in fluid mechanics and which we intend to report on
in the future.

9.5.2. Dynamical role of the bubble fluid
In this paper, the dynamics of the flow within the bubbles has been neglected and either

the gas within the bubbles has been treated as a dynamically passive fluid or, equivalently,
the two bubbles have been taken to be voids. The question of when bubble properties can
be important has been addressed in the experimental study of Paulsen et al. (2014) and by
direct numerical simulations by Anthony et al. (2017) who studied bubble coalescence
in an exterior liquid that is a Newtonian fluid. When the dynamics of the Newtonian
fluid within the bubbles is accounted for, the problem is governed by two additional
dimensionless groups: the density ratio D = ρ̃i/ρ̃ and the viscosity ratio M = μ̃i/μ̃0,
where ρ̃i and μ̃i denote the density and viscosity of the bubble fluid. Since the inner fluid
in these situations is a gas whereas the outer fluid is a liquid, both D and M will have
values much less than one.

Paulsen et al. (2014) have argued that, while all coalescence events begin their lives
in a dynamical regime dominated by the inner fluid, this regime would occur at such
early times during bubble coalescence that it would be virtually impossible to observe in
experiments using optical methods. Similarly, it would also be beyond the capability of
computational methods to make predictions during these early times as this early regime
would only exist for values of the minimum neck radius much smaller than ones that
have been attainable in simulations reported in the literature. When the outer fluid is
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slightly viscous, the transition from this regime set by the properties of the inner fluid
to the outer inertial regime would occur when Rmin = O(Oh M). Thus, when Oh = 0.01
and M = 0.001, neglect of the bubble fluid is justified for Rmin ≥ 10−5. Similarly, for
situations where the outer fluid is highly viscous, the transition from the regime set by the
properties of the bubble fluid to the outer viscous regime would occur when Rmin = O(M).
For air bubbles coalescing in glycerol, neglect of the bubble fluid would be justified for
Rmin ≥ 10−5.

Anthony et al. (2017) have carried out two simulations in which they have analysed
bubble coalescence in a low- and a high-viscosity fluid but where they have kept the
density ratio fixed. The values of the dimensional parameters in these simulations were
similar to those in select experiments performed by Paulsen et al. (2014): Oh = 0.1,
M = 1.4 × 10−3 for the low-viscosity case and Oh = 8.9, M = 1.732 × 10−5 for the
high-viscosity case with the density ratio being D = 1.48 × 10−3 in both cases. The results
shown in figure 17 of their paper make plain that the variation of Rmin with t in both the
low-viscosity and the high-viscosity limits is virtually identical whether the bubbles are
treated as voids or the dynamics within them is accounted for. Thus, the neglect of the flow
within the bubbles and treating them as passive voids, as has been the case throughout this
paper, is an excellent approximation that remains true to the physics. However, detailed
computational studies in which the dynamics of the bubble fluid is accounted for when
two bubbles coalesce in a power-law fluid of arbitrary Oh are needed and left as goals for
future studies.

Acknowledgements

The authors acknowledge financial support received from the Purdue Process Safety and
Assurance Center (P2SAC) and the Gedge Professorship to OAB.

Declaration of interests

The authors report no conflict of interest.

Appendix A. Non-dimensionalization and dimensionless groups

The coalescence of two bubbles in a power-law liquid is a function of six independent
dimensional parameters: R̃, σ̃ , ρ̃, μ̃0, α̃ and n. Therefore, according to the Buckingham
pi theorem (Logan 1987; Lin & Segel 1988), the functional dependence of any dependent
variable, e.g. the instantaneous value of the minimum radius of the neck R̃min , on the six
independent variables, which involves a total of N = 7 dimensional variables,

R̃min = f̃ (R̃, σ̃ , ρ̃, μ̃0, α̃, n) (A 1)

can be expressed in dimensionless form that involves N − M = 4 (dimensionless) pi
parameters, where M = 3 is the number of fundamental units that enter the problem, viz.

Rmin ≡ R̃min

R̃
= f (Oh, n, α). (A 2)

We note that in the inviscid limit, where Oh = 0 (because μ̃0 = 0) and α and n do not
enter the problem, Rmin does not depend on any dimensionless groups. In the viscous
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limit, where 1/Oh = 0 (because ρ̃ = 0),

Rmin ≡ R̃min

R̃
= f (n, α). (A 3)

In § 2, the dimensionless groups governing the problem are deduced by non-dimensionalizing
the governing equations rather than the Buckingham pi theorem. There, the stress tensor

T̃ = −p̃I + τ̃ = −p̃I + 2μ̃Γ̃ = −p̃I + μ̃
[
∇̃ṽ + (∇̃ṽ)ᵀ

]
. (A 4)

The equation for the total stress (A 4) can be written as

T̃ = − σ̃
R̃

pI + τcτ = − σ̃
R̃

pI + τc(2μΓ ). (A 5)

In this equation and below, we use the same pressure scale as in § 2, σ̃ /R̃, but denote
the viscous stress scale by τc and the time scale by tc, both of which will be defined
shortly. The dimensionless viscosity is given by μ = μ̃/μ̃0 = |αγ̇ |n−1 where α and γ̇
have been rendered dimensionless using tc. Thus, if instead of using the inertio-capillary
time as the time scale we use tc, τc = μ̃0/tc. Therefore, when the inertial–capillary time
tic = (ρ̃R̃3/σ̃ )1/2 is used as tc as in § 2, τc = (σ̃ /R̃)Oh. If, however, the visco-capillary time
tvc = μ̃0R̃/σ̃ is used as tc, then τc = σ̃ /R̃.

Therefore, it is only when the inertial–capillary time is used as the time scale that Oh
and α appear in combination as Ohαn−1. If the visco-capillary time is used as the time
scale, in lieu of (2.2b) the dimensionless Cauchy momentum equation becomes

1
Oh2

(
∂v

∂t
+ v · ∇v

)
= ∇ · T (A 6)

and instead of (2.3) the dimensionless Cauchy stress tensor is given by

T = −pI + μ [∇v + (∇v)ᵀ] . (A 7)

In particular, in the Stokes limit, Oh does not appear in the problem as the left side of
(A 6) is identically zero. We further note that Oh and α appearing in combination when
tic is used as the time scale is a peculiar feature of the power-law model. For the general
Carreau model (1.2), Oh and α do not appear in this combination regardless of the choice
of characteristic time scale. Therefore, (a) to facilitate comparison between Newtonian
fluids for which n = 1 and power-law fluids for which the dimensionless formulation used
does not employ tic as the characteristic time and (b) also recognizing that the peculiar
combination of Oh and α does not arise for a general Carreau fluid, we leave Oh and α as
separate dimensionless groups in the body of the paper.
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