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Abstract

Modern industry is concerned about extending the lifetime of its critical processes and maintaining them only when
required. Significant aspects of these trends include the ability to diagnose impending failures, prognosticate the
remaining useful lifetime of the process and schedule maintenance operations so that uptime is maximized. Prognosis
is probably the most difficult of the three issues leading to condition-based maintenance~CBM!. This paper attempts
to address this challenging problem with intelligence-oriented techniques, specifically dynamic wavelet neural net-
works ~DWNNs!. DWNNs incorporate temporal information and storage capacity into their functionality so that they
can predict into the future, carrying out fault prognostic tasks. Such fundamental issues as the network structure,
learning algorithms, stability analysis, uncertainty management, and performance assessment are studied in a theoret-
ical framework. An example is presented in which a trained DWNN successfully prognoses a defective bearing with a
crack in its inner race.
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1. INTRODUCTION

The manufacturing and industrial sectors of our economy
are increasingly called to produce at higher throughput and
better quality while operating their processes at maximum
yield. As manufacturing facilities become more complex
and highly sophisticated, the quality of the production phase
has become more crucial. The manufacture of such typical
products as aircraft, automobiles, appliances, medical equip-
ment, and so forth, involves a large number of complex
processes, most of which are characterized by highly non-
linear dynamics coupling a variety of physical phenomena
in the temporal and spatial domains. It is not surprising,
therefore, that these processes are not well understood and
their operation is “tuned” by experience rather than through
the application of scientific principles. Machine break-
downs are common, limiting uptime in critical situations.
Failure conditions are difficult and, in certain cases, almost
impossible to identify and localize in a timely manner. Sched-
uled maintenance practices tend to reduce machine lifetime
and increase downtime, resulting in loss of productivity.
Recent advances in instrumentation, telecommunications,

and computing are making available to manufacturing com-
panies new sensors and sensing strategies, plant-wide net-
working and information technologies that are assisting in
improving substantially the production cycle. Machine
diagnostics0prognostics for conditional-based maintenance
~CBM! involves an integrated system architecture with a
diagnostic module —the diagnostician—which assesses
through on-line sensor measurements the current state of
critical machine components, a prognostics module—the
prognosticator—which takes into account input from the
diagnostician and decides upon the need to maintain certain
machine components on the basis of historical failure rate
data and appropriate fault models, and a maintenance sched-
uler whose task is to schedule maintenance operations with-
out affecting adversely the overall system functionalities of
which the machine in question is only one of its constituent
elements.

This paper addresses issues relating to the prognostic
module—the Achilles heel of the CBM architecture. Fault
diagnosis is a mature field with contributions ranging from
model-based techniques to data-driven configurations that
capitalize upon soft computing and other “intelligent” tools
~Konrad & Isermann, 1996; Mylaraswamy & Venkatasubra-
manian, 1997!. CBM scheduling is a complex task that in-
volves finding the “optimum” time to perform maintenance
within the window prescribed by the Prognosticator while
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meeting a host of constraints. This scheduling problem may
be formulated as a multiobjective optimization problem
where the main objective is to maximize process uptime
while satisfying a set of constraints that relate to resource
and maintenance personnel availability, production and
scheduling requirements, redundant or relocatable ma-
chines, timing constraints, and so forth~Barbera et al., 1996;
Makis et al., 1998; Prickett & Eavery, 1991!. The word
“prognosis” implies the foretelling of the probable course
of a disease~Taylor, 1953!, a term widely used in medical
practice. In the industrial and manufacturing arenas, prog-
nosis is interpreted to answer the question: What is the
remaining useful lifetime of a machine or a component once
an impending failure condition is detected and identified?
Stochastic Auto-Regressive Integrated Moving Average
~ARIMA ! models~Jardim-Goncalves et al., 1996!, fuzzy
pattern recognition principles~Frelicot, 1996!, knowledge-
intensive expert systems~Lembessis et al., 1989!, nonlin-
ear stochastic models of fatigue crack dynamics~Ray &
Tangirala, 1994!, polynomial neural networks~Parker et al.,
1993!, Weibull models~Groer, 2000!, and other techniques
have been introduced over the past years to address the
diagnostic0prognostic problem. This paper attempts to ad-
dress this issue by introducing a novel combination of a
“virtual” sensor as a mapping tool between known measure-
ments and “difficult-to-access” quantities and a dynamic
wavelet neural network as the “predictor,” that is, the con-
struct that projects into the future the temporal behavior of
a faulted component.

2. PROGNOSTICATION

Prognosticators perform the vital function of linking the
diagnostic information with the maintenance scheduler. They
are probably the least understood but most crucial compo-
nent of the diagnostic0prognostic0CBM hierarchical archi-
tecture. Furthermore, they entail ambiguity and large-grain

uncertainty, since the historical evolution of a failure event—
the growth of a structural fault, for example—is difficult if
not impossible to model accurately, historical data is not
readily available, and the particular growth phenomenon
may be strongly dependent on the system structure, operat-
ing conditions, environmental effects, and so forth. They
are viewed as dynamic predictors that receive fault data
from the diagnostic module and determine the allowable
time window during which machine maintenance must be
performed if the integrity of the process is to be kept as
high as possible. The term “dynamic predictor” implies also
the functional requirement that the target output, that is,
remaining useful lifetime or time-to-failure, is dynamically
updated as more information becomes available from the
diagnostician. Thus, this scheme should reduce the uncer-
tainty and improve the prediction accuracy as the accumu-
lated evidence grows.

Figure 1 depicts the overall architecture of the proposed
prognostic system. The diagnostician monitors continu-
ously critical sensor data and decides upon the existence of
impending or incipient failure conditions. The detection and
identification of an impending failure triggers the prognos-
ticator. The latter reports to the CBM module primarily the
remaining useful lifetime of the failing machine or compo-
nent. The CBM module schedules the maintenance so that
uptime is maximized while certain constraints are satisfied.
The schematic of Figure 1 focuses on the functionalities of
the prognosticator. The diagnostician alerts the prognostic
module and provides failure and other pertinent sensor data
to it. The prognostic architecture is based on two con-
structs: a static “virtual sensor” that relates known measure-
ments to fault data and a predictor which attempts to project
the current state of the faulted component into the future,
thus revealing the time evolution of the failure mode and
allowing the estimation of the component’s remaining use-
ful lifetime. Both constructs rely upon a Wavelet Neural
Network ~WNN! model acting as the mapping tool.

Fig. 1. The overall architecture of the prognostic system.
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2.1. Wavelet neural networks

WNNs belong to a new class of neural networks with
unique capabilities in addressing identification and classi-
fication problems. Wavelets are a class of basic elements
with oscillations of effectively finite duration that makes
them like “little waves.” The self-similar, multiple resolu-
tion nature of wavelets offers a natural framework for the
analysis of physical signals and images. On the other hand,
artificial neural networks constitute a powerful class of
nonlinear function approximants for model-free estima-
tion. A common ground between these two technologies
may be coherently exploited by introducing a WNN. In-
deed, the implementation of a neural network is closely
related to a truncated version of the wavelet series.

A multi-input multi-output~MIMO ! WNN is illustrated
in Figure 2, which has only one hidden layer. This WNN
can be formulated, in a vector format, as~Schauz, 1996!:

y 5 @cA1,b1
~x!cA2,b2

~x!{{{cAM ,bM
~x!#C 1 @x1#Clin , ~1!

wherex is the 13 N input row-vector;y is the 13 K output
row-vector, andK is the number of outputs;Aj is theN3 N
squashing matrix for thejth node;bj is the 13 N translation
vector for thejth node;C is the M 3 K matrix of output
coefficients, whereM is the number of wavelet nodes;Clin

is the ~N 1 1! 3 K matrix of output coefficients for the
linear direct link; andc is the wavelet function that can
take the form:

cA,b~x! 5 6A6104c~!~x 2 b!A~x 2 b!T!, ~2!

wherex is the input row-vector,A the squashing matrix for
the wavelet,b the translation vector, andT the transpose
operator. Composed of localized basis functions, the WNNs
are suitable for capturing the local nature of the data pat-
terns and thus are efficient tools for both classification and
approximation problems.

Equation~1! is a static model in the sense that it estab-
lishes a static relation between its inputs and outputs. All
signals flow in a forward direction only with this configu-
ration. Dynamic or recurrent neural networks, on the other
hand, are required to model the time evolution of dynamic
systems. Signals in such a network configuration can flow
not only in the forward direction but also can propagate
backwards, in a feedback sense, from the output to the input
nodes. Dynamic wavelet neural nets have recently been pro-
posed to address the prediction0classification issues.Amulti-
resolution dynamic predictor that utilizes the discrete wavelet
transform and recurrent neural networks forming nonlinear
models for prediction was designed and employed for multi-
step prediction of the intracranial pressure signal~Tsui et al.,
1995!. A recurrent wavelet neural network was developed
for the blind equalization of nonlinear communication chan-
nels ~He & He, 1997!; recurrent wavelet neural networks
were also derived by Rao and Kumthekar~1994! using the
real-time Back-Propagation~BP! algorithm.

The basic structure of a DWNN is shown in Figure 3.
Delayed versions of the input and output augment now the

Fig. 2. A WNN. Fig. 3. A DWNN.
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input feature vector and the resulting construct can be for-
mulated as

Y~t 1 1! 5 WNN~Y~t !, . . . ,Y~t 2 M !,U~t !, . . . ,U~t 2 N!!, ~3!

where U is the external input,Y is the output,M is the
number of outputs minus 1,N is the number of external
inputs minus 1, andWNNstands for a static WNN. When
measuring the angular velocity of a servo motor, for exam-
ple,Y~t ! could be the velocity to be measured andU~t ! be
the regulating voltage that controls the motor’s rotation at
time t. Equation~3! forms an evolving or prediction model
that dynamically maps the historical and current data into
the future. In essence, this DWNN is a kind of partially
recurrent WNNs of simple but well-defined structures that
are more convenient to design and apply in practical situa-
tions than the fully recurrent WNNs. Compared to tradi-
tional prediction techniques such as ARIMA, DWNNs offer,
in a systematic manner, more flexibility in terms of nonlin-
ear mapping, parallel processing, heuristics-based learning,
and hardware implementation.

2.2. Learning algorithms

The DWNN described by Eq.~3! can be trained in a time-
dependent way, using either a gradient-descent technique
like the Levenberg–Marquardt~LM ! algorithm or an evo-
lutionary one such as the Genetic Algorithm~GA!. Here, a
learning algorithm that evolves over time is derived using
the traditional gradient-descent technique. For simplicity,
assume that in Eq.~3!, Y is 13 1 in dimension,U ignored,
M 5 N 5 0, andWNN composed of Eqs.~1! and ~2! but
without Clin , which results in a simplified DWNN to be
formulated, in a summation format, as

y~t 1 1! 5 (
j51

M

cj cj ~7qj y~t ! 2 bj 7aj
!, ~4!

wherey is a single output;aj , bj , qj , cj are all real numbers
andaj must be nonnegative. The radial distance is desig-
nated as

7qj y~t ! 2 bj 7aj
5 !aj 6qj y~t ! 2 bj 6. ~5!

A cost function at timet 1 1 is defined as

E~t 1 1! 5 2
12@ Sy~t 1 1! 2 y~t 1 1!# 2. ~6!

With respect toaj , taking derivatives on both sides of Eq.~6!
produces

]E~t 1 1!

]aj

5
]

]aj
H 1

2
@ Sy~t 1 1! 2 y~t 1 1!# 2J 5 2

]y~t 1 1!

]aj

.

~7!

From Eq.~4!, it follows that

]y~t 1 1!

]aj

5
]

]aj
F(

j51

M

cj cj ~7qj y~t ! 2 bj 7aj
!G

5 (
j51

M

cj cj
' ~7qj y~t ! 2 bj 7aj

!
]

]aj

~7qj y~t ! 2 bj 7aj
!

5 (
j51

M

cj cj
' ~7qj y~t ! 2 bj 7aj

!

3 F 6qj y~t ! 2 bj 6

2!aj

1!aj Sign~qj ~t ! 2 bj !qj

]y~t !

]aj
G.

~8!

From the above equation, it can be observed that@]y~t11!#0
]aj is a function ofy~t ! and]y~t !0]aj . Thus, the equation can
be used iteratively over time in order to generate new gradi-
ents for minimizing the cost function~6!. Similarly, the other
needed gradients can be obtained as follows:

]E~t 1 1!

]bj

5 (
j51

M

cj cj
' ~7qj y~t ! 2 bj 7aj

!!aj Sign~qj y~t ! 2 bj !

3 Sqj

]y~t !

]bj

2 1D, ~9!

]E~t 1 1!

]cj

5 (
j51

M Fcj cj
' ~7qj y~t ! 2 bj 7aj

!!aj Sign~qj y~t ! 2 bj !qj

3
]y~t !

]cj

1 cj ~7qj y~t ! 2 bj 7ajG, ~10!

]E~t 1 1!

]qj

5 (
j51

M

cj cj
' ~7qj y~t ! 2 bj 7aj

!!aj Sign~qj y~t ! 2 bj !

3 Sy~t ! 1 qj

]y~t !

]qj
D. ~11!

It is assumed that the initial condition is independent of the
network parameters, that is,

]y~t !

]aj

5
]y~t !

]bj

5
]y~t !

]cj

5
]y~t !

]qj

5 0. ~12!

Then, there is no substantial difficulty in running these
gradient equations so as to derive the required gradients,
with which a gradient-based adaptation scheme, such as a
d-learning rule or the LM algorithm, can readily be
implemented.

2.3. Stability analysis

Stability is a critical concept in system theory that describes
the ability of a system to stay at a point or in a region in its
state space. Equivalently, this concept is of considerable
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importance for system identification and modeling because
it has great impact on the accuracy and sensitivity of the
learning algorithms involved. With reference to its charac-
teristics, stability may be categorized as the Lyapunov sta-
bility or the bounded-input bounded-output~BIBO! stability.
With respect to the excitation sources, stability can be di-
vided into structural stability and total stability. Here, the
BIBO stability and Lyapunov stability are examined for the
DWNN.

Equation~4! can be written with an additional term as

y~t 1 1! 5 (
j51

M

cj cj ~7Qj x~t ! 2 bj 7Aj
! 1 p~x~t !!, ~13!

where a single outputy is considered andx is the input
vector to the DWNN, which, for simplicity, is expressed as:

x~t ! 5 F y~t !
u~t ! G. ~14!

Theorem 1. System (13) is BIBO stable if and only if
p~x~t !! is bounded. n

Proof: It is straightforward since the normalized wavelets
cj ~7Qj x~t ! 2 bj 7Aj ! # 1 for all t. n

In situations such as modeling an unstable process, it is
helpful to letp~x~t !! carry as much instability as possible
so that the wavelet network can be trained without diffi-
culty. Then,p~x~t !! can be designed using standard tech-
niques for polynomial approximation.

In the Lyapunov sense, a system is considered to be sta-
ble if its total energy decreases monotonically towards an
equilibrium point or region. Without losing generality,
Eq. ~13! can be written into a continuous form:

_y~t ! 5 (
j51

M

cj cj ~7Qj x~t ! 2 bj 7Aj
! 1 p~x~t !!, ~15!

where, for simplicity,p~x~t !! will be neglected. An energy
functiony2~t ! is selected for system~15!. Clearlyy2~t ! $ 0.
The derivative of the Lyapunov function is

d~ y2~t !!

dt
5 2y~t ! _y~t ! 5 2y~t ! (

j51

M

cj cj ~7Qj x~t ! 2 bj 7Aj
!. ~16!

Due to Theorem 1,y~t ! is bounded. From Eq.~16!, it can be
seen that@d~ y2~t !!#0dt # 0 if Sign~cj ! 5 Sign~ y~t !!, which
can be considered as a design rule leading to an asymptot-
ically stable DWNN.

2.4. Virtual sensors

It is often true that machine or component faults are not
directly accessible for monitoring of their growth behav-
ioral patterns. Consider, for example, the case of a bearing
fault. No direct measurement of the crack dimensions is

possible when the bearing is in an operational state. That
is, there is no such device as a “fault meter” capable of
providing direct measurements of the fault evolution. Ex-
amples of a similar nature abound. Marko et al.~1996!
developed a neural net-based virtual or ideal sensor used
to diagnose engine combustion failures, known as misfire
detection. Their technique employs a recurrent neural net
as the classifier that takes such inputs as crankshaft accel-
eration, engine speed, engine load, and engine ID and pro-
duces a misfire diagnostic evaluation as the output. In the
present study, the same concept is exploited to design a
virtual sensor which takes as inputs measurable quantities
or features and outputs the time evolution of the fault
pattern. A schematic representation of such a WNN as a
virtual sensor is illustrated in Figure 4.

2.5. Predictors

Prediction of the course in which a fault could develop can
be looked into from two different viewpoints: The first one
is to locate the fault value at a certain time moment while
the other is to find the time moment when the fault reaches
a given value, that is, the fault dimensions reach a prespec-
ified threshold. The latter appears to be more meaningful
because it concentrates on revealing the critical time with-
out requiring estimation of the whole time interval, thus
resulting in a more efficient algorithm. The notion of Time-
To-Failure~TTF! is the most important measure in prog-
nosis. In fact, prognosis can be accomplished in either the
time or frequency or even the event domain, since all of
these domains are made up of ordered points.

A fault predictor based on the DWNN is shown in Fig-
ure 5. The process is monitored in real-time using appro-

Fig. 4. A schematic representation of the WNN as a virtual sensor.

Fig. 5. A schematic representation of the DWNN as the predictor.

Fault prognostics using wavelet networks 353

https://doi.org/10.1017/S0890060401154089 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154089


priate sensors. Here, virtual sensors can also be employed
to measure signals or their derivatives that are difficult to
record on-line and on-site. Data obtained from measure-
ments are continuously processed and features extracted on
a time scale. The features are organized into a time-
stamped feature vector that serves as the input to the DWNN.
Consequently, the DWNN performs as a dynamic classifier
or identifier. The data used to train the predictor must be
recorded with time information, which is the basis for the
prognosis-oriented prediction task. In the case of a bearing
fault, the predictor could take the fault dimensions, failure
rates, trending information, temperature, component ID, and
so on as its inputs and generate the fault growth as the
output. Feature extraction can be performed periodically
for the processes under prognosis. It should be noted that
features are extracted in temporal series and are dynamic in
the sense that the DWNN processes them in a dynamic
fashion. Then, the obtained features are fused into the time-
dependent feature vector that characterizes the process at
the designated time instants. Feature selection is based on
criteria that distinguish a fault signature from normal oper-
ating conditions and one particular fault mode from an-
other. Such other criteria as computational cost may be
included.

The DWNN must be trained and validated before any
on-line implementation and use. Such algorithms as the
Back-Propagation or GA can be used to train the network.
Once trained, the DWNN, along with the TTF calculation
mechanism, can act as an on-line prognostic operator. It is
worth reiterating that the results from the diagnosis serve as
the input to the prognosis. Thus, the fidelity and accuracy
of the diagnostician bears a direct impact on the reliability
of the prognosticator. Predictions can be substantially im-
proved as more fault data become available. The diagnostic0
prognostic operation is viewed, therefore, as a dynamic,
“evolving” mechanism with adaptive observation and pre-
diction windows. More accurate predictions can result from
the utility of additional historical information. The DWNN
is, indeed, updated on-line in a real-time fashion.

3. UNCERTAINTY MANAGEMENT

Uncertainty and ambiguity are the rule rather that the ex-
ception in the diagnosis and prognosis of failure modes in
practical systems. They manifest themselves at various lev-
els of abstraction: at the data level, the feature level, the
decision level, and classification level. As the prediction
window increases, so does the uncertainty resulting from
the levels of the data processing hierarchy. There are many
potential root causes of uncertainty associated with fault
conditions: Faults exhibit varying signatures depending upon
the location, cause, prevailing operating conditions, and the
state of the component materials. Detection and identifica-
tion at an early stage of an incipient failure mode requires
reliable and robust techniques for accurate declaration with-
out false alarms. Prediction of the future behavior of a fault

is much more demanding— essentially taxing severely the
available means to quantify uncertainty. Prediction algo-
rithms, therefore, must incorporate possibilistic~or proba-
bilistic! quantifiers that inform the user of the expected
time-to-failure as well as its anticipated variance~in terms
of the earliest and latest time estimates!. Fuzzy notions,
such as fuzzy membership functions, are known to capture
well uncertainty estimates and Dempster–Shafer theory may
prove useful in combining conflicting evidence and sup-
porting upper and lower bounds~plausibility and belief met-
rics! in these estimates.

Uncertainty representation and management for fault prog-
nosis are difficult tasks, since prognosis involves both sub-
jective and objective uncertainties and operates over the
time horizon from the past, through the present, and to the
future. Uncertainty sources must be identified and mod-
eled. Uncertainty management schemes, that is, methods to
reduce the uncertainty bounds as more data becomes avail-
able, must be derived. Probability and possibility theories
are two candidates of mathematical tools to deal with these
issues.

For simplicity, this paper deals only with data uncertain-
ties and uses uncertainty boundaries for reporting prognos-
tic results. This results in the so-called interval predictions,
compared to point predictions. An uncertainty interval can
be generated through the estimation of a lower and an upper
bound of the prediction window. As shown in Figure 6, a
fault indicated by the featureF~t ! would evolve along its
meanFM~t ! and within its lower boundFL~t ! and upper
boundFU~t !. Hence, the fault prognosis problem can be
stated as: using historic data ofF~t ! to predict its mean
FM~t ! and boundaries@FL~t !FU~t !# until the remaining use-
ful lifetime or the time-to-failure of the targeted component
is found with its meanTM and confidence interval@TLTU # ,
under a certain failure criterionFF . For example, a faulty
servomotor could be prognosticated as having a remaining
useful lifetime of around 15 hours, probably between 10
and 20 hours, under the criterion that the temperature of the

Fig. 6. Uncertainty boundaries in a prognostic task.
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motor should not exceed 708C. In this case,TM 5 15 days,
TL 5 10 days,TU 5 20 days, andFF 5 708C.

Generally,FM~t !, FL~t !, andFU~t ! can be obtained by
applying statistical or fuzzy clustering techniques to the
given data. The meanFM~t ! is the center of the data points
at the time instantt. The lower boundFL~t ! is the smallest
data point at the time instantt. The upper boundFU~t ! is the
largest data point at the time instantt. The upper bound
FU~t ! and the lower boundFL~t ! harness the development
of the meanFM~t ! so that the instantaneous featureF~t !
should appear to be moving in a band. However, it is not
very applicable to allowFU~t ! andFL~t ! to be the extreme
data points that are much less populated. A better way is to
chooseFU~t ! andFL~t ! using a confidence level, say,a to
trim the probability density function~PDF! of F~t !, as shown
in Figure 7.

For the cases where subjective uncertainties are in-
volved, fuzzy autoregression~Lu & Xu, 1993! can be em-
ployed to establish possibilistic boundaries. A fuzzy linear
predictor may be formulated as

EF~t ! 5 Ef1
* EF~t 2 1! 1 Ef2

* EF~t 2 2! 1 {{{ 1 Efp
* EF~t 2 p! 1 Ia~t !,

~17!

whose task is to minimize a threshold criterion in terms of
quasi-conjunction degrees of estimated and observed val-
ues, where EF~t !, EF~t 2 1!,{{{ , EF~t 2 p! are the historic
data, Ef1

* , Ef2
* ,{{{ , Efp

* are the estimated coefficients,Ia~t ! is
the estimation error, andEF~t ! is the predicted value. All
variables in Eq.~17! can be expressed in fuzzy notions, for
example, fuzzy L-R numbers. A fuzzy number is defined by
a fuzzy membership function that has a peak value of 1 and
monotonically descending spreads, that is, something like a
PDF function in Figure 7. A fuzzy L-R number can be de-
scribed by a linear function of the corresponding fuzzy vari-
able. Once EF~t ! is calculated, possibilistic boundaries of
EF~t ! can be derived using a number of truncation methods,

the simplest of which is thea-cut technique similar to set-
ting the 12 a level confidence level in Figure 7.

For more effective fault prognosis, it is essential to know
not only how uncertainties would propagate but also how

they could be reduced or managed along the prognostic
horizon. In the case of unsupervised prognosis, uncertainty
reduction might only be achieved using higher prediction
models that are expected to capture more reliable uncer-
tainty tendencies from the available historic data. For su-
pervised prognosis, there is, however, an opportunity to
implement various uncertainty management mechanisms,
due to the fact that new data will be available while the
prognosis task proceeds. Fresh information on the process
under prognosis can be utilized to update the structure as
well as the parameters of the prognosticator so that it oper-
ates with shrinking or bounded uncertainty levels. Thus,
on-line learning or adaptation is considered a major tool for
harnessing uncertainties associated with fault prognostics.

Among many learning algorithms available in the liter-
ature, Reinforcement Learning~RL; Kaelbling et al., 1996!
appears to be quite applicable in the fault prognosis arena.
Its applicability lies in the fact that the algorithm itself
interacts with its environment such that it can improve
its performance gradually. Three primary approaches
for implementing RL are Dynamic Programming~DP!,
Monte Carlo~MC! methods, and Temporal Difference~TD!
Learning. For fault prognostics, TD is sometimes pre-
ferred because it is more relevant to time series prediction
upon which most algorithms for fault prognostics depend.
The simplest TD, known as TD~0!, is given by Sutton
~1988!, which employs an intelligent agent responsible for
updating the learning policies through exploration in its
surroundings.

However, conventional RL methods appear to be cum-
bersome when used for on-line implementation of fault prog-
nostic algorithms, since those algorithms usually prohibit
too long exploration in the environment because of strict
real-time requirements and low availability of new data. As
shown in Figure 8, a new adaptation scheme is suggested,
which is actually a combination of RL and GA. While ac-
commodating evolutionary-type policy optimization, such
adaptation mechanism embodies the main idea of RL, that
is, to reward based on the behavior of the algorithm and
update only when necessary. Figure 8, in fact, illustrates an

Fig. 7. An uncertainty interval witha-level confidence. Fig. 8. An adaptation scheme for updating fault prognostic algorithms.
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on-line implementation procedure as follows:~1! Initialize
the prognosticator;~2! Design a reward that should be re-
lated to the prognosticator’s behavior;~3! Establish a re-
warding criterion, for example, a threshold;~4! Select a
training window for the prognosticator;~5! Optimize the
prognosticator using GA within the current training win-
dow; ~6! Use the trained prognosticator to predict the next
step;~7! Calculate the reward when the new data is avail-
able;~8! Update the training window with the new data;~9!
If rewarding, go to Step~5!; if not, go to Step~6!.

This procedure does not update the prognostic algorithm
in every step. Smartly enough, it does that whenever nec-
essary according to the current status of the algorithm and
the condition of the environment. Thus, it avoids unneces-
sary algorithm alterations and becomes more efficient than
those step-by-step learning algorithms.

4. PERFORMANCE ASSESSMENT

When a number of prognostic algorithms are available for
a certain prognostic task, it is essential to compare these
algorithms and select the best one for implementation so
that the prognosis can be accomplished in a more efficient
and effective manner, for example, how to rate a DWNN-
based prognosticator against a traditional autoregression
~AR! based one for the targeted application. It is essential,
therefore, that means are devised to assess the perfor-
mance of various prognostic algorithms. In general, an
assessment methodology should consider both the techni-
cal and economic feasibility of the algorithms and their
associated implementation platforms. Consequently, per-
formance measures~PMs! should include the cost of equip-
ment and maintenance, personnel expenses, accuracy of
detection and prediction, and so on, which are usually
grouped into two categories: those associated with eco-
nomic factors and the ones relating to the technical~or
algorithmic! concerns. In the second, accuracy, speed, com-
plexity, and scalability are typical measures, whereas the
first includes purchase and implementation costs, maintain-
ability, computing resources, reliability, user-friendliness,
among others.

Very limited information is currently available on perfor-
mance assessment of prognostic algorithms. Recently, Es-
sawy and Zein-Sabatto~1999! presented a number of
performance metrics to evaluate diagnostic algorithms on
system-level qualities as well as component- or subsystem-
level behaviors. Several measures, such as failure rate, time
delay, reliability, and so on, are defined and universal mea-
sures of effectiveness and performance are suggested for
fault diagnostics but without detailing how these metrics
can be applied to fault prognostics. Vachtsevanos et al.~1999!
proposed a number of PMs specifically for fault prognostic
algorithms. Technically, two fundamental classes are distin-
guished to address the prognostic assessment problem: The
first one is concerned only with the final outcome~or target
point! of an algorithm. It responds to the question of how

close the output of the algorithm is to the target value. From
a practical standpoint, it provides a measure of the devia-
tion of the predicted time-to-failure from its measured value.
The second, though, gauges if an algorithm can approach
the target within specified bounds. Depending on the com-
plexity of prognostic problems, more PM classes may have
to be identified.

Measurable factors influencing the prediction perfor-
mance can be exploited to carry out the comparison of var-
ious prognostic algorithms. Since historical data is essential
for evaluating the performance of diagnostic and prognos-
tic algorithms, it is assumed that a sufficient database is
available that characterizes significant process variables and
failure modes. With reference to Figure 9, where the graph-
ical comparison of two output curves is depicted, a number
of PMs can be proposed for fault prognosis as follows:

Prediction Target Error . This measure calculates how
close to the target the output of an algorithm can ar-
rive, which may be defined as

PM 5 a7yr ~nf ! 2 yp~nf !71 b7yr ~ns! 2 yp~ns!7, ~18!

wherenf indicates the time at the target andns stands
for the start time;a and b are weighting factors ac-
counting for any difference in initial conditions; when
a 5 1 and b 5 0, the same initial conditions are
provided.

Prediction Behavior Error . This measure is employed
to gauge if an algorithm can approach the target in an
appropriate manner and may be defined as follows:

PM 5 (
i5ns

nf

w~i !7yr ~i ! 2 yp~i !7, ~19!

wherew~i ! is a weighting coefficient that takes into
account the fact that the closer to the target, the more
important the accuracy requirement becomes.

Prediction Error Rate . If a failure occurs at timeT with
an acceptable error range6r, then the Prediction Error

Fig. 9. Comparison of the predicted output with the real one.

356 P. Wang and G. Vachtsevanos

https://doi.org/10.1017/S0890060401154089 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154089


Rate or Wrong Output Rate~WOR!, that is, the num-
ber of predictions outside the acceptable range@T 2 r,
T 1 r # over the total number of predicted outcomes
may be expressed as

WOR5 12

(
i51

N

DC~ti !

N
, ~20!

with a distribution of confidence values denoted by
DC.

Prediction Similarity Error . The following measure is
used when comparing more than one predicted time
series against the real series from a starting point to a
certain future point in time. This measurement can be
calculated as:

SIMILARITY~x, y! 5 (
i51

N S12
6xi 2 yi 6

maxi 2 mini
D, ~21!

wherexi andyi are twoi th elements of two different
time series; and are the maximum and minimum of all
i th elements.

Overall Prediction Error . An overall performance met-
ric can be formulated by aggregating appropriately key
PMs in a linear scaled and weighted sum:

Overall Performance 5 w1s1Target-Error

1 w2s2Similarity-Error

1 . . . , ~22!

wheres1, s2, . . . , arescaling factors andw1, w2, . . . , are
weighting factors.

5. AN ILLUSTRATIVE EXAMPLE

Industrial chillers are typical processes found in many crit-
ical applications. These devices support electronics, com-
munications, and so forth on a navy ship, computing and
communication in commercial enterprises, refrigeration and
other functions in food processing, and so on. Of special
interest is the fact that their design incorporates a diverse
assemblage of common and vital components, that is, pumps,
motors, compressors, and so forth. A rich variety of failure
modes are observed on such equipment ranging from
vibration-induced faults to electrical failures and a multi-
tude of process-related failure events. Most chillers are well
instrumented, monitoring vibrations, temperature, pres-
sure, flow, and so on, and many mechanical faults exhibit
symptoms that are sensed via vibration measurements. For
example, a water pump will vibrate if its motor bearing is
defective, if its shaft is misaligned, or if its mounting is
somewhat loose. A rolling-element bearing fault is used in
this study to demonstrate the feasibility of the prognostic
algorithms.

Defective bearings or loose mounting bolts would cause
pumps to vibrate abnormally. The vibrations are typically
monitored by accelerometers with the measured signals trans-
ferred to data acquisition units via coaxial cables. Shiroishi
et al.~1997! collected triaxial vibration signals originating
from a bearing with a crack in its inner race. An initial crack
was seeded in the bearing and the experiment was run for a
period of time and vibration data were recorded during that
period. The setup was then stopped and the crack size was
increased followed by a second run. This procedure was
repeated until the bearing failed. The crack sizes were or-
ganized in an ascending order while time information was
assumed uniformly distributed among the crack sizes. A
training data set relating to the crack growth was thus ob-
tained. Time segments of vibration signals from a good
bearing and a defective one are shown in Figure 10. Their
corresponding power spectral densities~PSDs! are shown
in Figure 11. The original signals were windowed with each
window containing 1000 time points. The maximum values
of the vibration signals in each window were also recorded
as shown in Figure 12 where x, y, and z represent the three
Cartesian axes along which the accelerometer measures the
vibrations. The PSDs of the windowed vibration signals
were calculated and their peak values extracted as depicted
in Figure 13. Figure 14 shows the corresponding crack sizes.
Crack size information at intermediate points was gener-
ated via interpolation to avoid a large number of repeated
experiments. There are 100 data points for each curve in the
figures. The features chosen for prognosis are the maxi-
mum signal values and the maximum signal PSDs for all
three axes, that is,~MaxSx MaxSy MaxSz! and~MaxPSDx
MaxPSDy MaxPSDz!.

Figure 14 demonstrates the crack growth as a function of
time. The model was first trained using the fault data up to
the 100th time window; from then on, it predicted the crack

Fig. 10. Vibration signals from a normal and a defective bearing.
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evolution until the final bearing failure. Mexican hats were
used as mother wavelets throughout all the experiments.
The virtual sensor, implemented as a WNN with seven hid-
den nodes or neurons, was trained through the process of
Figure 15. This virtual sensor “measured” the crack size on
the basis of the maximum signal amplitudes and the maxi-
mum signal PSDs as inputs. The training results are de-
picted in Figure 16. It is observed that 100 data points
employed for training led to very satisfactory results. The
DWNN, acting as the predictor, was trained next, as shown
in Figure 17. The optimized training procedure resulted in a
DWNN of six input~i.e., the model order is 6!, eight hidden
and two output neurons. The training took several hours to
finish due to a large number of network parameters to be
trained, which totaled 368 composed of 63 63 8 for A, 63
8 for B, 23 8 for C and 23 8 for Clin . The training results
are shown in Figure 18. Training was deemed satisfactory
when 100 data points were used. The trained predictor was

Fig. 11. PSDs of the vibration signals in Figure 10.

Fig. 12. The peak values of the original signals.

Fig. 13. The maximum PSDs of the original signals.

Fig. 14. The original crack sizes.

Fig. 15. The training of the virtual sensor.
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employed finally to predict the future crack development,
as shown in Figure 19. A failure hazard threshold was
established on the basis of empirical evidence correspond-
ing to Crack_Width5 2000 microns or Crack_Depth5
1000 microns. The crack reached this hazard condition at
the 174th time window. The Crack_Width criterion was
reached first. It should be noted that these results are pre-
liminary and intended only to illustrate the proposed prog-
nostic architecture. In practices, a substantially large database
may be required for feature extraction, training, validation,
and optimization. Such a database will permit a series of
sensitivity studies that may lead to more conclusive results
as to the capabilities and effectiveness of the proposed
method.

Suppose that the depth of the bearing crack had histori-
cally demonstrated its growth along its mean and within its
lower and upper boundaries, as shown in Figure 20. A
DWNN was then trained using this historical data in order
to predict the development of the crack depth in terms of a
mean value as well as an uncertainty value indicated by
lower and upper boundaries. The training result is shown in
Figure 20 as well. The trained DWNN was then employed
to prognosticate the bearing crack. A failure threshold was
set at 1000mm. As shown in Figure 21, the mean value of
the crack depth would reach the failure condition at the
176th time window. However, the lower and upper bound-
aries would arrive at the failure condition at the 181st and
169th time windows, respectively. Therefore, the remain-
ing useful lifetime of the bearing is estimated to be about 76
time windows and in the range@69 81# time windows, count-
ing from the current 100th time window.

In the vicinity of a growth curve for bearing vibration,
nine more curves were generated by adding small random
variations. The resulting 10 growth curves are shown in
Figure 22. Initially, the prognosticator was trained using

Fig. 16. The crack sizes measured by the trained virtual sensor.

Fig. 17. The training of the predictor.

Fig. 18. The crack growth predicted by the trained predictor within 100th
time window.

Fig. 19. The crack growth predicted by the trained predictor beyond 100th
time window.
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supervised learning with the data points from the time win-
dow #1 to #59. The prognosticator was designed to use five
past data points to predict the next one and trained point by
point~one-step prediction! for demonstration purposes. Start-
ing from the time window #60, the prognosticator was ei-
ther not retrained or retrained in a supervised fashion using
the proposed RL1 GA learning algorithm. The retraining
was carried out either 100% or 67% by altering the reward

Fig. 20. The mean, lower, and upper boundaries of the crack depth.

Fig. 21. Prognosis of the crack depth in terms of uncertainty intervals.

Fig. 22. Ten curves indicating bearing crack growth.

       

 

 

 

 

  
  

       
 
 
 
  

      

 

 

 

 
 

   

       
 
 
 
  

      

 

 

 

 

 
   

      
 
 
 
  

Fig. 23. Prognosis after~a! not retrained,~b! 100% retrained, and~c! 67%
retrained for a typical bearing fault case.
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threshold in the learning algorithm. The prognostication re-
sults using these three retraining strategies~not retrained,
100% trained, and 67% trained, respectively! are shown in
Figure 23 for a typical fault case, in Figure 24 for a statis-
tical view of the prognosis, and in Table 1 for a statistical
summary of the prognostic errors. From Table 1, it can be
observed that after the retraining, almost all error metrics
were reduced. It is also interesting to note that the 67%
retraining generated results as good as those in the 100%

case, which supports the proposed learning strategy. The
rare spikes shown on a few curves in Figure 24 were due to
the sensitivity of step-by-step retraining and could easily be
eliminated with a limiting mechanism embedded in the learn-
ing procedure.

For performance comparison purposes, an AR and a WNN
prognosticator were employed to predict the fault growth
beyond the 87th time window for the curves shown in Fig-
ure 25 that were generated using the small perturbation

Fig. 24. Prognosis after~a! not retrained,~b! 100% retrained, and~c! 67% retrained for 10 bearing fault cases.
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Table 1. Statistical summary of the prognosis for the three retraining cases

Retraining Max-sum Min-sum Mean-sum Median-sum STD-sum

0% 36.3343 10.6000 22.2808 21.8376 8.4170
100% 31.5005 3.8809 15.0437 13.8941 8.9190
67% 32.2762 3.6422 15.0822 13.7477 9.1208

Fig. 25. A growing vibration signal~a! and its PSD peak curve~b!.

Fig. 26. The training data set~a! and its statistics~b!.
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technique. A hazard level or threshold was set at a value of
5 for the PSD and five historical points were used to predict
the next data point. The prognostication results are shown
in Figure 26. The five performance measures described pre-
viously were estimated. The assessment results were sum-
marized in Table 2. It can be recognized that the total error
for the AR prognosticator is 2.0197 compared to a total
error of 1.6096 for the WNN prognosticator. Thus, in this
case, the WNN algorithm performs better than its AR coun-
terpart. It is also interesting to notice that the low-order AR
predictor, like an average performer, had a tendency to av-
erage out sharp curves instead of approximating them
precisely.

To further verify the effectiveness of the proposed prog-
nostic methodology, a mixer system was adopted as another
testing platform. The mixer consists of a motor mounted
with a mechanical fixture on the wall of a water tank and a
long metal rod with a fan at its end driven by the motor. If
the mounting fixture became loose, the mixer system would
vibrate drastically since its fan was submerged in the water.
The looser the fixture was, the stronger the vibration would
be. An experiment was designed in which the fixture was

loosened gradually and the growing vibration was re-
corded. Such an experiment was performed about 400 times,
resulting in a database of 400 growth data curves, each of
which has 5000 data points. From this database, 100 curves
were selected as a training data set and another 100 curves
as a validation data set for a WNN prognosticator that used
five historic values to predict a new value. For simplicity,
these vibration signals were shortened to be of 1500 data
points and then transformed into PSD peak curves of 100
data points. This was done by selecting the maximum value
of the PSD of the windowed signal as the only feature, as
shown in Figure 25. Statistics including maximum, mini-
mum, mean, median, and standard deviation were calcu-
lated, which are shown in Figure 26 for training and Figure 27
for validation. It is important to see that the training and the
validation data sets exhibit similar statistics. The prognos-
tication was carried out using five-step prediction with the
results shown in Figure 28 and Figure 29 for training and
validation, respectively. It can be observed that the WNN
prognosticator works as expected even with such diverse
training and validation data sets in which one data curve
looks quite different from another.

Table 2. Performances of the AR and the WNN prognosticator

Performance measures
TTF

error rate
Dynamic

error
Time3

dynamic error
Similarity

error
Output
error

Total
error

Scaling factor 1.0 100.00 1.0 0.1 1.0 N0A
Weighting coefficients 0.20 0.20 0.20 0.20 0.20 1.0
AR performance 0.4275 0.5200 0.4074 0.3448 0.3200 2.0197
WNN @erformance 0.1855 0.5500 0.2684 0.2857 0.3200 1.6096

Fig. 27. The validation data set~a! and its statistics~b!.
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6. CONCLUSIONS

A fault prognostication architecture consisting of a virtual
sensor and a dynamic wavelet neural network is proposed.
The proposed model addresses two challenging issues re-
lating to prognosis of machine or component failures: How
do we “measure” the growth of a fault and how do we
predict the remaining useful lifetime of such a failing com-
ponent or machine? Reliable answers to these questions are
bound to assist maintenance personnel in the conduct of

condition-based maintenance so that uptime is maximized
and the useful life of critical assets is prolonged. Simula-
tion studies of the virtual sensor—predictor configuration,
based on a limited experimental data set, show promise.
More extensive failure data—difficult to obtain in critical
processes—are required to draw firm and comparative con-
clusions. The proposed architecture provides a generic and
open platform that can be easily modified and augmented
as new failure evidence becomes available. The WNN con-
struct~in both the static and dynamic versions! is amenable

Fig. 28. Five-step prognostication of~a! 1 case and~b! 100 cases—training.

Fig. 29. Five-step prognostication of~a! 1 case and~b! 100 cases—validation.
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to accommodating learning routines~on-line and off-line!
so that the algorithm can be improved with time. Uncer-
tainty, a dominant influence in diagnostics and prognostics,
must be accommodated and managed. A neuro-fuzzy ver-
sion of the basic WNN and DWNN can assist in this direc-
tion when coupled with notions from Dempster–Shafer
theory. This paper, therefore, serves as a motivation to en-
courage further research in those challenging areas of data
collection and management, modeling, validation and ver-
ification, implementation, and assessment that are crucial
to a successful penetration of these technologies in the in-
dustrial and manufacturing sectors of our economy.
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